xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision ea818dbbcd59300b56014ac2d67798a54994eb9b)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29 
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34 #include <linux/compiler.h>
35 
36 DECLARE_GLOBAL_DATA_PTR;
37 
38 /*
39  * Timeout the transfer after 5 mS. This is usually a bit more, since
40  * the code in the tightloops this timeout is used in adds some overhead.
41  */
42 #define FEC_XFER_TIMEOUT	5000
43 
44 #ifndef CONFIG_MII
45 #error "CONFIG_MII has to be defined!"
46 #endif
47 
48 #ifndef CONFIG_FEC_XCV_TYPE
49 #define CONFIG_FEC_XCV_TYPE MII100
50 #endif
51 
52 /*
53  * The i.MX28 operates with packets in big endian. We need to swap them before
54  * sending and after receiving.
55  */
56 #ifdef CONFIG_MX28
57 #define CONFIG_FEC_MXC_SWAP_PACKET
58 #endif
59 
60 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
61 
62 /* Check various alignment issues at compile time */
63 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
65 #endif
66 
67 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
69 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
70 #endif
71 
72 #undef DEBUG
73 
74 struct nbuf {
75 	uint8_t data[1500];	/**< actual data */
76 	int length;		/**< actual length */
77 	int used;		/**< buffer in use or not */
78 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
79 };
80 
81 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
82 static void swap_packet(uint32_t *packet, int length)
83 {
84 	int i;
85 
86 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
87 		packet[i] = __swab32(packet[i]);
88 }
89 #endif
90 
91 /*
92  * MII-interface related functions
93  */
94 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
95 		uint8_t regAddr)
96 {
97 	uint32_t reg;		/* convenient holder for the PHY register */
98 	uint32_t phy;		/* convenient holder for the PHY */
99 	uint32_t start;
100 	int val;
101 
102 	/*
103 	 * reading from any PHY's register is done by properly
104 	 * programming the FEC's MII data register.
105 	 */
106 	writel(FEC_IEVENT_MII, &eth->ievent);
107 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
108 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
109 
110 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
111 			phy | reg, &eth->mii_data);
112 
113 	/*
114 	 * wait for the related interrupt
115 	 */
116 	start = get_timer(0);
117 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
118 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
119 			printf("Read MDIO failed...\n");
120 			return -1;
121 		}
122 	}
123 
124 	/*
125 	 * clear mii interrupt bit
126 	 */
127 	writel(FEC_IEVENT_MII, &eth->ievent);
128 
129 	/*
130 	 * it's now safe to read the PHY's register
131 	 */
132 	val = (unsigned short)readl(&eth->mii_data);
133 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
134 			regAddr, val);
135 	return val;
136 }
137 
138 static void fec_mii_setspeed(struct ethernet_regs *eth)
139 {
140 	/*
141 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
142 	 * and do not drop the Preamble.
143 	 */
144 	writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
145 			&eth->mii_speed);
146 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
147 }
148 
149 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
150 		uint8_t regAddr, uint16_t data)
151 {
152 	uint32_t reg;		/* convenient holder for the PHY register */
153 	uint32_t phy;		/* convenient holder for the PHY */
154 	uint32_t start;
155 
156 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
157 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
158 
159 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
160 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
161 
162 	/*
163 	 * wait for the MII interrupt
164 	 */
165 	start = get_timer(0);
166 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
167 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
168 			printf("Write MDIO failed...\n");
169 			return -1;
170 		}
171 	}
172 
173 	/*
174 	 * clear MII interrupt bit
175 	 */
176 	writel(FEC_IEVENT_MII, &eth->ievent);
177 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
178 			regAddr, data);
179 
180 	return 0;
181 }
182 
183 int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
184 {
185 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
186 }
187 
188 int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
189 		u16 data)
190 {
