xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 9a3aae22)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29 
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34 
35 DECLARE_GLOBAL_DATA_PTR;
36 
37 #ifndef CONFIG_MII
38 #error "CONFIG_MII has to be defined!"
39 #endif
40 
41 #ifndef	CONFIG_FEC_XCV_TYPE
42 #define	CONFIG_FEC_XCV_TYPE	MII100
43 #endif
44 
45 /*
46  * The i.MX28 operates with packets in big endian. We need to swap them before
47  * sending and after receiving.
48  */
49 #ifdef	CONFIG_MX28
50 #define	CONFIG_FEC_MXC_SWAP_PACKET
51 #endif
52 
53 #undef DEBUG
54 
55 struct nbuf {
56 	uint8_t data[1500];	/**< actual data */
57 	int length;		/**< actual length */
58 	int used;		/**< buffer in use or not */
59 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
60 };
61 
62 #ifdef	CONFIG_FEC_MXC_SWAP_PACKET
63 static void swap_packet(uint32_t *packet, int length)
64 {
65 	int i;
66 
67 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
68 		packet[i] = __swab32(packet[i]);
69 }
70 #endif
71 
72 /*
73  * The i.MX28 has two ethernet interfaces, but they are not equal.
74  * Only the first one can access the MDIO bus.
75  */
76 #ifdef	CONFIG_MX28
77 static inline struct ethernet_regs *fec_miiphy_fec_to_eth(struct fec_priv *fec)
78 {
79 	return (struct ethernet_regs *)MXS_ENET0_BASE;
80 }
81 #else
82 static inline struct ethernet_regs *fec_miiphy_fec_to_eth(struct fec_priv *fec)
83 {
84 	return fec->eth;
85 }
86 #endif
87 
88 /*
89  * MII-interface related functions
90  */
91 static int fec_miiphy_read(const char *dev, uint8_t phyAddr, uint8_t regAddr,
92 		uint16_t *retVal)
93 {
94 	struct eth_device *edev = eth_get_dev_by_name(dev);
95 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
96 	struct ethernet_regs *eth = fec_miiphy_fec_to_eth(fec);
97 
98 	uint32_t reg;		/* convenient holder for the PHY register */
99 	uint32_t phy;		/* convenient holder for the PHY */
100 	uint32_t start;
101 
102 	/*
103 	 * reading from any PHY's register is done by properly
104 	 * programming the FEC's MII data register.
105 	 */
106 	writel(FEC_IEVENT_MII, &eth->ievent);
107 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
108 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
109 
110 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
111 			phy | reg, &eth->mii_data);
112 
113 	/*
114 	 * wait for the related interrupt
115 	 */
116 	start = get_timer(0);
117 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
118 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
119 			printf("Read MDIO failed...\n");
120 			return -1;
121 		}
122 	}
123 
124 	/*
125 	 * clear mii interrupt bit
126 	 */
127 	writel(FEC_IEVENT_MII, &eth->ievent);
128 
129 	/*
130 	 * it's now safe to read the PHY's register
131 	 */
132 	*retVal = readl(&eth->mii_data);
133 	debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
134 			regAddr, *retVal);
135 	return 0;
136 }
137 
138 static void fec_mii_setspeed(struct fec_priv *fec)
139 {
140 	/*
141 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
142 	 * and do not drop the Preamble.
