1 /* 2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> 3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> 4 * (C) Copyright 2008 Armadeus Systems nc 5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> 6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #include <common.h> 12 #include <malloc.h> 13 #include <memalign.h> 14 #include <net.h> 15 #include <netdev.h> 16 #include <miiphy.h> 17 #include "fec_mxc.h" 18 19 #include <asm/arch/clock.h> 20 #include <asm/arch/imx-regs.h> 21 #include <asm/imx-common/sys_proto.h> 22 #include <asm/io.h> 23 #include <asm/errno.h> 24 #include <linux/compiler.h> 25 26 DECLARE_GLOBAL_DATA_PTR; 27 28 /* 29 * Timeout the transfer after 5 mS. This is usually a bit more, since 30 * the code in the tightloops this timeout is used in adds some overhead. 31 */ 32 #define FEC_XFER_TIMEOUT 5000 33 34 /* 35 * The standard 32-byte DMA alignment does not work on mx6solox, which requires 36 * 64-byte alignment in the DMA RX FEC buffer. 37 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also 38 * satisfies the alignment on other SoCs (32-bytes) 39 */ 40 #define FEC_DMA_RX_MINALIGN 64 41 42 #ifndef CONFIG_MII 43 #error "CONFIG_MII has to be defined!" 44 #endif 45 46 #ifndef CONFIG_FEC_XCV_TYPE 47 #define CONFIG_FEC_XCV_TYPE MII100 48 #endif 49 50 /* 51 * The i.MX28 operates with packets in big endian. We need to swap them before 52 * sending and after receiving. 53 */ 54 #ifdef CONFIG_MX28 55 #define CONFIG_FEC_MXC_SWAP_PACKET 56 #endif 57 58 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) 59 60 /* Check various alignment issues at compile time */ 61 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) 62 #error "ARCH_DMA_MINALIGN must be multiple of 16!" 63 #endif 64 65 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ 66 (PKTALIGN % ARCH_DMA_MINALIGN != 0)) 67 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" 68 #endif 69 70 #undef DEBUG 71 72 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 73 static void swap_packet(uint32_t *packet, int length) 74 { 75 int i; 76 77 for (i = 0; i < DIV_ROUND_UP(length, 4); i++) 78 packet[i] = __swab32(packet[i]); 79 } 80 #endif 81 82 /* 83 * MII-interface related functions 84 */ 85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr, 86 uint8_t regAddr) 87 { 88 uint32_t reg; /* convenient holder for the PHY register */ 89 uint32_t phy; /* convenient holder for the PHY */ 90 uint32_t start; 91 int val; 92 93 /* 94 * reading from any PHY's register is done by properly 95 * programming the FEC's MII data register. 96 */ 97 writel(FEC_IEVENT_MII, ð->ievent); 98 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 99 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 100 101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | 102 phy | reg, ð->mii_data); 103 104 /* 105 * wait for the related interrupt 106 */ 107 start = get_timer(0); 108 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 109 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 110 printf("Read MDIO failed...\n"); 111 return -1; 112 } 113 } 114 115 /* 116 * clear mii interrupt bit 117 */ 118 writel(FEC_IEVENT_MII, ð->ievent); 119 120 /* 121 * it's now safe to read the PHY's register 122 */ 123 val = (unsigned short)readl(ð->mii_data); 124 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 125 regAddr, val); 126 return val; 127 } 128 129 static void fec_mii_setspeed(struct ethernet_regs *eth) 130 { 131 /* 132 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock 133 * and do not drop the Preamble. 