1 /* 2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> 3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> 4 * (C) Copyright 2008 Armadeus Systems nc 5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> 6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #include <common.h> 12 #include <malloc.h> 13 #include <net.h> 14 #include <miiphy.h> 15 #include "fec_mxc.h" 16 17 #include <asm/arch/clock.h> 18 #include <asm/arch/imx-regs.h> 19 #include <asm/io.h> 20 #include <asm/errno.h> 21 #include <linux/compiler.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 /* 26 * Timeout the transfer after 5 mS. This is usually a bit more, since 27 * the code in the tightloops this timeout is used in adds some overhead. 28 */ 29 #define FEC_XFER_TIMEOUT 5000 30 31 #ifndef CONFIG_MII 32 #error "CONFIG_MII has to be defined!" 33 #endif 34 35 #ifndef CONFIG_FEC_XCV_TYPE 36 #define CONFIG_FEC_XCV_TYPE MII100 37 #endif 38 39 /* 40 * The i.MX28 operates with packets in big endian. We need to swap them before 41 * sending and after receiving. 42 */ 43 #ifdef CONFIG_MX28 44 #define CONFIG_FEC_MXC_SWAP_PACKET 45 #endif 46 47 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) 48 49 /* Check various alignment issues at compile time */ 50 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) 51 #error "ARCH_DMA_MINALIGN must be multiple of 16!" 52 #endif 53 54 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ 55 (PKTALIGN % ARCH_DMA_MINALIGN != 0)) 56 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" 57 #endif 58 59 #undef DEBUG 60 61 struct nbuf { 62 uint8_t data[1500]; /**< actual data */ 63 int length; /**< actual length */ 64 int used; /**< buffer in use or not */ 65 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */ 66 }; 67 68 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 69 static void swap_packet(uint32_t *packet, int length) 70 { 71 int i; 72 73 for (i = 0; i < DIV_ROUND_UP(length, 4); i++) 74 packet[i] = __swab32(packet[i]); 75 } 76 #endif 77 78 /* 79 * MII-interface related functions 80 */ 81 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr, 82 uint8_t regAddr) 83 { 84 uint32_t reg; /* convenient holder for the PHY register */ 85 uint32_t phy; /* convenient holder for the PHY */ 86 uint32_t start; 87 int val; 88 89 /* 90 * reading from any PHY's register is done by properly 91 * programming the FEC's MII data register. 92 */ 93 writel(FEC_IEVENT_MII, ð->ievent); 94 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 95 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 96 97 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | 98 phy | reg, ð->mii_data); 99 100 /* 101 * wait for the related interrupt 102 */ 103 start = get_timer(0); 104 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 105 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 106 printf("Read MDIO failed...\n"); 107 return -1; 108 } 109 } 110 111 /* 112 * clear mii interrupt bit 113 */ 114 writel(FEC_IEVENT_MII, ð->ievent); 115 116 /* 117 * it's now safe to read the PHY's register 118 */ 119 val = (unsigned short)readl(ð->mii_data); 120 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 121 regAddr, val); 122 return val; 123 } 124 125 static void fec_mii_setspeed(struct ethernet_regs *eth) 126 { 127 /* 128 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock 129 * and do not drop the Preamble. 