1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> 4 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> 5 * (C) Copyright 2008 Armadeus Systems nc 6 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> 7 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> 8 */ 9 10 #include <common.h> 11 #include <dm.h> 12 #include <environment.h> 13 #include <malloc.h> 14 #include <memalign.h> 15 #include <miiphy.h> 16 #include <net.h> 17 #include <netdev.h> 18 #include "fec_mxc.h" 19 20 #include <asm/io.h> 21 #include <linux/errno.h> 22 #include <linux/compiler.h> 23 24 #include <asm/arch/clock.h> 25 #include <asm/arch/imx-regs.h> 26 #include <asm/mach-imx/sys_proto.h> 27 28 DECLARE_GLOBAL_DATA_PTR; 29 30 /* 31 * Timeout the transfer after 5 mS. This is usually a bit more, since 32 * the code in the tightloops this timeout is used in adds some overhead. 33 */ 34 #define FEC_XFER_TIMEOUT 5000 35 36 /* 37 * The standard 32-byte DMA alignment does not work on mx6solox, which requires 38 * 64-byte alignment in the DMA RX FEC buffer. 39 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also 40 * satisfies the alignment on other SoCs (32-bytes) 41 */ 42 #define FEC_DMA_RX_MINALIGN 64 43 44 #ifndef CONFIG_MII 45 #error "CONFIG_MII has to be defined!" 46 #endif 47 48 #ifndef CONFIG_FEC_XCV_TYPE 49 #define CONFIG_FEC_XCV_TYPE MII100 50 #endif 51 52 /* 53 * The i.MX28 operates with packets in big endian. We need to swap them before 54 * sending and after receiving. 55 */ 56 #ifdef CONFIG_MX28 57 #define CONFIG_FEC_MXC_SWAP_PACKET 58 #endif 59 60 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) 61 62 /* Check various alignment issues at compile time */ 63 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) 64 #error "ARCH_DMA_MINALIGN must be multiple of 16!" 65 #endif 66 67 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ 68 (PKTALIGN % ARCH_DMA_MINALIGN != 0)) 69 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" 70 #endif 71 72 #undef DEBUG 73 74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 75 static void swap_packet(uint32_t *packet, int length) 76 { 77 int i; 78 79 for (i = 0; i < DIV_ROUND_UP(length, 4); i++) 80 packet[i] = __swab32(packet[i]); 81 } 82 #endif 83 84 /* MII-interface related functions */ 85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr, 86 uint8_t regaddr) 87 { 88 uint32_t reg; /* convenient holder for the PHY register */ 89 uint32_t phy; /* convenient holder for the PHY */ 90 uint32_t start; 91 int val; 92 93 /* 94 * reading from any PHY's register is done by properly 95 * programming the FEC's MII data register. 96 */ 97 writel(FEC_IEVENT_MII, ð->ievent); 98 reg = regaddr << FEC_MII_DATA_RA_SHIFT; 99 phy = phyaddr << FEC_MII_DATA_PA_SHIFT; 100 101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | 102 phy | reg, ð->mii_data); 103 104 /* wait for the related interrupt */ 105 start = get_timer(0); 106 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 107 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 108 printf("Read MDIO failed...\n"); 109 return -1; 110 } 111 } 112 113 /* clear mii interrupt bit */ 114 writel(FEC_IEVENT_MII, ð->ievent); 115 116 /* it's now safe to read the PHY's register */ 117 val = (unsigned short)readl(ð->mii_data); 118 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, 119 regaddr, val); 120 return val; 121 } 122 123 static void fec_mii_setspeed(struct ethernet_regs *eth) 124 { 125 /* 126 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock 127 * and do not drop the Preamble. 128 * 129 * The i.MX28 and i.MX6 types have another field in the MSCR (aka 130 * MII_SPEED) register that defines the MDIO output hold time. Earlier 131 * versions are RAZ there, so just ignore the difference and write the 132 * register always. 133 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 134 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 135 * output. 136 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 137 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 138 * holdtime cannot result in a value greater than 3. 139 */ 140 u32 pclk = imx_get_fecclk(); 141 u32 speed = DIV_ROUND_UP(pclk, 5000000); 142 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1; 143 #ifdef FEC_QUIRK_ENET_MAC 144 speed--; 145 #endif 146 writel(speed << 1 | hold << 8, ð->mii_speed); 147 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); 148 } 149 150 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr, 151 uint8_t regaddr, uint16_t data) 152 { 153 uint32_t reg; /* convenient holder for the PHY register */ 154 uint32_t phy; /* convenient holder for the PHY */ 155 uint32_t start; 156 157 reg = regaddr << FEC_MII_DATA_RA_SHIFT; 158 phy = phyaddr << FEC_MII_DATA_PA_SHIFT; 159 160 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | 161 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); 162 163 /* wait for the MII interrupt */ 164 start = get_timer(0); 165 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 166 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 167 printf("Write MDIO failed...