134 */ 135 register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000); 136 #ifdef FEC_QUIRK_ENET_MAC 137 speed--; 138 #endif 139 speed <<= 1; 140 writel(speed, ð->mii_speed); 141 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); 142 } 143 144 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr, 145 uint8_t regAddr, uint16_t data) 146 { 147 uint32_t reg; /* convenient holder for the PHY register */ 148 uint32_t phy; /* convenient holder for the PHY */ 149 uint32_t start; 150 151 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 152 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 153 154 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | 155 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); 156 157 /* 158 * wait for the MII interrupt 159 */ 160 start = get_timer(0); 161 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 162 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 163 printf("Write MDIO failed...\n"); 164 return -1; 165 } 166 } 167 168 /* 169 * clear MII interrupt bit 170 */ 171 writel(FEC_IEVENT_MII, ð->ievent); 172 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 173 regAddr, data); 174 175 return 0; 176 } 177 178 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, 179 int regAddr) 180 { 181 return fec_mdio_read(bus->priv, phyAddr, regAddr); 182 } 183 184 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, 185 int regAddr, u16 data) 186 { 187 return fec_mdio_write(bus->priv, phyAddr, regAddr, data); 188 } 189 190 #ifndef CONFIG_PHYLIB 191 static int miiphy_restart_aneg(struct eth_device *dev) 192 { 193 int ret = 0; 194 #if !defined(CONFIG_FEC_MXC_NO_ANEG) 195 struct fec_priv *fec = (struct fec_priv *)dev->priv; 196 struct ethernet_regs *eth = fec->bus->priv; 197 198 /* 199 * Wake up from sleep if necessary 200 * Reset PHY, then delay 300ns 201 */ 202 #ifdef CONFIG_MX27 203 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); 204 #endif 205 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); 206 udelay(1000); 207 208 /* 209 * Set the auto-negotiation advertisement register bits 210 */ 211 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, 212 LPA_100FULL | LPA_100HALF | LPA_10FULL | 213 LPA_10HALF | PHY_ANLPAR_PSB_802_3); 214 fec_mdio_write(eth, fec->phy_id, MII_BMCR, 215 BMCR_ANENABLE | BMCR_ANRESTART); 216 217 if (fec->mii_postcall) 218 ret = fec->mii_postcall(fec->phy_id); 219 220 #endif 221 return ret; 222 } 223 224 static int miiphy_wait_aneg(struct eth_device *dev) 225 { 226 uint32_t start; 227 int status; 228 struct fec_priv *fec = (struct fec_priv *)dev->priv; 229 struct ethernet_regs *eth = fec->bus->priv; 230 231 /* 232 * Wait for AN completion 233 */ 234 start = get_timer(0); 235 do { 236 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 237 printf("%s: Autonegotiation timeout\n", dev->name); 238 return -1; 239 } 240 241 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); 242 if (status < 0) { 243 printf("%s: Autonegotiation failed. status: %d\n", 244 dev->name, status); 245 return -1; 246 } 247 } while (!(status & BMSR_LSTATUS)); 248 249 return 0; 250 } 251 #endif 252 253 static int fec_rx_task_enable(struct fec_priv *fec) 254 { 255 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); 256 return 0; 257 } 258 259 static int fec_rx_task_disable(struct fec_priv *fec) 260 { 261 return 0; 262 } 263 264 static int fec_tx_task_enable(struct fec_priv *fec) 265 { 266 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); 267 return 0; 268 } 269 270 static int fec_tx_task_disable(struct fec_priv *fec) 271 { 272 return 0; 273 } 274 275 /** 276 * Initialize receive task's buffer descriptors 277 * @param[in] fec all we know about the device yet 278 * @param[in] count receive buffer count to be allocated 279 * @param[in] dsize desired size of each receive buffer 280 * @return 0 on success 281 * 282 * Init all RX descriptors to default values. 283 */ 284 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) 285 { 286 uint32_t size; 287 uint8_t *data; 288 int i; 289 290 /* 291 * Reload the RX descriptors with default values and wipe 292 * the RX buffers. 