xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 7dfb0602)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29 
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34 
35 DECLARE_GLOBAL_DATA_PTR;
36 
37 #ifndef CONFIG_MII
38 #error "CONFIG_MII has to be defined!"
39 #endif
40 
41 #ifndef CONFIG_FEC_XCV_TYPE
42 #define CONFIG_FEC_XCV_TYPE MII100
43 #endif
44 
45 /*
46  * The i.MX28 operates with packets in big endian. We need to swap them before
47  * sending and after receiving.
48  */
49 #ifdef CONFIG_MX28
50 #define CONFIG_FEC_MXC_SWAP_PACKET
51 #endif
52 
53 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
54 
55 /* Check various alignment issues at compile time */
56 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
57 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
58 #endif
59 
60 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
61 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
62 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
63 #endif
64 
65 #undef DEBUG
66 
67 struct nbuf {
68 	uint8_t data[1500];	/**< actual data */
69 	int length;		/**< actual length */
70 	int used;		/**< buffer in use or not */
71 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
72 };
73 
74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
75 static void swap_packet(uint32_t *packet, int length)
76 {
77 	int i;
78 
79 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 		packet[i] = __swab32(packet[i]);
81 }
82 #endif
83 
84 /*
85  * MII-interface related functions
86  */
87 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
88 		uint8_t regAddr)
89 {
90 	uint32_t reg;		/* convenient holder for the PHY register */
91 	uint32_t phy;		/* convenient holder for the PHY */
92 	uint32_t start;
93 	int val;
94 
95 	/*
96 	 * reading from any PHY's register is done by properly
97 	 * programming the FEC's MII data register.
98 	 */
99 	writel(FEC_IEVENT_MII, &eth->ievent);
100 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
101 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
102 
103 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
104 			phy | reg, &eth->mii_data);
105 
106 	/*
107 	 * wait for the related interrupt
108 	 */
109 	start = get_timer(0);
110 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
111 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
112 			printf("Read MDIO failed...\n");
113 			return -1;
114 		}
115 	}
116 
117 	/*
118 	 * clear mii interrupt bit
119 	 */
120 	writel(FEC_IEVENT_MII, &eth->ievent);
121 
122 	/*
123 	 * it's now safe to read the PHY's register
124 	 */
125 	val = (unsigned short)readl(&eth->mii_data);
126 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
127 			regAddr, val);
128 	return val;
129 }
130 
131 static void fec_mii_setspeed(struct fec_priv *fec)
132 {
133 	/*
134 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
135 	 * and do not drop the Preamble.
136 	 */
137 	writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
138 			&fec->eth->mii_speed);
139 	debug("%s: mii_speed %08x\n", __func__, readl(&fec->eth->mii_speed));
140 }
141 
142 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
143 		uint8_t regAddr, uint16_t data)
144 {
145 	uint32_t reg;		/* convenient holder for the PHY register */
146 	uint32_t phy;		/* convenient holder for the PHY */
147 	uint32_t start;
148 
149 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
150 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
151 
152 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
153 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
154 
155 	/*
156 	 * wait for the MII interrupt
157 	 */
158 	start = get_timer(0);
159 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
160 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
161 			printf("Write MDIO failed...\n");
162 			return -1;
163 		}
164 	}
165 
166 	/*
167 	 * clear MII interrupt bit
168 	 */
169 	writel(FEC_IEVENT_MII, &eth->ievent);
170 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
171 			regAddr, data);
172 
173 	return 0;
174 }
175 
176 int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
177 {
178 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
179 }
180 
181 int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
182 		u16 data)
183 {
184 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
185 }
186 