191 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
192 }
193 
194 #ifndef CONFIG_PHYLIB
195 static int miiphy_restart_aneg(struct eth_device *dev)
196 {
197 	int ret = 0;
198 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
199 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
200 	struct ethernet_regs *eth = fec->bus->priv;
201 
202 	/*
203 	 * Wake up from sleep if necessary
204 	 * Reset PHY, then delay 300ns
205 	 */
206 #ifdef CONFIG_MX27
207 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
208 #endif
209 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
210 	udelay(1000);
211 
212 	/*
213 	 * Set the auto-negotiation advertisement register bits
214 	 */
215 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
216 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
217 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
218 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
219 			BMCR_ANENABLE | BMCR_ANRESTART);
220 
221 	if (fec->mii_postcall)
222 		ret = fec->mii_postcall(fec->phy_id);
223 
224 #endif
225 	return ret;
226 }
227 
228 static int miiphy_wait_aneg(struct eth_device *dev)
229 {
230 	uint32_t start;
231 	int status;
232 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
233 	struct ethernet_regs *eth = fec->bus->priv;
234 
235 	/*
236 	 * Wait for AN completion
237 	 */
238 	start = get_timer(0);
239 	do {
240 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
241 			printf("%s: Autonegotiation timeout\n", dev->name);
242 			return -1;
243 		}
244 
245 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
246 		if (status < 0) {
247 			printf("%s: Autonegotiation failed. status: %d\n",
248 					dev->name, status);
249 			return -1;
250 		}
251 	} while (!(status & BMSR_LSTATUS));
252 
253 	return 0;
254 }
255 #endif
256 
257 static int fec_rx_task_enable(struct fec_priv *fec)
258 {
259 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
260 	return 0;
261 }
262 
263 static int fec_rx_task_disable(struct fec_priv *fec)
264 {
265 	return 0;
266 }
267 
268 static int fec_tx_task_enable(struct fec_priv *fec)
269 {
270 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
271 	return 0;
272 }
273 
274 static int fec_tx_task_disable(struct fec_priv *fec)
275 {
276 	return 0;
277 }
278 
279 /**
280  * Initialize receive task's buffer descriptors
281  * @param[in] fec all we know about the device yet
282  * @param[in] count receive buffer count to be allocated
283  * @param[in] dsize desired size of each receive buffer
284  * @return 0 on success
285  *
286  * For this task we need additional memory for the data buffers. And each
287  * data buffer requires some alignment. Thy must be aligned to a specific
288  * boundary each.
289  */
290 static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
291 {
292 	uint32_t size;
293 	int i;
294 
295 	/*
296 	 * Allocate memory for the buffers. This allocation respects the
297 	 * alignment
298 	 */
299 	size = roundup(dsize, ARCH_DMA_MINALIGN);
300 	for (i = 0; i < count; i++) {
301 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
302 		if (data_ptr == 0) {
303 			uint8_t *data = memalign(ARCH_DMA_MINALIGN,
304 						 size);
305 			if (!data) {
306 				printf("%s: error allocating rxbuf %d\n",
307 				       __func__, i);
308 				goto err;
309 			}
310 			writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
311 		} /* needs allocation */
312 		writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
313 		writew(0, &fec->rbd_base[i].data_length);
314 	}
315 
316 	/* Mark the last RBD to close the ring. */
317 	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
318 	fec->rbd_index = 0;
319 
320 	return 0;
321 
322 err:
323 	for (; i >= 0; i--) {
324 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
325 		free((void *)data_ptr);
326 	}
327 
328 	return -ENOMEM;
329 }
330 
331 /**
332  * Initialize transmit task's buffer descriptors
333  * @param[in] fec all we know about the device yet
334  *
335  * Transmit buffers are created externally. We only have to init the BDs here.\n
336  * Note: There is a race condition in the hardware. When only one BD is in
337  * use it must be marked with the WRAP bit to use it for every transmitt.
338  * This bit in combination with the READY bit results into double transmit
339  * of each data buffer. It seems the state machine checks READY earlier then
340  * resetting it after the first transfer.
341  * Using two BDs solves this issue.
