xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision aa26776a)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <malloc.h>
13 #include <memalign.h>
14 #include <net.h>
15 #include <netdev.h>
16 #include <miiphy.h>
17 #include "fec_mxc.h"
18 
19 #include <asm/arch/clock.h>
20 #include <asm/arch/imx-regs.h>
21 #include <asm/imx-common/sys_proto.h>
22 #include <asm/io.h>
23 #include <asm/errno.h>
24 #include <linux/compiler.h>
25 
26 DECLARE_GLOBAL_DATA_PTR;
27 
28 /*
29  * Timeout the transfer after 5 mS. This is usually a bit more, since
30  * the code in the tightloops this timeout is used in adds some overhead.
31  */
32 #define FEC_XFER_TIMEOUT	5000
33 
34 /*
35  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
36  * 64-byte alignment in the DMA RX FEC buffer.
37  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
38  * satisfies the alignment on other SoCs (32-bytes)
39  */
40 #define FEC_DMA_RX_MINALIGN	64
41 
42 #ifndef CONFIG_MII
43 #error "CONFIG_MII has to be defined!"
44 #endif
45 
46 #ifndef CONFIG_FEC_XCV_TYPE
47 #define CONFIG_FEC_XCV_TYPE MII100
48 #endif
49 
50 /*
51  * The i.MX28 operates with packets in big endian. We need to swap them before
52  * sending and after receiving.
53  */
54 #ifdef CONFIG_MX28
55 #define CONFIG_FEC_MXC_SWAP_PACKET
56 #endif
57 
58 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
59 
60 /* Check various alignment issues at compile time */
61 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
62 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
63 #endif
64 
65 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
66 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
67 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
68 #endif
69 
70 #undef DEBUG
71 
72 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
73 static void swap_packet(uint32_t *packet, int length)
74 {
75 	int i;
76 
77 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
78 		packet[i] = __swab32(packet[i]);
79 }
80 #endif
81 
82 /*
83  * MII-interface related functions
84  */
85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
86 		uint8_t regAddr)
87 {
88 	uint32_t reg;		/* convenient holder for the PHY register */
89 	uint32_t phy;		/* convenient holder for the PHY */
90 	uint32_t start;
91 	int val;
92 
93 	/*
94 	 * reading from any PHY's register is done by properly
95 	 * programming the FEC's MII data register.
96 	 */
97 	writel(FEC_IEVENT_MII, &eth->ievent);
98 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
99 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
100 
101 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
102 			phy | reg, &eth->mii_data);
103 
104 	/*
105 	 * wait for the related interrupt
106 	 */
107 	start = get_timer(0);
108 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
109 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
110 			printf("Read MDIO failed...\n");
111 			return -1;
112 		}
113 	}
114 
115 	/*
116 	 * clear mii interrupt bit
117 	 */
118 	writel(FEC_IEVENT_MII, &eth->ievent);
119 
120 	/*
121 	 * it's now safe to read the PHY's register
122 	 */
123 	val = (unsigned short)readl(&eth->mii_data);
124 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
125 			regAddr, val);
126 	return val;
127 }
128 
129 static void fec_mii_setspeed(struct ethernet_regs *eth)
130 {
131 	/*
132 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
133 	 * and do not drop the Preamble.
134 	 *
135 	 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
136 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
137 	 * versions are RAZ there, so just ignore the difference and write the
138 	 * register always.
139 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
140 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
141 	 * output.
142 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
143 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
144 	 * holdtime cannot result in a value greater than 3.