187 #ifndef CONFIG_PHYLIB
188 static int miiphy_restart_aneg(struct eth_device *dev)
189 {
190 	int ret = 0;
191 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
192 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
193 	struct ethernet_regs *eth = fec->bus->priv;
194 
195 	/*
196 	 * Wake up from sleep if necessary
197 	 * Reset PHY, then delay 300ns
198 	 */
199 #ifdef CONFIG_MX27
200 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
201 #endif
202 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
203 	udelay(1000);
204 
205 	/*
206 	 * Set the auto-negotiation advertisement register bits
207 	 */
208 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
209 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
210 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
211 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
212 			BMCR_ANENABLE | BMCR_ANRESTART);
213 
214 	if (fec->mii_postcall)
215 		ret = fec->mii_postcall(fec->phy_id);
216 
217 #endif
218 	return ret;
219 }
220 
221 static int miiphy_wait_aneg(struct eth_device *dev)
222 {
223 	uint32_t start;
224 	int status;
225 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
226 	struct ethernet_regs *eth = fec->bus->priv;
227 
228 	/*
229 	 * Wait for AN completion
230 	 */
231 	start = get_timer(0);
232 	do {
233 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
234 			printf("%s: Autonegotiation timeout\n", dev->name);
235 			return -1;
236 		}
237 
238 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
239 		if (status < 0) {
240 			printf("%s: Autonegotiation failed. status: %d\n",
241 					dev->name, status);
242 			return -1;
243 		}
244 	} while (!(status & BMSR_LSTATUS));
245 
246 	return 0;
247 }
248 #endif
249 
250 static int fec_rx_task_enable(struct fec_priv *fec)
251 {
252 	writel(1 << 24, &fec->eth->r_des_active);
253 	return 0;
254 }
255 
256 static int fec_rx_task_disable(struct fec_priv *fec)
257 {
258 	return 0;
259 }
260 
261 static int fec_tx_task_enable(struct fec_priv *fec)
262 {
263 	writel(1 << 24, &fec->eth->x_des_active);
264 	return 0;
265 }
266 
267 static int fec_tx_task_disable(struct fec_priv *fec)
268 {
269 	return 0;
270 }
271 
272 /**
273  * Initialize receive task's buffer descriptors
274  * @param[in] fec all we know about the device yet
275  * @param[in] count receive buffer count to be allocated
276  * @param[in] dsize desired size of each receive buffer
277  * @return 0 on success
278  *
279  * For this task we need additional memory for the data buffers. And each
280  * data buffer requires some alignment. Thy must be aligned to a specific
281  * boundary each.
282  */
283 static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
284 {
285 	uint32_t size;
286 	int i;
287 
288 	/*
289 	 * Allocate memory for the buffers. This allocation respects the
290 	 * alignment
291 	 */
292 	size = roundup(dsize, ARCH_DMA_MINALIGN);
293 	for (i = 0; i < count; i++) {
294 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
295 		if (data_ptr == 0) {
296 			uint8_t *data = memalign(ARCH_DMA_MINALIGN,
297 						 size);
298 			if (!data) {
299 				printf("%s: error allocating rxbuf %d\n",
300 				       __func__, i);
301 				goto err;
302 			}
303 			writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
304 		} /* needs allocation */
305 		writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
306 		writew(0, &fec->rbd_base[i].data_length);
307 	}
308 
309 	/* Mark the last RBD to close the ring. */
310 	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
311 	fec->rbd_index = 0;
312 
313 	return 0;
314 
315 err:
316 	for (; i >= 0; i--) {
317 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
318 		free((void *)data_ptr);
319 	}
320 
321 	return -ENOMEM;
322 }
323 
324 /**
325  * Initialize transmit task's buffer descriptors
326  * @param[in] fec all we know about the device yet
327  *
328  * Transmit buffers are created externally. We only have to init the BDs here.\n
329  * Note: There is a race condition in the hardware. When only one BD is in
330  * use it must be marked with the WRAP bit to use it for every transmitt.
331  * This bit in combination with the READY bit results into double transmit
332  * of each data buffer. It seems the state machine checks READY earlier then
333  * resetting it after the first transfer.
334  * Using two BDs solves this issue.