342  */
343 static void fec_tbd_init(struct fec_priv *fec)
344 {
345 	unsigned addr = (unsigned)fec->tbd_base;
346 	unsigned size = roundup(2 * sizeof(struct fec_bd),
347 				ARCH_DMA_MINALIGN);
348 	writew(0x0000, &fec->tbd_base[0].status);
349 	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
350 	fec->tbd_index = 0;
351 	flush_dcache_range(addr, addr+size);
352 }
353 
354 /**
355  * Mark the given read buffer descriptor as free
356  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
357  * @param[in] pRbd buffer descriptor to mark free again
358  */
359 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
360 {
361 	unsigned short flags = FEC_RBD_EMPTY;
362 	if (last)
363 		flags |= FEC_RBD_WRAP;
364 	writew(flags, &pRbd->status);
365 	writew(0, &pRbd->data_length);
366 }
367 
368 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
369 						unsigned char *mac)
370 {
371 	imx_get_mac_from_fuse(dev_id, mac);
372 	return !is_valid_ether_addr(mac);
373 }
374 
375 static int fec_set_hwaddr(struct eth_device *dev)
376 {
377 	uchar *mac = dev->enetaddr;
378 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
379 
380 	writel(0, &fec->eth->iaddr1);
381 	writel(0, &fec->eth->iaddr2);
382 	writel(0, &fec->eth->gaddr1);
383 	writel(0, &fec->eth->gaddr2);
384 
385 	/*
386 	 * Set physical address
387 	 */
388 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
389 			&fec->eth->paddr1);
390 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
391 
392 	return 0;
393 }
394 
395 /*
396  * Do initial configuration of the FEC registers
397  */
398 static void fec_reg_setup(struct fec_priv *fec)
399 {
400 	uint32_t rcntrl;
401 
402 	/*
403 	 * Set interrupt mask register
404 	 */
405 	writel(0x00000000, &fec->eth->imask);
406 
407 	/*
408 	 * Clear FEC-Lite interrupt event register(IEVENT)
409 	 */
410 	writel(0xffffffff, &fec->eth->ievent);
411 
412 
413 	/*
414 	 * Set FEC-Lite receive control register(R_CNTRL):
415 	 */
416 
417 	/* Start with frame length = 1518, common for all modes. */
418 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
419 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
420 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
421 	if (fec->xcv_type == RGMII)
422 		rcntrl |= FEC_RCNTRL_RGMII;
423 	else if (fec->xcv_type == RMII)
424 		rcntrl |= FEC_RCNTRL_RMII;
425 
426 	writel(rcntrl, &fec->eth->r_cntrl);
427 }
428 
429 /**
430  * Start the FEC engine
431  * @param[in] dev Our device to handle
432  */
433 static int fec_open(struct eth_device *edev)
434 {
435 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
436 	int speed;
437 	uint32_t addr, size;
438 	int i;
439 
440 	debug("fec_open: fec_open(dev)\n");
441 	/* full-duplex, heartbeat disabled */
442 	writel(1 << 2, &fec->eth->x_cntrl);
443 	fec->rbd_index = 0;
444 
445 	/* Invalidate all descriptors */
446 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
447 		fec_rbd_clean(0, &fec->rbd_base[i]);
448 	fec_rbd_clean(1, &fec->rbd_base[i]);
449 
450 	/* Flush the descriptors into RAM */
451 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
452 			ARCH_DMA_MINALIGN);
453 	addr = (uint32_t)fec->rbd_base;
454 	flush_dcache_range(addr, addr + size);
455 
456 #ifdef FEC_QUIRK_ENET_MAC
457 	/* Enable ENET HW endian SWAP */
458 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
459 		&fec->eth->ecntrl);
460 	/* Enable ENET store and forward mode */
461 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
462 		&fec->eth->x_wmrk);
463 #endif
464 	/*
465 	 * Enable FEC-Lite controller
466 	 */
467 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
468 		&fec->eth->ecntrl);
469 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
470 	udelay(100);
471 	/*
472 	 * setup the MII gasket for RMII mode
473 	 */
474 
475 	/* disable the gasket */
476 	writew(0, &fec->eth->miigsk_enr);
477 
478 	/* wait for the gasket to be disabled */
479 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
480 		udelay(2);
481 
482 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
483 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
484 
485 	/* re-enable the gasket */
486 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
487 
488 	/* wait until MII gasket is ready */
489 	int max_loops = 10;
490 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
491 		if (--max_loops <= 0) {
492 			printf("WAIT for MII Gasket ready timed out\n");
493 			break;
494 		}
495 	}
496 #endif
497 
498 #ifdef CONFIG_PHYLIB
499 	{
500 		/* Start up the PHY */
501 		int ret = phy_startup(fec->phydev);
502 
503 		if (ret) {
504 			printf("Could not initialize PHY %s\n",
505 			       fec->phydev->dev->name);
506 			return ret;
507 		}
508 		speed = fec->phydev->speed;
509 	}
510 #else
511 	miiphy_wait_aneg(edev);
512 	speed = miiphy_speed(edev->name, fec->phy_id);
513 	miiphy_duplex(edev->name, fec->phy_id);
514 #endif
515 
516 #ifdef FEC_QUIRK_ENET_MAC
517 	{
518 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
519 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
520 		if (speed == _1000BASET)
521 			ecr |= FEC_ECNTRL_SPEED;
522 		else if (speed != _100BASET)
523 			rcr |= FEC_RCNTRL_RMII_10T;
524 		writel(ecr, &fec->eth->ecntrl);
525 		writel(rcr, &fec->eth->r_cntrl);
526 	}
527 #endif
528 	debug("%s:Speed=%i\n", __func__, speed);
529 
530 	/*
531 	 * Enable SmartDMA receive task
532 	 */
533 	fec_rx_task_enable(fec);
534 
535 	udelay(100000);
536 	return 0;
537 }
538 
539 static int fec_init(struct eth_device *dev, bd_t* bd)
540 {
541 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
542 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
543 	uint32_t size;
544 	int i, ret;
545 
546 	/* Initialize MAC address */
547 	fec_set_hwaddr(dev);
548 
549 	/*
550 	 * Allocate transmit descriptors, there are two in total. This
551 	 * allocation respects cache alignment.