143 	 */
144 	writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
145 			&fec->eth->mii_speed);
146 	debug("fec_init: mii_speed %08x\n",
147 			readl(&fec->eth->mii_speed));
148 }
149 static int fec_miiphy_write(const char *dev, uint8_t phyAddr, uint8_t regAddr,
150 		uint16_t data)
151 {
152 	struct eth_device *edev = eth_get_dev_by_name(dev);
153 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
154 	struct ethernet_regs *eth = fec_miiphy_fec_to_eth(fec);
155 
156 	uint32_t reg;		/* convenient holder for the PHY register */
157 	uint32_t phy;		/* convenient holder for the PHY */
158 	uint32_t start;
159 
160 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
161 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
162 
163 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
164 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
165 
166 	/*
167 	 * wait for the MII interrupt
168 	 */
169 	start = get_timer(0);
170 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
171 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
172 			printf("Write MDIO failed...\n");
173 			return -1;
174 		}
175 	}
176 
177 	/*
178 	 * clear MII interrupt bit
179 	 */
180 	writel(FEC_IEVENT_MII, &eth->ievent);
181 	debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
182 			regAddr, data);
183 
184 	return 0;
185 }
186 
187 static int miiphy_restart_aneg(struct eth_device *dev)
188 {
189 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
190 	int ret = 0;
191 
192 	/*
193 	 * Wake up from sleep if necessary
194 	 * Reset PHY, then delay 300ns
195 	 */
196 #ifdef CONFIG_MX27
197 	miiphy_write(dev->name, fec->phy_id, MII_DCOUNTER, 0x00FF);
198 #endif
199 	miiphy_write(dev->name, fec->phy_id, MII_BMCR,
200 			BMCR_RESET);
201 	udelay(1000);
202 
203 	/*
204 	 * Set the auto-negotiation advertisement register bits
205 	 */
206 	miiphy_write(dev->name, fec->phy_id, MII_ADVERTISE,
207 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
208 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
209 	miiphy_write(dev->name, fec->phy_id, MII_BMCR,
210 			BMCR_ANENABLE | BMCR_ANRESTART);
211 
212 	if (fec->mii_postcall)
213 		ret = fec->mii_postcall(fec->phy_id);
214 
215 	return ret;
216 }
217 
218 static int miiphy_wait_aneg(struct eth_device *dev)
219 {
220 	uint32_t start;
221 	uint16_t status;
222 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
223 
224 	/*
225 	 * Wait for AN completion
226 	 */
227 	start = get_timer(0);
228 	do {
229 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
230 			printf("%s: Autonegotiation timeout\n", dev->name);
231 			return -1;
232 		}
233 
234 		if (miiphy_read(dev->name, fec->phy_id,
235 					MII_BMSR, &status)) {
236 			printf("%s: Autonegotiation failed. status: 0x%04x\n",
237 					dev->name, status);
238 			return -1;
239 		}
240 	} while (!(status & BMSR_LSTATUS));
241 
242 	return 0;
243 }
244 static int fec_rx_task_enable(struct fec_priv *fec)
245 {
246 	writel(1 << 24, &fec->eth->r_des_active);
247 	return 0;
248 }
249 
250 static int fec_rx_task_disable(struct fec_priv *fec)
251 {
252 	return 0;
253 }
254 
255 static int fec_tx_task_enable(struct fec_priv *fec)
256 {
257 	writel(1 << 24, &fec->eth->x_des_active);
258 	return 0;
259 }
260 
261 static int fec_tx_task_disable(struct fec_priv *fec)
262 {
263 	return 0;
264 }
265 
266 /**
267  * Initialize receive task's buffer descriptors
268  * @param[in] fec all we know about the device yet
269  * @param[in] count receive buffer count to be allocated
270  * @param[in] size size of each receive buffer
271  * @return 0 on success
272  *
273  * For this task we need additional memory for the data buffers. And each
274  * data buffer requires some alignment. Thy must be aligned to a specific
275  * boundary each (DB_DATA_ALIGNMENT).
276  */
277 static int fec_rbd_init(struct fec_priv *fec, int count, int size)
278 {
279 	int ix;
280 	uint32_t p = 0;
281 
282 	/* reserve data memory and consider alignment */
283 	if (fec->rdb_ptr == NULL)
284 		fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
285 	p = (uint32_t)fec->rdb_ptr;
286 	if (!p) {
287 		puts("fec_mxc: not enough malloc memory\n");
288 		return -ENOMEM;
289 	}
290 	memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
291 	p += DB_DATA_ALIGNMENT-1;
292 	p &= ~(DB_DATA_ALIGNMENT-1);
293 
294 	for (ix = 0; ix < count; ix++) {
295 		writel(p, &fec->rbd_base[ix].data_pointer);
296 		p += size;
297 		writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
298 		writew(0, &fec->rbd_base[ix].data_length);
299 	}
300 	/*
301 	 * mark the last RBD to close the ring
302 	 */
303 	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
304 	fec->rbd_index = 0;
305 
306 	return 0;
307 }
308 
309 /**
310  * Initialize transmit task's buffer descriptors
311  * @param[in] fec all we know about the device yet
312  *
313  * Transmit buffers are created externally. We only have to init the BDs here.\n
314  * Note: There is a race condition in the hardware. When only one BD is in
315  * use it must be marked with the WRAP bit to use it for every transmitt.