145 	 */
146 	u32 pclk = imx_get_fecclk();
147 	u32 speed = DIV_ROUND_UP(pclk, 5000000);
148 	u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
149 #ifdef FEC_QUIRK_ENET_MAC
150 	speed--;
151 #endif
152 	writel(speed << 1 | hold << 8, &eth->mii_speed);
153 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
154 }
155 
156 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
157 		uint8_t regAddr, uint16_t data)
158 {
159 	uint32_t reg;		/* convenient holder for the PHY register */
160 	uint32_t phy;		/* convenient holder for the PHY */
161 	uint32_t start;
162 
163 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
164 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
165 
166 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
167 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
168 
169 	/*
170 	 * wait for the MII interrupt
171 	 */
172 	start = get_timer(0);
173 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
174 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
175 			printf("Write MDIO failed...\n");
176 			return -1;
177 		}
178 	}
179 
180 	/*
181 	 * clear MII interrupt bit
182 	 */
183 	writel(FEC_IEVENT_MII, &eth->ievent);
184 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
185 			regAddr, data);
186 
187 	return 0;
188 }
189 
190 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
191 			int regAddr)
192 {
193 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
194 }
195 
196 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
197 			 int regAddr, u16 data)
198 {
199 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
200 }
201 
202 #ifndef CONFIG_PHYLIB
203 static int miiphy_restart_aneg(struct eth_device *dev)
204 {
205 	int ret = 0;
206 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
207 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
208 	struct ethernet_regs *eth = fec->bus->priv;
209 
210 	/*
211 	 * Wake up from sleep if necessary
212 	 * Reset PHY, then delay 300ns
213 	 */
214 #ifdef CONFIG_MX27
215 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
216 #endif
217 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
218 	udelay(1000);
219 
220 	/*
221 	 * Set the auto-negotiation advertisement register bits
222 	 */
223 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
224 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
225 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
226 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
227 			BMCR_ANENABLE | BMCR_ANRESTART);
228 
229 	if (fec->mii_postcall)
230 		ret = fec->mii_postcall(fec->phy_id);
231 
232 #endif
233 	return ret;
234 }
235 
236 #ifndef CONFIG_FEC_FIXED_SPEED
237 static int miiphy_wait_aneg(struct eth_device *dev)
238 {
239 	uint32_t start;
240 	int status;
241 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
242 	struct ethernet_regs *eth = fec->bus->priv;
243 
244 	/*
245 	 * Wait for AN completion
246 	 */
247 	start = get_timer(0);
248 	do {
249 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
250 			printf("%s: Autonegotiation timeout\n", dev->name);
251 			return -1;
252 		}
253 
254 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
255 		if (status < 0) {
256 			printf("%s: Autonegotiation failed. status: %d\n",
257 					dev->name, status);
258 			return -1;
259 		}
260 	} while (!(status & BMSR_LSTATUS));
261 
262 	return 0;
263 }
264 #endif /* CONFIG_FEC_FIXED_SPEED */
265 #endif
266 
267 static int fec_rx_task_enable(struct fec_priv *fec)
268 {
269 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
270 	return 0;
271 }
272 
273 static int fec_rx_task_disable(struct fec_priv *fec)
274 {
275 	return 0;
276 }
277 
278 static int fec_tx_task_enable(struct fec_priv *fec)
279 {
280 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
281 	return 0;
282 }
283 
284 static int fec_tx_task_disable(struct fec_priv *fec)
285 {
286 	return 0;
287 }
288 
289 /**
290  * Initialize receive task's buffer descriptors
291  * @param[in] fec all we know about the device yet
292  * @param[in] count receive buffer count to be allocated
293  * @param[in] dsize desired size of each receive buffer
294  * @return 0 on success
295  *
296  * Init all RX descriptors to default values.
297  */
298 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
299 {
300 	uint32_t size;
301 	uint8_t *data;
302 	int i;
303 
304 	/*
305 	 * Reload the RX descriptors with default values and wipe
306 	 * the RX buffers.
307 	 */
308 	size = roundup(dsize, ARCH_DMA_MINALIGN);
309 	for (i = 0; i < count; i++) {
310 		data = (uint8_t *)fec->rbd_base[i].data_pointer;
311 		memset(data, 0, dsize);
312 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
313 
314 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
315 		fec->rbd_base[i].data_length = 0;
316 	}
317 
318 	/* Mark the last RBD to close the ring. */
319 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
320 	fec->rbd_index = 0;
321 
322 	flush_dcache_range((unsigned)fec->rbd_base,
323 			   (unsigned)fec->rbd_base + size);
324 }
325 
326 /**
327  * Initialize transmit task's buffer descriptors
328  * @param[in] fec all we know about the device yet
329  *
330  * Transmit buffers are created externally. We only have to init the BDs here.\n
331  * Note: There is a race condition in the hardware. When only one BD is in
332  * use it must be marked with the WRAP bit to use it for every transmitt.