130 */ 131 register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000); 132 #ifdef FEC_QUIRK_ENET_MAC 133 speed--; 134 #endif 135 speed <<= 1; 136 writel(speed, ð->mii_speed); 137 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); 138 } 139 140 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr, 141 uint8_t regAddr, uint16_t data) 142 { 143 uint32_t reg; /* convenient holder for the PHY register */ 144 uint32_t phy; /* convenient holder for the PHY */ 145 uint32_t start; 146 147 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 148 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 149 150 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | 151 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); 152 153 /* 154 * wait for the MII interrupt 155 */ 156 start = get_timer(0); 157 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 158 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 159 printf("Write MDIO failed...\n"); 160 return -1; 161 } 162 } 163 164 /* 165 * clear MII interrupt bit 166 */ 167 writel(FEC_IEVENT_MII, ð->ievent); 168 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 169 regAddr, data); 170 171 return 0; 172 } 173 174 int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr) 175 { 176 return fec_mdio_read(bus->priv, phyAddr, regAddr); 177 } 178 179 int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr, 180 u16 data) 181 { 182 return fec_mdio_write(bus->priv, phyAddr, regAddr, data); 183 } 184 185 #ifndef CONFIG_PHYLIB 186 static int miiphy_restart_aneg(struct eth_device *dev) 187 { 188 int ret = 0; 189 #if !defined(CONFIG_FEC_MXC_NO_ANEG) 190 struct fec_priv *fec = (struct fec_priv *)dev->priv; 191 struct ethernet_regs *eth = fec->bus->priv; 192 193 /* 194 * Wake up from sleep if necessary 195 * Reset PHY, then delay 300ns 196 */ 197 #ifdef CONFIG_MX27 198 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); 199 #endif 200 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); 201 udelay(1000); 202 203 /* 204 * Set the auto-negotiation advertisement register bits 205 */ 206 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, 207 LPA_100FULL | LPA_100HALF | LPA_10FULL | 208 LPA_10HALF | PHY_ANLPAR_PSB_802_3); 209 fec_mdio_write(eth, fec->phy_id, MII_BMCR, 210 BMCR_ANENABLE | BMCR_ANRESTART); 211 212 if (fec->mii_postcall) 213 ret = fec->mii_postcall(fec->phy_id); 214 215 #endif 216 return ret; 217 } 218 219 static int miiphy_wait_aneg(struct eth_device *dev) 220 { 221 uint32_t start; 222 int status; 223 struct fec_priv *fec = (struct fec_priv *)dev->priv; 224 struct ethernet_regs *eth = fec->bus->priv; 225 226 /* 227 * Wait for AN completion 228 */ 229 start = get_timer(0); 230 do { 231 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 232 printf("%s: Autonegotiation timeout\n", dev->name); 233 return -1; 234 } 235 236 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); 237 if (status < 0) { 238 printf("%s: Autonegotiation failed. status: %d\n", 239 dev->name, status); 240 return -1; 241 } 242 } while (!(status & BMSR_LSTATUS)); 243 244 return 0; 245 } 246 #endif 247 248 static int fec_rx_task_enable(struct fec_priv *fec) 249 { 250 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); 251 return 0; 252 } 253 254 static int fec_rx_task_disable(struct fec_priv *fec) 255 { 256 return 0; 257 } 258 259 static int fec_tx_task_enable(struct fec_priv *fec) 260 { 261 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); 262 return 0; 263 } 264 265 static int fec_tx_task_disable(struct fec_priv *fec) 266 { 267 return 0; 268 } 269 270 /** 271 * Initialize receive task's buffer descriptors 272 * @param[in] fec all we know about the device yet 273 * @param[in] count receive buffer count to be allocated 274 * @param[in] dsize desired size of each receive buffer 275 * @return 0 on success 276 * 277 * Init all RX descriptors to default values. 278 */ 279 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) 280 { 281 uint32_t size; 282 uint8_t *data; 283 int i; 284 285 /* 286 * Reload the RX descriptors with default values and wipe 287 * the RX buffers. 