xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision ed09a554)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <malloc.h>
13 #include <net.h>
14 #include <netdev.h>
15 #include <miiphy.h>
16 #include "fec_mxc.h"
17 
18 #include <asm/arch/clock.h>
19 #include <asm/arch/imx-regs.h>
20 #include <asm/io.h>
21 #include <asm/errno.h>
22 #include <linux/compiler.h>
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 /*
27  * Timeout the transfer after 5 mS. This is usually a bit more, since
28  * the code in the tightloops this timeout is used in adds some overhead.
29  */
30 #define FEC_XFER_TIMEOUT	5000
31 
32 /*
33  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
34  * 64-byte alignment in the DMA RX FEC buffer.
35  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
36  * satisfies the alignment on other SoCs (32-bytes)
37  */
38 #define FEC_DMA_RX_MINALIGN	64
39 
40 #ifndef CONFIG_MII
41 #error "CONFIG_MII has to be defined!"
42 #endif
43 
44 #ifndef CONFIG_FEC_XCV_TYPE
45 #define CONFIG_FEC_XCV_TYPE MII100
46 #endif
47 
48 /*
49  * The i.MX28 operates with packets in big endian. We need to swap them before
50  * sending and after receiving.
51  */
52 #ifdef CONFIG_MX28
53 #define CONFIG_FEC_MXC_SWAP_PACKET
54 #endif
55 
56 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
57 
58 /* Check various alignment issues at compile time */
59 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
60 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
61 #endif
62 
63 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
64 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
65 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
66 #endif
67 
68 #undef DEBUG
69 
70 struct nbuf {
71 	uint8_t data[1500];	/**< actual data */
72 	int length;		/**< actual length */
73 	int used;		/**< buffer in use or not */
74 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
75 };
76 
77 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
78 static void swap_packet(uint32_t *packet, int length)
79 {
80 	int i;
81 
82 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
83 		packet[i] = __swab32(packet[i]);
84 }
85 #endif
86 
87 /*
88  * MII-interface related functions
89  */
90 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
91 		uint8_t regAddr)
92 {
93 	uint32_t reg;		/* convenient holder for the PHY register */
94 	uint32_t phy;		/* convenient holder for the PHY */
95 	uint32_t start;
96 	int val;
97 
98 	/*
99 	 * reading from any PHY's register is done by properly
100 	 * programming the FEC's MII data register.
101 	 */
102 	writel(FEC_IEVENT_MII, &eth->ievent);
103 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
104 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
105 
106 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
107 			phy | reg, &eth->mii_data);
108 
109 	/*
110 	 * wait for the related interrupt
111 	 */
112 	start = get_timer(0);
113 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
114 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
115 			printf("Read MDIO failed...\n");
116 			return -1;
117 		}
118 	}
119 
120 	/*
121 	 * clear mii interrupt bit
122 	 */
123 	writel(FEC_IEVENT_MII, &eth->ievent);
124 
125 	/*
126 	 * it's now safe to read the PHY's register
127 	 */
128 	val = (unsigned short)readl(&eth->mii_data);
129 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
130 			regAddr, val);
131 	return val;
132 }
133 
134 static void fec_mii_setspeed(struct ethernet_regs *eth)
135 {
136 	/*
137 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
138 	 * and do not drop the Preamble.