335  */
336 static void fec_tbd_init(struct fec_priv *fec)
337 {
338 	unsigned addr = (unsigned)fec->tbd_base;
339 	unsigned size = roundup(2 * sizeof(struct fec_bd),
340 				ARCH_DMA_MINALIGN);
341 	writew(0x0000, &fec->tbd_base[0].status);
342 	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
343 	fec->tbd_index = 0;
344 	flush_dcache_range(addr, addr+size);
345 }
346 
347 /**
348  * Mark the given read buffer descriptor as free
349  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
350  * @param[in] pRbd buffer descriptor to mark free again
351  */
352 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
353 {
354 	unsigned short flags = FEC_RBD_EMPTY;
355 	if (last)
356 		flags |= FEC_RBD_WRAP;
357 	writew(flags, &pRbd->status);
358 	writew(0, &pRbd->data_length);
359 }
360 
361 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
362 						unsigned char *mac)
363 {
364 	imx_get_mac_from_fuse(dev_id, mac);
365 	return !is_valid_ether_addr(mac);
366 }
367 
368 static int fec_set_hwaddr(struct eth_device *dev)
369 {
370 	uchar *mac = dev->enetaddr;
371 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
372 
373 	writel(0, &fec->eth->iaddr1);
374 	writel(0, &fec->eth->iaddr2);
375 	writel(0, &fec->eth->gaddr1);
376 	writel(0, &fec->eth->gaddr2);
377 
378 	/*
379 	 * Set physical address
380 	 */
381 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
382 			&fec->eth->paddr1);
383 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
384 
385 	return 0;
386 }
387 
388 static void fec_eth_phy_config(struct eth_device *dev)
389 {
390 #ifdef CONFIG_PHYLIB
391 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
392 	struct phy_device *phydev;
393 
394 	phydev = phy_connect(fec->bus, fec->phy_id, dev,
395 			PHY_INTERFACE_MODE_RGMII);
396 	if (phydev) {
397 		fec->phydev = phydev;
398 		phy_config(phydev);
399 	}
400 #endif
401 }
402 
403 /*
404  * Do initial configuration of the FEC registers
405  */
406 static void fec_reg_setup(struct fec_priv *fec)
407 {
408 	uint32_t rcntrl;
409 
410 	/*
411 	 * Set interrupt mask register
412 	 */
413 	writel(0x00000000, &fec->eth->imask);
414 
415 	/*
416 	 * Clear FEC-Lite interrupt event register(IEVENT)
417 	 */
418 	writel(0xffffffff, &fec->eth->ievent);
419 
420 
421 	/*
422 	 * Set FEC-Lite receive control register(R_CNTRL):
423 	 */
424 
425 	/* Start with frame length = 1518, common for all modes. */
426 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
427 	if (fec->xcv_type == SEVENWIRE)
428 		rcntrl |= FEC_RCNTRL_FCE;
429 	else if (fec->xcv_type == RGMII)
430 		rcntrl |= FEC_RCNTRL_RGMII;
431 	else if (fec->xcv_type == RMII)
432 		rcntrl |= FEC_RCNTRL_RMII;
433 	else	/* MII mode */
434 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
435 
436 	writel(rcntrl, &fec->eth->r_cntrl);
437 }
438 
439 /**
440  * Start the FEC engine
441  * @param[in] dev Our device to handle
442  */
443 static int fec_open(struct eth_device *edev)
444 {
445 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
446 	int speed;
447 	uint32_t addr, size;
448 	int i;
449 
450 	debug("fec_open: fec_open(dev)\n");
451 	/* full-duplex, heartbeat disabled */
452 	writel(1 << 2, &fec->eth->x_cntrl);
453 	fec->rbd_index = 0;
454 
455 	/* Invalidate all descriptors */
456 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
457 		fec_rbd_clean(0, &fec->rbd_base[i]);
458 	fec_rbd_clean(1, &fec->rbd_base[i]);
459 
460 	/* Flush the descriptors into RAM */
461 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
462 			ARCH_DMA_MINALIGN);
463 	addr = (uint32_t)fec->rbd_base;
464 	flush_dcache_range(addr, addr + size);
465 
466 #ifdef FEC_QUIRK_ENET_MAC
467 	/* Enable ENET HW endian SWAP */
468 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
469 		&fec->eth->ecntrl);
470 	/* Enable ENET store and forward mode */
471 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
472 		&fec->eth->x_wmrk);
473 #endif
474 	/*
475 	 * Enable FEC-Lite controller
476 	 */
477 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
478 		&fec->eth->ecntrl);
479 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
480 	udelay(100);
481 	/*
482 	 * setup the MII gasket for RMII mode
483 	 */
484 
485 	/* disable the gasket */
486 	writew(0, &fec->eth->miigsk_enr);
487 
488 	/* wait for the gasket to be disabled */
489 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
490 		udelay(2);
491 
492 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
493 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
494 
495 	/* re-enable the gasket */
496 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
497 
498 	/* wait until MII gasket is ready */
