1 /* 2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> 3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> 4 * (C) Copyright 2008 Armadeus Systems nc 5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> 6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #include <common.h> 12 #include <malloc.h> 13 #include <memalign.h> 14 #include <net.h> 15 #include <netdev.h> 16 #include <miiphy.h> 17 #include "fec_mxc.h" 18 19 #include <asm/arch/clock.h> 20 #include <asm/arch/imx-regs.h> 21 #include <asm/imx-common/sys_proto.h> 22 #include <asm/io.h> 23 #include <asm/errno.h> 24 #include <linux/compiler.h> 25 26 DECLARE_GLOBAL_DATA_PTR; 27 28 /* 29 * Timeout the transfer after 5 mS. This is usually a bit more, since 30 * the code in the tightloops this timeout is used in adds some overhead. 31 */ 32 #define FEC_XFER_TIMEOUT 5000 33 34 /* 35 * The standard 32-byte DMA alignment does not work on mx6solox, which requires 36 * 64-byte alignment in the DMA RX FEC buffer. 37 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also 38 * satisfies the alignment on other SoCs (32-bytes) 39 */ 40 #define FEC_DMA_RX_MINALIGN 64 41 42 #ifndef CONFIG_MII 43 #error "CONFIG_MII has to be defined!" 44 #endif 45 46 #ifndef CONFIG_FEC_XCV_TYPE 47 #define CONFIG_FEC_XCV_TYPE MII100 48 #endif 49 50 /* 51 * The i.MX28 operates with packets in big endian. We need to swap them before 52 * sending and after receiving. 53 */ 54 #ifdef CONFIG_MX28 55 #define CONFIG_FEC_MXC_SWAP_PACKET 56 #endif 57 58 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) 59 60 /* Check various alignment issues at compile time */ 61 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) 62 #error "ARCH_DMA_MINALIGN must be multiple of 16!" 63 #endif 64 65 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ 66 (PKTALIGN % ARCH_DMA_MINALIGN != 0)) 67 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" 68 #endif 69 70 #undef DEBUG 71 72 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 73 static void swap_packet(uint32_t *packet, int length) 74 { 75 int i; 76 77 for (i = 0; i < DIV_ROUND_UP(length, 4); i++) 78 packet[i] = __swab32(packet[i]); 79 } 80 #endif 81 82 /* 83 * MII-interface related functions 84 */ 85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr, 86 uint8_t regAddr) 87 { 88 uint32_t reg; /* convenient holder for the PHY register */ 89 uint32_t phy; /* convenient holder for the PHY */ 90 uint32_t start; 91 int val; 92 93 /* 94 * reading from any PHY's register is done by properly 95 * programming the FEC's MII data register. 96 */ 97 writel(FEC_IEVENT_MII, ð->ievent); 98 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 99 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 100 101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | 102 phy | reg, ð->mii_data); 103 104 /* 105 * wait for the related interrupt 106 */ 107 start = get_timer(0); 108 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 109 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 110 printf("Read MDIO failed...\n"); 111 return -1; 112 } 113 } 114 115 /* 116 * clear mii interrupt bit 117 */ 118 writel(FEC_IEVENT_MII, ð->ievent); 119 120 /* 121 * it's now safe to read the PHY's register 122 */ 123 val = (unsigned short)readl(ð->mii_data); 124 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 125 regAddr, val); 126 return val; 127 } 128 129 static void fec_mii_setspeed(struct ethernet_regs *eth) 130 { 131 /* 132 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock 133 * and do not drop the Preamble. 134 * 135 * The i.MX28 and i.MX6 types have another field in the MSCR (aka 136 * MII_SPEED) register that defines the MDIO output hold time. Earlier 137 * versions are RAZ there, so just ignore the difference and write the 138 * register always. 139 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 140 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 141 * output. 142 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 143 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 144 * holdtime cannot result in a value greater than 3. 