139 	 */
140 	register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000);
141 #ifdef FEC_QUIRK_ENET_MAC
142 	speed--;
143 #endif
144 	speed <<= 1;
145 	writel(speed, &eth->mii_speed);
146 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
147 }
148 
149 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
150 		uint8_t regAddr, uint16_t data)
151 {
152 	uint32_t reg;		/* convenient holder for the PHY register */
153 	uint32_t phy;		/* convenient holder for the PHY */
154 	uint32_t start;
155 
156 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
157 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
158 
159 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
160 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
161 
162 	/*
163 	 * wait for the MII interrupt
164 	 */
165 	start = get_timer(0);
166 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
167 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
168 			printf("Write MDIO failed...\n");
169 			return -1;
170 		}
171 	}
172 
173 	/*
174 	 * clear MII interrupt bit
175 	 */
176 	writel(FEC_IEVENT_MII, &eth->ievent);
177 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
178 			regAddr, data);
179 
180 	return 0;
181 }
182 
183 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
184 			int regAddr)
185 {
186 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
187 }
188 
189 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
190 			 int regAddr, u16 data)
191 {
192 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
193 }
194 
195 #ifndef CONFIG_PHYLIB
196 static int miiphy_restart_aneg(struct eth_device *dev)
197 {
198 	int ret = 0;
199 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
200 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
201 	struct ethernet_regs *eth = fec->bus->priv;
202 
203 	/*
204 	 * Wake up from sleep if necessary
205 	 * Reset PHY, then delay 300ns
206 	 */
207 #ifdef CONFIG_MX27
208 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
209 #endif
210 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
211 	udelay(1000);
212 
213 	/*
214 	 * Set the auto-negotiation advertisement register bits
215 	 */
216 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
217 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
218 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
219 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
220 			BMCR_ANENABLE | BMCR_ANRESTART);
221 
222 	if (fec->mii_postcall)
223 		ret = fec->mii_postcall(fec->phy_id);
224 
225 #endif
226 	return ret;
227 }
228 
229 static int miiphy_wait_aneg(struct eth_device *dev)
230 {
231 	uint32_t start;
232 	int status;
233 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
234 	struct ethernet_regs *eth = fec->bus->priv;
235 
236 	/*
237 	 * Wait for AN completion
238 	 */
239 	start = get_timer(0);
240 	do {
241 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
242 			printf("%s: Autonegotiation timeout\n", dev->name);
243 			return -1;
244 		}
245 
246 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
247 		if (status < 0) {
248 			printf("%s: Autonegotiation failed. status: %d\n",
249 					dev->name, status);
250 			return -1;
251 		}
252 	} while (!(status & BMSR_LSTATUS));
253 
254 	return 0;
255 }
256 #endif
257 
258 static int fec_rx_task_enable(struct fec_priv *fec)
259 {
260 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
261 	return 0;
262 }
263 
264 static int fec_rx_task_disable(struct fec_priv *fec)
265 {
266 	return 0;
267 }
268 
269 static int fec_tx_task_enable(struct fec_priv *fec)
270 {
271 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
272 	return 0;
273 }
274 
275 static int fec_tx_task_disable(struct fec_priv *fec)
276 {
277 	return 0;
278 }
279 
280 /**
281  * Initialize receive task's buffer descriptors
282  * @param[in] fec all we know about the device yet
283  * @param[in] count receive buffer count to be allocated
284  * @param[in] dsize desired size of each receive buffer
285  * @return 0 on success
286  *
287  * Init all RX descriptors to default values.
288  */
289 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
290 {
291 	uint32_t size;
292 	uint8_t *data;
293 	int i;
294 
295 	/*
296 	 * Reload the RX descriptors with default values and wipe
297 	 * the RX buffers.
298 	 */
299 	size = roundup(dsize, ARCH_DMA_MINALIGN);
300 	for (i = 0; i < count; i++) {
301 		data = (uint8_t *)fec->rbd_base[i].data_pointer;
302 		memset(data, 0, dsize);
303 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
304 
305 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
306 		fec->rbd_base[i].data_length = 0;
307 	}
308 
309 	/* Mark the last RBD to close the ring. */
310 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
311 	fec->rbd_index = 0;
312 
313 	flush_dcache_range((unsigned)fec->rbd_base,
314 			   (unsigned)fec->rbd_base + size);
315 }
316 
317 /**
318  * Initialize transmit task's buffer descriptors
319  * @param[in] fec all we know about the device yet
320  *
321  * Transmit buffers are created externally. We only have to init the BDs here.\n
322  * Note: There is a race condition in the hardware. When only one BD is in
323  * use it must be marked with the WRAP bit to use it for every transmitt.
324  * This bit in combination with the READY bit results into double transmit
325  * of each data buffer. It seems the state machine checks READY earlier then
326  * resetting it after the first transfer.
327  * Using two BDs solves this issue.
