xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 83bf0057)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <malloc.h>
13 #include <memalign.h>
14 #include <net.h>
15 #include <netdev.h>
16 #include <miiphy.h>
17 #include "fec_mxc.h"
18 
19 #include <asm/arch/clock.h>
20 #include <asm/arch/imx-regs.h>
21 #include <asm/imx-common/sys_proto.h>
22 #include <asm/io.h>
23 #include <asm/errno.h>
24 #include <linux/compiler.h>
25 
26 DECLARE_GLOBAL_DATA_PTR;
27 
28 /*
29  * Timeout the transfer after 5 mS. This is usually a bit more, since
30  * the code in the tightloops this timeout is used in adds some overhead.
31  */
32 #define FEC_XFER_TIMEOUT	5000
33 
34 /*
35  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
36  * 64-byte alignment in the DMA RX FEC buffer.
37  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
38  * satisfies the alignment on other SoCs (32-bytes)
39  */
40 #define FEC_DMA_RX_MINALIGN	64
41 
42 #ifndef CONFIG_MII
43 #error "CONFIG_MII has to be defined!"
44 #endif
45 
46 #ifndef CONFIG_FEC_XCV_TYPE
47 #define CONFIG_FEC_XCV_TYPE MII100
48 #endif
49 
50 /*
51  * The i.MX28 operates with packets in big endian. We need to swap them before
52  * sending and after receiving.
53  */
54 #ifdef CONFIG_MX28
55 #define CONFIG_FEC_MXC_SWAP_PACKET
56 #endif
57 
58 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
59 
60 /* Check various alignment issues at compile time */
61 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
62 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
63 #endif
64 
65 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
66 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
67 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
68 #endif
69 
70 #undef DEBUG
71 
72 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
73 static void swap_packet(uint32_t *packet, int length)
74 {
75 	int i;
76 
77 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
78 		packet[i] = __swab32(packet[i]);
79 }
80 #endif
81 
82 /*
83  * MII-interface related functions
84  */
85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
86 		uint8_t regAddr)
87 {
88 	uint32_t reg;		/* convenient holder for the PHY register */
89 	uint32_t phy;		/* convenient holder for the PHY */
90 	uint32_t start;
91 	int val;
92 
93 	/*
94 	 * reading from any PHY's register is done by properly
95 	 * programming the FEC's MII data register.
96 	 */
97 	writel(FEC_IEVENT_MII, &eth->ievent);
98 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
99 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
100 
101 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
102 			phy | reg, &eth->mii_data);
103 
104 	/*
105 	 * wait for the related interrupt
106 	 */
107 	start = get_timer(0);
108 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
109 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
110 			printf("Read MDIO failed...\n");
111 			return -1;
112 		}
113 	}
114 
115 	/*
116 	 * clear mii interrupt bit
117 	 */
118 	writel(FEC_IEVENT_MII, &eth->ievent);
119 
120 	/*
121 	 * it's now safe to read the PHY's register
122 	 */
123 	val = (unsigned short)readl(&eth->mii_data);
124 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
125 			regAddr, val);
126 	return val;
127 }
128 
129 static void fec_mii_setspeed(struct ethernet_regs *eth)
130 {
131 	/*
132 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
133 	 * and do not drop the Preamble.