145 */ 146 u32 pclk = imx_get_fecclk(); 147 u32 speed = DIV_ROUND_UP(pclk, 5000000); 148 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1; 149 #ifdef FEC_QUIRK_ENET_MAC 150 speed--; 151 #endif 152 writel(speed << 1 | hold << 8, ð->mii_speed); 153 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); 154 } 155 156 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr, 157 uint8_t regAddr, uint16_t data) 158 { 159 uint32_t reg; /* convenient holder for the PHY register */ 160 uint32_t phy; /* convenient holder for the PHY */ 161 uint32_t start; 162 163 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 164 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 165 166 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | 167 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); 168 169 /* 170 * wait for the MII interrupt 171 */ 172 start = get_timer(0); 173 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 174 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 175 printf("Write MDIO failed...\n"); 176 return -1; 177 } 178 } 179 180 /* 181 * clear MII interrupt bit 182 */ 183 writel(FEC_IEVENT_MII, ð->ievent); 184 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 185 regAddr, data); 186 187 return 0; 188 } 189 190 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, 191 int regAddr) 192 { 193 return fec_mdio_read(bus->priv, phyAddr, regAddr); 194 } 195 196 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, 197 int regAddr, u16 data) 198 { 199 return fec_mdio_write(bus->priv, phyAddr, regAddr, data); 200 } 201 202 #ifndef CONFIG_PHYLIB 203 static int miiphy_restart_aneg(struct eth_device *dev) 204 { 205 int ret = 0; 206 #if !defined(CONFIG_FEC_MXC_NO_ANEG) 207 struct fec_priv *fec = (struct fec_priv *)dev->priv; 208 struct ethernet_regs *eth = fec->bus->priv; 209 210 /* 211 * Wake up from sleep if necessary 212 * Reset PHY, then delay 300ns 213 */ 214 #ifdef CONFIG_MX27 215 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); 216 #endif 217 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); 218 udelay(1000); 219 220 /* 221 * Set the auto-negotiation advertisement register bits 222 */ 223 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, 224 LPA_100FULL | LPA_100HALF | LPA_10FULL | 225 LPA_10HALF | PHY_ANLPAR_PSB_802_3); 226 fec_mdio_write(eth, fec->phy_id, MII_BMCR, 227 BMCR_ANENABLE | BMCR_ANRESTART); 228 229 if (fec->mii_postcall) 230 ret = fec->mii_postcall(fec->phy_id); 231 232 #endif 233 return ret; 234 } 235 236 static int miiphy_wait_aneg(struct eth_device *dev) 237 { 238 uint32_t start; 239 int status; 240 struct fec_priv *fec = (struct fec_priv *)dev->priv; 241 struct ethernet_regs *eth = fec->bus->priv; 242 243 /* 244 * Wait for AN completion 245 */ 246 start = get_timer(0); 247 do { 248 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 249 printf("%s: Autonegotiation timeout\n", dev->name); 250 return -1; 251 } 252 253 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); 254 if (status < 0) { 255 printf("%s: Autonegotiation failed. status: %d\n", 256 dev->name, status); 257 return -1; 258 } 259 } while (!(status & BMSR_LSTATUS)); 260 261 return 0; 262 } 263 #endif 264 265 static int fec_rx_task_enable(struct fec_priv *fec) 266 { 267 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); 268 return 0; 269 } 270 271 static int fec_rx_task_disable(struct fec_priv *fec) 272 { 273 return 0; 274 } 275 276 static int fec_tx_task_enable(struct fec_priv *fec) 277 { 278 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); 279 return 0; 280 } 281 282 static int fec_tx_task_disable(struct fec_priv *fec) 283 { 284 return 0; 285 } 286 287 /** 288 * Initialize receive task's buffer descriptors 289 * @param[in] fec all we know about the device yet 290 * @param[in] count receive buffer count to be allocated 291 * @param[in] dsize desired size of each receive buffer 292 * @return 0 on success 293 * 294 * Init all RX descriptors to default values. 