288 */ 289 size = roundup(dsize, ARCH_DMA_MINALIGN); 290 for (i = 0; i < count; i++) { 291 data = (uint8_t *)fec->rbd_base[i].data_pointer; 292 memset(data, 0, dsize); 293 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 294 295 fec->rbd_base[i].status = FEC_RBD_EMPTY; 296 fec->rbd_base[i].data_length = 0; 297 } 298 299 /* Mark the last RBD to close the ring. */ 300 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 301 fec->rbd_index = 0; 302 303 flush_dcache_range((unsigned)fec->rbd_base, 304 (unsigned)fec->rbd_base + size); 305 } 306 307 /** 308 * Initialize transmit task's buffer descriptors 309 * @param[in] fec all we know about the device yet 310 * 311 * Transmit buffers are created externally. We only have to init the BDs here.\n 312 * Note: There is a race condition in the hardware. When only one BD is in 313 * use it must be marked with the WRAP bit to use it for every transmitt. 314 * This bit in combination with the READY bit results into double transmit 315 * of each data buffer. It seems the state machine checks READY earlier then 316 * resetting it after the first transfer. 317 * Using two BDs solves this issue. 318 */ 319 static void fec_tbd_init(struct fec_priv *fec) 320 { 321 unsigned addr = (unsigned)fec->tbd_base; 322 unsigned size = roundup(2 * sizeof(struct fec_bd), 323 ARCH_DMA_MINALIGN); 324 325 memset(fec->tbd_base, 0, size); 326 fec->tbd_base[0].status = 0; 327 fec->tbd_base[1].status = FEC_TBD_WRAP; 328 fec->tbd_index = 0; 329 flush_dcache_range(addr, addr + size); 330 } 331 332 /** 333 * Mark the given read buffer descriptor as free 334 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 335 * @param[in] pRbd buffer descriptor to mark free again 336 */ 337 static void fec_rbd_clean(int last, struct fec_bd *pRbd) 338 { 339 unsigned short flags = FEC_RBD_EMPTY; 340 if (last) 341 flags |= FEC_RBD_WRAP; 342 writew(flags, &pRbd->status); 343 writew(0, &pRbd->data_length); 344 } 345 346 static int fec_get_hwaddr(struct eth_device *dev, int dev_id, 347 unsigned char *mac) 348 { 349 imx_get_mac_from_fuse(dev_id, mac); 350 return !is_valid_ether_addr(mac); 351 } 352 353 static int fec_set_hwaddr(struct eth_device *dev) 354 { 355 uchar *mac = dev->enetaddr; 356 struct fec_priv *fec = (struct fec_priv *)dev->priv; 357 358 writel(0, &fec->eth->iaddr1); 359 writel(0, &fec->eth->iaddr2); 360 writel(0, &fec->eth->gaddr1); 361 writel(0, &fec->eth->gaddr2); 362 363 /* 364 * Set physical address 365 */ 366 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], 367 &fec->eth->paddr1); 368 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); 369 370 return 0; 371 } 372 373 /* 374 * Do initial configuration of the FEC registers 375 */ 376 static void fec_reg_setup(struct fec_priv *fec) 377 { 378 uint32_t rcntrl; 379 380 /* 381 * Set interrupt mask register 382 */ 383 writel(0x00000000, &fec->eth->imask); 384 385 /* 386 * Clear FEC-Lite interrupt event register(IEVENT) 387 */ 388 writel(0xffffffff, &fec->eth->ievent); 389 390 391 /* 392 * Set FEC-Lite receive control register(R_CNTRL): 393 */ 394 395 /* Start with frame length = 1518, common for all modes. */ 396 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; 397 if (fec->xcv_type != SEVENWIRE) /* xMII modes */ 398 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; 399 if (fec->xcv_type == RGMII) 400 rcntrl |= FEC_RCNTRL_RGMII; 401 else if (fec->xcv_type == RMII) 402 rcntrl |= FEC_RCNTRL_RMII; 403 404 writel(rcntrl, &fec->eth->r_cntrl); 405 } 406 407 /** 408 * Start the FEC engine 409 * @param[in] dev Our device to handle 410 */ 411 static int fec_open(struct eth_device *edev) 412 { 413 struct fec_priv *fec = (struct fec_priv *)edev->priv; 414 int speed; 415 uint32_t addr, size; 416 int i; 417 418 debug("fec_open: fec_open(dev)\n"); 419 /* full-duplex, heartbeat disabled */ 420 writel(1 << 2, &fec->eth->x_cntrl); 421 fec->rbd_index = 0; 422 423 /* Invalidate