328  */
329 static void fec_tbd_init(struct fec_priv *fec)
330 {
331 	unsigned addr = (unsigned)fec->tbd_base;
332 	unsigned size = roundup(2 * sizeof(struct fec_bd),
333 				ARCH_DMA_MINALIGN);
334 
335 	memset(fec->tbd_base, 0, size);
336 	fec->tbd_base[0].status = 0;
337 	fec->tbd_base[1].status = FEC_TBD_WRAP;
338 	fec->tbd_index = 0;
339 	flush_dcache_range(addr, addr + size);
340 }
341 
342 /**
343  * Mark the given read buffer descriptor as free
344  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
345  * @param[in] pRbd buffer descriptor to mark free again
346  */
347 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
348 {
349 	unsigned short flags = FEC_RBD_EMPTY;
350 	if (last)
351 		flags |= FEC_RBD_WRAP;
352 	writew(flags, &pRbd->status);
353 	writew(0, &pRbd->data_length);
354 }
355 
356 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
357 						unsigned char *mac)
358 {
359 	imx_get_mac_from_fuse(dev_id, mac);
360 	return !is_valid_ethaddr(mac);
361 }
362 
363 static int fec_set_hwaddr(struct eth_device *dev)
364 {
365 	uchar *mac = dev->enetaddr;
366 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
367 
368 	writel(0, &fec->eth->iaddr1);
369 	writel(0, &fec->eth->iaddr2);
370 	writel(0, &fec->eth->gaddr1);
371 	writel(0, &fec->eth->gaddr2);
372 
373 	/*
374 	 * Set physical address
375 	 */
376 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
377 			&fec->eth->paddr1);
378 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
379 
380 	return 0;
381 }
382 
383 /*
384  * Do initial configuration of the FEC registers
385  */
386 static void fec_reg_setup(struct fec_priv *fec)
387 {
388 	uint32_t rcntrl;
389 
390 	/*
391 	 * Set interrupt mask register
392 	 */
393 	writel(0x00000000, &fec->eth->imask);
394 
395 	/*
396 	 * Clear FEC-Lite interrupt event register(IEVENT)
397 	 */
398 	writel(0xffffffff, &fec->eth->ievent);
399 
400 
401 	/*
402 	 * Set FEC-Lite receive control register(R_CNTRL):
403 	 */
404 
405 	/* Start with frame length = 1518, common for all modes. */
406 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
407 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
408 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
409 	if (fec->xcv_type == RGMII)
410 		rcntrl |= FEC_RCNTRL_RGMII;
411 	else if (fec->xcv_type == RMII)
412 		rcntrl |= FEC_RCNTRL_RMII;
413 
414 	writel(rcntrl, &fec->eth->r_cntrl);
415 }
416 
417 /**
418  * Start the FEC engine
419  * @param[in] dev Our device to handle
420  */
421 static int fec_open(struct eth_device *edev)
422 {
423 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
424 	int speed;
425 	uint32_t addr, size;
426 	int i;
427 
428 	debug("fec_open: fec_open(dev)\n");
429 	/* full-duplex, heartbeat disabled */
430 	writel(1 << 2, &fec->eth->x_cntrl);
431 	fec->rbd_index = 0;
432 
433 	/* Invalidate all descriptors */
434 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
435 		fec_rbd_clean(0, &fec->rbd_base[i]);
436 	fec_rbd_clean(1, &fec->rbd_base[i]);
437 
438 	/* Flush the descriptors into RAM */
439 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
440 			ARCH_DMA_MINALIGN);
441 	addr = (uint32_t)fec->rbd_base;
442 	flush_dcache_range(addr, addr + size);
443 
444 #ifdef FEC_QUIRK_ENET_MAC
445 	/* Enable ENET HW endian SWAP */
446 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
447 		&fec->eth->ecntrl);
448 	/* Enable ENET store and forward mode */
449 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
450 		&fec->eth->x_wmrk);
451 #endif
452 	/*
453 	 * Enable FEC-Lite controller
454 	 */
455 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
456 		&fec->eth->ecntrl);
457 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
458 	udelay(100);
459 	/*
460 	 * setup the MII gasket for RMII mode
461 	 */
462 
463 	/* disable the gasket */
464 	writew(0, &fec->eth->miigsk_enr);
465 