295 */ 296 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) 297 { 298 uint32_t size; 299 uint8_t *data; 300 int i; 301 302 /* 303 * Reload the RX descriptors with default values and wipe 304 * the RX buffers. 305 */ 306 size = roundup(dsize, ARCH_DMA_MINALIGN); 307 for (i = 0; i < count; i++) { 308 data = (uint8_t *)fec->rbd_base[i].data_pointer; 309 memset(data, 0, dsize); 310 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 311 312 fec->rbd_base[i].status = FEC_RBD_EMPTY; 313 fec->rbd_base[i].data_length = 0; 314 } 315 316 /* Mark the last RBD to close the ring. */ 317 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 318 fec->rbd_index = 0; 319 320 flush_dcache_range((unsigned)fec->rbd_base, 321 (unsigned)fec->rbd_base + size); 322 } 323 324 /** 325 * Initialize transmit task's buffer descriptors 326 * @param[in] fec all we know about the device yet 327 * 328 * Transmit buffers are created externally. We only have to init the BDs here.\n 329 * Note: There is a race condition in the hardware. When only one BD is in 330 * use it must be marked with the WRAP bit to use it for every transmitt. 331 * This bit in combination with the READY bit results into double transmit 332 * of each data buffer. It seems the state machine checks READY earlier then 333 * resetting it after the first transfer. 334 * Using two BDs solves this issue. 335 */ 336 static void fec_tbd_init(struct fec_priv *fec) 337 { 338 unsigned addr = (unsigned)fec->tbd_base; 339 unsigned size = roundup(2 * sizeof(struct fec_bd), 340 ARCH_DMA_MINALIGN); 341 342 memset(fec->tbd_base, 0, size); 343 fec->tbd_base[0].status = 0; 344 fec->tbd_base[1].status = FEC_TBD_WRAP; 345 fec->tbd_index = 0; 346 flush_dcache_range(addr, addr + size); 347 } 348 349 /** 350 * Mark the given read buffer descriptor as free 351 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 352 * @param[in] pRbd buffer descriptor to mark free again 353 */ 354 static void fec_rbd_clean(int last, struct fec_bd *pRbd) 355 { 356 unsigned short flags = FEC_RBD_EMPTY; 357 if (last) 358 flags |= FEC_RBD_WRAP; 359 writew(flags, &pRbd->status); 360 writew(0, &pRbd->data_length); 361 } 362 363 static int fec_get_hwaddr(struct eth_device *dev, int dev_id, 364 unsigned char *mac) 365 { 366 imx_get_mac_from_fuse(dev_id, mac); 367 return !is_valid_ethaddr(mac); 368 } 369 370 static int fec_set_hwaddr(struct eth_device *dev) 371 { 372 uchar *mac = dev->enetaddr; 373 struct fec_priv *fec = (struct fec_priv *)dev->priv; 374 375 writel(0, &fec->eth->iaddr1); 376 writel(0, &fec->eth->iaddr2); 377 writel(0, &fec->eth->gaddr1); 378 writel(0, &fec->eth->gaddr2); 379 380 /* 381 * Set physical address 382 */ 383 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], 384 &fec->eth->paddr1); 385 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); 386 387 return 0; 388 } 389 390 /* 391 * Do initial configuration of the FEC registers 392 */ 393 static void fec_reg_setup(struct fec_priv *fec) 394 { 395 uint32_t rcntrl; 396 397 /* 398 * Set interrupt mask register 399 */ 400 writel(0x00000000, &fec->eth->imask); 401 402 /* 403 * Clear FEC-Lite interrupt event register(IEVENT) 404 */ 405 writel(0xffffffff, &fec->eth->ievent); 406 407 408 /* 409 * Set FEC-Lite receive control register(R_CNTRL): 410 */ 411 412 /* Start with frame length = 1518, common for all modes. */ 413 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; 414 if (fec->xcv_type != SEVENWIRE) /* xMII modes */ 415 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; 416 if (fec->xcv_type == RGMII) 417 rcntrl |= FEC_RCNTRL_RGMII; 418 else if (fec->xcv_type == RMII) 419 rcntrl |= FEC_RCNTRL_RMII; 420 421 writel(rcntrl, &fec->eth->r_cntrl); 422 } 423 424 /** 425 * Start the FEC engine 426 * @param[in] dev Our device to handle 427 */ 428 static int fec_open(struct eth_device *edev) 429 { 430 struct fec_priv *fec = (struct fec_priv *)edev->priv; 431 int speed; 432 uint32_t addr, size; 433 int i; 434 