all descriptors */ 424 for (i = 0; i < FEC_RBD_NUM - 1; i++) 425 fec_rbd_clean(0, &fec->rbd_base[i]); 426 fec_rbd_clean(1, &fec->rbd_base[i]); 427 428 /* Flush the descriptors into RAM */ 429 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), 430 ARCH_DMA_MINALIGN); 431 addr = (uint32_t)fec->rbd_base; 432 flush_dcache_range(addr, addr + size); 433 434 #ifdef FEC_QUIRK_ENET_MAC 435 /* Enable ENET HW endian SWAP */ 436 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, 437 &fec->eth->ecntrl); 438 /* Enable ENET store and forward mode */ 439 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, 440 &fec->eth->x_wmrk); 441 #endif 442 /* 443 * Enable FEC-Lite controller 444 */ 445 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, 446 &fec->eth->ecntrl); 447 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) 448 udelay(100); 449 /* 450 * setup the MII gasket for RMII mode 451 */ 452 453 /* disable the gasket */ 454 writew(0, &fec->eth->miigsk_enr); 455 456 /* wait for the gasket to be disabled */ 457 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) 458 udelay(2); 459 460 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ 461 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); 462 463 /* re-enable the gasket */ 464 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); 465 466 /* wait until MII gasket is ready */ 467 int max_loops = 10; 468 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { 469 if (--max_loops <= 0) { 470 printf("WAIT for MII Gasket ready timed out\n"); 471 break; 472 } 473 } 474 #endif 475 476 #ifdef CONFIG_PHYLIB 477 { 478 /* Start up the PHY */ 479 int ret = phy_startup(fec->phydev); 480 481 if (ret) { 482 printf("Could not initialize PHY %s\n", 483 fec->phydev->dev->name); 484 return ret; 485 } 486 speed = fec->phydev->speed; 487 } 488 #else 489 miiphy_wait_aneg(edev); 490 speed = miiphy_speed(edev->name, fec->phy_id); 491 miiphy_duplex(edev->name, fec->phy_id); 492 #endif 493 494 #ifdef FEC_QUIRK_ENET_MAC 495 { 496 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; 497 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; 498 if (speed == _1000BASET) 499 ecr |= FEC_ECNTRL_SPEED; 500 else if (speed != _100BASET) 501 rcr |= FEC_RCNTRL_RMII_10T; 502 writel(ecr, &fec->eth->ecntrl); 503 writel(rcr, &fec->eth->r_cntrl); 504 } 505 #endif 506 debug("%s:Speed=%i\n", __func__, speed); 507 508 /* 509 * Enable SmartDMA receive task 510 */ 511 fec_rx_task_enable(fec); 512 513 udelay(100000); 514 return 0; 515 } 516 517 static int fec_init(struct eth_device *dev, bd_t* bd) 518 { 519 struct fec_priv *fec = (struct fec_priv *)dev->priv; 520 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; 521 int i; 522 523 /* Initialize MAC address */ 524 fec_set_hwaddr(dev); 525 526 /* 527 * Setup transmit descriptors, there are two in total. 528 */ 529 fec_tbd_init(fec); 530 531 /* Setup receive descriptors. */ 532 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); 533 534 fec_reg_setup(fec); 535 536 if (fec->xcv_type != SEVENWIRE) 537 fec_mii_setspeed(fec->bus->priv); 538 539 /* 540 * Set Opcode/Pause Duration Register 541 */ 542 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ 543 writel(0x2, &fec->eth->x_wmrk); 544 /* 545 * Set multicast address filter 546 */ 547 writel(0x00000000, &fec->eth->gaddr1); 548 writel(0x00000000, &fec->eth->gaddr2); 549 550 551 /* clear MIB RAM */ 552 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) 553 writel(0, i); 554 555 /* FIFO receive start register */ 556 writel(0x520, &fec->eth->r_fstart); 557 558 /* size and address of each buffer */ 559 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); 560 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); 561 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); 562 563 #ifndef