\n"); 168 return -1; 169 } 170 } 171 172 /* clear MII interrupt bit */ 173 writel(FEC_IEVENT_MII, ð->ievent); 174 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, 175 regaddr, data); 176 177 return 0; 178 } 179 180 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr, 181 int regaddr) 182 { 183 return fec_mdio_read(bus->priv, phyaddr, regaddr); 184 } 185 186 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr, 187 int regaddr, u16 data) 188 { 189 return fec_mdio_write(bus->priv, phyaddr, regaddr, data); 190 } 191 192 #ifndef CONFIG_PHYLIB 193 static int miiphy_restart_aneg(struct eth_device *dev) 194 { 195 int ret = 0; 196 #if !defined(CONFIG_FEC_MXC_NO_ANEG) 197 struct fec_priv *fec = (struct fec_priv *)dev->priv; 198 struct ethernet_regs *eth = fec->bus->priv; 199 200 /* 201 * Wake up from sleep if necessary 202 * Reset PHY, then delay 300ns 203 */ 204 #ifdef CONFIG_MX27 205 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); 206 #endif 207 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); 208 udelay(1000); 209 210 /* Set the auto-negotiation advertisement register bits */ 211 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, 212 LPA_100FULL | LPA_100HALF | LPA_10FULL | 213 LPA_10HALF | PHY_ANLPAR_PSB_802_3); 214 fec_mdio_write(eth, fec->phy_id, MII_BMCR, 215 BMCR_ANENABLE | BMCR_ANRESTART); 216 217 if (fec->mii_postcall) 218 ret = fec->mii_postcall(fec->phy_id); 219 220 #endif 221 return ret; 222 } 223 224 #ifndef CONFIG_FEC_FIXED_SPEED 225 static int miiphy_wait_aneg(struct eth_device *dev) 226 { 227 uint32_t start; 228 int status; 229 struct fec_priv *fec = (struct fec_priv *)dev->priv; 230 struct ethernet_regs *eth = fec->bus->priv; 231 232 /* Wait for AN completion */ 233 start = get_timer(0); 234 do { 235 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 236 printf("%s: Autonegotiation timeout\n", dev->name); 237 return -1; 238 } 239 240 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); 241 if (status < 0) { 242 printf("%s: Autonegotiation failed. status: %d\n", 243 dev->name, status); 244 return -1; 245 } 246 } while (!(status & BMSR_LSTATUS)); 247 248 return 0; 249 } 250 #endif /* CONFIG_FEC_FIXED_SPEED */ 251 #endif 252 253 static int fec_rx_task_enable(struct fec_priv *fec) 254 { 255 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); 256 return 0; 257 } 258 259 static int fec_rx_task_disable(struct fec_priv *fec) 260 { 261 return 0; 262 } 263 264 static int fec_tx_task_enable(struct fec_priv *fec) 265 { 266 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); 267 return 0; 268 } 269 270 static int fec_tx_task_disable(struct fec_priv *fec) 271 { 272 return 0; 273 } 274 275 /** 276 * Initialize receive task's buffer descriptors 277 * @param[in] fec all we know about the device yet 278 * @param[in] count receive buffer count to be allocated 279 * @param[in] dsize desired size of each receive buffer 280 * @return 0 on success 281 * 282 * Init all RX descriptors to default values. 283 */ 284 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) 285 { 286 uint32_t size; 287 ulong data; 288 int i; 289 290 /* 291 * Reload the RX descriptors with default values and wipe 292 * the RX buffers. 293 */ 294 size = roundup(dsize, ARCH_DMA_MINALIGN); 295 for (i = 0; i < count; i++) { 296 data = fec->rbd_base[i].data_pointer; 297 memset((void *)data, 0, dsize); 298 flush_dcache_range(data, data + size); 299 300 fec->rbd_base[i].status = FEC_RBD_EMPTY; 301 fec->rbd_base[i].data_length = 0; 302 } 303 304 /* Mark the last RBD to close the ring. */ 305 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 306 fec->rbd_index = 0; 307 308 flush_dcache_range((ulong)fec->rbd_base, 309 (ulong)fec->rbd_base + size); 310 } 311 312 /** 313 * Initialize transmit task's buffer descriptors 314 * @param[in] fec all we know about the device yet 315 * 316 * Transmit buffers are created externally. We only have to init the BDs here.\n 317 * Note: There is a race condition in the hardware. When only one BD is in 318 * use it must be marked with the WRAP bit to use it for every transmitt. 319 * This bit in combination with the READY bit results into double transmit 320 * of each data buffer. It seems the state machine checks READY earlier then 321 * resetting it after the first transfer. 322 * Using two BDs solves this issue. 