316  * This bit in combination with the READY bit results into double transmit
317  * of each data buffer. It seems the state machine checks READY earlier then
318  * resetting it after the first transfer.
319  * Using two BDs solves this issue.
320  */
321 static void fec_tbd_init(struct fec_priv *fec)
322 {
323 	writew(0x0000, &fec->tbd_base[0].status);
324 	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
325 	fec->tbd_index = 0;
326 }
327 
328 /**
329  * Mark the given read buffer descriptor as free
330  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
331  * @param[in] pRbd buffer descriptor to mark free again
332  */
333 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
334 {
335 	/*
336 	 * Reset buffer descriptor as empty
337 	 */
338 	if (last)
339 		writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
340 	else
341 		writew(FEC_RBD_EMPTY, &pRbd->status);
342 	/*
343 	 * no data in it
344 	 */
345 	writew(0, &pRbd->data_length);
346 }
347 
348 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
349 						unsigned char *mac)
350 {
351 	imx_get_mac_from_fuse(dev_id, mac);
352 	return !is_valid_ether_addr(mac);
353 }
354 
355 static int fec_set_hwaddr(struct eth_device *dev)
356 {
357 	uchar *mac = dev->enetaddr;
358 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
359 
360 	writel(0, &fec->eth->iaddr1);
361 	writel(0, &fec->eth->iaddr2);
362 	writel(0, &fec->eth->gaddr1);
363 	writel(0, &fec->eth->gaddr2);
364 
365 	/*
366 	 * Set physical address
367 	 */
368 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
369 			&fec->eth->paddr1);
370 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
371 
372 	return 0;
373 }
374 
375 /**
376  * Start the FEC engine
377  * @param[in] dev Our device to handle
378  */
379 static int fec_open(struct eth_device *edev)
380 {
381 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
382 
383 	debug("fec_open: fec_open(dev)\n");
384 	/* full-duplex, heartbeat disabled */
385 	writel(1 << 2, &fec->eth->x_cntrl);
386 	fec->rbd_index = 0;
387 
388 #if defined(CONFIG_MX6Q)
389 	/* Enable ENET HW endian SWAP */
390 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
391 		&fec->eth->ecntrl);
392 	/* Enable ENET store and forward mode */
393 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
394 		&fec->eth->x_wmrk);
395 #endif
396 	/*
397 	 * Enable FEC-Lite controller
398 	 */
399 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
400 		&fec->eth->ecntrl);
401 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
402 	udelay(100);
403 	/*
404 	 * setup the MII gasket for RMII mode
405 	 */
406 
407 	/* disable the gasket */
408 	writew(0, &fec->eth->miigsk_enr);
409 
410 	/* wait for the gasket to be disabled */
411 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
412 		udelay(2);
413 
414 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
415 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
416 
417 	/* re-enable the gasket */
418 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
419 
420 	/* wait until MII gasket is ready */
421 	int max_loops = 10;
422 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
423 		if (--max_loops <= 0) {
424 			printf("WAIT for MII Gasket ready timed out\n");
425 			break;
426 		}
427 	}
428 #endif
429 
430 	miiphy_wait_aneg(edev);
431 	miiphy_speed(edev->name, fec->phy_id);
432 	miiphy_duplex(edev->name, fec->phy_id);
433 
434 	/*
435 	 * Enable SmartDMA receive task
436 	 */
437 	fec_rx_task_enable(fec);
438 
439 	udelay(100000);
440 	return 0;
441 }
442 
443 static int fec_init(struct eth_device *dev, bd_t* bd)
444 {
445 	uint32_t base;
446 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