499 	int max_loops = 10;
500 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
501 		if (--max_loops <= 0) {
502 			printf("WAIT for MII Gasket ready timed out\n");
503 			break;
504 		}
505 	}
506 #endif
507 
508 #ifdef CONFIG_PHYLIB
509 	if (!fec->phydev)
510 		fec_eth_phy_config(edev);
511 	if (fec->phydev) {
512 		/* Start up the PHY */
513 		phy_startup(fec->phydev);
514 		speed = fec->phydev->speed;
515 	} else {
516 		speed = _100BASET;
517 	}
518 #else
519 	miiphy_wait_aneg(edev);
520 	speed = miiphy_speed(edev->name, fec->phy_id);
521 	miiphy_duplex(edev->name, fec->phy_id);
522 #endif
523 
524 #ifdef FEC_QUIRK_ENET_MAC
525 	{
526 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
527 		u32 rcr = (readl(&fec->eth->r_cntrl) &
528 				~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
529 				FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
530 		if (speed == _1000BASET)
531 			ecr |= FEC_ECNTRL_SPEED;
532 		else if (speed != _100BASET)
533 			rcr |= FEC_RCNTRL_RMII_10T;
534 		writel(ecr, &fec->eth->ecntrl);
535 		writel(rcr, &fec->eth->r_cntrl);
536 	}
537 #endif
538 	debug("%s:Speed=%i\n", __func__, speed);
539 
540 	/*
541 	 * Enable SmartDMA receive task
542 	 */
543 	fec_rx_task_enable(fec);
544 
545 	udelay(100000);
546 	return 0;
547 }
548 
549 static int fec_init(struct eth_device *dev, bd_t* bd)
550 {
551 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
552 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
553 	uint32_t size;
554 	int i, ret;
555 
556 	/* Initialize MAC address */
557 	fec_set_hwaddr(dev);
558 
559 	/*
560 	 * Allocate transmit descriptors, there are two in total. This
561 	 * allocation respects cache alignment.
562 	 */
563 	if (!fec->tbd_base) {
564 		size = roundup(2 * sizeof(struct fec_bd),
565 				ARCH_DMA_MINALIGN);
566 		fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
567 		if (!fec->tbd_base) {
568 			ret = -ENOMEM;
569 			goto err1;
570 		}
571 		memset(fec->tbd_base, 0, size);
572 		fec_tbd_init(fec);
573 		flush_dcache_range((unsigned)fec->tbd_base, size);
574 	}
575 
576 	/*
577 	 * Allocate receive descriptors. This allocation respects cache
578 	 * alignment.
579 	 */
580 	if (!fec->rbd_base) {
581 		size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
582 				ARCH_DMA_MINALIGN);
583 		fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
584 		if (!fec->rbd_base) {
585 			ret = -ENOMEM;
586 			goto err2;
587 		}
588 		memset(fec->rbd_base, 0, size);
589 		/*
590 		 * Initialize RxBD ring
591 		 */
592 		if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
593 			ret = -ENOMEM;
594 			goto err3;
595 		}
596 		flush_dcache_range((unsigned)fec->rbd_base,
597 				   (unsigned)fec->rbd_base + size);
598 	}
599 
600 	fec_reg_setup(fec);
601 
602 	if (fec->xcv_type == MII10 || fec->xcv_type == MII100)
603 		fec_mii_setspeed(fec);
604 
605 	/*
606 	 * Set Opcode/Pause Duration Register
607 	 */
608 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
609 	writel(0x2, &fec->eth->x_wmrk);
610 	/*
611 	 * Set multicast address filter
612 	 */
613 	writel(0x00000000, &fec->eth->gaddr1);
614 	writel(0x00000000, &fec->eth->gaddr2);
615 
616 
617 	/* clear MIB RAM */
618 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
619 		writel(0, i);
620 
621 	/* FIFO receive start register */
622 	writel(0x520, &fec->eth->r_fstart);
623 
624 	/* size and address of each buffer */
625 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
626 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
627 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
628 
629 #ifndef CONFIG_PHYLIB
630 	if (fec->xcv_type != SEVENWIRE)
631 		miiphy_restart_aneg(dev);
632 #endif
633 	fec_open(dev);
634 	return 0;
635 
636 err3:
637 	free(fec->rbd_base);
638 err2:
639 	free(fec->tbd_base);
640 err1:
641 	return ret;
642 }
643 
644 /**
645  * Halt the FEC engine
646  * @param[in] dev Our device to handle
647  */
648 static void fec_halt(struct eth_device *dev)
649 {
650 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
651 	int counter = 0xffff;
652 
653 	/*
654 	 * issue graceful stop command to the FEC transmitter if necessary
655 	 */
656 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
657 			&fec->eth->x_cntrl);
658 
659 	debug("eth_halt: wait for stop regs\n");
660 	/*
661 	 * wait for graceful stop to register
662 	 */
663 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
664 		udelay(1);
665 
666 	/*
667 	 * Disable SmartDMA tasks
668 	 */
669 	fec_tx_task_disable(fec);
670 	fec_rx_task_disable(fec);
671 
672 	/*
673 	 * Disable the Ethernet Controller
674 	 * Note: this will also reset the BD index counter!