552 	 */
553 	if (!fec->tbd_base) {
554 		size = roundup(2 * sizeof(struct fec_bd),
555 				ARCH_DMA_MINALIGN);
556 		fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
557 		if (!fec->tbd_base) {
558 			ret = -ENOMEM;
559 			goto err1;
560 		}
561 		memset(fec->tbd_base, 0, size);
562 		fec_tbd_init(fec);
563 	}
564 
565 	/*
566 	 * Allocate receive descriptors. This allocation respects cache
567 	 * alignment.
568 	 */
569 	if (!fec->rbd_base) {
570 		size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
571 				ARCH_DMA_MINALIGN);
572 		fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
573 		if (!fec->rbd_base) {
574 			ret = -ENOMEM;
575 			goto err2;
576 		}
577 		memset(fec->rbd_base, 0, size);
578 		/*
579 		 * Initialize RxBD ring
580 		 */
581 		if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
582 			ret = -ENOMEM;
583 			goto err3;
584 		}
585 		flush_dcache_range((unsigned)fec->rbd_base,
586 				   (unsigned)fec->rbd_base + size);
587 	}
588 
589 	fec_reg_setup(fec);
590 
591 	if (fec->xcv_type != SEVENWIRE)
592 		fec_mii_setspeed(fec->bus->priv);
593 
594 	/*
595 	 * Set Opcode/Pause Duration Register
596 	 */
597 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
598 	writel(0x2, &fec->eth->x_wmrk);
599 	/*
600 	 * Set multicast address filter
601 	 */
602 	writel(0x00000000, &fec->eth->gaddr1);
603 	writel(0x00000000, &fec->eth->gaddr2);
604 
605 
606 	/* clear MIB RAM */
607 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
608 		writel(0, i);
609 
610 	/* FIFO receive start register */
611 	writel(0x520, &fec->eth->r_fstart);
612 
613 	/* size and address of each buffer */
614 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
615 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
616 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
617 
618 #ifndef CONFIG_PHYLIB
619 	if (fec->xcv_type != SEVENWIRE)
620 		miiphy_restart_aneg(dev);
621 #endif
622 	fec_open(dev);
623 	return 0;
624 
625 err3:
626 	free(fec->rbd_base);
627 err2:
628 	free(fec->tbd_base);
629 err1:
630 	return ret;
631 }
632 
633 /**
634  * Halt the FEC engine
635  * @param[in] dev Our device to handle
636  */
637 static void fec_halt(struct eth_device *dev)
638 {
639 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
640 	int counter = 0xffff;
641 
642 	/*
643 	 * issue graceful stop command to the FEC transmitter if necessary
644 	 */
645 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
646 			&fec->eth->x_cntrl);
647 
648 	debug("eth_halt: wait for stop regs\n");
649 	/*
650 	 * wait for graceful stop to register
651 	 */
652 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
653 		udelay(1);
654 
655 	/*
656 	 * Disable SmartDMA tasks
657 	 */
658 	fec_tx_task_disable(fec);
659 	fec_rx_task_disable(fec);
660 
661 	/*
662 	 * Disable the Ethernet Controller
663 	 * Note: this will also reset the BD index counter!