323 */ 324 static void fec_tbd_init(struct fec_priv *fec) 325 { 326 ulong addr = (ulong)fec->tbd_base; 327 unsigned size = roundup(2 * sizeof(struct fec_bd), 328 ARCH_DMA_MINALIGN); 329 330 memset(fec->tbd_base, 0, size); 331 fec->tbd_base[0].status = 0; 332 fec->tbd_base[1].status = FEC_TBD_WRAP; 333 fec->tbd_index = 0; 334 flush_dcache_range(addr, addr + size); 335 } 336 337 /** 338 * Mark the given read buffer descriptor as free 339 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 340 * @param[in] prbd buffer descriptor to mark free again 341 */ 342 static void fec_rbd_clean(int last, struct fec_bd *prbd) 343 { 344 unsigned short flags = FEC_RBD_EMPTY; 345 if (last) 346 flags |= FEC_RBD_WRAP; 347 writew(flags, &prbd->status); 348 writew(0, &prbd->data_length); 349 } 350 351 static int fec_get_hwaddr(int dev_id, unsigned char *mac) 352 { 353 imx_get_mac_from_fuse(dev_id, mac); 354 return !is_valid_ethaddr(mac); 355 } 356 357 #ifdef CONFIG_DM_ETH 358 static int fecmxc_set_hwaddr(struct udevice *dev) 359 #else 360 static int fec_set_hwaddr(struct eth_device *dev) 361 #endif 362 { 363 #ifdef CONFIG_DM_ETH 364 struct fec_priv *fec = dev_get_priv(dev); 365 struct eth_pdata *pdata = dev_get_platdata(dev); 366 uchar *mac = pdata->enetaddr; 367 #else 368 uchar *mac = dev->enetaddr; 369 struct fec_priv *fec = (struct fec_priv *)dev->priv; 370 #endif 371 372 writel(0, &fec->eth->iaddr1); 373 writel(0, &fec->eth->iaddr2); 374 writel(0, &fec->eth->gaddr1); 375 writel(0, &fec->eth->gaddr2); 376 377 /* Set physical address */ 378 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], 379 &fec->eth->paddr1); 380 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); 381 382 return 0; 383 } 384 385 /* Do initial configuration of the FEC registers */ 386 static void fec_reg_setup(struct fec_priv *fec) 387 { 388 uint32_t rcntrl; 389 390 /* Set interrupt mask register */ 391 writel(0x00000000, &fec->eth->imask); 392 393 /* Clear FEC-Lite interrupt event register(IEVENT) */ 394 writel(0xffffffff, &fec->eth->ievent); 395 396 /* Set FEC-Lite receive control register(R_CNTRL): */ 397 398 /* Start with frame length = 1518, common for all modes. */ 399 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; 400 if (fec->xcv_type != SEVENWIRE) /* xMII modes */ 401 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; 402 if (fec->xcv_type == RGMII) 403 rcntrl |= FEC_RCNTRL_RGMII; 404 else if (fec->xcv_type == RMII) 405 rcntrl |= FEC_RCNTRL_RMII; 406 407 writel(rcntrl, &fec->eth->r_cntrl); 408 } 409 410 /** 411 * Start the FEC engine 412 * @param[in] dev Our device to handle 413 */ 414 #ifdef CONFIG_DM_ETH 415 static int fec_open(struct udevice *dev) 416 #else 417 static int fec_open(struct eth_device *edev) 418 #endif 419 { 420 #ifdef CONFIG_DM_ETH 421 struct fec_priv *fec = dev_get_priv(dev); 422 #else 423 struct fec_priv *fec = (struct fec_priv *)edev->priv; 424 #endif 425 int speed; 426 ulong addr, size; 427 int i; 428 429 debug("fec_open: fec_open(dev)\n"); 430 /* full-duplex, heartbeat disabled */ 431 writel(1 << 2, &fec->eth->x_cntrl); 432 fec->rbd_index = 0; 433 434 /* Invalidate all descriptors */ 435 for (i = 0; i < FEC_RBD_NUM - 1; i++) 436 fec_rbd_clean(0, &fec->rbd_base[i]); 437 fec_rbd_clean(1, &fec->rbd_base[i]); 438 439 /* Flush the descriptors into RAM */ 440 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), 441 ARCH_DMA_MINALIGN); 442 addr = (ulong)fec->rbd_base; 443 flush_dcache_range(addr, addr + size); 444 445 #ifdef FEC_QUIRK_ENET_MAC 446 /* Enable ENET HW endian SWAP */ 447 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, 448 &fec->eth->ecntrl); 449 /* Enable ENET store and forward mode */ 450 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, 451 &fec->eth->x_wmrk); 452 #endif 453 /* Enable FEC-Lite controller */ 454 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, 455 &fec->eth->ecntrl); 456 457 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) 458 udelay(100); 459 460 /* setup the MII gasket for RMII mode */ 461 /* disable the gasket */ 462 writew(0, &fec->eth->miigsk_enr); 463 464 /* wait for the gasket to be disabled */ 465 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) 466 udelay(2); 467 468 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ 469 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); 470 471 /* re-enable the gasket */ 472 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); 473 474 /* wait until MII gasket is ready */ 475 int max_loops = 10; 476 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { 477 if (--max_loops <= 0) { 478 printf("WAIT for MII Gasket ready timed out\n"); 479 break; 480 } 481 } 482 #endif 483 484 #ifdef CONFIG_PHYLIB 485 { 486 /* Start up the PHY */ 487 int ret = phy_startup(fec->phydev); 488 489 if (ret) { 490 printf("Could not initialize PHY %s\n", 491 fec->phydev->dev->name); 492 return ret; 493 } 494 speed = fec->phydev->speed; 495 } 496 #elif CONFIG_FEC_FIXED_SPEED 497 speed = CONFIG_FEC_FIXED_SPEED; 498 #else 499 