293 */ 294 size = roundup(dsize, ARCH_DMA_MINALIGN); 295 for (i = 0; i < count; i++) { 296 data = (uint8_t *)fec->rbd_base[i].data_pointer; 297 memset(data, 0, dsize); 298 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 299 300 fec->rbd_base[i].status = FEC_RBD_EMPTY; 301 fec->rbd_base[i].data_length = 0; 302 } 303 304 /* Mark the last RBD to close the ring. */ 305 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 306 fec->rbd_index = 0; 307 308 flush_dcache_range((unsigned)fec->rbd_base, 309 (unsigned)fec->rbd_base + size); 310 } 311 312 /** 313 * Initialize transmit task's buffer descriptors 314 * @param[in] fec all we know about the device yet 315 * 316 * Transmit buffers are created externally. We only have to init the BDs here.\n 317 * Note: There is a race condition in the hardware. When only one BD is in 318 * use it must be marked with the WRAP bit to use it for every transmitt. 319 * This bit in combination with the READY bit results into double transmit 320 * of each data buffer. It seems the state machine checks READY earlier then 321 * resetting it after the first transfer. 322 * Using two BDs solves this issue. 323 */ 324 static void fec_tbd_init(struct fec_priv *fec) 325 { 326 unsigned addr = (unsigned)fec->tbd_base; 327 unsigned size = roundup(2 * sizeof(struct fec_bd), 328 ARCH_DMA_MINALIGN); 329 330 memset(fec->tbd_base, 0, size); 331 fec->tbd_base[0].status = 0; 332 fec->tbd_base[1].status = FEC_TBD_WRAP; 333 fec->tbd_index = 0; 334 flush_dcache_range(addr, addr + size); 335 } 336 337 /** 338 * Mark the given read buffer descriptor as free 339 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 340 * @param[in] pRbd buffer descriptor to mark free again 341 */ 342 static void fec_rbd_clean(int last, struct fec_bd *pRbd) 343 { 344 unsigned short flags = FEC_RBD_EMPTY; 345 if (last) 346 flags |= FEC_RBD_WRAP; 347 writew(flags, &pRbd->status); 348 writew(0, &pRbd->data_length); 349 } 350 351 static int fec_get_hwaddr(struct eth_device *dev, int dev_id, 352 unsigned char *mac) 353 { 354 imx_get_mac_from_fuse(dev_id, mac); 355 return !is_valid_ethaddr(mac); 356 } 357 358 static int fec_set_hwaddr(struct eth_device *dev) 359 { 360 uchar *mac = dev->enetaddr; 361 struct fec_priv *fec = (struct fec_priv *)dev->priv; 362 363 writel(0, &fec->eth->iaddr1); 364 writel(0, &fec->eth->iaddr2); 365 writel(0, &fec->eth->gaddr1); 366 writel(0, &fec->eth->gaddr2); 367 368 /* 369 * Set physical address 370 */ 371 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], 372 &fec->eth->paddr1); 373 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); 374 375 return 0; 376 } 377 378 /* 379 * Do initial configuration of the FEC registers 380 */ 381 static void fec_reg_setup(struct fec_priv *fec) 382 { 383 uint32_t rcntrl; 384 385 /* 386 * Set interrupt mask register 387 */ 388 writel(0x00000000, &fec->eth->imask); 389 390 /* 391 * Clear FEC-Lite interrupt event register(IEVENT) 392 */ 393 writel(0xffffffff, &fec->eth->ievent); 394 395 396 /* 397 * Set FEC-Lite receive control register(R_CNTRL): 398 */ 399 400 /* Start with frame length = 1518, common for all modes. */ 401 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; 402 if (fec->xcv_type != SEVENWIRE) /* xMII modes */ 403 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; 404 if (fec->xcv_type == RGMII) 405 rcntrl |= FEC_RCNTRL_RGMII; 406 else if (fec->xcv_type == RMII) 407 rcntrl |= FEC_RCNTRL_RMII; 408 409 writel(rcntrl, &fec->eth->r_cntrl); 410 } 411 412 /** 413 * Start the FEC engine 414 * @param[in] dev Our device to handle 415 */ 416 static int fec_open(struct eth_device *edev) 417 { 418 struct fec_priv *fec = (struct fec_priv *)edev->priv; 419 int speed; 420 uint32_t addr, size; 421 int i; 422 423 debug("fec_open: fec_open(dev)\n"); 424 /* full-duplex, heartbeat disabled */ 425 writel(1 << 2, &fec->eth->x_cntrl); 426 fec->rbd_index = 0; 427 428 /* Invalidate all descriptors */ 429 for (i = 0; i < FEC_RBD_NUM - 1; i++) 430 fec_rbd_clean(0, &fec->rbd_base[i]); 431 fec_rbd_clean(1, &fec->rbd_base[i]); 432 433 /* Flush the descriptors into RAM */ 434 