134 	 */
135 	register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000);
136 #ifdef FEC_QUIRK_ENET_MAC
137 	speed--;
138 #endif
139 	speed <<= 1;
140 	writel(speed, &eth->mii_speed);
141 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
142 }
143 
144 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
145 		uint8_t regAddr, uint16_t data)
146 {
147 	uint32_t reg;		/* convenient holder for the PHY register */
148 	uint32_t phy;		/* convenient holder for the PHY */
149 	uint32_t start;
150 
151 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
152 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
153 
154 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
155 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
156 
157 	/*
158 	 * wait for the MII interrupt
159 	 */
160 	start = get_timer(0);
161 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
162 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
163 			printf("Write MDIO failed...\n");
164 			return -1;
165 		}
166 	}
167 
168 	/*
169 	 * clear MII interrupt bit
170 	 */
171 	writel(FEC_IEVENT_MII, &eth->ievent);
172 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
173 			regAddr, data);
174 
175 	return 0;
176 }
177 
178 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
179 			int regAddr)
180 {
181 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
182 }
183 
184 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
185 			 int regAddr, u16 data)
186 {
187 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
188 }
189 
190 #ifndef CONFIG_PHYLIB
191 static int miiphy_restart_aneg(struct eth_device *dev)
192 {
193 	int ret = 0;
194 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
195 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
196 	struct ethernet_regs *eth = fec->bus->priv;
197 
198 	/*
199 	 * Wake up from sleep if necessary
200 	 * Reset PHY, then delay 300ns
201 	 */
202 #ifdef CONFIG_MX27
203 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
204 #endif
205 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
206 	udelay(1000);
207 
208 	/*
209 	 * Set the auto-negotiation advertisement register bits
210 	 */
211 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
212 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
213 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
214 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
215 			BMCR_ANENABLE | BMCR_ANRESTART);
216 
217 	if (fec->mii_postcall)
218 		ret = fec->mii_postcall(fec->phy_id);
219 
220 #endif
221 	return ret;
222 }
223 
224 static int miiphy_wait_aneg(struct eth_device *dev)
225 {
226 	uint32_t start;
227 	int status;
228 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
229 	struct ethernet_regs *eth = fec->bus->priv;
230 
231 	/*
232 	 * Wait for AN completion
233 	 */
234 	start = get_timer(0);
235 	do {
236 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
237 			printf("%s: Autonegotiation timeout\n", dev->name);
238 			return -1;
239 		}
240 
241 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
242 		if (status < 0) {
243 			printf("%s: Autonegotiation failed. status: %d\n",
244 					dev->name, status);
245 			return -1;
246 		}
247 	} while (!(status & BMSR_LSTATUS));
248 
249 	return 0;
250 }
251 #endif
252 
253 static int fec_rx_task_enable(struct fec_priv *fec)
254 {
255 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
256 	return 0;
257 }
258 
259 static int fec_rx_task_disable(struct fec_priv *fec)
260 {
261 	return 0;
262 }
263 
264 static int fec_tx_task_enable(struct fec_priv *fec)
265 {
266 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
267 	return 0;
268 }
269 
270 static int fec_tx_task_disable(struct fec_priv *fec)
271 {
272 	return 0;
273 }
274 
275 /**
276  * Initialize receive task's buffer descriptors
277  * @param[in] fec all we know about the device yet
278  * @param[in] count receive buffer count to be allocated
279  * @param[in] dsize desired size of each receive buffer
280  * @return 0 on success
281  *
282  * Init all RX descriptors to default values.
283  */
284 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
285 {
286 	uint32_t size;
287 	uint8_t *data;
288 	int i;
289 
290 	/*
291 	 * Reload the RX descriptors with default values and wipe
292 	 * the RX buffers.
293 	 */
294 	size = roundup(dsize, ARCH_DMA_MINALIGN);
295 	for (i = 0; i < count; i++) {
296 		data = (uint8_t *)fec->rbd_base[i].data_pointer;
297 		memset(data, 0, dsize);
298 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
299 
300 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
301 		fec->rbd_base[i].data_length = 0;
302 	}
303 
304 	/* Mark the last RBD to close the ring. */
305 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
306 	fec->rbd_index = 0;
307 
308 	flush_dcache_range((unsigned)fec->rbd_base,
309 			   (unsigned)fec->rbd_base + size);
310 }
311 
312 /**
313  * Initialize transmit task's buffer descriptors
314  * @param[in] fec all we know about the device yet
315  *
316  * Transmit buffers are created externally. We only have to init the BDs here.\n
317  * Note: There is a race condition in the hardware. When only one BD is in
318  * use it must be marked with the WRAP bit to use it for every transmitt.
319  * This bit in combination with the READY bit results into double transmit
320  * of each data buffer. It seems the state machine checks READY earlier then
321  * resetting it after the first transfer.
322  * Using two BDs solves this issue.