miiphy_wait_aneg(edev); 500 speed = miiphy_speed(edev->name, fec->phy_id); 501 miiphy_duplex(edev->name, fec->phy_id); 502 #endif 503 504 #ifdef FEC_QUIRK_ENET_MAC 505 { 506 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; 507 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; 508 if (speed == _1000BASET) 509 ecr |= FEC_ECNTRL_SPEED; 510 else if (speed != _100BASET) 511 rcr |= FEC_RCNTRL_RMII_10T; 512 writel(ecr, &fec->eth->ecntrl); 513 writel(rcr, &fec->eth->r_cntrl); 514 } 515 #endif 516 debug("%s:Speed=%i\n", __func__, speed); 517 518 /* Enable SmartDMA receive task */ 519 fec_rx_task_enable(fec); 520 521 udelay(100000); 522 return 0; 523 } 524 525 #ifdef CONFIG_DM_ETH 526 static int fecmxc_init(struct udevice *dev) 527 #else 528 static int fec_init(struct eth_device *dev, bd_t *bd) 529 #endif 530 { 531 #ifdef CONFIG_DM_ETH 532 struct fec_priv *fec = dev_get_priv(dev); 533 #else 534 struct fec_priv *fec = (struct fec_priv *)dev->priv; 535 #endif 536 u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop; 537 u8 *i; 538 ulong addr; 539 540 /* Initialize MAC address */ 541 #ifdef CONFIG_DM_ETH 542 fecmxc_set_hwaddr(dev); 543 #else 544 fec_set_hwaddr(dev); 545 #endif 546 547 /* Setup transmit descriptors, there are two in total. */ 548 fec_tbd_init(fec); 549 550 /* Setup receive descriptors. */ 551 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); 552 553 fec_reg_setup(fec); 554 555 if (fec->xcv_type != SEVENWIRE) 556 fec_mii_setspeed(fec->bus->priv); 557 558 /* Set Opcode/Pause Duration Register */ 559 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ 560 writel(0x2, &fec->eth->x_wmrk); 561 562 /* Set multicast address filter */ 563 writel(0x00000000, &fec->eth->gaddr1); 564 writel(0x00000000, &fec->eth->gaddr2); 565 566 /* Do not access reserved register */ 567 if (!is_mx6ul() && !is_mx6ull() && !is_mx8m()) { 568 /* clear MIB RAM */ 569 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) 570 writel(0, i); 571 572 /* FIFO receive start register */ 573 writel(0x520, &fec->eth->r_fstart); 574 } 575 576 /* size and address of each buffer */ 577 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); 578 579 addr = (ulong)fec->tbd_base; 580 writel((uint32_t)addr, &fec->eth->etdsr); 581 582 addr = (ulong)fec->rbd_base; 583 writel((uint32_t)addr, &fec->eth->erdsr); 584 585 #ifndef CONFIG_PHYLIB 586 if (fec->xcv_type != SEVENWIRE) 587 miiphy_restart_aneg(dev); 588 #endif 589 fec_open(dev); 590 return 0; 591 } 592 593 /** 594 * Halt the FEC engine 595 * @param[in] dev Our device to handle 596 */ 597 #ifdef CONFIG_DM_ETH 598 static void fecmxc_halt(struct udevice *dev) 599 #else 600 static void fec_halt(struct eth_device *dev) 601 #endif 602 { 603 #ifdef CONFIG_DM_ETH 604 struct fec_priv *fec = dev_get_priv(dev); 605 #else 606 struct fec_priv *fec = (struct fec_priv *)dev->priv; 607 #endif 608 int counter = 0xffff; 609 610 /* issue graceful stop command to the FEC transmitter if necessary */ 611 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), 612 &fec->eth->x_cntrl); 613 614 debug("eth_halt: wait for stop regs\n"); 615 /* wait for graceful stop to register */ 616 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) 617 udelay(1); 618 619 /* Disable SmartDMA tasks */ 620 fec_tx_task_disable(fec); 621 fec_rx_task_disable(fec); 622 623 /* 624 * Disable the Ethernet Controller 625 * Note: this will also reset the BD index counter! 626 */ 627 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, 628 &fec->eth->ecntrl); 629 fec->rbd_index = 0; 630 fec->tbd_index = 0; 631 debug("eth_halt: done\n"); 632 } 633 634 /** 635 * Transmit one frame 636 * @param[in] dev Our ethernet device to handle 637 * @param[in] packet Pointer to the data to be transmitted 638 * @param[in] length Data count in bytes 639 * @return 0 on success 640 */ 641 #ifdef CONFIG_DM_ETH 642 static int fecmxc_send(struct udevice *dev, void *packet, int length) 643 #else 644 static int fec_send(struct eth_device *dev, void *packet, int length) 645 #endif 646 { 647 unsigned int status; 648 u32 size; 649 ulong addr, end; 650 int timeout = FEC_XFER_TIMEOUT; 651 int ret = 0; 652 653 /* 654 * This routine transmits one frame. This routine only accepts 655 * 6-byte Ethernet addresses. 656 */ 657 #ifdef CONFIG_DM_ETH 658 struct fec_priv *fec = dev_get_priv(dev); 659 #else 660 struct fec_priv *fec = (struct fec_priv *)dev->priv; 661 #endif 662 663 /* 664 * Check for valid length of data. 665 */ 666 if ((length > 1500) || (length <= 0)) { 667 printf("Payload (%d) too large\n", length); 668 return -1; 669 } 670 671 /* 672 * Setup the transmit buffer. We are always using the first buffer for 673 * transmission, the second will be empty and only used to stop the DMA 674 * engine. We also flush the packet to RAM here to avoid cache trouble. 