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), 435 ARCH_DMA_MINALIGN); 436 addr = (uint32_t)fec->rbd_base; 437 flush_dcache_range(addr, addr + size); 438 439 #ifdef FEC_QUIRK_ENET_MAC 440 /* Enable ENET HW endian SWAP */ 441 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, 442 &fec->eth->ecntrl); 443 /* Enable ENET store and forward mode */ 444 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, 445 &fec->eth->x_wmrk); 446 #endif 447 /* 448 * Enable FEC-Lite controller 449 */ 450 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, 451 &fec->eth->ecntrl); 452 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) 453 udelay(100); 454 /* 455 * setup the MII gasket for RMII mode 456 */ 457 458 /* disable the gasket */ 459 writew(0, &fec->eth->miigsk_enr); 460 461 /* wait for the gasket to be disabled */ 462 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) 463 udelay(2); 464 465 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ 466 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); 467 468 /* re-enable the gasket */ 469 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); 470 471 /* wait until MII gasket is ready */ 472 int max_loops = 10; 473 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { 474 if (--max_loops <= 0) { 475 printf("WAIT for MII Gasket ready timed out\n"); 476 break; 477 } 478 } 479 #endif 480 481 #ifdef CONFIG_PHYLIB 482 { 483 /* Start up the PHY */ 484 int ret = phy_startup(fec->phydev); 485 486 if (ret) { 487 printf("Could not initialize PHY %s\n", 488 fec->phydev->dev->name); 489 return ret; 490 } 491 speed = fec->phydev->speed; 492 } 493 #else 494 miiphy_wait_aneg(edev); 495 speed = miiphy_speed(edev->name, fec->phy_id); 496 miiphy_duplex(edev->name, fec->phy_id); 497 #endif 498 499 #ifdef FEC_QUIRK_ENET_MAC 500 { 501 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; 502 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; 503 if (speed == _1000BASET) 504 ecr |= FEC_ECNTRL_SPEED; 505 else if (speed != _100BASET) 506 rcr |= FEC_RCNTRL_RMII_10T; 507 writel(ecr, &fec->eth->ecntrl); 508 writel(rcr, &fec->eth->r_cntrl); 509 } 510 #endif 511 debug("%s:Speed=%i\n", __func__, speed); 512 513 /* 514 * Enable SmartDMA receive task 515 */ 516 fec_rx_task_enable(fec); 517 518 udelay(100000); 519 return 0; 520 } 521 522 static int fec_init(struct eth_device *dev, bd_t* bd) 523 { 524 struct fec_priv *fec = (struct fec_priv *)dev->priv; 525 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; 526 int i; 527 528 /* Initialize MAC address */ 529 fec_set_hwaddr(dev); 530 531 /* 532 * Setup transmit descriptors, there are two in total. 533 */ 534 fec_tbd_init(fec); 535 536 /* Setup receive descriptors. */ 537 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); 538 539 fec_reg_setup(fec); 540 541 if (fec->xcv_type != SEVENWIRE) 542 fec_mii_setspeed(fec->bus->priv); 543 544 /* 545 * Set Opcode/Pause Duration Register 546 */ 547 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ 548 writel(0x2, &fec->eth->x_wmrk); 549 /* 550 * Set multicast address filter 551 */ 552 writel(0x00000000, &fec->eth->gaddr1); 553 writel(0x00000000, &fec->eth->gaddr2); 554 555 556 /* Do not access reserved register for i.MX6UL */ 557 if (!is_cpu_type(MXC_CPU_MX6UL)) { 558 /* clear MIB RAM */ 559 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) 560 writel(0, i); 561 562 /* FIFO receive start register */ 563 writel(0x520, &fec->eth->r_fstart); 564 } 565 566 /* size and address of each buffer */ 567 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); 568 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); 569 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); 570 571 #ifndef CONFIG_PHYLIB 572 if (fec->xcv_type != SEVENWIRE) 573 miiphy_restart_aneg(dev); 574 #endif 575 fec_open(dev); 576 return 0; 577 } 578 579 /** 580 * Halt the FEC engine 581 * @param[in] dev Our device to handle 582 */ 583 static void