333  * This bit in combination with the READY bit results into double transmit
334  * of each data buffer. It seems the state machine checks READY earlier then
335  * resetting it after the first transfer.
336  * Using two BDs solves this issue.
337  */
338 static void fec_tbd_init(struct fec_priv *fec)
339 {
340 	unsigned addr = (unsigned)fec->tbd_base;
341 	unsigned size = roundup(2 * sizeof(struct fec_bd),
342 				ARCH_DMA_MINALIGN);
343 
344 	memset(fec->tbd_base, 0, size);
345 	fec->tbd_base[0].status = 0;
346 	fec->tbd_base[1].status = FEC_TBD_WRAP;
347 	fec->tbd_index = 0;
348 	flush_dcache_range(addr, addr + size);
349 }
350 
351 /**
352  * Mark the given read buffer descriptor as free
353  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
354  * @param[in] pRbd buffer descriptor to mark free again
355  */
356 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
357 {
358 	unsigned short flags = FEC_RBD_EMPTY;
359 	if (last)
360 		flags |= FEC_RBD_WRAP;
361 	writew(flags, &pRbd->status);
362 	writew(0, &pRbd->data_length);
363 }
364 
365 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
366 						unsigned char *mac)
367 {
368 	imx_get_mac_from_fuse(dev_id, mac);
369 	return !is_valid_ethaddr(mac);
370 }
371 
372 static int fec_set_hwaddr(struct eth_device *dev)
373 {
374 	uchar *mac = dev->enetaddr;
375 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
376 
377 	writel(0, &fec->eth->iaddr1);
378 	writel(0, &fec->eth->iaddr2);
379 	writel(0, &fec->eth->gaddr1);
380 	writel(0, &fec->eth->gaddr2);
381 
382 	/*
383 	 * Set physical address
384 	 */
385 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
386 			&fec->eth->paddr1);
387 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
388 
389 	return 0;
390 }
391 
392 /*
393  * Do initial configuration of the FEC registers
394  */
395 static void fec_reg_setup(struct fec_priv *fec)
396 {
397 	uint32_t rcntrl;
398 
399 	/*
400 	 * Set interrupt mask register
401 	 */
402 	writel(0x00000000, &fec->eth->imask);
403 
404 	/*
405 	 * Clear FEC-Lite interrupt event register(IEVENT)
406 	 */
407 	writel(0xffffffff, &fec->eth->ievent);
408 
409 
410 	/*
411 	 * Set FEC-Lite receive control register(R_CNTRL):
412 	 */
413 
414 	/* Start with frame length = 1518, common for all modes. */
415 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
416 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
417 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
418 	if (fec->xcv_type == RGMII)
419 		rcntrl |= FEC_RCNTRL_RGMII;
420 	else if (fec->xcv_type == RMII)
421 		rcntrl |= FEC_RCNTRL_RMII;
422 
423 	writel(rcntrl, &fec->eth->r_cntrl);
424 }
425 
426 /**
427  * Start the FEC engine
428  * @param[in] dev Our device to handle
429  */
430 static int fec_open(struct eth_device *edev)
431 {
432 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
433 	int speed;
434 	uint32_t addr, size;
435 	int i;
436 
437 	debug("fec_open: fec_open(dev)\n");
438 	/* full-duplex, heartbeat disabled */
439 	writel(1 << 2, &fec->eth->x_cntrl);
440 	fec->rbd_index = 0;
441 
442 	/* Invalidate all descriptors */
443 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
444 		fec_rbd_clean(0, &fec->rbd_base[i]);
445 	fec_rbd_clean(1, &fec->rbd_base[i]);
446 
447 	/* Flush the descriptors into RAM */
448 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
449 			ARCH_DMA_MINALIGN);
450 	addr = (uint32_t)fec->rbd_base;
451 	flush_dcache_range(addr, addr + size);
452 
453 #ifdef FEC_QUIRK_ENET_MAC
454 	/* Enable ENET HW endian SWAP */
455 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
456 		&fec->eth->ecntrl);
457 	/* Enable ENET store and forward mode */
458 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
459 		&fec->eth->x_wmrk);
460 #endif
461 	/*
462 	 * Enable FEC-Lite controller
463 	 */
464 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
465 		&fec->eth->ecntrl);
466 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
467 	udelay(100);
468 	/*
469 	 * setup the MII gasket for RMII mode
470 	 */
471 
472 	/* disable the gasket */