447 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
448 	uint32_t rcntrl;
449 	int i;
450 
451 	/* Initialize MAC address */
452 	fec_set_hwaddr(dev);
453 
454 	/*
455 	 * reserve memory for both buffer descriptor chains at once
456 	 * Datasheet forces the startaddress of each chain is 16 byte
457 	 * aligned
458 	 */
459 	if (fec->base_ptr == NULL)
460 		fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
461 				sizeof(struct fec_bd) + DB_ALIGNMENT);
462 	base = (uint32_t)fec->base_ptr;
463 	if (!base) {
464 		puts("fec_mxc: not enough malloc memory\n");
465 		return -ENOMEM;
466 	}
467 	memset((void *)base, 0, (2 + FEC_RBD_NUM) *
468 			sizeof(struct fec_bd) + DB_ALIGNMENT);
469 	base += (DB_ALIGNMENT-1);
470 	base &= ~(DB_ALIGNMENT-1);
471 
472 	fec->rbd_base = (struct fec_bd *)base;
473 
474 	base += FEC_RBD_NUM * sizeof(struct fec_bd);
475 
476 	fec->tbd_base = (struct fec_bd *)base;
477 
478 	/*
479 	 * Set interrupt mask register
480 	 */
481 	writel(0x00000000, &fec->eth->imask);
482 
483 	/*
484 	 * Clear FEC-Lite interrupt event register(IEVENT)
485 	 */
486 	writel(0xffffffff, &fec->eth->ievent);
487 
488 
489 	/*
490 	 * Set FEC-Lite receive control register(R_CNTRL):
491 	 */
492 
493 	/* Start with frame length = 1518, common for all modes. */
494 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
495 	if (fec->xcv_type == SEVENWIRE)
496 		rcntrl |= FEC_RCNTRL_FCE;
497 	else if (fec->xcv_type == RGMII)
498 		rcntrl |= FEC_RCNTRL_RGMII;
499 	else if (fec->xcv_type == RMII)
500 		rcntrl |= FEC_RCNTRL_RMII;
501 	else	/* MII mode */
502 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
503 
504 	writel(rcntrl, &fec->eth->r_cntrl);
505 
506 	if (fec->xcv_type == MII10 || fec->xcv_type == MII100)
507 		fec_mii_setspeed(fec);
508 
509 	/*
510 	 * Set Opcode/Pause Duration Register
511 	 */
512 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
513 	writel(0x2, &fec->eth->x_wmrk);
514 	/*
515 	 * Set multicast address filter
516 	 */
517 	writel(0x00000000, &fec->eth->gaddr1);
518 	writel(0x00000000, &fec->eth->gaddr2);
519 
520 
521 	/* clear MIB RAM */
522 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
523 		writel(0, i);
524 
525 	/* FIFO receive start register */
526 	writel(0x520, &fec->eth->r_fstart);
527 
528 	/* size and address of each buffer */
529 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
530 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
531 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
532 
533 	/*
534 	 * Initialize RxBD/TxBD rings
535 	 */
536 	if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
537 		free(fec->base_ptr);
538 		fec->base_ptr = NULL;
539 		return -ENOMEM;
540 	}
541 	fec_tbd_init(fec);
542 
543 
544 	if (fec->xcv_type != SEVENWIRE)
545 		miiphy_restart_aneg(dev);
546 
547 	fec_open(dev);
548 	return 0;
549 }
550 
551 /**
552  * Halt the FEC engine
553  * @param[in] dev Our device to handle
554  */
555 static void fec_halt(struct eth_device *dev)
556 {
557 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
558 	int counter = 0xffff;
559 
560 	/*
561 	 * issue graceful stop command to the FEC transmitter if necessary
562 	 */
563 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
564 			&fec->eth->x_cntrl);
565 
566 	debug("eth_halt: wait for stop regs\n");
567 	/*
568 	 * wait for graceful stop to register
569 	 */
570 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
571 		udelay(1);
572 
573 	/*
574 	 * Disable SmartDMA tasks
575 	 */
576 	fec_tx_task_disable(fec);
577 	fec_rx_task_disable(fec);
578 
579 	/*
580 	 * Disable the Ethernet Controller
581 	 * Note: this will also reset the BD index counter!