323  */
324 static void fec_tbd_init(struct fec_priv *fec)
325 {
326 	unsigned addr = (unsigned)fec->tbd_base;
327 	unsigned size = roundup(2 * sizeof(struct fec_bd),
328 				ARCH_DMA_MINALIGN);
329 
330 	memset(fec->tbd_base, 0, size);
331 	fec->tbd_base[0].status = 0;
332 	fec->tbd_base[1].status = FEC_TBD_WRAP;
333 	fec->tbd_index = 0;
334 	flush_dcache_range(addr, addr + size);
335 }
336 
337 /**
338  * Mark the given read buffer descriptor as free
339  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
340  * @param[in] pRbd buffer descriptor to mark free again
341  */
342 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
343 {
344 	unsigned short flags = FEC_RBD_EMPTY;
345 	if (last)
346 		flags |= FEC_RBD_WRAP;
347 	writew(flags, &pRbd->status);
348 	writew(0, &pRbd->data_length);
349 }
350 
351 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
352 						unsigned char *mac)
353 {
354 	imx_get_mac_from_fuse(dev_id, mac);
355 	return !is_valid_ethaddr(mac);
356 }
357 
358 static int fec_set_hwaddr(struct eth_device *dev)
359 {
360 	uchar *mac = dev->enetaddr;
361 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
362 
363 	writel(0, &fec->eth->iaddr1);
364 	writel(0, &fec->eth->iaddr2);
365 	writel(0, &fec->eth->gaddr1);
366 	writel(0, &fec->eth->gaddr2);
367 
368 	/*
369 	 * Set physical address
370 	 */
371 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
372 			&fec->eth->paddr1);
373 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
374 
375 	return 0;
376 }
377 
378 /*
379  * Do initial configuration of the FEC registers
380  */
381 static void fec_reg_setup(struct fec_priv *fec)
382 {
383 	uint32_t rcntrl;
384 
385 	/*
386 	 * Set interrupt mask register
387 	 */
388 	writel(0x00000000, &fec->eth->imask);
389 
390 	/*
391 	 * Clear FEC-Lite interrupt event register(IEVENT)
392 	 */
393 	writel(0xffffffff, &fec->eth->ievent);
394 
395 
396 	/*
397 	 * Set FEC-Lite receive control register(R_CNTRL):
398 	 */
399 
400 	/* Start with frame length = 1518, common for all modes. */
401 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
402 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
403 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
404 	if (fec->xcv_type == RGMII)
405 		rcntrl |= FEC_RCNTRL_RGMII;
406 	else if (fec->xcv_type == RMII)
407 		rcntrl |= FEC_RCNTRL_RMII;
408 
409 	writel(rcntrl, &fec->eth->r_cntrl);
410 }
411 
412 /**
413  * Start the FEC engine
414  * @param[in] dev Our device to handle
415  */
416 static int fec_open(struct eth_device *edev)
417 {
418 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
419 	int speed;
420 	uint32_t addr, size;
421 	int i;
422 
423 	debug("fec_open: fec_open(dev)\n");
424 	/* full-duplex, heartbeat disabled */
425 	writel(1 << 2, &fec->eth->x_cntrl);
426 	fec->rbd_index = 0;
427 
428 	/* Invalidate all descriptors */
429 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
430 		fec_rbd_clean(0, &fec->rbd_base[i]);
431 	fec_rbd_clean(1, &fec->rbd_base[i]);
432 
433 	/* Flush the descriptors into RAM */
434 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
435 			ARCH_DMA_MINALIGN);
436 	addr = (uint32_t)fec->rbd_base;
437 	flush_dcache_range(addr, addr + size);
438 
439 #ifdef FEC_QUIRK_ENET_MAC
440 	/* Enable ENET HW endian SWAP */
441 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
442 		&fec->eth->ecntrl);
443 	/* Enable ENET store and forward mode */
444 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
445 		&fec->eth->x_wmrk);
446 #endif
447 	/*
448 	 * Enable FEC-Lite controller
449 	 */
450 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
451 		&fec->eth->ecntrl);
452 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
453 	udelay(100);
454 	/*
455 	 * setup the MII gasket for RMII mode
456 	 */
457 
458 	/* disable the gasket */
459 	writew(0, &fec->eth->miigsk_enr);
460 
461 	/* wait for the gasket to be disabled */