CONFIG_PHYLIB 564 if (fec->xcv_type != SEVENWIRE) 565 miiphy_restart_aneg(dev); 566 #endif 567 fec_open(dev); 568 return 0; 569 } 570 571 /** 572 * Halt the FEC engine 573 * @param[in] dev Our device to handle 574 */ 575 static void fec_halt(struct eth_device *dev) 576 { 577 struct fec_priv *fec = (struct fec_priv *)dev->priv; 578 int counter = 0xffff; 579 580 /* 581 * issue graceful stop command to the FEC transmitter if necessary 582 */ 583 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), 584 &fec->eth->x_cntrl); 585 586 debug("eth_halt: wait for stop regs\n"); 587 /* 588 * wait for graceful stop to register 589 */ 590 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) 591 udelay(1); 592 593 /* 594 * Disable SmartDMA tasks 595 */ 596 fec_tx_task_disable(fec); 597 fec_rx_task_disable(fec); 598 599 /* 600 * Disable the Ethernet Controller 601 * Note: this will also reset the BD index counter! 602 */ 603 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, 604 &fec->eth->ecntrl); 605 fec->rbd_index = 0; 606 fec->tbd_index = 0; 607 debug("eth_halt: done\n"); 608 } 609 610 /** 611 * Transmit one frame 612 * @param[in] dev Our ethernet device to handle 613 * @param[in] packet Pointer to the data to be transmitted 614 * @param[in] length Data count in bytes 615 * @return 0 on success 616 */ 617 static int fec_send(struct eth_device *dev, void *packet, int length) 618 { 619 unsigned int status; 620 uint32_t size, end; 621 uint32_t addr; 622 int timeout = FEC_XFER_TIMEOUT; 623 int ret = 0; 624 625 /* 626 * This routine transmits one frame. This routine only accepts 627 * 6-byte Ethernet addresses. 628 */ 629 struct fec_priv *fec = (struct fec_priv *)dev->priv; 630 631 /* 632 * Check for valid length of data. 633 */ 634 if ((length > 1500) || (length <= 0)) { 635 printf("Payload (%d) too large\n", length); 636 return -1; 637 } 638 639 /* 640 * Setup the transmit buffer. We are always using the first buffer for 641 * transmission, the second will be empty and only used to stop the DMA 642 * engine. We also flush the packet to RAM here to avoid cache trouble. 643 */ 644 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 645 swap_packet((uint32_t *)packet, length); 646 #endif 647 648 addr = (uint32_t)packet; 649 end = roundup(addr + length, ARCH_DMA_MINALIGN); 650 addr &= ~(ARCH_DMA_MINALIGN - 1); 651 flush_dcache_range(addr, end); 652 653 writew(length, &fec->tbd_base[fec->tbd_index].data_length); 654 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); 655 656 /* 657 * update BD's status now 658 * This block: 659 * - is always the last in a chain (means no chain) 660 * - should transmitt the CRC 661 * - might be the last BD in the list, so the address counter should 662 * wrap (-> keep the WRAP flag) 663 */ 664 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; 665 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; 666 writew(status, &fec->tbd_base[fec->tbd_index].status); 667 668 /* 669 * Flush data cache. This code flushes both TX descriptors to RAM. 670 * After this code, the descriptors will be safely in RAM and we 671 * can start DMA. 672 */ 673 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 674 addr = (uint32_t)fec->tbd_base; 675 flush_dcache_range(addr, addr + size); 676 677 /* 678 * Below we read the DMA descriptor's last four bytes back from the 679 * DRAM. This is important in order to make sure that all WRITE 680 * operations on the bus that were triggered by previous cache FLUSH 681 * have completed. 