675 	 */
676 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
677 			&fec->eth->ecntrl);
678 	fec->rbd_index = 0;
679 	fec->tbd_index = 0;
680 	debug("eth_halt: done\n");
681 }
682 
683 /**
684  * Transmit one frame
685  * @param[in] dev Our ethernet device to handle
686  * @param[in] packet Pointer to the data to be transmitted
687  * @param[in] length Data count in bytes
688  * @return 0 on success
689  */
690 static int fec_send(struct eth_device *dev, void *packet, int length)
691 {
692 	unsigned int status;
693 	uint32_t size;
694 	uint32_t addr;
695 
696 	/*
697 	 * This routine transmits one frame.  This routine only accepts
698 	 * 6-byte Ethernet addresses.
699 	 */
700 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
701 
702 	/*
703 	 * Check for valid length of data.
704 	 */
705 	if ((length > 1500) || (length <= 0)) {
706 		printf("Payload (%d) too large\n", length);
707 		return -1;
708 	}
709 
710 	/*
711 	 * Setup the transmit buffer. We are always using the first buffer for
712 	 * transmission, the second will be empty and only used to stop the DMA
713 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
714 	 */
715 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
716 	swap_packet((uint32_t *)packet, length);
717 #endif
718 
719 	addr = (uint32_t)packet;
720 	size = roundup(length, ARCH_DMA_MINALIGN);
721 	flush_dcache_range(addr, addr + size);
722 
723 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
724 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
725 
726 	/*
727 	 * update BD's status now
728 	 * This block:
729 	 * - is always the last in a chain (means no chain)
730 	 * - should transmitt the CRC
731 	 * - might be the last BD in the list, so the address counter should
732 	 *   wrap (-> keep the WRAP flag)
733 	 */
734 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
735 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
736 	writew(status, &fec->tbd_base[fec->tbd_index].status);
737 
738 	/*
739 	 * Flush data cache. This code flushes both TX descriptors to RAM.
740 	 * After this code, the descriptors will be safely in RAM and we
741 	 * can start DMA.
742 	 */
743 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
744 	addr = (uint32_t)fec->tbd_base;
745 	flush_dcache_range(addr, addr + size);
746 
747 	/*
748 	 * Enable SmartDMA transmit task
749 	 */
750 	fec_tx_task_enable(fec);
751 
752 	/*
753 	 * Wait until frame is sent. On each turn of the wait cycle, we must
754 	 * invalidate data cache to see what's really in RAM. Also, we need
755 	 * barrier here.
756 	 */
757 	invalidate_dcache_range(addr, addr + size);
758 	while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
759 		udelay(1);
760 		invalidate_dcache_range(addr, addr + size);
761 	}
762 
763 	debug("fec_send: status 0x%x index %d\n",
764 			readw(&fec->tbd_base[fec->tbd_index].status),
765 			fec->tbd_index);
766 	/* for next transmission use the other buffer */
767 	if (fec->tbd_index)
768 		fec->tbd_index = 0;
769 	else
770 		fec->tbd_index = 1;
771 
772 	return 0;
773 }
774 
775 /**
776  * Pull one frame from the card
777  * @param[in] dev Our ethernet device to handle
778  * @return Length of packet read
779  */
780 static int fec_recv(struct eth_device *dev)
781 {
782 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
783 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
784 	unsigned long ievent;
785 	int frame_length, len = 0;
786 	struct nbuf *frame;
787 	uint16_t bd_status;
788 	uint32_t addr, size;
789 	int i;
790 	uchar buff[FEC_MAX_PKT_SIZE];
791 
792 	/*
793 	 * Check if any critical events have happened
794 	 */
795 	ievent = readl(&fec->eth->ievent);
796 	writel(ievent, &fec->eth->ievent);
797 	debug("fec_recv: ievent 0x%lx\n", ievent);
798 	if (ievent & FEC_IEVENT_BABR) {
799 		fec_halt(dev);
800 		fec_init(dev, fec->bd);
801 		printf("some error: 0x%08lx\n", ievent);
802 		return 0;
803 	}
804 	if (ievent & FEC_IEVENT_HBERR) {
805 		/* Heartbeat error */
806 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
807 				&fec->eth->x_cntrl);
808 	}
809 	if (ievent & FEC_IEVENT_GRA) {
810 		/* Graceful stop complete */
811 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
812 			fec_halt(dev);
813 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
814 					&fec->eth->x_cntrl);
815 			fec_init(dev, fec->bd);
816 		}
817 	}
818 
819 	/*
820 	 * Read the buffer status. Before the status can be read, the data cache
821 	 * must be invalidated, because the data in RAM might have been changed
822 	 * by DMA. The descriptors are properly aligned to cachelines so there's
823 	 * no need to worry they'd overlap.