462 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
463 		udelay(2);
464 
465 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
466 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
467 
468 	/* re-enable the gasket */
469 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
470 
471 	/* wait until MII gasket is ready */
472 	int max_loops = 10;
473 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
474 		if (--max_loops <= 0) {
475 			printf("WAIT for MII Gasket ready timed out\n");
476 			break;
477 		}
478 	}
479 #endif
480 
481 #ifdef CONFIG_PHYLIB
482 	{
483 		/* Start up the PHY */
484 		int ret = phy_startup(fec->phydev);
485 
486 		if (ret) {
487 			printf("Could not initialize PHY %s\n",
488 			       fec->phydev->dev->name);
489 			return ret;
490 		}
491 		speed = fec->phydev->speed;
492 	}
493 #else
494 	miiphy_wait_aneg(edev);
495 	speed = miiphy_speed(edev->name, fec->phy_id);
496 	miiphy_duplex(edev->name, fec->phy_id);
497 #endif
498 
499 #ifdef FEC_QUIRK_ENET_MAC
500 	{
501 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
502 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
503 		if (speed == _1000BASET)
504 			ecr |= FEC_ECNTRL_SPEED;
505 		else if (speed != _100BASET)
506 			rcr |= FEC_RCNTRL_RMII_10T;
507 		writel(ecr, &fec->eth->ecntrl);
508 		writel(rcr, &fec->eth->r_cntrl);
509 	}
510 #endif
511 	debug("%s:Speed=%i\n", __func__, speed);
512 
513 	/*
514 	 * Enable SmartDMA receive task
515 	 */
516 	fec_rx_task_enable(fec);
517 
518 	udelay(100000);
519 	return 0;
520 }
521 
522 static int fec_init(struct eth_device *dev, bd_t* bd)
523 {
524 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
525 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
526 	int i;
527 
528 	/* Initialize MAC address */
529 	fec_set_hwaddr(dev);
530 
531 	/*
532 	 * Setup transmit descriptors, there are two in total.
533 	 */
534 	fec_tbd_init(fec);
535 
536 	/* Setup receive descriptors. */
537 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
538 
539 	fec_reg_setup(fec);
540 
541 	if (fec->xcv_type != SEVENWIRE)
542 		fec_mii_setspeed(fec->bus->priv);
543 
544 	/*
545 	 * Set Opcode/Pause Duration Register
546 	 */
547 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
548 	writel(0x2, &fec->eth->x_wmrk);
549 	/*
550 	 * Set multicast address filter
551 	 */
552 	writel(0x00000000, &fec->eth->gaddr1);
553 	writel(0x00000000, &fec->eth->gaddr2);
554 
555 
556 	/* Do not access reserved register for i.MX6UL */
557 	if (!is_cpu_type(MXC_CPU_MX6UL)) {
558 		/* clear MIB RAM */
559 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
560 			writel(0, i);
561 
562 		/* FIFO receive start register */
563 		writel(0x520, &fec->eth->r_fstart);
564 	}
565 
566 	/* size and address of each buffer */
567 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
568 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
569 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
570 
571 #ifndef CONFIG_PHYLIB
572 	if (fec->xcv_type != SEVENWIRE)
573 		miiphy_restart_aneg(dev);
574 #endif
575 	fec_open(dev);
576 	return 0;
577 }
578 
579 /**
580  * Halt the FEC engine
581  * @param[in] dev Our device to handle
582  */
583 static void fec_halt(struct eth_device *dev)
584 {
585 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
586 	int counter = 0xffff;
587 
588 	/*
589 	 * issue graceful stop command to the FEC transmitter if necessary
590 	 */
591 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
592 			&fec->eth->x_cntrl);
593 
594 	debug("eth_halt: wait for stop regs\n");
595 	/*
596 	 * wait for graceful stop to register
597 	 */
598 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
599 		udelay(1);
600 
601 	/*
602 	 * Disable SmartDMA tasks
603 	 */
604 	fec_tx_task_disable(fec);
605 	fec_rx_task_disable(fec);
606 
607 	/*
608 	 * Disable the Ethernet Controller
609 	 * Note: this will also reset the BD index counter!