682 * 683 * Otherwise, on MX28, it is possible to observe a corruption of the 684 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM 685 * for the bus structure of MX28. The scenario is as follows: 686 * 687 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going 688 * to DRAM due to flush_dcache_range() 689 * 2) ARM core writes the FEC registers via AHB_ARB2 690 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 691 * 692 * Note that 2) does sometimes finish before 1) due to reordering of 693 * WRITE accesses on the AHB bus, therefore triggering 3) before the 694 * DMA descriptor is fully written into DRAM. This results in occasional 695 * corruption of the DMA descriptor. 696 */ 697 readl(addr + size - 4); 698 699 /* 700 * Enable SmartDMA transmit task 701 */ 702 fec_tx_task_enable(fec); 703 704 /* 705 * Wait until frame is sent. On each turn of the wait cycle, we must 706 * invalidate data cache to see what's really in RAM. Also, we need 707 * barrier here. 708 */ 709 while (--timeout) { 710 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) 711 break; 712 } 713 714 if (!timeout) 715 ret = -EINVAL; 716 717 invalidate_dcache_range(addr, addr + size); 718 if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) 719 ret = -EINVAL; 720 721 debug("fec_send: status 0x%x index %d ret %i\n", 722 readw(&fec->tbd_base[fec->tbd_index].status), 723 fec->tbd_index, ret); 724 /* for next transmission use the other buffer */ 725 if (fec->tbd_index) 726 fec->tbd_index = 0; 727 else 728 fec->tbd_index = 1; 729 730 return ret; 731 } 732 733 /** 734 * Pull one frame from the card 735 * @param[in] dev Our ethernet device to handle 736 * @return Length of packet read 737 */ 738 static int fec_recv(struct eth_device *dev) 739 { 740 struct fec_priv *fec = (struct fec_priv *)dev->priv; 741 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; 742 unsigned long ievent; 743 int frame_length, len = 0; 744 struct nbuf *frame; 745 uint16_t bd_status; 746 uint32_t addr, size, end; 747 int i; 748 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); 749 750 /* 751 * Check if any critical events have happened 752 */ 753 ievent = readl(&fec->eth->ievent); 754 writel(ievent, &fec->eth->ievent); 755 debug("fec_recv: ievent 0x%lx\n", ievent); 756 if (ievent & FEC_IEVENT_BABR) { 757 fec_halt(dev); 758 fec_init(dev, fec->bd); 759 printf("some error: 0x%08lx\n", ievent); 760 return 0; 761 } 762 if (ievent & FEC_IEVENT_HBERR) { 763 /* Heartbeat error */ 764 writel(0x00000001 | readl(&fec->eth->x_cntrl), 765 &fec->eth->x_cntrl); 766 } 767 if (ievent & FEC_IEVENT_GRA) { 768 /* Graceful stop complete */ 769 if (readl(&fec->eth->x_cntrl) & 0x00000001) { 770 fec_halt(dev); 771 writel(~0x00000001 & readl(&fec->eth->x_cntrl), 772 &fec->eth->x_cntrl); 773 fec_init(dev, fec->bd); 774 } 775 } 776 777 /* 778 * Read the buffer status. Before the status can be read, the data cache 779 * must be invalidated, because the data in RAM might have been changed 780 * by DMA. The descriptors are properly aligned to cachelines so there's 781 * no need to worry they'd overlap. 782 * 783 * WARNING: By invalidating the descriptor here, we also invalidate 784 * the descriptors surrounding this one. Therefore we can NOT change the 785 * contents of this descriptor nor the surrounding ones. The problem is 786 * that in order to mark the descriptor as processed, we need to change 787 * the descriptor. The solution is to mark the whole cache line when all 788 * descriptors in the cache line are processed. 789 */ 790 addr = (uint32_t)rbd; 791 addr &= ~(ARCH_DMA_MINALIGN - 1); 792 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 793 invalidate_dcache_range(addr, addr + size); 794 795 bd_status = readw(&rbd->status); 796 debug("fec_recv: status 0x%x\n", bd_status); 797 798 if (!