582 	 */
583 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
584 			&fec->eth->ecntrl);
585 	fec->rbd_index = 0;
586 	fec->tbd_index = 0;
587 	debug("eth_halt: done\n");
588 }
589 
590 /**
591  * Transmit one frame
592  * @param[in] dev Our ethernet device to handle
593  * @param[in] packet Pointer to the data to be transmitted
594  * @param[in] length Data count in bytes
595  * @return 0 on success
596  */
597 static int fec_send(struct eth_device *dev, volatile void* packet, int length)
598 {
599 	unsigned int status;
600 
601 	/*
602 	 * This routine transmits one frame.  This routine only accepts
603 	 * 6-byte Ethernet addresses.
604 	 */
605 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
606 
607 	/*
608 	 * Check for valid length of data.
609 	 */
610 	if ((length > 1500) || (length <= 0)) {
611 		printf("Payload (%d) too large\n", length);
612 		return -1;
613 	}
614 
615 	/*
616 	 * Setup the transmit buffer
617 	 * Note: We are always using the first buffer for transmission,
618 	 * the second will be empty and only used to stop the DMA engine
619 	 */
620 #ifdef	CONFIG_FEC_MXC_SWAP_PACKET
621 	swap_packet((uint32_t *)packet, length);
622 #endif
623 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
624 	writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
625 	/*
626 	 * update BD's status now
627 	 * This block:
628 	 * - is always the last in a chain (means no chain)
629 	 * - should transmitt the CRC
630 	 * - might be the last BD in the list, so the address counter should
631 	 *   wrap (-> keep the WRAP flag)
632 	 */
633 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
634 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
635 	writew(status, &fec->tbd_base[fec->tbd_index].status);
636 
637 	/*
638 	 * Enable SmartDMA transmit task
639 	 */
640 	fec_tx_task_enable(fec);
641 
642 	/*
643 	 * wait until frame is sent .
644 	 */
645 	while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
646 		udelay(1);
647 	}
648 	debug("fec_send: status 0x%x index %d\n",
649 			readw(&fec->tbd_base[fec->tbd_index].status),
650 			fec->tbd_index);
651 	/* for next transmission use the other buffer */
652 	if (fec->tbd_index)
653 		fec->tbd_index = 0;
654 	else
655 		fec->tbd_index = 1;
656 
657 	return 0;
658 }
659 
660 /**
661  * Pull one frame from the card
662  * @param[in] dev Our ethernet device to handle
663  * @return Length of packet read
664  */
665 static int fec_recv(struct eth_device *dev)
666 {
667 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
668 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
669 	unsigned long ievent;
670 	int frame_length, len = 0;
671 	struct nbuf *frame;
672 	uint16_t bd_status;
673 	uchar buff[FEC_MAX_PKT_SIZE];
674 
675 	/*
676 	 * Check if any critical events have happened
677 	 */
678 	ievent = readl(&fec->eth->ievent);
679 	writel(ievent, &fec->eth->ievent);
680 	debug("fec_recv: ievent 0x%lx\n", ievent);
681 	if (ievent & FEC_IEVENT_BABR) {
682 		fec_halt(dev);
683 		fec_init(dev, fec->bd);
684 		printf("some error: 0x%08lx\n", ievent);
685 		return 0;
686 	}
687 	if (ievent & FEC_IEVENT_HBERR) {
688 		/* Heartbeat error */
689 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
690 				&fec->eth->x_cntrl);
691 	}
692 	if (ievent & FEC_IEVENT_GRA) {
693 		/* Graceful stop complete */
694 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
695 			fec_halt(dev);
696 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
697 					&fec->eth->x_cntrl);
698 			fec_init(dev, fec->bd);
699 		}
700 	}
701 
702 	/*
703 	 * ensure reading the right buffer status
704 	 */
705 	bd_status = readw(&rbd->status);
706 	debug("fec_recv: status 0x%x\n", bd_status);
707 
708 	if (!(bd_status & FEC_RBD_EMPTY)) {
709 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
710 			((readw(&rbd->data_length) - 4) > 14)) {
711 			/*
712 			 * Get buffer address and size
713 			 */
714 			frame = (struct nbuf *)readl(&rbd->data_pointer);