435 debug("fec_open: fec_open(dev)\n"); 436 /* full-duplex, heartbeat disabled */ 437 writel(1 << 2, &fec->eth->x_cntrl); 438 fec->rbd_index = 0; 439 440 /* Invalidate all descriptors */ 441 for (i = 0; i < FEC_RBD_NUM - 1; i++) 442 fec_rbd_clean(0, &fec->rbd_base[i]); 443 fec_rbd_clean(1, &fec->rbd_base[i]); 444 445 /* Flush the descriptors into RAM */ 446 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), 447 ARCH_DMA_MINALIGN); 448 addr = (uint32_t)fec->rbd_base; 449 flush_dcache_range(addr, addr + size); 450 451 #ifdef FEC_QUIRK_ENET_MAC 452 /* Enable ENET HW endian SWAP */ 453 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, 454 &fec->eth->ecntrl); 455 /* Enable ENET store and forward mode */ 456 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, 457 &fec->eth->x_wmrk); 458 #endif 459 /* 460 * Enable FEC-Lite controller 461 */ 462 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, 463 &fec->eth->ecntrl); 464 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) 465 udelay(100); 466 /* 467 * setup the MII gasket for RMII mode 468 */ 469 470 /* disable the gasket */ 471 writew(0, &fec->eth->miigsk_enr); 472 473 /* wait for the gasket to be disabled */ 474 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) 475 udelay(2); 476 477 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ 478 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); 479 480 /* re-enable the gasket */ 481 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); 482 483 /* wait until MII gasket is ready */ 484 int max_loops = 10; 485 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { 486 if (--max_loops <= 0) { 487 printf("WAIT for MII Gasket ready timed out\n"); 488 break; 489 } 490 } 491 #endif 492 493 #ifdef CONFIG_PHYLIB 494 { 495 /* Start up the PHY */ 496 int ret = phy_startup(fec->phydev); 497 498 if (ret) { 499 printf("Could not initialize PHY %s\n", 500 fec->phydev->dev->name); 501 return ret; 502 } 503 speed = fec->phydev->speed; 504 } 505 #else 506 miiphy_wait_aneg(edev); 507 speed = miiphy_speed(edev->name, fec->phy_id); 508 miiphy_duplex(edev->name, fec->phy_id); 509 #endif 510 511 #ifdef FEC_QUIRK_ENET_MAC 512 { 513 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; 514 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; 515 if (speed == _1000BASET) 516 ecr |= FEC_ECNTRL_SPEED; 517 else if (speed != _100BASET) 518 rcr |= FEC_RCNTRL_RMII_10T; 519 writel(ecr, &fec->eth->ecntrl); 520 writel(rcr, &fec->eth->r_cntrl); 521 } 522 #endif 523 debug("%s:Speed=%i\n", __func__, speed); 524 525 /* 526 * Enable SmartDMA receive task 527 */ 528 fec_rx_task_enable(fec); 529 530 udelay(100000); 531 return 0; 532 } 533 534 static int fec_init(struct eth_device *dev, bd_t* bd) 535 { 536 struct fec_priv *fec = (struct fec_priv *)dev->priv; 537 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; 538 int i; 539 540 /* Initialize MAC address */ 541 fec_set_hwaddr(dev); 542 543 /* 544 * Setup transmit descriptors, there are two in total. 545 */ 546 fec_tbd_init(fec); 547 548 /* Setup receive descriptors. */ 549 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); 550 551 fec_reg_setup(fec); 552 553 if (fec->xcv_type != SEVENWIRE) 554 fec_mii_setspeed(fec->bus->priv); 555 556 /* 557 * Set Opcode/Pause Duration Register 558 */ 559 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ 560 writel(0x2, &fec->eth->x_wmrk); 561 /* 562 * Set multicast address filter 563 */ 564 writel(0x00000000, &fec->eth->gaddr1); 565 writel(0x00000000, &fec->eth->gaddr2); 566 567 568 /* Do not access reserved register for i.MX6UL */ 569 if (!is_mx6ul()) { 570 /* clear MIB RAM */ 571 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) 572 writel(0, i); 573 574 /* FIFO receive start register */ 575 writel(0x520, &fec->eth->r_fstart); 576 } 577 578 /* size and address of each buffer */ 579 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); 580 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); 581 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); 