610 	 */
611 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
612 			&fec->eth->ecntrl);
613 	fec->rbd_index = 0;
614 	fec->tbd_index = 0;
615 	debug("eth_halt: done\n");
616 }
617 
618 /**
619  * Transmit one frame
620  * @param[in] dev Our ethernet device to handle
621  * @param[in] packet Pointer to the data to be transmitted
622  * @param[in] length Data count in bytes
623  * @return 0 on success
624  */
625 static int fec_send(struct eth_device *dev, void *packet, int length)
626 {
627 	unsigned int status;
628 	uint32_t size, end;
629 	uint32_t addr;
630 	int timeout = FEC_XFER_TIMEOUT;
631 	int ret = 0;
632 
633 	/*
634 	 * This routine transmits one frame.  This routine only accepts
635 	 * 6-byte Ethernet addresses.
636 	 */
637 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
638 
639 	/*
640 	 * Check for valid length of data.
641 	 */
642 	if ((length > 1500) || (length <= 0)) {
643 		printf("Payload (%d) too large\n", length);
644 		return -1;
645 	}
646 
647 	/*
648 	 * Setup the transmit buffer. We are always using the first buffer for
649 	 * transmission, the second will be empty and only used to stop the DMA
650 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
651 	 */
652 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
653 	swap_packet((uint32_t *)packet, length);
654 #endif
655 
656 	addr = (uint32_t)packet;
657 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
658 	addr &= ~(ARCH_DMA_MINALIGN - 1);
659 	flush_dcache_range(addr, end);
660 
661 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
662 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
663 
664 	/*
665 	 * update BD's status now
666 	 * This block:
667 	 * - is always the last in a chain (means no chain)
668 	 * - should transmitt the CRC
669 	 * - might be the last BD in the list, so the address counter should
670 	 *   wrap (-> keep the WRAP flag)
671 	 */
672 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
673 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
674 	writew(status, &fec->tbd_base[fec->tbd_index].status);
675 
676 	/*
677 	 * Flush data cache. This code flushes both TX descriptors to RAM.
678 	 * After this code, the descriptors will be safely in RAM and we
679 	 * can start DMA.
680 	 */
681 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
682 	addr = (uint32_t)fec->tbd_base;
683 	flush_dcache_range(addr, addr + size);
684 
685 	/*
686 	 * Below we read the DMA descriptor's last four bytes back from the
687 	 * DRAM. This is important in order to make sure that all WRITE
688 	 * operations on the bus that were triggered by previous cache FLUSH
689 	 * have completed.
690 	 *
691 	 * Otherwise, on MX28, it is possible to observe a corruption of the
692 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
693 	 * for the bus structure of MX28. The scenario is as follows:
694 	 *
695 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
696 	 *    to DRAM due to flush_dcache_range()
697 	 * 2) ARM core writes the FEC registers via AHB_ARB2
698 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
699 	 *
700 	 * Note that 2) does sometimes finish before 1) due to reordering of
701 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
702 	 * DMA descriptor is fully written into DRAM. This results in occasional
703 	 * corruption of the DMA descriptor.
704 	 */
705 	readl(addr + size - 4);
706 
707 	/*
708 	 * Enable SmartDMA transmit task
709 	 */
710 	fec_tx_task_enable(fec);
711 
712 	/*
713 	 * Wait until frame is sent. On each turn of the wait cycle, we must
714 	 * invalidate data cache to see what's really in RAM. Also, we need
715 	 * barrier here.
716 	 */
717 	while (--timeout) {
718 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
719 			break;
720 	}
721 
722 	if (!timeout) {
723 		ret = -EINVAL;
724 		goto out;
725 	}
726 
727 	/*
728 	 * The TDAR bit is cleared when the descriptors are all out from TX
729 	 * but on mx6solox we noticed that the READY bit is still not cleared
730 	 * right after TDAR.
731 	 * These are two distinct signals, and in IC simulation, we found that
732 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
733 	 * cleared.