466 	/* wait for the gasket to be disabled */
467 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
468 		udelay(2);
469 
470 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
471 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
472 
473 	/* re-enable the gasket */
474 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
475 
476 	/* wait until MII gasket is ready */
477 	int max_loops = 10;
478 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
479 		if (--max_loops <= 0) {
480 			printf("WAIT for MII Gasket ready timed out\n");
481 			break;
482 		}
483 	}
484 #endif
485 
486 #ifdef CONFIG_PHYLIB
487 	{
488 		/* Start up the PHY */
489 		int ret = phy_startup(fec->phydev);
490 
491 		if (ret) {
492 			printf("Could not initialize PHY %s\n",
493 			       fec->phydev->dev->name);
494 			return ret;
495 		}
496 		speed = fec->phydev->speed;
497 	}
498 #else
499 	miiphy_wait_aneg(edev);
500 	speed = miiphy_speed(edev->name, fec->phy_id);
501 	miiphy_duplex(edev->name, fec->phy_id);
502 #endif
503 
504 #ifdef FEC_QUIRK_ENET_MAC
505 	{
506 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
507 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
508 		if (speed == _1000BASET)
509 			ecr |= FEC_ECNTRL_SPEED;
510 		else if (speed != _100BASET)
511 			rcr |= FEC_RCNTRL_RMII_10T;
512 		writel(ecr, &fec->eth->ecntrl);
513 		writel(rcr, &fec->eth->r_cntrl);
514 	}
515 #endif
516 	debug("%s:Speed=%i\n", __func__, speed);
517 
518 	/*
519 	 * Enable SmartDMA receive task
520 	 */
521 	fec_rx_task_enable(fec);
522 
523 	udelay(100000);
524 	return 0;
525 }
526 
527 static int fec_init(struct eth_device *dev, bd_t* bd)
528 {
529 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
530 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
531 	int i;
532 
533 	/* Initialize MAC address */
534 	fec_set_hwaddr(dev);
535 
536 	/*
537 	 * Setup transmit descriptors, there are two in total.
538 	 */
539 	fec_tbd_init(fec);
540 
541 	/* Setup receive descriptors. */
542 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
543 
544 	fec_reg_setup(fec);
545 
546 	if (fec->xcv_type != SEVENWIRE)
547 		fec_mii_setspeed(fec->bus->priv);
548 
549 	/*
550 	 * Set Opcode/Pause Duration Register
551 	 */
552 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
553 	writel(0x2, &fec->eth->x_wmrk);
554 	/*
555 	 * Set multicast address filter
556 	 */
557 	writel(0x00000000, &fec->eth->gaddr1);
558 	writel(0x00000000, &fec->eth->gaddr2);
559 
560 
561 	/* clear MIB RAM */
562 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
563 		writel(0, i);
564 
565 	/* FIFO receive start register */
566 	writel(0x520, &fec->eth->r_fstart);
567 
568 	/* size and address of each buffer */
569 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
570 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
571 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
572 
573 #ifndef CONFIG_PHYLIB
574 	if (fec->xcv_type != SEVENWIRE)
575 		miiphy_restart_aneg(dev);
576 #endif
577 	fec_open(dev);
578 	return 0;
579 }
580 
581 /**
582  * Halt the FEC engine
583  * @param[in] dev Our device to handle
584  */
585 static void fec_halt(struct eth_device *dev)
586 {
587 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
588 	int counter = 0xffff;
589 
590 	/*
591 	 * issue graceful stop command to the FEC transmitter if necessary
592 	 */
593 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
594 			&fec->eth->x_cntrl);
595 
596 	debug("eth_halt: wait for stop regs\n");
597 	/*
598 	 * wait for graceful stop to register
599 	 */
600 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
601 		udelay(1);
602 
603 	/*
604 	 * Disable SmartDMA tasks
605 	 */
606 	fec_tx_task_disable(fec);
607 	fec_rx_task_disable(fec);
608 
609 	/*
610 	 * Disable the Ethernet Controller
611 	 * Note: this will also reset the BD index counter!