664 	 */
665 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
666 			&fec->eth->ecntrl);
667 	fec->rbd_index = 0;
668 	fec->tbd_index = 0;
669 	debug("eth_halt: done\n");
670 }
671 
672 /**
673  * Transmit one frame
674  * @param[in] dev Our ethernet device to handle
675  * @param[in] packet Pointer to the data to be transmitted
676  * @param[in] length Data count in bytes
677  * @return 0 on success
678  */
679 static int fec_send(struct eth_device *dev, void *packet, int length)
680 {
681 	unsigned int status;
682 	uint32_t size, end;
683 	uint32_t addr;
684 	int timeout = FEC_XFER_TIMEOUT;
685 	int ret = 0;
686 
687 	/*
688 	 * This routine transmits one frame.  This routine only accepts
689 	 * 6-byte Ethernet addresses.
690 	 */
691 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
692 
693 	/*
694 	 * Check for valid length of data.
695 	 */
696 	if ((length > 1500) || (length <= 0)) {
697 		printf("Payload (%d) too large\n", length);
698 		return -1;
699 	}
700 
701 	/*
702 	 * Setup the transmit buffer. We are always using the first buffer for
703 	 * transmission, the second will be empty and only used to stop the DMA
704 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
705 	 */
706 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
707 	swap_packet((uint32_t *)packet, length);
708 #endif
709 
710 	addr = (uint32_t)packet;
711 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
712 	addr &= ~(ARCH_DMA_MINALIGN - 1);
713 	flush_dcache_range(addr, end);
714 
715 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
716 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
717 
718 	/*
719 	 * update BD's status now
720 	 * This block:
721 	 * - is always the last in a chain (means no chain)
722 	 * - should transmitt the CRC
723 	 * - might be the last BD in the list, so the address counter should
724 	 *   wrap (-> keep the WRAP flag)
725 	 */
726 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
727 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
728 	writew(status, &fec->tbd_base[fec->tbd_index].status);
729 
730 	/*
731 	 * Flush data cache. This code flushes both TX descriptors to RAM.
732 	 * After this code, the descriptors will be safely in RAM and we
733 	 * can start DMA.
734 	 */
735 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
736 	addr = (uint32_t)fec->tbd_base;
737 	flush_dcache_range(addr, addr + size);
738 
739 	/*
740 	 * Below we read the DMA descriptor's last four bytes back from the
741 	 * DRAM. This is important in order to make sure that all WRITE
742 	 * operations on the bus that were triggered by previous cache FLUSH
743 	 * have completed.
744 	 *
745 	 * Otherwise, on MX28, it is possible to observe a corruption of the
746 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
747 	 * for the bus structure of MX28. The scenario is as follows:
748 	 *
749 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
750 	 *    to DRAM due to flush_dcache_range()
751 	 * 2) ARM core writes the FEC registers via AHB_ARB2
752 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
753 	 *
754 	 * Note that 2) does sometimes finish before 1) due to reordering of
755 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
756 	 * DMA descriptor is fully written into DRAM. This results in occasional
757 	 * corruption of the DMA descriptor.
758 	 */
759 	readl(addr + size - 4);
760 
761 	/*
762 	 * Enable SmartDMA transmit task
763 	 */
764 	fec_tx_task_enable(fec);
765 
766 	/*
767 	 * Wait until frame is sent. On each turn of the wait cycle, we must
768 	 * invalidate data cache to see what's really in RAM. Also, we need
769 	 * barrier here.