(bd_status & FEC_RBD_EMPTY)) { 799 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && 800 ((readw(&rbd->data_length) - 4) > 14)) { 801 /* 802 * Get buffer address and size 803 */ 804 frame = (struct nbuf *)readl(&rbd->data_pointer); 805 frame_length = readw(&rbd->data_length) - 4; 806 /* 807 * Invalidate data cache over the buffer 808 */ 809 addr = (uint32_t)frame; 810 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); 811 addr &= ~(ARCH_DMA_MINALIGN - 1); 812 invalidate_dcache_range(addr, end); 813 814 /* 815 * Fill the buffer and pass it to upper layers 816 */ 817 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 818 swap_packet((uint32_t *)frame->data, frame_length); 819 #endif 820 memcpy(buff, frame->data, frame_length); 821 NetReceive(buff, frame_length); 822 len = frame_length; 823 } else { 824 if (bd_status & FEC_RBD_ERR) 825 printf("error frame: 0x%08lx 0x%08x\n", 826 (ulong)rbd->data_pointer, 827 bd_status); 828 } 829 830 /* 831 * Free the current buffer, restart the engine and move forward 832 * to the next buffer. Here we check if the whole cacheline of 833 * descriptors was already processed and if so, we mark it free 834 * as whole. 835 */ 836 size = RXDESC_PER_CACHELINE - 1; 837 if ((fec->rbd_index & size) == size) { 838 i = fec->rbd_index - size; 839 addr = (uint32_t)&fec->rbd_base[i]; 840 for (; i <= fec->rbd_index ; i++) { 841 fec_rbd_clean(i == (FEC_RBD_NUM - 1), 842 &fec->rbd_base[i]); 843 } 844 flush_dcache_range(addr, 845 addr + ARCH_DMA_MINALIGN); 846 } 847 848 fec_rx_task_enable(fec); 849 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; 850 } 851 debug("fec_recv: stop\n"); 852 853 return len; 854 } 855 856 static void fec_set_dev_name(char *dest, int dev_id) 857 { 858 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); 859 } 860 861 static int fec_alloc_descs(struct fec_priv *fec) 862 { 863 unsigned int size; 864 int i; 865 uint8_t *data; 866 867 /* Allocate TX descriptors. */ 868 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 869 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); 870 if (!fec->tbd_base) 871 goto err_tx; 872 873 /* Allocate RX descriptors. */ 874 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 875 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); 876 if (!fec->rbd_base) 877 goto err_rx; 878 879 memset(fec->rbd_base, 0, size); 880 881 /* Allocate RX buffers. */ 882 883 /* Maximum RX buffer size. */ 884 size = roundup(FEC_MAX_PKT_SIZE, ARCH_DMA_MINALIGN); 885 for (i = 0; i < FEC_RBD_NUM; i++) { 886 data = memalign(ARCH_DMA_MINALIGN, size); 887 if (!data) { 888 printf("%s: error allocating rxbuf %d\n", __func__, i); 889 goto err_ring; 890 } 891 892 memset(data, 0, size); 893 894 fec->rbd_base[i].data_pointer = (uint32_t)data; 895 fec->rbd_base[i].status = FEC_RBD_EMPTY; 896 fec->rbd_base[i].data_length = 0; 897 /* Flush the buffer to memory. */ 898 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 899 } 900 901 /* Mark the last RBD to close the ring. */ 902 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 903 904 fec->rbd_index = 0; 905 fec->tbd_index = 0; 906 907 return 0; 908 909 err_ring: 910 for (; i >= 0; i--) 911 free((void *)fec->rbd_base[i].data_pointer); 912 free(fec->rbd_base); 913 err_rx: 914 free(fec->tbd_base); 915 err_tx: 916 return -ENOMEM; 917 } 918 919 static void fec_free_descs(struct fec_priv *fec) 920 { 921 int i; 922 923 for (i = 0; i < FEC_RBD_NUM; i++) 924 free((void *)fec->rbd_base[i].data_pointer); 925 free(fec->rbd_base); 926 free(fec->tbd_base); 927 } 928 929 #ifdef CONFIG_PHYLIB 930 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 931 struct mii_dev *bus, struct phy_device *phydev) 932 #else 933 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 934 struct mii_dev *bus, int phy_id) 935 #endif 936 { 937 struct eth_device *edev; 938 struct fec_priv *fec; 939 unsigned char ethaddr[6]; 940 uint32_t start; 941 int ret = 0; 942 943 /* create and fill edev struct */ 944 edev = (struct eth_device *)malloc(sizeof(struct eth_device)); 945 if (!edev) { 946 puts("fec_mxc: not