473 	writew(0, &fec->eth->miigsk_enr);
474 
475 	/* wait for the gasket to be disabled */
476 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
477 		udelay(2);
478 
479 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
480 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
481 
482 	/* re-enable the gasket */
483 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
484 
485 	/* wait until MII gasket is ready */
486 	int max_loops = 10;
487 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
488 		if (--max_loops <= 0) {
489 			printf("WAIT for MII Gasket ready timed out\n");
490 			break;
491 		}
492 	}
493 #endif
494 
495 #ifdef CONFIG_PHYLIB
496 	{
497 		/* Start up the PHY */
498 		int ret = phy_startup(fec->phydev);
499 
500 		if (ret) {
501 			printf("Could not initialize PHY %s\n",
502 			       fec->phydev->dev->name);
503 			return ret;
504 		}
505 		speed = fec->phydev->speed;
506 	}
507 #elif CONFIG_FEC_FIXED_SPEED
508 	speed = CONFIG_FEC_FIXED_SPEED;
509 #else
510 	miiphy_wait_aneg(edev);
511 	speed = miiphy_speed(edev->name, fec->phy_id);
512 	miiphy_duplex(edev->name, fec->phy_id);
513 #endif
514 
515 #ifdef FEC_QUIRK_ENET_MAC
516 	{
517 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
518 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
519 		if (speed == _1000BASET)
520 			ecr |= FEC_ECNTRL_SPEED;
521 		else if (speed != _100BASET)
522 			rcr |= FEC_RCNTRL_RMII_10T;
523 		writel(ecr, &fec->eth->ecntrl);
524 		writel(rcr, &fec->eth->r_cntrl);
525 	}
526 #endif
527 	debug("%s:Speed=%i\n", __func__, speed);
528 
529 	/*
530 	 * Enable SmartDMA receive task
531 	 */
532 	fec_rx_task_enable(fec);
533 
534 	udelay(100000);
535 	return 0;
536 }
537 
538 static int fec_init(struct eth_device *dev, bd_t* bd)
539 {
540 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
541 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
542 	int i;
543 
544 	/* Initialize MAC address */
545 	fec_set_hwaddr(dev);
546 
547 	/*
548 	 * Setup transmit descriptors, there are two in total.
549 	 */
550 	fec_tbd_init(fec);
551 
552 	/* Setup receive descriptors. */
553 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
554 
555 	fec_reg_setup(fec);
556 
557 	if (fec->xcv_type != SEVENWIRE)
558 		fec_mii_setspeed(fec->bus->priv);
559 
560 	/*
561 	 * Set Opcode/Pause Duration Register
562 	 */
563 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
564 	writel(0x2, &fec->eth->x_wmrk);
565 	/*
566 	 * Set multicast address filter
567 	 */
568 	writel(0x00000000, &fec->eth->gaddr1);
569 	writel(0x00000000, &fec->eth->gaddr2);
570 
571 
572 	/* Do not access reserved register for i.MX6UL */
573 	if (!is_mx6ul()) {
574 		/* clear MIB RAM */
575 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
576 			writel(0, i);
577 
578 		/* FIFO receive start register */
579 		writel(0x520, &fec->eth->r_fstart);
580 	}
581 
582 	/* size and address of each buffer */
583 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
584 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
585 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
586 
587 #ifndef CONFIG_PHYLIB
588 	if (fec->xcv_type != SEVENWIRE)
589 		miiphy_restart_aneg(dev);
590 #endif
591 	fec_open(dev);
592 	return 0;
593 }
594 
595 /**
596  * Halt the FEC engine
597  * @param[in] dev Our device to handle
598  */
599 static void fec_halt(struct eth_device *dev)
600 {
601 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
602 	int counter = 0xffff;
603 
604 	/*
605 	 * issue graceful stop command to the FEC transmitter if necessary
606 	 */
607 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
608 			&fec->eth->x_cntrl);
609 
610 	debug("eth_halt: wait for stop regs\n");
611 	/*
612 	 * wait for graceful stop to register
613 	 */
614 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
615 		udelay(1);
616 
617 	/*
618 	 * Disable SmartDMA tasks
619 	 */
620 	fec_tx_task_disable(fec);
621 	fec_rx_task_disable(fec);
622 
623 	/*
624 	 * Disable the Ethernet Controller
625 	 * Note: this will also reset the BD index counter!