715 			frame_length = readw(&rbd->data_length) - 4;
716 			/*
717 			 *  Fill the buffer and pass it to upper layers
718 			 */
719 #ifdef	CONFIG_FEC_MXC_SWAP_PACKET
720 			swap_packet((uint32_t *)frame->data, frame_length);
721 #endif
722 			memcpy(buff, frame->data, frame_length);
723 			NetReceive(buff, frame_length);
724 			len = frame_length;
725 		} else {
726 			if (bd_status & FEC_RBD_ERR)
727 				printf("error frame: 0x%08lx 0x%08x\n",
728 						(ulong)rbd->data_pointer,
729 						bd_status);
730 		}
731 		/*
732 		 * free the current buffer, restart the engine
733 		 * and move forward to the next buffer
734 		 */
735 		fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
736 		fec_rx_task_enable(fec);
737 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
738 	}
739 	debug("fec_recv: stop\n");
740 
741 	return len;
742 }
743 
744 static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
745 {
746 	struct eth_device *edev;
747 	struct fec_priv *fec;
748 	unsigned char ethaddr[6];
749 	uint32_t start;
750 	int ret = 0;
751 
752 	/* create and fill edev struct */
753 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
754 	if (!edev) {
755 		puts("fec_mxc: not enough malloc memory for eth_device\n");
756 		ret = -ENOMEM;
757 		goto err1;
758 	}
759 
760 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
761 	if (!fec) {
762 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
763 		ret = -ENOMEM;
764 		goto err2;
765 	}
766 
767 	memset(edev, 0, sizeof(*edev));
768 	memset(fec, 0, sizeof(*fec));
769 
770 	edev->priv = fec;
771 	edev->init = fec_init;
772 	edev->send = fec_send;
773 	edev->recv = fec_recv;
774 	edev->halt = fec_halt;
775 	edev->write_hwaddr = fec_set_hwaddr;
776 
777 	fec->eth = (struct ethernet_regs *)base_addr;
778 	fec->bd = bd;
779 
780 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
781 
782 	/* Reset chip. */
783 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
784 	start = get_timer(0);
785 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
786 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
787 			printf("FEC MXC: Timeout reseting chip\n");
788 			goto err3;
789 		}
790 		udelay(10);
791 	}
792 
793 	/*
794 	 * Set interrupt mask register
795 	 */
796 	writel(0x00000000, &fec->eth->imask);
797 
798 	/*
799 	 * Clear FEC-Lite interrupt event register(IEVENT)
800 	 */
801 	writel(0xffffffff, &fec->eth->ievent);
802 
803 	/*
804 	 * Set FEC-Lite receive control register(R_CNTRL):
805 	 */
806 	/*
807 	 * Frame length=1518; MII mode;
808 	 */
809 	writel((PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT) | FEC_RCNTRL_FCE |
810 		FEC_RCNTRL_MII_MODE, &fec->eth->r_cntrl);
811 	fec_mii_setspeed(fec);
812 
813 	if (dev_id == -1) {
814 		sprintf(edev->name, "FEC");
815 		fec->dev_id = 0;
816 	} else {
817 		sprintf(edev->name, "FEC%i", dev_id);
818 		fec->dev_id = dev_id;
819 	}
820 	fec->phy_id = phy_id;
821 
822 	miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
823 
824 	eth_register(edev);
825 
826 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
827 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
828 		memcpy(edev->enetaddr, ethaddr, 6);
829 	}
830 
831 	return ret;
832 
833 err3:
834 	free(fec);
835 err2:
836 	free(edev);
837 err1:
838 	return ret;
839 }
840 
841 #ifndef	CONFIG_FEC_MXC_MULTI
842 int fecmxc_initialize(bd_t *bd)
843 {
844 	int lout = 1;
845 
846 	debug("eth_init: fec_probe(bd)\n");
847 	lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
848 
849 	return lout;
850 }
851 #endif
852 
853 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
854 {
855 	int lout = 1;
856 
857 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
858 	lout = fec_probe(bd, dev_id, phy_id, addr);
859 
860 	return lout;
861 }
862 
863 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
864 {
865 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
866 	fec->mii_postcall = cb;
867 	return 0;
868 }
869