734 	 * In mx6solox, we use a later version of FEC IP. It looks like that
735 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
736 	 * version.
737 	 *
738 	 * Fix this by polling the READY bit of BD after the TDAR polling,
739 	 * which covers the mx6solox case and does not harm the other SoCs.
740 	 */
741 	timeout = FEC_XFER_TIMEOUT;
742 	while (--timeout) {
743 		invalidate_dcache_range(addr, addr + size);
744 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
745 		    FEC_TBD_READY))
746 			break;
747 	}
748 
749 	if (!timeout)
750 		ret = -EINVAL;
751 
752 out:
753 	debug("fec_send: status 0x%x index %d ret %i\n",
754 			readw(&fec->tbd_base[fec->tbd_index].status),
755 			fec->tbd_index, ret);
756 	/* for next transmission use the other buffer */
757 	if (fec->tbd_index)
758 		fec->tbd_index = 0;
759 	else
760 		fec->tbd_index = 1;
761 
762 	return ret;
763 }
764 
765 /**
766  * Pull one frame from the card
767  * @param[in] dev Our ethernet device to handle
768  * @return Length of packet read
769  */
770 static int fec_recv(struct eth_device *dev)
771 {
772 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
773 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
774 	unsigned long ievent;
775 	int frame_length, len = 0;
776 	uint16_t bd_status;
777 	uint32_t addr, size, end;
778 	int i;
779 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
780 
781 	/*
782 	 * Check if any critical events have happened
783 	 */
784 	ievent = readl(&fec->eth->ievent);
785 	writel(ievent, &fec->eth->ievent);
786 	debug("fec_recv: ievent 0x%lx\n", ievent);
787 	if (ievent & FEC_IEVENT_BABR) {
788 		fec_halt(dev);
789 		fec_init(dev, fec->bd);
790 		printf("some error: 0x%08lx\n", ievent);
791 		return 0;
792 	}
793 	if (ievent & FEC_IEVENT_HBERR) {
794 		/* Heartbeat error */
795 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
796 				&fec->eth->x_cntrl);
797 	}
798 	if (ievent & FEC_IEVENT_GRA) {
799 		/* Graceful stop complete */
800 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
801 			fec_halt(dev);
802 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
803 					&fec->eth->x_cntrl);
804 			fec_init(dev, fec->bd);
805 		}
806 	}
807 
808 	/*
809 	 * Read the buffer status. Before the status can be read, the data cache
810 	 * must be invalidated, because the data in RAM might have been changed
811 	 * by DMA. The descriptors are properly aligned to cachelines so there's
812 	 * no need to worry they'd overlap.
813 	 *
814 	 * WARNING: By invalidating the descriptor here, we also invalidate
815 	 * the descriptors surrounding this one. Therefore we can NOT change the
816 	 * contents of this descriptor nor the surrounding ones. The problem is
817 	 * that in order to mark the descriptor as processed, we need to change
818 	 * the descriptor. The solution is to mark the whole cache line when all
819 	 * descriptors in the cache line are processed.
820 	 */
821 	addr = (uint32_t)rbd;
822 	addr &= ~(ARCH_DMA_MINALIGN - 1);
823 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
824 	invalidate_dcache_range(addr, addr + size);
825 
826 	bd_status = readw(&rbd->status);
827 	debug("fec_recv: status 0x%x\n", bd_status);
828 
829 	if (!(bd_status & FEC_RBD_EMPTY)) {
830 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
831 			((readw(&rbd->data_length) - 4) > 14)) {
832 			/*
833 			 * Get buffer address and size
834 			 */
835 			addr = readl(&rbd->data_pointer);
836 			frame_length = readw(&rbd->data_length) - 4;
837 			/*
838 			 * Invalidate data cache over the buffer
839 			 */
840 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
841 			addr &= ~(ARCH_DMA_MINALIGN - 1);
842 			invalidate_dcache_range(addr, end);
843 
844 			/*
845 			 *  Fill the buffer and pass it to upper layers
846 			 */
847 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
848 			swap_packet((uint32_t *)addr, frame_length);
849 #endif
850 			memcpy(buff, (char *)addr, frame_length);
851 			net_process_received_packet(buff, frame_length);
852 			len = frame_length;
853 		} else {
854 			if (bd_status & FEC_RBD_ERR)
855 				printf("error frame: 0x%08x 0x%08x\n",
856 				       addr, bd_status);
857 		}
858 
859 		/*
860 		 * Free the current buffer, restart the engine and move forward
861 		 * to the next buffer. Here we check if the whole cacheline of
862 		 * descriptors was already processed and if so, we mark it free
863 		 * as whole.