675 */ 676 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 677 swap_packet((uint32_t *)packet, length); 678 #endif 679 680 addr = (ulong)packet; 681 end = roundup(addr + length, ARCH_DMA_MINALIGN); 682 addr &= ~(ARCH_DMA_MINALIGN - 1); 683 flush_dcache_range(addr, end); 684 685 writew(length, &fec->tbd_base[fec->tbd_index].data_length); 686 writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer); 687 688 /* 689 * update BD's status now 690 * This block: 691 * - is always the last in a chain (means no chain) 692 * - should transmitt the CRC 693 * - might be the last BD in the list, so the address counter should 694 * wrap (-> keep the WRAP flag) 695 */ 696 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; 697 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; 698 writew(status, &fec->tbd_base[fec->tbd_index].status); 699 700 /* 701 * Flush data cache. This code flushes both TX descriptors to RAM. 702 * After this code, the descriptors will be safely in RAM and we 703 * can start DMA. 704 */ 705 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 706 addr = (ulong)fec->tbd_base; 707 flush_dcache_range(addr, addr + size); 708 709 /* 710 * Below we read the DMA descriptor's last four bytes back from the 711 * DRAM. This is important in order to make sure that all WRITE 712 * operations on the bus that were triggered by previous cache FLUSH 713 * have completed. 714 * 715 * Otherwise, on MX28, it is possible to observe a corruption of the 716 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM 717 * for the bus structure of MX28. The scenario is as follows: 718 * 719 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going 720 * to DRAM due to flush_dcache_range() 721 * 2) ARM core writes the FEC registers via AHB_ARB2 722 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 723 * 724 * Note that 2) does sometimes finish before 1) due to reordering of 725 * WRITE accesses on the AHB bus, therefore triggering 3) before the 726 * DMA descriptor is fully written into DRAM. This results in occasional 727 * corruption of the DMA descriptor. 728 */ 729 readl(addr + size - 4); 730 731 /* Enable SmartDMA transmit task */ 732 fec_tx_task_enable(fec); 733 734 /* 735 * Wait until frame is sent. On each turn of the wait cycle, we must 736 * invalidate data cache to see what's really in RAM. Also, we need 737 * barrier here. 738 */ 739 while (--timeout) { 740 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) 741 break; 742 } 743 744 if (!timeout) { 745 ret = -EINVAL; 746 goto out; 747 } 748 749 /* 750 * The TDAR bit is cleared when the descriptors are all out from TX 751 * but on mx6solox we noticed that the READY bit is still not cleared 752 * right after TDAR. 753 * These are two distinct signals, and in IC simulation, we found that 754 * TDAR always gets cleared prior than the READY bit of last BD becomes 755 * cleared. 756 * In mx6solox, we use a later version of FEC IP. It looks like that 757 * this intrinsic behaviour of TDAR bit has changed in this newer FEC 758 * version. 759 * 760 * Fix this by polling the READY bit of BD after the TDAR polling, 761 * which covers the mx6solox case and does not harm the other SoCs. 762 */ 763 timeout = FEC_XFER_TIMEOUT; 764 while (--timeout) { 765 invalidate_dcache_range(addr, addr + size); 766 if (!(readw(&fec->tbd_base[fec->tbd_index].status) & 767 FEC_TBD_READY)) 768 break; 769 } 770 771 if (!timeout) 772 ret = -EINVAL; 773 774 out: 775 debug("fec_send: status 0x%x index %d ret %i\n", 776 readw(&fec->tbd_base[fec->tbd_index].status), 777 fec->tbd_index, ret); 778 /* for next transmission use the other buffer */ 779 if (fec->tbd_index) 780 fec->tbd_index = 0; 781 else 782 fec->tbd_index = 1; 783 784 return ret; 785 } 786 787 /** 788 * Pull one frame from the card 789 * @param[in] dev Our ethernet device to handle 790 * @return Length of packet read 791 */ 792 #ifdef CONFIG_DM_ETH 793 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp) 794 #else 795 static int fec_recv(struct eth_device *dev) 796 #endif 797 { 798 #ifdef CONFIG_DM_ETH 799 struct fec_priv *fec = dev_get_priv(dev); 800 #else 801 struct fec_priv *fec = (struct fec_priv *)dev->priv; 802 #endif 803 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; 804 unsigned long ievent; 805 int frame_length, len = 0; 806 uint16_t bd_status; 807 ulong addr, size, end; 808 int i; 809 810 #ifdef CONFIG_DM_ETH 811 *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE); 812 if (*packetp == 0) { 813 printf("%s: error allocating packetp\n", __func__); 814 return -ENOMEM; 815 } 816 #else 817 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); 818 #endif 819 820 /* Check if any critical events have happened */ 821 ievent = readl(&fec->eth->ievent); 822 writel(ievent, &fec->eth->ievent); 823 debug("fec_recv: ievent 0x%lx\n", ievent); 824 if (ievent & FEC_IEVENT_BABR) { 825 #ifdef CONFIG_DM_ETH 826 fecmxc_halt(dev); 827 fecmxc_init(dev); 828 #else 829 fec_halt(dev); 830 fec_init(dev, fec->bd); 831 #endif 832 printf("some error: 0x%08lx\n", ievent); 833 return 0; 834 } 835 if (ievent & FEC_IEVENT_HBERR) { 836 /* Heartbeat error */ 837 writel(0x00000001 | readl(&fec->eth->x_cntrl), 838 &fec->eth->x_cntrl); 839 } 840 if (ievent & FEC_IEVENT_GRA) { 841 /* Graceful stop complete */ 842 if (readl(&fec->eth->x_cntrl) & 0x00000001) { 843 #ifdef CONFIG_DM_ETH 844 fecmxc_halt(dev); 845 #else 846 fec_halt(dev); 847 #endif 848 writel(~0x00000001 & readl(&fec->eth->x_cntrl), 849 &fec->eth->x_cntrl); 850 #ifdef CONFIG_DM_ETH 851 fecmxc_init(dev); 852 #else 853 fec_init(dev, fec->bd); 854 #endif 855 } 856 } 857 858 /* 859 * Read the buffer status. Before the status can be read, the data cache 860 * must be invalidated, because the data in RAM might have been changed 861 * by DMA. The descriptors are properly aligned to cachelines so there's 862 * no need to worry they'd overlap. 863 * 864 * WARNING: By invalidating the descriptor here, we also invalidate 865 * the descriptors surrounding this one. Therefore we can NOT change the 866 * contents of this descriptor nor the surrounding ones. The problem is 867 * that in order to mark the descriptor as processed, we need to change 868 * the descriptor. The solution is to mark the whole cache line when all 869 * descriptors in the cache line are processed. 870 */ 871 addr = (ulong)rbd; 872 addr &= ~(ARCH_DMA_MINALIGN - 1); 873 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 874 invalidate_dcache_range(addr, addr + size); 875 876 bd_status = readw(&rbd->status); 877 debug("fec_recv: status 0x%x\n", bd_status); 878 879 if (!(bd_status & FEC_RBD_EMPTY)) { 880 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && 881 ((readw(&rbd->data_length) - 4) > 14)) { 882 /* Get buffer address and size */ 883 addr = readl(&rbd->data_pointer); 884 frame_length = readw(&rbd->data_length) - 4; 885 /* Invalidate data cache over the buffer */ 886 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); 887 addr &= ~(ARCH_DMA_MINALIGN - 1); 888 invalidate_dcache_range(addr, end); 889 890 /* Fill the buffer and pass it to upper layers */ 891 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 892 swap_packet((uint32_t *)addr, frame_length); 893 #endif 894 895 #ifdef CONFIG_DM_ETH 896 memcpy(*packetp, (char *)addr, frame_length); 897 #else 898 memcpy(buff, (char *)addr, frame_length); 899 net_process_received_packet(buff, frame_length); 900 #endif 901 len = frame_length; 902 } else { 903 if (bd_status & FEC_RBD_ERR) 904 debug("error frame: 0x%08lx 0x%08x\n", 905 addr, bd_status); 906 } 907 908 /* 909 * Free the current buffer, restart the engine and move forward 910 * to the next buffer. Here we check if the whole cacheline of 911 * descriptors was already processed and if so, we mark it free 912 * as whole. 913 */ 914 size = RXDESC_PER_CACHELINE - 1; 915 if ((fec->rbd_index & size) == size) { 916 i = fec->rbd_index - size; 917 addr = (ulong)&fec->rbd_base[i]; 918 for (; i <= fec->rbd_index ; i++) { 919 fec_rbd_clean(i == (FEC_RBD_NUM - 1), 920 &fec->rbd_base[i]); 921 } 922 flush_dcache_range(addr, 923 addr + ARCH_DMA_MINALIGN); 924 } 925 926 fec_rx_task_enable(fec); 927 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; 928 } 929 debug("fec_recv: stop\n"); 930 931 return len; 932 } 933 934 static void fec_set_dev_name(char *dest, int dev_id) 935 { 936 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); 937 } 938 939 static int fec_alloc_descs(struct fec_priv *fec) 940 { 941 unsigned int size; 942 int i; 943 uint8_t *data; 944 ulong addr; 945 946 /* Allocate TX descriptors. */ 947 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 948 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); 949 if (!fec->tbd_base) 950 goto err_tx; 951 952 /* Allocate RX descriptors. */ 953 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 954 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); 955 if (!fec->rbd_base) 956 goto err_rx; 957 958 memset(fec->rbd_base, 0, size); 959 960 /* Allocate RX buffers. */ 961 962 /* Maximum RX buffer size. */ 963 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); 964 for (i = 0; i < FEC_RBD_NUM; i++) { 965 data = memalign(FEC_DMA_RX_MINALIGN, size); 966 if (!data) { 967 printf("%s: error allocating rxbuf %d\n", __func__, i); 968 goto err_ring; 969 } 970 971 memset(data, 0, size); 972 973 addr = (ulong)data; 974 fec->rbd_base[i].data_pointer = (uint32_t)addr; 975 fec->rbd_base[i].status = FEC_RBD_EMPTY; 976 fec->rbd_base[i].data_length = 0; 977 /* Flush the buffer to memory. */ 978 flush_dcache_range(addr, addr + size); 979 } 980 981 /* Mark the last RBD to