582 583 #ifndef CONFIG_PHYLIB 584 if (fec->xcv_type != SEVENWIRE) 585 miiphy_restart_aneg(dev); 586 #endif 587 fec_open(dev); 588 return 0; 589 } 590 591 /** 592 * Halt the FEC engine 593 * @param[in] dev Our device to handle 594 */ 595 static void fec_halt(struct eth_device *dev) 596 { 597 struct fec_priv *fec = (struct fec_priv *)dev->priv; 598 int counter = 0xffff; 599 600 /* 601 * issue graceful stop command to the FEC transmitter if necessary 602 */ 603 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), 604 &fec->eth->x_cntrl); 605 606 debug("eth_halt: wait for stop regs\n"); 607 /* 608 * wait for graceful stop to register 609 */ 610 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) 611 udelay(1); 612 613 /* 614 * Disable SmartDMA tasks 615 */ 616 fec_tx_task_disable(fec); 617 fec_rx_task_disable(fec); 618 619 /* 620 * Disable the Ethernet Controller 621 * Note: this will also reset the BD index counter! 622 */ 623 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, 624 &fec->eth->ecntrl); 625 fec->rbd_index = 0; 626 fec->tbd_index = 0; 627 debug("eth_halt: done\n"); 628 } 629 630 /** 631 * Transmit one frame 632 * @param[in] dev Our ethernet device to handle 633 * @param[in] packet Pointer to the data to be transmitted 634 * @param[in] length Data count in bytes 635 * @return 0 on success 636 */ 637 static int fec_send(struct eth_device *dev, void *packet, int length) 638 { 639 unsigned int status; 640 uint32_t size, end; 641 uint32_t addr; 642 int timeout = FEC_XFER_TIMEOUT; 643 int ret = 0; 644 645 /* 646 * This routine transmits one frame. This routine only accepts 647 * 6-byte Ethernet addresses. 648 */ 649 struct fec_priv *fec = (struct fec_priv *)dev->priv; 650 651 /* 652 * Check for valid length of data. 653 */ 654 if ((length > 1500) || (length <= 0)) { 655 printf("Payload (%d) too large\n", length); 656 return -1; 657 } 658 659 /* 660 * Setup the transmit buffer. We are always using the first buffer for 661 * transmission, the second will be empty and only used to stop the DMA 662 * engine. We also flush the packet to RAM here to avoid cache trouble. 663 */ 664 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 665 swap_packet((uint32_t *)packet, length); 666 #endif 667 668 addr = (uint32_t)packet; 669 end = roundup(addr + length, ARCH_DMA_MINALIGN); 670 addr &= ~(ARCH_DMA_MINALIGN - 1); 671 flush_dcache_range(addr, end); 672 673 writew(length, &fec->tbd_base[fec->tbd_index].data_length); 674 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); 675 676 /* 677 * update BD's status now 678 * This block: 679 * - is always the last in a chain (means no chain) 680 * - should transmitt the CRC 681 * - might be the last BD in the list, so the address counter should 682 * wrap (-> keep the WRAP flag) 683 */ 684 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; 685 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; 686 writew(status, &fec->tbd_base[fec->tbd_index].status); 687 688 /* 689 * Flush data cache. This code flushes both TX descriptors to RAM. 690 * After this code, the descriptors will be safely in RAM and we 691 * can start DMA. 692 */ 693 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 694 addr = (uint32_t)fec->tbd_base; 695 flush_dcache_range(addr, addr + size); 696 697 /* 698 * Below we read the DMA descriptor's last four bytes back from the 699 * DRAM. This is important in order to make sure that all WRITE 700 * operations on the bus that were triggered by previous cache FLUSH 701 * have completed. 702 * 703 * Otherwise, on MX28, it is possible to observe a corruption of the 704 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM 705 * for the bus structure of MX28. The scenario is as follows: 706 * 707 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going 708 * to DRAM due to flush_dcache_range() 709 * 2) ARM core writes the FEC registers via AHB_ARB2 710 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 711 * 712 * Note that 2) does sometimes finish before 1) due to reordering of 713 * WRITE accesses on the AHB bus, therefore triggering 3) before the 714 * DMA descriptor is fully written into DRAM. This results in occasional 715 * corruption of the DMA descriptor. 