612 	 */
613 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
614 			&fec->eth->ecntrl);
615 	fec->rbd_index = 0;
616 	fec->tbd_index = 0;
617 	debug("eth_halt: done\n");
618 }
619 
620 /**
621  * Transmit one frame
622  * @param[in] dev Our ethernet device to handle
623  * @param[in] packet Pointer to the data to be transmitted
624  * @param[in] length Data count in bytes
625  * @return 0 on success
626  */
627 static int fec_send(struct eth_device *dev, void *packet, int length)
628 {
629 	unsigned int status;
630 	uint32_t size, end;
631 	uint32_t addr;
632 	int timeout = FEC_XFER_TIMEOUT;
633 	int ret = 0;
634 
635 	/*
636 	 * This routine transmits one frame.  This routine only accepts
637 	 * 6-byte Ethernet addresses.
638 	 */
639 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
640 
641 	/*
642 	 * Check for valid length of data.
643 	 */
644 	if ((length > 1500) || (length <= 0)) {
645 		printf("Payload (%d) too large\n", length);
646 		return -1;
647 	}
648 
649 	/*
650 	 * Setup the transmit buffer. We are always using the first buffer for
651 	 * transmission, the second will be empty and only used to stop the DMA
652 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
653 	 */
654 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
655 	swap_packet((uint32_t *)packet, length);
656 #endif
657 
658 	addr = (uint32_t)packet;
659 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
660 	addr &= ~(ARCH_DMA_MINALIGN - 1);
661 	flush_dcache_range(addr, end);
662 
663 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
664 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
665 
666 	/*
667 	 * update BD's status now
668 	 * This block:
669 	 * - is always the last in a chain (means no chain)
670 	 * - should transmitt the CRC
671 	 * - might be the last BD in the list, so the address counter should
672 	 *   wrap (-> keep the WRAP flag)
673 	 */
674 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
675 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
676 	writew(status, &fec->tbd_base[fec->tbd_index].status);
677 
678 	/*
679 	 * Flush data cache. This code flushes both TX descriptors to RAM.
680 	 * After this code, the descriptors will be safely in RAM and we
681 	 * can start DMA.
682 	 */
683 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
684 	addr = (uint32_t)fec->tbd_base;
685 	flush_dcache_range(addr, addr + size);
686 
687 	/*
688 	 * Below we read the DMA descriptor's last four bytes back from the
689 	 * DRAM. This is important in order to make sure that all WRITE
690 	 * operations on the bus that were triggered by previous cache FLUSH
691 	 * have completed.
692 	 *
693 	 * Otherwise, on MX28, it is possible to observe a corruption of the
694 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
695 	 * for the bus structure of MX28. The scenario is as follows:
696 	 *
697 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
698 	 *    to DRAM due to flush_dcache_range()
699 	 * 2) ARM core writes the FEC registers via AHB_ARB2
700 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
701 	 *
702 	 * Note that 2) does sometimes finish before 1) due to reordering of
703 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
704 	 * DMA descriptor is fully written into DRAM. This results in occasional
705 	 * corruption of the DMA descriptor.
706 	 */
707 	readl(addr + size - 4);
708 
709 	/*
710 	 * Enable SmartDMA transmit task
711 	 */
712 	fec_tx_task_enable(fec);
713 
714 	/*
715 	 * Wait until frame is sent. On each turn of the wait cycle, we must
716 	 * invalidate data cache to see what's really in RAM. Also, we need
717 	 * barrier here.
718 	 */
719 	while (--timeout) {
720 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
721 			break;
722 	}
723 
724 	if (!timeout) {
725 		ret = -EINVAL;
726 		goto out;
727 	}
728 
729 	/*
730 	 * The TDAR bit is cleared when the descriptors are all out from TX
731 	 * but on mx6solox we noticed that the READY bit is still not cleared
732 	 * right after TDAR.
733 	 * These are two distinct signals, and in IC simulation, we found that
734 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
735 	 * cleared.
736 	 * In mx6solox, we use a later version of FEC IP. It looks like that
737 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
738 	 * version.