770 	 */
771 	while (--timeout) {
772 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
773 			break;
774 	}
775 
776 	if (!timeout)
777 		ret = -EINVAL;
778 
779 	invalidate_dcache_range(addr, addr + size);
780 	if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY)
781 		ret = -EINVAL;
782 
783 	debug("fec_send: status 0x%x index %d ret %i\n",
784 			readw(&fec->tbd_base[fec->tbd_index].status),
785 			fec->tbd_index, ret);
786 	/* for next transmission use the other buffer */
787 	if (fec->tbd_index)
788 		fec->tbd_index = 0;
789 	else
790 		fec->tbd_index = 1;
791 
792 	return ret;
793 }
794 
795 /**
796  * Pull one frame from the card
797  * @param[in] dev Our ethernet device to handle
798  * @return Length of packet read
799  */
800 static int fec_recv(struct eth_device *dev)
801 {
802 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
803 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
804 	unsigned long ievent;
805 	int frame_length, len = 0;
806 	struct nbuf *frame;
807 	uint16_t bd_status;
808 	uint32_t addr, size, end;
809 	int i;
810 	uchar buff[FEC_MAX_PKT_SIZE] __aligned(ARCH_DMA_MINALIGN);
811 
812 	/*
813 	 * Check if any critical events have happened
814 	 */
815 	ievent = readl(&fec->eth->ievent);
816 	writel(ievent, &fec->eth->ievent);
817 	debug("fec_recv: ievent 0x%lx\n", ievent);
818 	if (ievent & FEC_IEVENT_BABR) {
819 		fec_halt(dev);
820 		fec_init(dev, fec->bd);
821 		printf("some error: 0x%08lx\n", ievent);
822 		return 0;
823 	}
824 	if (ievent & FEC_IEVENT_HBERR) {
825 		/* Heartbeat error */
826 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
827 				&fec->eth->x_cntrl);
828 	}
829 	if (ievent & FEC_IEVENT_GRA) {
830 		/* Graceful stop complete */
831 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
832 			fec_halt(dev);
833 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
834 					&fec->eth->x_cntrl);
835 			fec_init(dev, fec->bd);
836 		}
837 	}
838 
839 	/*
840 	 * Read the buffer status. Before the status can be read, the data cache
841 	 * must be invalidated, because the data in RAM might have been changed
842 	 * by DMA. The descriptors are properly aligned to cachelines so there's
843 	 * no need to worry they'd overlap.
844 	 *
845 	 * WARNING: By invalidating the descriptor here, we also invalidate
846 	 * the descriptors surrounding this one. Therefore we can NOT change the
847 	 * contents of this descriptor nor the surrounding ones. The problem is
848 	 * that in order to mark the descriptor as processed, we need to change
849 	 * the descriptor. The solution is to mark the whole cache line when all
850 	 * descriptors in the cache line are processed.
851 	 */
852 	addr = (uint32_t)rbd;
853 	addr &= ~(ARCH_DMA_MINALIGN - 1);
854 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
855 	invalidate_dcache_range(addr, addr + size);
856 
857 	bd_status = readw(&rbd->status);
858 	debug("fec_recv: status 0x%x\n", bd_status);
859 
860 	if (!(bd_status & FEC_RBD_EMPTY)) {
861 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
862 			((readw(&rbd->data_length) - 4) > 14)) {
863 			/*
864 			 * Get buffer address and size
865 			 */
866 			frame = (struct nbuf *)readl(&rbd->data_pointer);
867 			frame_length = readw(&rbd->data_length) - 4;
868 			/*
869 			 * Invalidate data cache over the buffer
870 			 */
871 			addr = (uint32_t)frame;
872 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
873 			addr &= ~(ARCH_DMA_MINALIGN - 1);
874 			invalidate_dcache_range(addr, end);
875 
876 			/*
877 			 *  Fill the buffer and pass it to upper layers
878 			 */
879 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
880 			swap_packet((uint32_t *)frame->data, frame_length);
881 #endif
882 			memcpy(buff, frame->data, frame_length);
883 			NetReceive(buff, frame_length);
884 			len = frame_length;
885 		} else {
886 			if (bd_status & FEC_RBD_ERR)
887 				printf("error frame: 0x%08lx 0x%08x\n",
888 						(ulong)rbd->data_pointer,
889 						bd_status);
890 		}
891 
892 		/*
893 		 * Free the current buffer, restart the engine and move forward
894 		 * to the next buffer. Here we check if the whole cacheline of
895 		 * descriptors was already processed and if so, we mark it free
896 		 * as whole.