fec_halt(struct eth_device *dev) 584 { 585 struct fec_priv *fec = (struct fec_priv *)dev->priv; 586 int counter = 0xffff; 587 588 /* 589 * issue graceful stop command to the FEC transmitter if necessary 590 */ 591 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), 592 &fec->eth->x_cntrl); 593 594 debug("eth_halt: wait for stop regs\n"); 595 /* 596 * wait for graceful stop to register 597 */ 598 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) 599 udelay(1); 600 601 /* 602 * Disable SmartDMA tasks 603 */ 604 fec_tx_task_disable(fec); 605 fec_rx_task_disable(fec); 606 607 /* 608 * Disable the Ethernet Controller 609 * Note: this will also reset the BD index counter! 610 */ 611 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, 612 &fec->eth->ecntrl); 613 fec->rbd_index = 0; 614 fec->tbd_index = 0; 615 debug("eth_halt: done\n"); 616 } 617 618 /** 619 * Transmit one frame 620 * @param[in] dev Our ethernet device to handle 621 * @param[in] packet Pointer to the data to be transmitted 622 * @param[in] length Data count in bytes 623 * @return 0 on success 624 */ 625 static int fec_send(struct eth_device *dev, void *packet, int length) 626 { 627 unsigned int status; 628 uint32_t size, end; 629 uint32_t addr; 630 int timeout = FEC_XFER_TIMEOUT; 631 int ret = 0; 632 633 /* 634 * This routine transmits one frame. This routine only accepts 635 * 6-byte Ethernet addresses. 636 */ 637 struct fec_priv *fec = (struct fec_priv *)dev->priv; 638 639 /* 640 * Check for valid length of data. 641 */ 642 if ((length > 1500) || (length <= 0)) { 643 printf("Payload (%d) too large\n", length); 644 return -1; 645 } 646 647 /* 648 * Setup the transmit buffer. We are always using the first buffer for 649 * transmission, the second will be empty and only used to stop the DMA 650 * engine. We also flush the packet to RAM here to avoid cache trouble. 651 */ 652 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 653 swap_packet((uint32_t *)packet, length); 654 #endif 655 656 addr = (uint32_t)packet; 657 end = roundup(addr + length, ARCH_DMA_MINALIGN); 658 addr &= ~(ARCH_DMA_MINALIGN - 1); 659 flush_dcache_range(addr, end); 660 661 writew(length, &fec->tbd_base[fec->tbd_index].data_length); 662 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); 663 664 /* 665 * update BD's status now 666 * This block: 667 * - is always the last in a chain (means no chain) 668 * - should transmitt the CRC 669 * - might be the last BD in the list, so the address counter should 670 * wrap (-> keep the WRAP flag) 671 */ 672 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; 673 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; 674 writew(status, &fec->tbd_base[fec->tbd_index].status); 675 676 /* 677 * Flush data cache. This code flushes both TX descriptors to RAM. 678 * After this code, the descriptors will be safely in RAM and we 679 * can start DMA. 680 */ 681 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 682 addr = (uint32_t)fec->tbd_base; 683 flush_dcache_range(addr, addr + size); 684 685 /* 686 * Below we read the DMA descriptor's last four bytes back from the 687 * DRAM. This is important in order to make sure that all WRITE 688 * operations on the bus that were triggered by previous cache FLUSH 689 * have completed. 690 * 691 * Otherwise, on MX28, it is possible to observe a corruption of the 692 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM 693 * for the bus structure of MX28. The scenario is as follows: 694 * 695 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going 696 * to DRAM due to flush_dcache_range() 697 * 2) ARM core writes the FEC registers via AHB_ARB2 698 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 699 * 700 * Note that 2) does sometimes finish before 1) due to reordering of 701 * WRITE accesses on the AHB bus, therefore triggering 3) before the 702 * DMA descriptor is fully written into DRAM. This results in occasional 703 * corruption of the DMA descriptor. 