626 	 */
627 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
628 			&fec->eth->ecntrl);
629 	fec->rbd_index = 0;
630 	fec->tbd_index = 0;
631 	debug("eth_halt: done\n");
632 }
633 
634 /**
635  * Transmit one frame
636  * @param[in] dev Our ethernet device to handle
637  * @param[in] packet Pointer to the data to be transmitted
638  * @param[in] length Data count in bytes
639  * @return 0 on success
640  */
641 static int fec_send(struct eth_device *dev, void *packet, int length)
642 {
643 	unsigned int status;
644 	uint32_t size, end;
645 	uint32_t addr;
646 	int timeout = FEC_XFER_TIMEOUT;
647 	int ret = 0;
648 
649 	/*
650 	 * This routine transmits one frame.  This routine only accepts
651 	 * 6-byte Ethernet addresses.
652 	 */
653 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
654 
655 	/*
656 	 * Check for valid length of data.
657 	 */
658 	if ((length > 1500) || (length <= 0)) {
659 		printf("Payload (%d) too large\n", length);
660 		return -1;
661 	}
662 
663 	/*
664 	 * Setup the transmit buffer. We are always using the first buffer for
665 	 * transmission, the second will be empty and only used to stop the DMA
666 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
667 	 */
668 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
669 	swap_packet((uint32_t *)packet, length);
670 #endif
671 
672 	addr = (uint32_t)packet;
673 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
674 	addr &= ~(ARCH_DMA_MINALIGN - 1);
675 	flush_dcache_range(addr, end);
676 
677 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
678 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
679 
680 	/*
681 	 * update BD's status now
682 	 * This block:
683 	 * - is always the last in a chain (means no chain)
684 	 * - should transmitt the CRC
685 	 * - might be the last BD in the list, so the address counter should
686 	 *   wrap (-> keep the WRAP flag)
687 	 */
688 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
689 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
690 	writew(status, &fec->tbd_base[fec->tbd_index].status);
691 
692 	/*
693 	 * Flush data cache. This code flushes both TX descriptors to RAM.
694 	 * After this code, the descriptors will be safely in RAM and we
695 	 * can start DMA.
696 	 */
697 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
698 	addr = (uint32_t)fec->tbd_base;
699 	flush_dcache_range(addr, addr + size);
700 
701 	/*
702 	 * Below we read the DMA descriptor's last four bytes back from the
703 	 * DRAM. This is important in order to make sure that all WRITE
704 	 * operations on the bus that were triggered by previous cache FLUSH
705 	 * have completed.
706 	 *
707 	 * Otherwise, on MX28, it is possible to observe a corruption of the
708 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
709 	 * for the bus structure of MX28. The scenario is as follows:
710 	 *
711 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
712 	 *    to DRAM due to flush_dcache_range()
713 	 * 2) ARM core writes the FEC registers via AHB_ARB2
714 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
715 	 *
716 	 * Note that 2) does sometimes finish before 1) due to reordering of
717 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
718 	 * DMA descriptor is fully written into DRAM. This results in occasional
719 	 * corruption of the DMA descriptor.
720 	 */
721 	readl(addr + size - 4);
722 
723 	/*
724 	 * Enable SmartDMA transmit task
725 	 */
726 	fec_tx_task_enable(fec);
727 
728 	/*
729 	 * Wait until frame is sent. On each turn of the wait cycle, we must
730 	 * invalidate data cache to see what's really in RAM. Also, we need
731 	 * barrier here.
732 	 */
733 	while (--timeout) {
734 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
735 			break;
736 	}
737 
738 	if (!timeout) {
739 		ret = -EINVAL;
740 		goto out;
741 	}
742 
743 	/*
744 	 * The TDAR bit is cleared when the descriptors are all out from TX
745 	 * but on mx6solox we noticed that the READY bit is still not cleared
746 	 * right after TDAR.