739 	 *
740 	 * Fix this by polling the READY bit of BD after the TDAR polling,
741 	 * which covers the mx6solox case and does not harm the other SoCs.
742 	 */
743 	timeout = FEC_XFER_TIMEOUT;
744 	while (--timeout) {
745 		invalidate_dcache_range(addr, addr + size);
746 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
747 		    FEC_TBD_READY))
748 			break;
749 	}
750 
751 	if (!timeout)
752 		ret = -EINVAL;
753 
754 out:
755 	debug("fec_send: status 0x%x index %d ret %i\n",
756 			readw(&fec->tbd_base[fec->tbd_index].status),
757 			fec->tbd_index, ret);
758 	/* for next transmission use the other buffer */
759 	if (fec->tbd_index)
760 		fec->tbd_index = 0;
761 	else
762 		fec->tbd_index = 1;
763 
764 	return ret;
765 }
766 
767 /**
768  * Pull one frame from the card
769  * @param[in] dev Our ethernet device to handle
770  * @return Length of packet read
771  */
772 static int fec_recv(struct eth_device *dev)
773 {
774 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
775 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
776 	unsigned long ievent;
777 	int frame_length, len = 0;
778 	struct nbuf *frame;
779 	uint16_t bd_status;
780 	uint32_t addr, size, end;
781 	int i;
782 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
783 
784 	/*
785 	 * Check if any critical events have happened
786 	 */
787 	ievent = readl(&fec->eth->ievent);
788 	writel(ievent, &fec->eth->ievent);
789 	debug("fec_recv: ievent 0x%lx\n", ievent);
790 	if (ievent & FEC_IEVENT_BABR) {
791 		fec_halt(dev);
792 		fec_init(dev, fec->bd);
793 		printf("some error: 0x%08lx\n", ievent);
794 		return 0;
795 	}
796 	if (ievent & FEC_IEVENT_HBERR) {
797 		/* Heartbeat error */
798 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
799 				&fec->eth->x_cntrl);
800 	}
801 	if (ievent & FEC_IEVENT_GRA) {
802 		/* Graceful stop complete */
803 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
804 			fec_halt(dev);
805 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
806 					&fec->eth->x_cntrl);
807 			fec_init(dev, fec->bd);
808 		}
809 	}
810 
811 	/*
812 	 * Read the buffer status. Before the status can be read, the data cache
813 	 * must be invalidated, because the data in RAM might have been changed
814 	 * by DMA. The descriptors are properly aligned to cachelines so there's
815 	 * no need to worry they'd overlap.
816 	 *
817 	 * WARNING: By invalidating the descriptor here, we also invalidate
818 	 * the descriptors surrounding this one. Therefore we can NOT change the
819 	 * contents of this descriptor nor the surrounding ones. The problem is
820 	 * that in order to mark the descriptor as processed, we need to change
821 	 * the descriptor. The solution is to mark the whole cache line when all
822 	 * descriptors in the cache line are processed.
823 	 */
824 	addr = (uint32_t)rbd;
825 	addr &= ~(ARCH_DMA_MINALIGN - 1);
826 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
827 	invalidate_dcache_range(addr, addr + size);
828 
829 	bd_status = readw(&rbd->status);
830 	debug("fec_recv: status 0x%x\n", bd_status);
831 
832 	if (!(bd_status & FEC_RBD_EMPTY)) {
833 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
834 			((readw(&rbd->data_length) - 4) > 14)) {
835 			/*
836 			 * Get buffer address and size
837 			 */
838 			frame = (struct nbuf *)readl(&rbd->data_pointer);
839 			frame_length = readw(&rbd->data_length) - 4;
840 			/*
841 			 * Invalidate data cache over the buffer
842 			 */
843 			addr = (uint32_t)frame;
844 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
845 			addr &= ~(ARCH_DMA_MINALIGN - 1);
846 			invalidate_dcache_range(addr, end);
847 
848 			/*
849 			 *  Fill the buffer and pass it to upper layers
850 			 */
851 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
852 			swap_packet((uint32_t *)frame->data, frame_length);
853 #endif
854 			memcpy(buff, frame->data, frame_length);
855 			net_process_received_packet(buff, frame_length);
856 			len = frame_length;
857 		} else {
858 			if (bd_status & FEC_RBD_ERR)
859 				printf("error frame: 0x%08lx 0x%08x\n",
860 						(ulong)rbd->data_pointer,
861 						bd_status);
862 		}
863 
864 		/*
865 		 * Free the current buffer, restart the engine and move forward
866 		 * to the next buffer. Here we check if the whole cacheline of
867 		 * descriptors was already processed and if so, we mark it free
868 		 * as whole.