704 */ 705 readl(addr + size - 4); 706 707 /* 708 * Enable SmartDMA transmit task 709 */ 710 fec_tx_task_enable(fec); 711 712 /* 713 * Wait until frame is sent. On each turn of the wait cycle, we must 714 * invalidate data cache to see what's really in RAM. Also, we need 715 * barrier here. 716 */ 717 while (--timeout) { 718 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) 719 break; 720 } 721 722 if (!timeout) { 723 ret = -EINVAL; 724 goto out; 725 } 726 727 /* 728 * The TDAR bit is cleared when the descriptors are all out from TX 729 * but on mx6solox we noticed that the READY bit is still not cleared 730 * right after TDAR. 731 * These are two distinct signals, and in IC simulation, we found that 732 * TDAR always gets cleared prior than the READY bit of last BD becomes 733 * cleared. 734 * In mx6solox, we use a later version of FEC IP. It looks like that 735 * this intrinsic behaviour of TDAR bit has changed in this newer FEC 736 * version. 737 * 738 * Fix this by polling the READY bit of BD after the TDAR polling, 739 * which covers the mx6solox case and does not harm the other SoCs. 740 */ 741 timeout = FEC_XFER_TIMEOUT; 742 while (--timeout) { 743 invalidate_dcache_range(addr, addr + size); 744 if (!(readw(&fec->tbd_base[fec->tbd_index].status) & 745 FEC_TBD_READY)) 746 break; 747 } 748 749 if (!timeout) 750 ret = -EINVAL; 751 752 out: 753 debug("fec_send: status 0x%x index %d ret %i\n", 754 readw(&fec->tbd_base[fec->tbd_index].status), 755 fec->tbd_index, ret); 756 /* for next transmission use the other buffer */ 757 if (fec->tbd_index) 758 fec->tbd_index = 0; 759 else 760 fec->tbd_index = 1; 761 762 return ret; 763 } 764 765 /** 766 * Pull one frame from the card 767 * @param[in] dev Our ethernet device to handle 768 * @return Length of packet read 769 */ 770 static int fec_recv(struct eth_device *dev) 771 { 772 struct fec_priv *fec = (struct fec_priv *)dev->priv; 773 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; 774 unsigned long ievent; 775 int frame_length, len = 0; 776 uint16_t bd_status; 777 uint32_t addr, size, end; 778 int i; 779 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); 780 781 /* 782 * Check if any critical events have happened 783 */ 784 ievent = readl(&fec->eth->ievent); 785 writel(ievent, &fec->eth->ievent); 786 debug("fec_recv: ievent 0x%lx\n", ievent); 787 if (ievent & FEC_IEVENT_BABR) { 788 fec_halt(dev); 789 fec_init(dev, fec->bd); 790 printf("some error: 0x%08lx\n", ievent); 791 return 0; 792 } 793 if (ievent & FEC_IEVENT_HBERR) { 794 /* Heartbeat error */ 795 writel(0x00000001 | readl(&fec->eth->x_cntrl), 796 &fec->eth->x_cntrl); 797 } 798 if (ievent & FEC_IEVENT_GRA) { 799 /* Graceful stop complete */ 800 if (readl(&fec->eth->x_cntrl) & 0x00000001) { 801 fec_halt(dev); 802 writel(~0x00000001 & readl(&fec->eth->x_cntrl), 803 &fec->eth->x_cntrl); 804 fec_init(dev, fec->bd); 805 } 806 } 807 808 /* 809 * Read the buffer status. Before the status can be read, the data cache 810 * must be invalidated, because the data in RAM might have been changed 811 * by DMA. The descriptors are properly aligned to cachelines so there's 812 * no need to worry they'd overlap. 813 * 814 * WARNING: By invalidating the descriptor here, we also invalidate 815 * the descriptors surrounding this one. Therefore we can NOT change the 816 * contents of this descriptor nor the surrounding ones. The problem is 817 * that in order to mark the descriptor as processed, we need to change 818 * the descriptor. The solution is to mark the whole cache line when all 819 * descriptors in the cache line are processed. 820 */ 821 addr = (uint32_t)rbd; 822 addr &= ~(ARCH_DMA_MINALIGN - 1); 823 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 824 invalidate_dcache_range(addr, addr + size); 825 826 bd_status = readw(&rbd->status); 827 debug("fec_recv: status 0x%x\n", bd_status); 828 829 if (!