close the ring. */ 982 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 983 984 fec->rbd_index = 0; 985 fec->tbd_index = 0; 986 987 return 0; 988 989 err_ring: 990 for (; i >= 0; i--) { 991 addr = fec->rbd_base[i].data_pointer; 992 free((void *)addr); 993 } 994 free(fec->rbd_base); 995 err_rx: 996 free(fec->tbd_base); 997 err_tx: 998 return -ENOMEM; 999 } 1000 1001 static void fec_free_descs(struct fec_priv *fec) 1002 { 1003 int i; 1004 ulong addr; 1005 1006 for (i = 0; i < FEC_RBD_NUM; i++) { 1007 addr = fec->rbd_base[i].data_pointer; 1008 free((void *)addr); 1009 } 1010 free(fec->rbd_base); 1011 free(fec->tbd_base); 1012 } 1013 1014 struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id) 1015 { 1016 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; 1017 struct mii_dev *bus; 1018 int ret; 1019 1020 bus = mdio_alloc(); 1021 if (!bus) { 1022 printf("mdio_alloc failed\n"); 1023 return NULL; 1024 } 1025 bus->read = fec_phy_read; 1026 bus->write = fec_phy_write; 1027 bus->priv = eth; 1028 fec_set_dev_name(bus->name, dev_id); 1029 1030 ret = mdio_register(bus); 1031 if (ret) { 1032 printf("mdio_register failed\n"); 1033 free(bus); 1034 return NULL; 1035 } 1036 fec_mii_setspeed(eth); 1037 return bus; 1038 } 1039 1040 #ifndef CONFIG_DM_ETH 1041 #ifdef CONFIG_PHYLIB 1042 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 1043 struct mii_dev *bus, struct phy_device *phydev) 1044 #else 1045 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 1046 struct mii_dev *bus, int phy_id) 1047 #endif 1048 { 1049 struct eth_device *edev; 1050 struct fec_priv *fec; 1051 unsigned char ethaddr[6]; 1052 char mac[16]; 1053 uint32_t start; 1054 int ret = 0; 1055 1056 /* create and fill edev struct */ 1057 edev = (struct eth_device *)malloc(sizeof(struct eth_device)); 1058 if (!edev) { 1059 puts("fec_mxc: not enough malloc memory for eth_device\n"); 1060 ret = -ENOMEM; 1061 goto err1; 1062 } 1063 1064 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); 1065 if (!fec) { 1066 puts("fec_mxc: not enough malloc memory for fec_priv\n"); 1067 ret = -ENOMEM; 1068 goto err2; 1069 } 1070 1071 memset(edev, 0, sizeof(*edev)); 1072 memset(fec, 0, sizeof(*fec)); 1073 1074 ret = fec_alloc_descs(fec); 1075 if (ret) 1076 goto err3; 1077 1078 edev->priv = fec; 1079 edev->init = fec_init; 1080 edev->send = fec_send; 1081 edev->recv = fec_recv; 1082 edev->halt = fec_halt; 1083 edev->write_hwaddr = fec_set_hwaddr; 1084 1085 fec->eth = (struct ethernet_regs *)(ulong)base_addr; 1086 fec->bd = bd; 1087 1088 fec->xcv_type = CONFIG_FEC_XCV_TYPE; 1089 1090 /* Reset chip. */ 1091 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); 1092 start = get_timer(0); 1093 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { 1094 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1095 printf("FEC MXC: Timeout resetting chip\n"); 1096 goto err4; 1097 } 1098 udelay(10); 1099 } 1100 1101 fec_reg_setup(fec); 1102 fec_set_dev_name(edev->name, dev_id); 1103 fec->dev_id = (dev_id == -1) ? 0 : dev_id; 1104 fec->bus = bus; 1105 fec_mii_setspeed(bus->priv); 1106 #ifdef CONFIG_PHYLIB 1107 fec->phydev = phydev; 1108 phy_connect_dev(phydev, edev); 1109 /* Configure phy */ 1110 phy_config(phydev); 1111 #else 1112 fec->phy_id = phy_id; 1113 #endif 1114 eth_register(edev); 1115 /* only support one eth device, the index number pointed by dev_id */ 1116 edev->index = fec->dev_id; 1117 1118 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) { 1119 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr); 1120 memcpy(edev->enetaddr, ethaddr, 6); 1121 if (fec->dev_id) 1122 sprintf(mac, "eth%daddr", fec->dev_id); 1123 else 1124 strcpy(mac, "ethaddr"); 1125 if (!env_get(mac)) 1126 eth_env_set_enetaddr(mac, ethaddr); 1127 } 1128 return ret; 1129 err4: 1130 fec_free_descs(fec); 1131 err3: 1132 free(fec); 1133 err2: 1134 free(edev); 1135 err1: 1136 return ret; 1137 } 1138 1139 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) 1140 { 1141 uint32_t base_mii; 1142 struct mii_dev *bus = NULL; 1143 #ifdef CONFIG_PHYLIB 1144 struct phy_device *phydev = NULL; 1145 #endif 1146 int ret; 1147 1148 #ifdef CONFIG_FEC_MXC_MDIO_BASE 1149 /* 1150 * The i.MX28 has two ethernet interfaces, but they are not equal. 