864 		 */
865 		size = RXDESC_PER_CACHELINE - 1;
866 		if ((fec->rbd_index & size) == size) {
867 			i = fec->rbd_index - size;
868 			addr = (uint32_t)&fec->rbd_base[i];
869 			for (; i <= fec->rbd_index ; i++) {
870 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
871 					      &fec->rbd_base[i]);
872 			}
873 			flush_dcache_range(addr,
874 				addr + ARCH_DMA_MINALIGN);
875 		}
876 
877 		fec_rx_task_enable(fec);
878 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
879 	}
880 	debug("fec_recv: stop\n");
881 
882 	return len;
883 }
884 
885 static void fec_set_dev_name(char *dest, int dev_id)
886 {
887 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
888 }
889 
890 static int fec_alloc_descs(struct fec_priv *fec)
891 {
892 	unsigned int size;
893 	int i;
894 	uint8_t *data;
895 
896 	/* Allocate TX descriptors. */
897 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
898 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
899 	if (!fec->tbd_base)
900 		goto err_tx;
901 
902 	/* Allocate RX descriptors. */
903 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
904 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
905 	if (!fec->rbd_base)
906 		goto err_rx;
907 
908 	memset(fec->rbd_base, 0, size);
909 
910 	/* Allocate RX buffers. */
911 
912 	/* Maximum RX buffer size. */
913 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
914 	for (i = 0; i < FEC_RBD_NUM; i++) {
915 		data = memalign(FEC_DMA_RX_MINALIGN, size);
916 		if (!data) {
917 			printf("%s: error allocating rxbuf %d\n", __func__, i);
918 			goto err_ring;
919 		}
920 
921 		memset(data, 0, size);
922 
923 		fec->rbd_base[i].data_pointer = (uint32_t)data;
924 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
925 		fec->rbd_base[i].data_length = 0;
926 		/* Flush the buffer to memory. */
927 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
928 	}
929 
930 	/* Mark the last RBD to close the ring. */
931 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
932 
933 	fec->rbd_index = 0;
934 	fec->tbd_index = 0;
935 
936 	return 0;
937 
938 err_ring:
939 	for (; i >= 0; i--)
940 		free((void *)fec->rbd_base[i].data_pointer);
941 	free(fec->rbd_base);
942 err_rx:
943 	free(fec->tbd_base);
944 err_tx:
945 	return -ENOMEM;
946 }
947 
948 static void fec_free_descs(struct fec_priv *fec)
949 {
950 	int i;
951 
952 	for (i = 0; i < FEC_RBD_NUM; i++)
953 		free((void *)fec->rbd_base[i].data_pointer);
954 	free(fec->rbd_base);
955 	free(fec->tbd_base);
956 }
957 
958 #ifdef CONFIG_PHYLIB
959 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
960 		struct mii_dev *bus, struct phy_device *phydev)
961 #else
962 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
963 		struct mii_dev *bus, int phy_id)
964 #endif
965 {
966 	struct eth_device *edev;
967 	struct fec_priv *fec;
968 	unsigned char ethaddr[6];
969 	uint32_t start;
970 	int ret = 0;
971 
972 	/* create and fill edev struct */
973 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
974 	if (!edev) {
975 		puts("fec_mxc: not enough malloc memory for eth_device\n");
976 		ret = -ENOMEM;
977 		goto err1;
978 	}
979 
980 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
981 	if (!fec) {
982 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
983 		ret = -ENOMEM;
984 		goto err2;
985 	}
986 
987 	memset(edev, 0, sizeof(*edev));
988 	memset(fec, 0, sizeof(*fec));
989 
990 	ret = fec_alloc_descs(fec);
991 	if (ret)
992 		goto err3;
993 
994 	edev->priv = fec;