716 */ 717 readl(addr + size - 4); 718 719 /* 720 * Enable SmartDMA transmit task 721 */ 722 fec_tx_task_enable(fec); 723 724 /* 725 * Wait until frame is sent. On each turn of the wait cycle, we must 726 * invalidate data cache to see what's really in RAM. Also, we need 727 * barrier here. 728 */ 729 while (--timeout) { 730 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) 731 break; 732 } 733 734 if (!timeout) { 735 ret = -EINVAL; 736 goto out; 737 } 738 739 /* 740 * The TDAR bit is cleared when the descriptors are all out from TX 741 * but on mx6solox we noticed that the READY bit is still not cleared 742 * right after TDAR. 743 * These are two distinct signals, and in IC simulation, we found that 744 * TDAR always gets cleared prior than the READY bit of last BD becomes 745 * cleared. 746 * In mx6solox, we use a later version of FEC IP. It looks like that 747 * this intrinsic behaviour of TDAR bit has changed in this newer FEC 748 * version. 749 * 750 * Fix this by polling the READY bit of BD after the TDAR polling, 751 * which covers the mx6solox case and does not harm the other SoCs. 752 */ 753 timeout = FEC_XFER_TIMEOUT; 754 while (--timeout) { 755 invalidate_dcache_range(addr, addr + size); 756 if (!(readw(&fec->tbd_base[fec->tbd_index].status) & 757 FEC_TBD_READY)) 758 break; 759 } 760 761 if (!timeout) 762 ret = -EINVAL; 763 764 out: 765 debug("fec_send: status 0x%x index %d ret %i\n", 766 readw(&fec->tbd_base[fec->tbd_index].status), 767 fec->tbd_index, ret); 768 /* for next transmission use the other buffer */ 769 if (fec->tbd_index) 770 fec->tbd_index = 0; 771 else 772 fec->tbd_index = 1; 773 774 return ret; 775 } 776 777 /** 778 * Pull one frame from the card 779 * @param[in] dev Our ethernet device to handle 780 * @return Length of packet read 781 */ 782 static int fec_recv(struct eth_device *dev) 783 { 784 struct fec_priv *fec = (struct fec_priv *)dev->priv; 785 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; 786 unsigned long ievent; 787 int frame_length, len = 0; 788 uint16_t bd_status; 789 uint32_t addr, size, end; 790 int i; 791 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); 792 793 /* 794 * Check if any critical events have happened 795 */ 796 ievent = readl(&fec->eth->ievent); 797 writel(ievent, &fec->eth->ievent); 798 debug("fec_recv: ievent 0x%lx\n", ievent); 799 if (ievent & FEC_IEVENT_BABR) { 800 fec_halt(dev); 801 fec_init(dev, fec->bd); 802 printf("some error: 0x%08lx\n", ievent); 803 return 0; 804 } 805 if (ievent & FEC_IEVENT_HBERR) { 806 /* Heartbeat error */ 807 writel(0x00000001 | readl(&fec->eth->x_cntrl), 808 &fec->eth->x_cntrl); 809 } 810 if (ievent & FEC_IEVENT_GRA) { 811 /* Graceful stop complete */ 812 if (readl(&fec->eth->x_cntrl) & 0x00000001) { 813 fec_halt(dev); 814 writel(~0x00000001 & readl(&fec->eth->x_cntrl), 815 &fec->eth->x_cntrl); 816 fec_init(dev, fec->bd); 817 } 818 } 819 820 /* 821 * Read the buffer status. Before the status can be read, the data cache 822 * must be invalidated, because the data in RAM might have been changed 823 * by DMA. The descriptors are properly aligned to cachelines so there's 824 * no need to worry they'd overlap. 825 * 826 * WARNING: By invalidating the descriptor here, we also invalidate 827 * the descriptors surrounding this one. Therefore we can NOT change the 828 * contents of this descriptor nor the surrounding ones. The problem is 829 * that in order to mark the descriptor as processed, we need to change 830 * the descriptor. The solution is to mark the whole cache line when all 831 * descriptors in the cache line are processed. 832 */ 833 addr = (uint32_t)rbd; 834 addr &= ~(ARCH_DMA_MINALIGN - 1); 835 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 836 invalidate_dcache_range(addr, addr + size); 837 838 bd_status = readw(&rbd->status); 839 debug("fec_recv: status 0x%x\n", bd_status); 840 841 if (!