(bd_status & FEC_RBD_EMPTY)) { 830 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && 831 ((readw(&rbd->data_length) - 4) > 14)) { 832 /* 833 * Get buffer address and size 834 */ 835 addr = readl(&rbd->data_pointer); 836 frame_length = readw(&rbd->data_length) - 4; 837 /* 838 * Invalidate data cache over the buffer 839 */ 840 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); 841 addr &= ~(ARCH_DMA_MINALIGN - 1); 842 invalidate_dcache_range(addr, end); 843 844 /* 845 * Fill the buffer and pass it to upper layers 846 */ 847 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 848 swap_packet((uint32_t *)addr, frame_length); 849 #endif 850 memcpy(buff, (char *)addr, frame_length); 851 net_process_received_packet(buff, frame_length); 852 len = frame_length; 853 } else { 854 if (bd_status & FEC_RBD_ERR) 855 printf("error frame: 0x%08x 0x%08x\n", 856 addr, bd_status); 857 } 858 859 /* 860 * Free the current buffer, restart the engine and move forward 861 * to the next buffer. Here we check if the whole cacheline of 862 * descriptors was already processed and if so, we mark it free 863 * as whole. 864 */ 865 size = RXDESC_PER_CACHELINE - 1; 866 if ((fec->rbd_index & size) == size) { 867 i = fec->rbd_index - size; 868 addr = (uint32_t)&fec->rbd_base[i]; 869 for (; i <= fec->rbd_index ; i++) { 870 fec_rbd_clean(i == (FEC_RBD_NUM - 1), 871 &fec->rbd_base[i]); 872 } 873 flush_dcache_range(addr, 874 addr + ARCH_DMA_MINALIGN); 875 } 876 877 fec_rx_task_enable(fec); 878 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; 879 } 880 debug("fec_recv: stop\n"); 881 882 return len; 883 } 884 885 static void fec_set_dev_name(char *dest, int dev_id) 886 { 887 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); 888 } 889 890 static int fec_alloc_descs(struct fec_priv *fec) 891 { 892 unsigned int size; 893 int i; 894 uint8_t *data; 895 896 /* Allocate TX descriptors. */ 897 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 898 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); 899 if (!fec->tbd_base) 900 goto err_tx; 901 902 /* Allocate RX descriptors. */ 903 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 904 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); 905 if (!fec->rbd_base) 906 goto err_rx; 907 908 memset(fec->rbd_base, 0, size); 909 910 /* Allocate RX buffers. */ 911 912 /* Maximum RX buffer size. */ 913 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); 914 for (i = 0; i < FEC_RBD_NUM; i++) { 915 data = memalign(FEC_DMA_RX_MINALIGN, size); 916 if (!data) { 917 printf("%s: error allocating rxbuf %d\n", __func__, i); 918 goto err_ring; 919 } 920 921 memset(data, 0, size); 922 923 fec->rbd_base[i].data_pointer = (uint32_t)data; 924 fec->rbd_base[i].status = FEC_RBD_EMPTY; 925 fec->rbd_base[i].data_length = 0; 926 /* Flush the buffer to memory. */ 927 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 928 } 929 930 /* Mark the last RBD to close the ring. */ 931 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 932 933 fec->rbd_index = 0; 934 fec->tbd_index = 0; 935 936 return 0; 937 938 err_ring: 939 for (; i >= 0; i--) 940 free((void *)fec->rbd_base[i].data_pointer); 941 free(fec->rbd_base); 942 err_rx: 943 free(fec->tbd_base); 944 err_tx: 945 return -ENOMEM; 946 } 947 948 static void fec_free_descs(struct fec_priv *fec) 949 { 950 int i; 951 952 for (i = 0; i < FEC_RBD_NUM; i++) 953 free((void *)fec->rbd_base[i].data_pointer); 954 free(fec->rbd_base); 955 free(fec->tbd_base); 956 } 957 958 #ifdef CONFIG_PHYLIB 959 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 960 struct mii_dev *bus, struct phy_device *phydev) 961 #else 962 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 963 struct mii_dev *bus, int phy_id) 964 #endif 965 { 966 struct eth_device *edev; 967 struct fec_priv *fec; 968 unsigned char ethaddr[6]; 969 uint32_t start; 970 int ret = 0; 971 972 /* create and fill edev struct */ 973 edev = (struct eth_device *)malloc(sizeof(struct eth_device)); 974 if (!edev) { 975 puts("fec_mxc: not enough malloc memory for eth_device\n"); 976 ret = -ENOMEM; 977 goto err1; 978 } 979 980 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); 981 if (!fec) { 982 puts("fec_mxc: not enough malloc memory for fec_priv\n"); 983 ret = -ENOMEM; 984 goto err2; 985 } 986 987 memset(edev, 0, sizeof(*edev)); 988 memset(fec, 0, sizeof(*fec)); 989 990 ret = fec_alloc_descs(fec); 991 if (ret) 992 goto err3; 993 994 edev->priv = fec; 995 edev->init = fec_init; 996 edev->send = fec_send; 997 edev->recv = fec_recv; 998 edev->halt = fec_halt; 999 edev->write_hwaddr = fec_set_hwaddr; 1000 1001 fec->eth = (struct ethernet_regs *)base_addr; 1002 fec->bd = bd; 1003 1004 fec->xcv_type = CONFIG_FEC_XCV_TYPE; 1005 1006 /* Reset chip. */ 1007 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); 1008 start = get_timer(0); 1009 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { 1010 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1011 printf("FEC MXC: Timeout reseting chip\n"); 1012 goto err4; 1013 } 1014 udelay(10); 1015 } 1016 1017 fec_reg_setup(fec); 1018 fec_set_dev_name(edev->name, dev_id); 1019 fec->dev_id = (dev_id == -1) ? 0 : dev_id; 1020 fec->bus = bus; 1021 fec_mii_setspeed(bus->priv); 1022 #ifdef CONFIG_PHYLIB 1023 fec->phydev = phydev; 1024 phy_connect_dev(phydev, edev); 1025 /* Configure phy */ 1026 phy_config(phydev); 1027 #else 1028 fec->phy_id = phy_id; 1029 #endif 1030 eth_register(edev); 1031 1032 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) { 1033 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr); 1034 memcpy(edev->enetaddr, ethaddr, 6); 1035 if (!getenv("ethaddr")) 1036 eth_setenv_enetaddr("ethaddr", ethaddr); 1037 } 1038 return ret; 1039 err4: 1040 fec_free_descs(fec); 1041 err3: 1042 free(fec); 1043 err2: 1044 free(edev); 1045 err1: 1046 return ret; 1047 } 1048 1049 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) 1050 { 1051 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; 1052 struct mii_dev *bus; 1053 int ret; 1054 1055 bus = mdio_alloc(); 1056 if (!bus) { 1057 printf("mdio_alloc failed\n"); 1058 return NULL; 1059 } 1060 bus->read = fec_phy_read; 1061 bus->write = fec_phy_write; 1062 bus->priv = eth; 1063 fec_set_dev_name(bus->name, dev_id); 1064 1065 ret = mdio_register(bus); 1066 if (ret) { 1067 printf("mdio_register failed\n"); 1068 free(bus); 1069 return NULL; 1070 } 1071 fec_mii_setspeed(eth); 1072 return bus; 1073 } 1074 1075 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) 1076 { 1077 uint32_t base_mii; 1078 struct mii_dev *bus = NULL; 1079 #ifdef CONFIG_PHYLIB 1080 struct phy_device *phydev = NULL; 1081 #endif 1082 int ret; 1083 1084 #ifdef CONFIG_MX28 1085 /* 1086 * The i.MX28 has two ethernet interfaces, but they are not equal. 1087 * Only the first one can access the MDIO bus. 1088 */ 1089 base_mii = MXS_ENET0_BASE; 1090 #else 1091 base_mii = addr; 1092 #endif 1093 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); 1094 bus = fec_get_miibus(base_mii, dev_id); 1095 if (!bus) 1096 return -ENOMEM; 1097 #ifdef CONFIG_PHYLIB 1098 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); 1099 if (!phydev) { 1100 free(bus); 1101 return -ENOMEM; 1102 } 1103 ret = fec_probe(bd, dev_id, addr, bus, phydev); 1104 #else 1105 ret = fec_probe(bd, dev_id, addr, bus, phy_id); 1106 #endif 1107 if (ret) { 1108 #ifdef CONFIG_PHYLIB 1109 free(phydev); 1110 #endif 1111 free(bus); 1112 } 1113 return ret; 1114 } 1115 1116 #ifdef CONFIG_FEC_MXC_PHYADDR 1117 int fecmxc_initialize(bd_t *bd) 1118 { 1119 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, 1120 IMX_FEC_BASE); 1121 } 1122 #endif 1123 1124 #ifndef CONFIG_PHYLIB 1125 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) 1126 { 1127 struct fec_priv *fec = (struct fec_priv *)dev->priv; 1128 fec->mii_postcall = cb; 1129 return 0; 1130 } 1131 #endif 1132