869 		 */
870 		size = RXDESC_PER_CACHELINE - 1;
871 		if ((fec->rbd_index & size) == size) {
872 			i = fec->rbd_index - size;
873 			addr = (uint32_t)&fec->rbd_base[i];
874 			for (; i <= fec->rbd_index ; i++) {
875 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
876 					      &fec->rbd_base[i]);
877 			}
878 			flush_dcache_range(addr,
879 				addr + ARCH_DMA_MINALIGN);
880 		}
881 
882 		fec_rx_task_enable(fec);
883 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
884 	}
885 	debug("fec_recv: stop\n");
886 
887 	return len;
888 }
889 
890 static void fec_set_dev_name(char *dest, int dev_id)
891 {
892 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
893 }
894 
895 static int fec_alloc_descs(struct fec_priv *fec)
896 {
897 	unsigned int size;
898 	int i;
899 	uint8_t *data;
900 
901 	/* Allocate TX descriptors. */
902 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
903 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
904 	if (!fec->tbd_base)
905 		goto err_tx;
906 
907 	/* Allocate RX descriptors. */
908 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
909 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
910 	if (!fec->rbd_base)
911 		goto err_rx;
912 
913 	memset(fec->rbd_base, 0, size);
914 
915 	/* Allocate RX buffers. */
916 
917 	/* Maximum RX buffer size. */
918 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
919 	for (i = 0; i < FEC_RBD_NUM; i++) {
920 		data = memalign(FEC_DMA_RX_MINALIGN, size);
921 		if (!data) {
922 			printf("%s: error allocating rxbuf %d\n", __func__, i);
923 			goto err_ring;
924 		}
925 
926 		memset(data, 0, size);
927 
928 		fec->rbd_base[i].data_pointer = (uint32_t)data;
929 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
930 		fec->rbd_base[i].data_length = 0;
931 		/* Flush the buffer to memory. */
932 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
933 	}
934 
935 	/* Mark the last RBD to close the ring. */
936 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
937 
938 	fec->rbd_index = 0;
939 	fec->tbd_index = 0;
940 
941 	return 0;
942 
943 err_ring:
944 	for (; i >= 0; i--)
945 		free((void *)fec->rbd_base[i].data_pointer);
946 	free(fec->rbd_base);
947 err_rx:
948 	free(fec->tbd_base);
949 err_tx:
950 	return -ENOMEM;
951 }
952 
953 static void fec_free_descs(struct fec_priv *fec)
954 {
955 	int i;
956 
957 	for (i = 0; i < FEC_RBD_NUM; i++)
958 		free((void *)fec->rbd_base[i].data_pointer);
959 	free(fec->rbd_base);
960 	free(fec->tbd_base);
961 }
962 
963 #ifdef CONFIG_PHYLIB
964 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
965 		struct mii_dev *bus, struct phy_device *phydev)
966 #else
967 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
968 		struct mii_dev *bus, int phy_id)
969 #endif
970 {
971 	struct eth_device *edev;
972 	struct fec_priv *fec;
973 	unsigned char ethaddr[6];
974 	uint32_t start;
975 	int ret = 0;
976 
977 	/* create and fill edev struct */
978 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
979 	if (!edev) {
980 		puts("fec_mxc: not enough malloc memory for eth_device\n");
981 		ret = -ENOMEM;
982 		goto err1;
983 	}
984 
985 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
986 	if (!fec) {
987 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
988 		ret = -ENOMEM;
989 		goto err2;
990 	}
991 
992 	memset(edev, 0, sizeof(*edev));
993 	memset(fec, 0, sizeof(*fec));
994 
995 	ret = fec_alloc_descs(fec);
996 	if (ret)
997 		goto err3;
998 
999 	edev->priv = fec;