(bd_status & FEC_RBD_EMPTY)) { 842 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && 843 ((readw(&rbd->data_length) - 4) > 14)) { 844 /* 845 * Get buffer address and size 846 */ 847 addr = readl(&rbd->data_pointer); 848 frame_length = readw(&rbd->data_length) - 4; 849 /* 850 * Invalidate data cache over the buffer 851 */ 852 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); 853 addr &= ~(ARCH_DMA_MINALIGN - 1); 854 invalidate_dcache_range(addr, end); 855 856 /* 857 * Fill the buffer and pass it to upper layers 858 */ 859 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 860 swap_packet((uint32_t *)addr, frame_length); 861 #endif 862 memcpy(buff, (char *)addr, frame_length); 863 net_process_received_packet(buff, frame_length); 864 len = frame_length; 865 } else { 866 if (bd_status & FEC_RBD_ERR) 867 printf("error frame: 0x%08x 0x%08x\n", 868 addr, bd_status); 869 } 870 871 /* 872 * Free the current buffer, restart the engine and move forward 873 * to the next buffer. Here we check if the whole cacheline of 874 * descriptors was already processed and if so, we mark it free 875 * as whole. 876 */ 877 size = RXDESC_PER_CACHELINE - 1; 878 if ((fec->rbd_index & size) == size) { 879 i = fec->rbd_index - size; 880 addr = (uint32_t)&fec->rbd_base[i]; 881 for (; i <= fec->rbd_index ; i++) { 882 fec_rbd_clean(i == (FEC_RBD_NUM - 1), 883 &fec->rbd_base[i]); 884 } 885 flush_dcache_range(addr, 886 addr + ARCH_DMA_MINALIGN); 887 } 888 889 fec_rx_task_enable(fec); 890 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; 891 } 892 debug("fec_recv: stop\n"); 893 894 return len; 895 } 896 897 static void fec_set_dev_name(char *dest, int dev_id) 898 { 899 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); 900 } 901 902 static int fec_alloc_descs(struct fec_priv *fec) 903 { 904 unsigned int size; 905 int i; 906 uint8_t *data; 907 908 /* Allocate TX descriptors. */ 909 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 910 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); 911 if (!fec->tbd_base) 912 goto err_tx; 913 914 /* Allocate RX descriptors. */ 915 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 916 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); 917 if (!fec->rbd_base) 918 goto err_rx; 919 920 memset(fec->rbd_base, 0, size); 921 922 /* Allocate RX buffers. */ 923 924 /* Maximum RX buffer size. */ 925 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); 926 for (i = 0; i < FEC_RBD_NUM; i++) { 927 data = memalign(FEC_DMA_RX_MINALIGN, size); 928 if (!data) { 929 printf("%s: error allocating rxbuf %d\n", __func__, i); 930 goto err_ring; 931 } 932 933 memset(data, 0, size); 934 935 fec->rbd_base[i].data_pointer = (uint32_t)data; 936 fec->rbd_base[i].status = FEC_RBD_EMPTY; 937 fec->rbd_base[i].data_length = 0; 938 /* Flush the buffer to memory. */ 939 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 940 } 941 942 /* Mark the last RBD to close the ring. */ 943 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 944 945 fec->rbd_index = 0; 946 fec->tbd_index = 0; 947 948 return 0; 949 950 err_ring: 951 for (; i >= 0; i--) 952 free((void *)fec->rbd_base[i].data_pointer); 953 free(fec->rbd_base); 954 err_rx: 955 free(fec->tbd_base); 956 err_tx: 957 return -ENOMEM; 958 } 959 960 static void fec_free_descs(struct fec_priv *fec) 961 { 962 int i; 963 964 for (i = 0; i < FEC_RBD_NUM; i++) 965 free((void *)fec->rbd_base[i].data_pointer); 966 free(fec->rbd_base); 967 free(fec->tbd_base); 968 } 969 970 #ifdef CONFIG_PHYLIB 971 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 972 struct mii_dev *bus, struct phy_device *phydev) 973 #else 974 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 975 struct mii_dev *bus, int phy_id) 976 #endif 977 { 978 struct eth_device *edev; 979 struct fec_priv *fec; 980 unsigned char ethaddr[6]; 981 uint32_t start; 982 int ret = 0; 983 984 /* create and fill edev