747 	 * These are two distinct signals, and in IC simulation, we found that
748 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
749 	 * cleared.
750 	 * In mx6solox, we use a later version of FEC IP. It looks like that
751 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
752 	 * version.
753 	 *
754 	 * Fix this by polling the READY bit of BD after the TDAR polling,
755 	 * which covers the mx6solox case and does not harm the other SoCs.
756 	 */
757 	timeout = FEC_XFER_TIMEOUT;
758 	while (--timeout) {
759 		invalidate_dcache_range(addr, addr + size);
760 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
761 		    FEC_TBD_READY))
762 			break;
763 	}
764 
765 	if (!timeout)
766 		ret = -EINVAL;
767 
768 out:
769 	debug("fec_send: status 0x%x index %d ret %i\n",
770 			readw(&fec->tbd_base[fec->tbd_index].status),
771 			fec->tbd_index, ret);
772 	/* for next transmission use the other buffer */
773 	if (fec->tbd_index)
774 		fec->tbd_index = 0;
775 	else
776 		fec->tbd_index = 1;
777 
778 	return ret;
779 }
780 
781 /**
782  * Pull one frame from the card
783  * @param[in] dev Our ethernet device to handle
784  * @return Length of packet read
785  */
786 static int fec_recv(struct eth_device *dev)
787 {
788 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
789 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
790 	unsigned long ievent;
791 	int frame_length, len = 0;
792 	uint16_t bd_status;
793 	uint32_t addr, size, end;
794 	int i;
795 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
796 
797 	/*
798 	 * Check if any critical events have happened
799 	 */
800 	ievent = readl(&fec->eth->ievent);
801 	writel(ievent, &fec->eth->ievent);
802 	debug("fec_recv: ievent 0x%lx\n", ievent);
803 	if (ievent & FEC_IEVENT_BABR) {
804 		fec_halt(dev);
805 		fec_init(dev, fec->bd);
806 		printf("some error: 0x%08lx\n", ievent);
807 		return 0;
808 	}
809 	if (ievent & FEC_IEVENT_HBERR) {
810 		/* Heartbeat error */
811 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
812 				&fec->eth->x_cntrl);
813 	}
814 	if (ievent & FEC_IEVENT_GRA) {
815 		/* Graceful stop complete */
816 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
817 			fec_halt(dev);
818 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
819 					&fec->eth->x_cntrl);
820 			fec_init(dev, fec->bd);
821 		}
822 	}
823 
824 	/*
825 	 * Read the buffer status. Before the status can be read, the data cache
826 	 * must be invalidated, because the data in RAM might have been changed
827 	 * by DMA. The descriptors are properly aligned to cachelines so there's
828 	 * no need to worry they'd overlap.
829 	 *
830 	 * WARNING: By invalidating the descriptor here, we also invalidate
831 	 * the descriptors surrounding this one. Therefore we can NOT change the
832 	 * contents of this descriptor nor the surrounding ones. The problem is
833 	 * that in order to mark the descriptor as processed, we need to change
834 	 * the descriptor. The solution is to mark the whole cache line when all
835 	 * descriptors in the cache line are processed.
836 	 */
837 	addr = (uint32_t)rbd;
838 	addr &= ~(ARCH_DMA_MINALIGN - 1);
839 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
840 	invalidate_dcache_range(addr, addr + size);
841 
842 	bd_status = readw(&rbd->status);
843 	debug("fec_recv: status 0x%x\n", bd_status);
844 
845 	if (!(bd_status & FEC_RBD_EMPTY)) {
846 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
847 			((readw(&rbd->data_length) - 4) > 14)) {
848 			/*
849 			 * Get buffer address and size
850 			 */
851 			addr = readl(&rbd->data_pointer);
852 			frame_length = readw(&rbd->data_length) - 4;
853 			/*
854 			 * Invalidate data cache over the buffer
855 			 */
856 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
857 			addr &= ~(ARCH_DMA_MINALIGN - 1);
858 			invalidate_dcache_range(addr, end);
859 
860 			/*
861 			 *  Fill the buffer and pass it to upper layers
862 			 */
863 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
864 			swap_packet((uint32_t *)addr, frame_length);
865 #endif
866 			memcpy(buff, (char *)addr, frame_length);
867 			net_process_received_packet(buff, frame_length);
868 			len = frame_length;
869 		} else {
870 			if (bd_status & FEC_RBD_ERR)
871 				printf("error frame: 0x%08x 0x%08x\n",
872 				       addr, bd_status);
873 		}
874 
875 		/*
876 		 * Free the current buffer, restart the engine and move forward
877 		 * to the next buffer. Here we check if the whole cacheline of
878 		 * descriptors was already processed and if so, we mark it free
879 		 * as whole.