897 		 */
898 		size = RXDESC_PER_CACHELINE - 1;
899 		if ((fec->rbd_index & size) == size) {
900 			i = fec->rbd_index - size;
901 			addr = (uint32_t)&fec->rbd_base[i];
902 			for (; i <= fec->rbd_index ; i++) {
903 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
904 					      &fec->rbd_base[i]);
905 			}
906 			flush_dcache_range(addr,
907 				addr + ARCH_DMA_MINALIGN);
908 		}
909 
910 		fec_rx_task_enable(fec);
911 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
912 	}
913 	debug("fec_recv: stop\n");
914 
915 	return len;
916 }
917 
918 static void fec_set_dev_name(char *dest, int dev_id)
919 {
920 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
921 }
922 
923 #ifdef CONFIG_PHYLIB
924 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
925 		struct mii_dev *bus, struct phy_device *phydev)
926 #else
927 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
928 		struct mii_dev *bus, int phy_id)
929 #endif
930 {
931 	struct eth_device *edev;
932 	struct fec_priv *fec;
933 	unsigned char ethaddr[6];
934 	uint32_t start;
935 	int ret = 0;
936 
937 	/* create and fill edev struct */
938 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
939 	if (!edev) {
940 		puts("fec_mxc: not enough malloc memory for eth_device\n");
941 		ret = -ENOMEM;
942 		goto err1;
943 	}
944 
945 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
946 	if (!fec) {
947 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
948 		ret = -ENOMEM;
949 		goto err2;
950 	}
951 
952 	memset(edev, 0, sizeof(*edev));
953 	memset(fec, 0, sizeof(*fec));
954 
955 	edev->priv = fec;
956 	edev->init = fec_init;
957 	edev->send = fec_send;
958 	edev->recv = fec_recv;
959 	edev->halt = fec_halt;
960 	edev->write_hwaddr = fec_set_hwaddr;
961 
962 	fec->eth = (struct ethernet_regs *)base_addr;
963 	fec->bd = bd;
964 
965 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
966 
967 	/* Reset chip. */
968 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
969 	start = get_timer(0);
970 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
971 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
972 			printf("FEC MXC: Timeout reseting chip\n");
973 			goto err3;
974 		}
975 		udelay(10);
976 	}
977 
978 	fec_reg_setup(fec);
979 	fec_set_dev_name(edev->name, dev_id);
980 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
981 	fec->bus = bus;
982 	fec_mii_setspeed(bus->priv);
983 #ifdef CONFIG_PHYLIB
984 	fec->phydev = phydev;
985 	phy_connect_dev(phydev, edev);
986 	/* Configure phy */
987 	phy_config(phydev);
988 #else
989 	fec->phy_id = phy_id;
990 #endif
991 	eth_register(edev);
992 
993 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
994 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
995 		memcpy(edev->enetaddr, ethaddr, 6);
996 	}
997 	return ret;
998 err3:
999 	free(fec);
1000 err2:
1001 	free(edev);
1002 err1:
1003 	return ret;
1004 }
1005 
1006 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1007 {
1008 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1009 	struct mii_dev *bus;
1010 	int ret;
1011 
1012 	bus = mdio_alloc();
1013 	if (!bus) {
1014 		printf("mdio_alloc failed\n");
1015 		return NULL;
1016 	}
1017 	bus->read = fec_phy_read;
1018 	bus->write = fec_phy_write;
1019 	bus->priv = eth;
1020 	fec_set_dev_name(bus->name, dev_id);
1021 
1022 	ret = mdio_register(bus);
1023 	if (ret) {
1024 		printf("mdio_register failed\n");
1025 		free(bus);
1026 		return NULL;
1027 	}
1028 	fec_mii_setspeed(eth);
1029 	return bus;
1030 }
1031 
1032 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1033 {
1034 	uint32_t base_mii;
1035 	struct mii_dev *bus = NULL;
1036 #ifdef CONFIG_PHYLIB
1037 	struct phy_device *phydev = NULL;
1038 #endif
1039 	int ret;
1040 
1041 #ifdef CONFIG_MX28
1042 	/*
1043 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1044 	 * Only the first one can access the MDIO bus.
1045 	 */
1046 	base_mii = MXS_ENET0_BASE;
1047 #else
1048 	base_mii = addr;
1049 #endif
1050 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1051 	bus = fec_get_miibus(base_mii, dev_id);
1052 	if (!bus)
1053 		return -ENOMEM;
1054 #ifdef CONFIG_PHYLIB
1055 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1056 	if (!phydev) {
1057 		free(bus);
1058 		return -ENOMEM;
1059 	}
1060 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1061 #else
1062 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1063 #endif
1064 	if (ret) {
1065 #ifdef CONFIG_PHYLIB
1066 		free(phydev);
1067 #endif
1068 		free(bus);
1069 	}
1070 	return ret;
1071 }
1072 
1073 #ifdef CONFIG_FEC_MXC_PHYADDR
1074 int fecmxc_initialize(bd_t *bd)
1075 {
1076 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1077 			IMX_FEC_BASE);
1078 }
1079 #endif
1080 
1081 #ifndef CONFIG_PHYLIB
1082 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1083 {
1084 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1085 	fec->mii_postcall = cb;
1086 	return 0;
1087 }
1088 #endif
1089