struct */ 985 edev = (struct eth_device *)malloc(sizeof(struct eth_device)); 986 if (!edev) { 987 puts("fec_mxc: not enough malloc memory for eth_device\n"); 988 ret = -ENOMEM; 989 goto err1; 990 } 991 992 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); 993 if (!fec) { 994 puts("fec_mxc: not enough malloc memory for fec_priv\n"); 995 ret = -ENOMEM; 996 goto err2; 997 } 998 999 memset(edev, 0, sizeof(*edev)); 1000 memset(fec, 0, sizeof(*fec)); 1001 1002 ret = fec_alloc_descs(fec); 1003 if (ret) 1004 goto err3; 1005 1006 edev->priv = fec; 1007 edev->init = fec_init; 1008 edev->send = fec_send; 1009 edev->recv = fec_recv; 1010 edev->halt = fec_halt; 1011 edev->write_hwaddr = fec_set_hwaddr; 1012 1013 fec->eth = (struct ethernet_regs *)base_addr; 1014 fec->bd = bd; 1015 1016 fec->xcv_type = CONFIG_FEC_XCV_TYPE; 1017 1018 /* Reset chip. */ 1019 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); 1020 start = get_timer(0); 1021 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { 1022 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1023 printf("FEC MXC: Timeout reseting chip\n"); 1024 goto err4; 1025 } 1026 udelay(10); 1027 } 1028 1029 fec_reg_setup(fec); 1030 fec_set_dev_name(edev->name, dev_id); 1031 fec->dev_id = (dev_id == -1) ? 0 : dev_id; 1032 fec->bus = bus; 1033 fec_mii_setspeed(bus->priv); 1034 #ifdef CONFIG_PHYLIB 1035 fec->phydev = phydev; 1036 phy_connect_dev(phydev, edev); 1037 /* Configure phy */ 1038 phy_config(phydev); 1039 #else 1040 fec->phy_id = phy_id; 1041 #endif 1042 eth_register(edev); 1043 1044 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) { 1045 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr); 1046 memcpy(edev->enetaddr, ethaddr, 6); 1047 if (!getenv("ethaddr")) 1048 eth_setenv_enetaddr("ethaddr", ethaddr); 1049 } 1050 return ret; 1051 err4: 1052 fec_free_descs(fec); 1053 err3: 1054 free(fec); 1055 err2: 1056 free(edev); 1057 err1: 1058 return ret; 1059 } 1060 1061 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) 1062 { 1063 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; 1064 struct mii_dev *bus; 1065 int ret; 1066 1067 bus = mdio_alloc(); 1068 if (!bus) { 1069 printf("mdio_alloc failed\n"); 1070 return NULL; 1071 } 1072 bus->read = fec_phy_read; 1073 bus->write = fec_phy_write; 1074 bus->priv = eth; 1075 fec_set_dev_name(bus->name, dev_id); 1076 1077 ret = mdio_register(bus); 1078 if (ret) { 1079 printf("mdio_register failed\n"); 1080 free(bus); 1081 return NULL; 1082 } 1083 fec_mii_setspeed(eth); 1084 return bus; 1085 } 1086 1087 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) 1088 { 1089 uint32_t base_mii; 1090 struct mii_dev *bus = NULL; 1091 #ifdef CONFIG_PHYLIB 1092 struct phy_device *phydev = NULL; 1093 #endif 1094 int ret; 1095 1096 #ifdef CONFIG_MX28 1097 /* 1098 * The i.MX28 has two ethernet interfaces, but they are not equal. 1099 * Only the first one can access the MDIO bus. 1100 */ 1101 base_mii = MXS_ENET0_BASE; 1102 #else 1103 base_mii = addr; 1104 #endif 1105 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); 1106 bus = fec_get_miibus(base_mii, dev_id); 1107 if (!bus) 1108 return -ENOMEM; 1109 #ifdef CONFIG_PHYLIB 1110 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); 1111 if (!phydev) { 1112 mdio_unregister(bus); 1113 free(bus); 1114 return -ENOMEM; 1115 } 1116 ret = fec_probe(bd, dev_id, addr, bus, phydev); 1117 #else 1118 ret = fec_probe(bd, dev_id, addr, bus, phy_id); 1119 #endif 1120 if (ret) { 1121 #ifdef CONFIG_PHYLIB 1122 free(phydev); 1123 #endif 1124 mdio_unregister(bus); 1125 free(bus); 1126 } 1127 return ret; 1128 } 1129 1130 #ifdef CONFIG_FEC_MXC_PHYADDR 1131 int fecmxc_initialize(bd_t *bd) 1132 { 1133 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, 1134 IMX_FEC_BASE); 1135 } 1136 #endif 1137 1138 #ifndef CONFIG_PHYLIB 1139 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) 1140 { 1141 struct fec_priv *fec = (struct fec_priv *)dev->priv; 1142 fec->mii_postcall = cb; 1143 return 0; 1144 } 1145 #endif 1146