880 		 */
881 		size = RXDESC_PER_CACHELINE - 1;
882 		if ((fec->rbd_index & size) == size) {
883 			i = fec->rbd_index - size;
884 			addr = (uint32_t)&fec->rbd_base[i];
885 			for (; i <= fec->rbd_index ; i++) {
886 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
887 					      &fec->rbd_base[i]);
888 			}
889 			flush_dcache_range(addr,
890 				addr + ARCH_DMA_MINALIGN);
891 		}
892 
893 		fec_rx_task_enable(fec);
894 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
895 	}
896 	debug("fec_recv: stop\n");
897 
898 	return len;
899 }
900 
901 static void fec_set_dev_name(char *dest, int dev_id)
902 {
903 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
904 }
905 
906 static int fec_alloc_descs(struct fec_priv *fec)
907 {
908 	unsigned int size;
909 	int i;
910 	uint8_t *data;
911 
912 	/* Allocate TX descriptors. */
913 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
914 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
915 	if (!fec->tbd_base)
916 		goto err_tx;
917 
918 	/* Allocate RX descriptors. */
919 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
920 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
921 	if (!fec->rbd_base)
922 		goto err_rx;
923 
924 	memset(fec->rbd_base, 0, size);
925 
926 	/* Allocate RX buffers. */
927 
928 	/* Maximum RX buffer size. */
929 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
930 	for (i = 0; i < FEC_RBD_NUM; i++) {
931 		data = memalign(FEC_DMA_RX_MINALIGN, size);
932 		if (!data) {
933 			printf("%s: error allocating rxbuf %d\n", __func__, i);
934 			goto err_ring;
935 		}
936 
937 		memset(data, 0, size);
938 
939 		fec->rbd_base[i].data_pointer = (uint32_t)data;
940 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
941 		fec->rbd_base[i].data_length = 0;
942 		/* Flush the buffer to memory. */
943 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
944 	}
945 
946 	/* Mark the last RBD to close the ring. */
947 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
948 
949 	fec->rbd_index = 0;
950 	fec->tbd_index = 0;
951 
952 	return 0;
953 
954 err_ring:
955 	for (; i >= 0; i--)
956 		free((void *)fec->rbd_base[i].data_pointer);
957 	free(fec->rbd_base);
958 err_rx:
959 	free(fec->tbd_base);
960 err_tx:
961 	return -ENOMEM;
962 }
963 
964 static void fec_free_descs(struct fec_priv *fec)
965 {
966 	int i;
967 
968 	for (i = 0; i < FEC_RBD_NUM; i++)
969 		free((void *)fec->rbd_base[i].data_pointer);
970 	free(fec->rbd_base);
971 	free(fec->tbd_base);
972 }
973 
974 #ifdef CONFIG_PHYLIB
975 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
976 		struct mii_dev *bus, struct phy_device *phydev)
977 #else
978 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
979 		struct mii_dev *bus, int phy_id)
980 #endif
981 {
982 	struct eth_device *edev;
983 	struct fec_priv *fec;
984 	unsigned char ethaddr[6];
985 	uint32_t start;
986 	int ret = 0;
987 
988 	/* create and fill edev struct */
989 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
990 	if (!edev) {
991 		puts("fec_mxc: not enough malloc memory for eth_device\n");
992 		ret = -ENOMEM;
993 		goto err1;
994 	}
995 
996 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
997 	if (!fec) {
998 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
999 		ret = -ENOMEM;
1000 		goto err2;
1001 	}
1002 
1003 	memset(edev, 0, sizeof(*edev));
1004 	memset(fec, 0, sizeof(*fec));
1005 
1006 	ret = fec_alloc_descs(fec);
1007 	if (ret)
1008 		goto err3;
1009 
1010 	edev->priv = fec;
1011 	edev->init = fec_init;