995 	edev->init = fec_init;
996 	edev->send = fec_send;
997 	edev->recv = fec_recv;
998 	edev->halt = fec_halt;
999 	edev->write_hwaddr = fec_set_hwaddr;
1000 
1001 	fec->eth = (struct ethernet_regs *)base_addr;
1002 	fec->bd = bd;
1003 
1004 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1005 
1006 	/* Reset chip. */
1007 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1008 	start = get_timer(0);
1009 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1010 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1011 			printf("FEC MXC: Timeout reseting chip\n");
1012 			goto err4;
1013 		}
1014 		udelay(10);
1015 	}
1016 
1017 	fec_reg_setup(fec);
1018 	fec_set_dev_name(edev->name, dev_id);
1019 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1020 	fec->bus = bus;
1021 	fec_mii_setspeed(bus->priv);
1022 #ifdef CONFIG_PHYLIB
1023 	fec->phydev = phydev;
1024 	phy_connect_dev(phydev, edev);
1025 	/* Configure phy */
1026 	phy_config(phydev);
1027 #else
1028 	fec->phy_id = phy_id;
1029 #endif
1030 	eth_register(edev);
1031 
1032 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1033 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1034 		memcpy(edev->enetaddr, ethaddr, 6);
1035 		if (!getenv("ethaddr"))
1036 			eth_setenv_enetaddr("ethaddr", ethaddr);
1037 	}
1038 	return ret;
1039 err4:
1040 	fec_free_descs(fec);
1041 err3:
1042 	free(fec);
1043 err2:
1044 	free(edev);
1045 err1:
1046 	return ret;
1047 }
1048 
1049 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1050 {
1051 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1052 	struct mii_dev *bus;
1053 	int ret;
1054 
1055 	bus = mdio_alloc();
1056 	if (!bus) {
1057 		printf("mdio_alloc failed\n");
1058 		return NULL;
1059 	}
1060 	bus->read = fec_phy_read;
1061 	bus->write = fec_phy_write;
1062 	bus->priv = eth;
1063 	fec_set_dev_name(bus->name, dev_id);
1064 
1065 	ret = mdio_register(bus);
1066 	if (ret) {
1067 		printf("mdio_register failed\n");
1068 		free(bus);
1069 		return NULL;
1070 	}
1071 	fec_mii_setspeed(eth);
1072 	return bus;
1073 }
1074 
1075 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1076 {
1077 	uint32_t base_mii;
1078 	struct mii_dev *bus = NULL;
1079 #ifdef CONFIG_PHYLIB
1080 	struct phy_device *phydev = NULL;
1081 #endif
1082 	int ret;
1083 
1084 #ifdef CONFIG_MX28
1085 	/*
1086 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1087 	 * Only the first one can access the MDIO bus.
1088 	 */
1089 	base_mii = MXS_ENET0_BASE;
1090 #else
1091 	base_mii = addr;
1092 #endif
1093 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1094 	bus = fec_get_miibus(base_mii, dev_id);
1095 	if (!bus)
1096 		return -ENOMEM;
1097 #ifdef CONFIG_PHYLIB
1098 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1099 	if (!phydev) {
1100 		free(bus);
1101 		return -ENOMEM;
1102 	}
1103 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1104 #else
1105 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1106 #endif
1107 	if (ret) {
1108 #ifdef CONFIG_PHYLIB
1109 		free(phydev);
1110 #endif
1111 		free(bus);
1112 	}
1113 	return ret;
1114 }
1115 
1116 #ifdef CONFIG_FEC_MXC_PHYADDR
1117 int fecmxc_initialize(bd_t *bd)
1118 {
1119 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1120 			IMX_FEC_BASE);
1121 }
1122 #endif
1123 
1124 #ifndef CONFIG_PHYLIB
1125 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1126 {
1127 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1128 	fec->mii_postcall = cb;
1129 	return 0;
1130 }
1131 #endif
1132