1000 	edev->init = fec_init;
1001 	edev->send = fec_send;
1002 	edev->recv = fec_recv;
1003 	edev->halt = fec_halt;
1004 	edev->write_hwaddr = fec_set_hwaddr;
1005 
1006 	fec->eth = (struct ethernet_regs *)base_addr;
1007 	fec->bd = bd;
1008 
1009 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1010 
1011 	/* Reset chip. */
1012 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1013 	start = get_timer(0);
1014 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1015 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1016 			printf("FEC MXC: Timeout reseting chip\n");
1017 			goto err4;
1018 		}
1019 		udelay(10);
1020 	}
1021 
1022 	fec_reg_setup(fec);
1023 	fec_set_dev_name(edev->name, dev_id);
1024 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1025 	fec->bus = bus;
1026 	fec_mii_setspeed(bus->priv);
1027 #ifdef CONFIG_PHYLIB
1028 	fec->phydev = phydev;
1029 	phy_connect_dev(phydev, edev);
1030 	/* Configure phy */
1031 	phy_config(phydev);
1032 #else
1033 	fec->phy_id = phy_id;
1034 #endif
1035 	eth_register(edev);
1036 
1037 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1038 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1039 		memcpy(edev->enetaddr, ethaddr, 6);
1040 		if (!getenv("ethaddr"))
1041 			eth_setenv_enetaddr("ethaddr", ethaddr);
1042 	}
1043 	return ret;
1044 err4:
1045 	fec_free_descs(fec);
1046 err3:
1047 	free(fec);
1048 err2:
1049 	free(edev);
1050 err1:
1051 	return ret;
1052 }
1053 
1054 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1055 {
1056 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1057 	struct mii_dev *bus;
1058 	int ret;
1059 
1060 	bus = mdio_alloc();
1061 	if (!bus) {
1062 		printf("mdio_alloc failed\n");
1063 		return NULL;
1064 	}
1065 	bus->read = fec_phy_read;
1066 	bus->write = fec_phy_write;
1067 	bus->priv = eth;
1068 	fec_set_dev_name(bus->name, dev_id);
1069 
1070 	ret = mdio_register(bus);
1071 	if (ret) {
1072 		printf("mdio_register failed\n");
1073 		free(bus);
1074 		return NULL;
1075 	}
1076 	fec_mii_setspeed(eth);
1077 	return bus;
1078 }
1079 
1080 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1081 {
1082 	uint32_t base_mii;
1083 	struct mii_dev *bus = NULL;
1084 #ifdef CONFIG_PHYLIB
1085 	struct phy_device *phydev = NULL;
1086 #endif
1087 	int ret;
1088 
1089 #ifdef CONFIG_MX28
1090 	/*
1091 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1092 	 * Only the first one can access the MDIO bus.
1093 	 */
1094 	base_mii = MXS_ENET0_BASE;
1095 #else
1096 	base_mii = addr;
1097 #endif
1098 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1099 	bus = fec_get_miibus(base_mii, dev_id);
1100 	if (!bus)
1101 		return -ENOMEM;
1102 #ifdef CONFIG_PHYLIB
1103 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1104 	if (!phydev) {
1105 		free(bus);
1106 		return -ENOMEM;
1107 	}
1108 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1109 #else
1110 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1111 #endif
1112 	if (ret) {
1113 #ifdef CONFIG_PHYLIB
1114 		free(phydev);
1115 #endif
1116 		free(bus);
1117 	}
1118 	return ret;
1119 }
1120 
1121 #ifdef CONFIG_FEC_MXC_PHYADDR
1122 int fecmxc_initialize(bd_t *bd)
1123 {
1124 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1125 			IMX_FEC_BASE);
1126 }
1127 #endif
1128 
1129 #ifndef CONFIG_PHYLIB
1130 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1131 {
1132 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1133 	fec->mii_postcall = cb;
1134 	return 0;
1135 }
1136 #endif
1137