enough malloc memory for eth_device\n"); 947 ret = -ENOMEM; 948 goto err1; 949 } 950 951 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); 952 if (!fec) { 953 puts("fec_mxc: not enough malloc memory for fec_priv\n"); 954 ret = -ENOMEM; 955 goto err2; 956 } 957 958 memset(edev, 0, sizeof(*edev)); 959 memset(fec, 0, sizeof(*fec)); 960 961 ret = fec_alloc_descs(fec); 962 if (ret) 963 goto err3; 964 965 edev->priv = fec; 966 edev->init = fec_init; 967 edev->send = fec_send; 968 edev->recv = fec_recv; 969 edev->halt = fec_halt; 970 edev->write_hwaddr = fec_set_hwaddr; 971 972 fec->eth = (struct ethernet_regs *)base_addr; 973 fec->bd = bd; 974 975 fec->xcv_type = CONFIG_FEC_XCV_TYPE; 976 977 /* Reset chip. */ 978 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); 979 start = get_timer(0); 980 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { 981 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 982 printf("FEC MXC: Timeout reseting chip\n"); 983 goto err4; 984 } 985 udelay(10); 986 } 987 988 fec_reg_setup(fec); 989 fec_set_dev_name(edev->name, dev_id); 990 fec->dev_id = (dev_id == -1) ? 0 : dev_id; 991 fec->bus = bus; 992 fec_mii_setspeed(bus->priv); 993 #ifdef CONFIG_PHYLIB 994 fec->phydev = phydev; 995 phy_connect_dev(phydev, edev); 996 /* Configure phy */ 997 phy_config(phydev); 998 #else 999 fec->phy_id = phy_id; 1000 #endif 1001 eth_register(edev); 1002 1003 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) { 1004 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr); 1005 memcpy(edev->enetaddr, ethaddr, 6); 1006 if (!getenv("ethaddr")) 1007 eth_setenv_enetaddr("ethaddr", ethaddr); 1008 } 1009 return ret; 1010 err4: 1011 fec_free_descs(fec); 1012 err3: 1013 free(fec); 1014 err2: 1015 free(edev); 1016 err1: 1017 return ret; 1018 } 1019 1020 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) 1021 { 1022 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; 1023 struct mii_dev *bus; 1024 int ret; 1025 1026 bus = mdio_alloc(); 1027 if (!bus) { 1028 printf("mdio_alloc failed\n"); 1029 return NULL; 1030 } 1031 bus->read = fec_phy_read; 1032 bus->write = fec_phy_write; 1033 bus->priv = eth; 1034 fec_set_dev_name(bus->name, dev_id); 1035 1036 ret = mdio_register(bus); 1037 if (ret) { 1038 printf("mdio_register failed\n"); 1039 free(bus); 1040 return NULL; 1041 } 1042 fec_mii_setspeed(eth); 1043 return bus; 1044 } 1045 1046 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) 1047 { 1048 uint32_t base_mii; 1049 struct mii_dev *bus = NULL; 1050 #ifdef CONFIG_PHYLIB 1051 struct phy_device *phydev = NULL; 1052 #endif 1053 int ret; 1054 1055 #ifdef CONFIG_MX28 1056 /* 1057 * The i.MX28 has two ethernet interfaces, but they are not equal. 1058 * Only the first one can access the MDIO bus. 1059 */ 1060 base_mii = MXS_ENET0_BASE; 1061 #else 1062 base_mii = addr; 1063 #endif 1064 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); 1065 bus = fec_get_miibus(base_mii, dev_id); 1066 if (!bus) 1067 return -ENOMEM; 1068 #ifdef CONFIG_PHYLIB 1069 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); 1070 if (!phydev) { 1071 free(bus); 1072 return -ENOMEM; 1073 } 1074 ret = fec_probe(bd, dev_id, addr, bus, phydev); 1075 #else 1076 ret = fec_probe(bd, dev_id, addr, bus, phy_id); 1077 #endif 1078 if (ret) { 1079 #ifdef CONFIG_PHYLIB 1080 free(phydev); 1081 #endif 1082 free(bus); 1083 } 1084 return ret; 1085 } 1086 1087 #ifdef CONFIG_FEC_MXC_PHYADDR 1088 int fecmxc_initialize(bd_t *bd) 1089 { 1090 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, 1091 IMX_FEC_BASE); 1092 } 1093 #endif 1094 1095 #ifndef CONFIG_PHYLIB 1096 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) 1097 { 1098 struct fec_priv *fec = (struct fec_priv *)dev->priv; 1099 fec->mii_postcall = cb; 1100 return 0; 1101 } 1102 #endif 1103