1151 * Only the first one can access the MDIO bus. 1152 */ 1153 base_mii = CONFIG_FEC_MXC_MDIO_BASE; 1154 #else 1155 base_mii = addr; 1156 #endif 1157 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); 1158 bus = fec_get_miibus(base_mii, dev_id); 1159 if (!bus) 1160 return -ENOMEM; 1161 #ifdef CONFIG_PHYLIB 1162 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); 1163 if (!phydev) { 1164 mdio_unregister(bus); 1165 free(bus); 1166 return -ENOMEM; 1167 } 1168 ret = fec_probe(bd, dev_id, addr, bus, phydev); 1169 #else 1170 ret = fec_probe(bd, dev_id, addr, bus, phy_id); 1171 #endif 1172 if (ret) { 1173 #ifdef CONFIG_PHYLIB 1174 free(phydev); 1175 #endif 1176 mdio_unregister(bus); 1177 free(bus); 1178 } 1179 return ret; 1180 } 1181 1182 #ifdef CONFIG_FEC_MXC_PHYADDR 1183 int fecmxc_initialize(bd_t *bd) 1184 { 1185 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, 1186 IMX_FEC_BASE); 1187 } 1188 #endif 1189 1190 #ifndef CONFIG_PHYLIB 1191 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) 1192 { 1193 struct fec_priv *fec = (struct fec_priv *)dev->priv; 1194 fec->mii_postcall = cb; 1195 return 0; 1196 } 1197 #endif 1198 1199 #else 1200 1201 static int fecmxc_read_rom_hwaddr(struct udevice *dev) 1202 { 1203 struct fec_priv *priv = dev_get_priv(dev); 1204 struct eth_pdata *pdata = dev_get_platdata(dev); 1205 1206 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr); 1207 } 1208 1209 static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length) 1210 { 1211 if (packet) 1212 free(packet); 1213 1214 return 0; 1215 } 1216 1217 static const struct eth_ops fecmxc_ops = { 1218 .start = fecmxc_init, 1219 .send = fecmxc_send, 1220 .recv = fecmxc_recv, 1221 .free_pkt = fecmxc_free_pkt, 1222 .stop = fecmxc_halt, 1223 .write_hwaddr = fecmxc_set_hwaddr, 1224 .read_rom_hwaddr = fecmxc_read_rom_hwaddr, 1225 }; 1226 1227 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev) 1228 { 1229 struct phy_device *phydev; 1230 int mask = 0xffffffff; 1231 1232 #ifdef CONFIG_FEC_MXC_PHYADDR 1233 mask = 1 << CONFIG_FEC_MXC_PHYADDR; 1234 #endif 1235 1236 phydev = phy_find_by_mask(priv->bus, mask, priv->interface); 1237 if (!phydev) 1238 return -ENODEV; 1239 1240 phy_connect_dev(phydev, dev); 1241 1242 priv->phydev = phydev; 1243 phy_config(phydev); 1244 1245 return 0; 1246 } 1247 1248 static int fecmxc_probe(struct udevice *dev) 1249 { 1250 struct eth_pdata *pdata = dev_get_platdata(dev); 1251 struct fec_priv *priv = dev_get_priv(dev); 1252 struct mii_dev *bus = NULL; 1253 uint32_t start; 1254 int ret; 1255 1256 ret = fec_alloc_descs(priv); 1257 if (ret) 1258 return ret; 1259 1260 /* Reset chip. */ 1261 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET, 1262 &priv->eth->ecntrl); 1263 start = get_timer(0); 1264 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) { 1265 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1266 printf("FEC MXC: Timeout reseting chip\n"); 1267 goto err_timeout; 1268 } 1269 udelay(10); 1270 } 1271 1272 fec_reg_setup(priv); 1273 1274 priv->dev_id = dev->seq; 1275 #ifdef CONFIG_FEC_MXC_MDIO_BASE 1276 bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq); 1277 #else 1278 bus = fec_get_miibus((ulong)priv->eth, dev->seq); 1279 #endif 1280 if (!bus) { 1281 ret = -ENOMEM; 1282 goto err_mii; 1283 } 1284 1285 priv->bus = bus; 1286 priv->xcv_type = CONFIG_FEC_XCV_TYPE; 1287 priv->interface = pdata->phy_interface; 1288 ret = fec_phy_init(priv, dev); 1289 if (ret) 1290 goto err_phy; 1291 1292 return 0; 1293 1294 err_phy: 1295 mdio_unregister(bus); 1296 free(bus); 1297 err_mii: 1298 err_timeout: 1299 fec_free_descs(priv); 1300 return ret; 1301 } 1302 1303 static int fecmxc_remove(struct udevice *dev) 1304 { 1305 struct fec_priv *priv = dev_get_priv(dev); 1306 1307 free(priv->phydev); 1308 fec_free_descs(priv); 1309 mdio_unregister(priv->bus); 1310 mdio_free(priv->bus); 1311 1312 return 0; 1313 } 1314 1315 static int fecmxc_ofdata_to_platdata(struct udevice *dev) 1316 { 1317 struct eth_pdata *pdata = dev_get_platdata(dev); 1318 struct fec_priv *priv = dev_get_priv(dev); 1319 const char *phy_mode; 1320 1321 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev); 1322 priv->eth = (struct ethernet_regs *)pdata->iobase; 1323 1324 pdata->phy_interface = -1; 1325 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode", 1326 NULL); 1327 if (phy_mode) 1328 pdata->phy_interface = phy_get_interface_by_name(phy_mode); 1329 if (pdata->phy_interface == -1) { 1330 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); 1331 return -EINVAL; 1332 } 1333 1334 /* TODO 1335 * Need to get the reset-gpio and related properties from DT 1336 * and implemet the enet reset code on .probe call 1337 */ 1338 1339 return 0; 1340 } 1341 1342 static const struct udevice_id fecmxc_ids[] = { 1343 { .compatible = "fsl,imx6q-fec" }, 1344 { .compatible = "fsl,imx6sl-fec" }, 1345 { .compatible = "fsl,imx6sx-fec" }, 1346 { .compatible = "fsl,imx6ul-fec" }, 1347 { .compatible = "fsl,imx53-fec" }, 1348 { } 1349 }; 1350 1351 U_BOOT_DRIVER(fecmxc_gem) = { 1352 .name = "fecmxc", 1353 .id = UCLASS_ETH, 1354 .of_match = fecmxc_ids, 1355 .ofdata_to_platdata = fecmxc_ofdata_to_platdata, 1356 .probe = fecmxc_probe, 1357 .remove = fecmxc_remove, 1358 .ops = &fecmxc_ops, 1359 .priv_auto_alloc_size = sizeof(struct fec_priv), 1360 .platdata_auto_alloc_size = sizeof(struct eth_pdata), 1361 }; 1362 #endif 1363