1012 	edev->send = fec_send;
1013 	edev->recv = fec_recv;
1014 	edev->halt = fec_halt;
1015 	edev->write_hwaddr = fec_set_hwaddr;
1016 
1017 	fec->eth = (struct ethernet_regs *)base_addr;
1018 	fec->bd = bd;
1019 
1020 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1021 
1022 	/* Reset chip. */
1023 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1024 	start = get_timer(0);
1025 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1026 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1027 			printf("FEC MXC: Timeout reseting chip\n");
1028 			goto err4;
1029 		}
1030 		udelay(10);
1031 	}
1032 
1033 	fec_reg_setup(fec);
1034 	fec_set_dev_name(edev->name, dev_id);
1035 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1036 	fec->bus = bus;
1037 	fec_mii_setspeed(bus->priv);
1038 #ifdef CONFIG_PHYLIB
1039 	fec->phydev = phydev;
1040 	phy_connect_dev(phydev, edev);
1041 	/* Configure phy */
1042 	phy_config(phydev);
1043 #else
1044 	fec->phy_id = phy_id;
1045 #endif
1046 	eth_register(edev);
1047 
1048 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1049 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1050 		memcpy(edev->enetaddr, ethaddr, 6);
1051 		if (!getenv("ethaddr"))
1052 			eth_setenv_enetaddr("ethaddr", ethaddr);
1053 	}
1054 	return ret;
1055 err4:
1056 	fec_free_descs(fec);
1057 err3:
1058 	free(fec);
1059 err2:
1060 	free(edev);
1061 err1:
1062 	return ret;
1063 }
1064 
1065 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1066 {
1067 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1068 	struct mii_dev *bus;
1069 	int ret;
1070 
1071 	bus = mdio_alloc();
1072 	if (!bus) {
1073 		printf("mdio_alloc failed\n");
1074 		return NULL;
1075 	}
1076 	bus->read = fec_phy_read;
1077 	bus->write = fec_phy_write;
1078 	bus->priv = eth;
1079 	fec_set_dev_name(bus->name, dev_id);
1080 
1081 	ret = mdio_register(bus);
1082 	if (ret) {
1083 		printf("mdio_register failed\n");
1084 		free(bus);
1085 		return NULL;
1086 	}
1087 	fec_mii_setspeed(eth);
1088 	return bus;
1089 }
1090 
1091 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1092 {
1093 	uint32_t base_mii;
1094 	struct mii_dev *bus = NULL;
1095 #ifdef CONFIG_PHYLIB
1096 	struct phy_device *phydev = NULL;
1097 #endif
1098 	int ret;
1099 
1100 #ifdef CONFIG_MX28
1101 	/*
1102 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1103 	 * Only the first one can access the MDIO bus.
1104 	 */
1105 	base_mii = MXS_ENET0_BASE;
1106 #else
1107 	base_mii = addr;
1108 #endif
1109 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1110 	bus = fec_get_miibus(base_mii, dev_id);
1111 	if (!bus)
1112 		return -ENOMEM;
1113 #ifdef CONFIG_PHYLIB
1114 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1115 	if (!phydev) {
1116 		mdio_unregister(bus);
1117 		free(bus);
1118 		return -ENOMEM;
1119 	}
1120 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1121 #else
1122 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1123 #endif
1124 	if (ret) {
1125 #ifdef CONFIG_PHYLIB
1126 		free(phydev);
1127 #endif
1128 		mdio_unregister(bus);
1129 		free(bus);
1130 	}
1131 	return ret;
1132 }
1133 
1134 #ifdef CONFIG_FEC_MXC_PHYADDR
1135 int fecmxc_initialize(bd_t *bd)
1136 {
1137 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1138 			IMX_FEC_BASE);
1139 }
1140 #endif
1141 
1142 #ifndef CONFIG_PHYLIB
1143 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1144 {
1145 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1146 	fec->mii_postcall = cb;
1147 	return 0;
1148 }
1149 #endif
1150