824 	 *
825 	 * WARNING: By invalidating the descriptor here, we also invalidate
826 	 * the descriptors surrounding this one. Therefore we can NOT change the
827 	 * contents of this descriptor nor the surrounding ones. The problem is
828 	 * that in order to mark the descriptor as processed, we need to change
829 	 * the descriptor. The solution is to mark the whole cache line when all
830 	 * descriptors in the cache line are processed.
831 	 */
832 	addr = (uint32_t)rbd;
833 	addr &= ~(ARCH_DMA_MINALIGN - 1);
834 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
835 	invalidate_dcache_range(addr, addr + size);
836 
837 	bd_status = readw(&rbd->status);
838 	debug("fec_recv: status 0x%x\n", bd_status);
839 
840 	if (!(bd_status & FEC_RBD_EMPTY)) {
841 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
842 			((readw(&rbd->data_length) - 4) > 14)) {
843 			/*
844 			 * Get buffer address and size
845 			 */
846 			frame = (struct nbuf *)readl(&rbd->data_pointer);
847 			frame_length = readw(&rbd->data_length) - 4;
848 			/*
849 			 * Invalidate data cache over the buffer
850 			 */
851 			addr = (uint32_t)frame;
852 			size = roundup(frame_length, ARCH_DMA_MINALIGN);
853 			invalidate_dcache_range(addr, addr + size);
854 
855 			/*
856 			 *  Fill the buffer and pass it to upper layers
857 			 */
858 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
859 			swap_packet((uint32_t *)frame->data, frame_length);
860 #endif
861 			memcpy(buff, frame->data, frame_length);
862 			NetReceive(buff, frame_length);
863 			len = frame_length;
864 		} else {
865 			if (bd_status & FEC_RBD_ERR)
866 				printf("error frame: 0x%08lx 0x%08x\n",
867 						(ulong)rbd->data_pointer,
868 						bd_status);
869 		}
870 
871 		/*
872 		 * Free the current buffer, restart the engine and move forward
873 		 * to the next buffer. Here we check if the whole cacheline of
874 		 * descriptors was already processed and if so, we mark it free
875 		 * as whole.
876 		 */
877 		size = RXDESC_PER_CACHELINE - 1;
878 		if ((fec->rbd_index & size) == size) {
879 			i = fec->rbd_index - size;
880 			addr = (uint32_t)&fec->rbd_base[i];
881 			for (; i <= fec->rbd_index ; i++) {
882 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
883 					      &fec->rbd_base[i]);
884 			}
885 			flush_dcache_range(addr,
886 				addr + ARCH_DMA_MINALIGN);
887 		}
888 
889 		fec_rx_task_enable(fec);
890 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
891 	}
892 	debug("fec_recv: stop\n");
893 
894 	return len;
895 }
896 
897 static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
898 {
899 	struct eth_device *edev;
900 	struct fec_priv *fec;
901 	struct mii_dev *bus;
902 	unsigned char ethaddr[6];
903 	uint32_t start;
904 	int ret = 0;
905 
906 	/* create and fill edev struct */
907 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
908 	if (!edev) {
909 		puts("fec_mxc: not enough malloc memory for eth_device\n");
910 		ret = -ENOMEM;
911 		goto err1;
912 	}
913 
914 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
915 	if (!fec) {
916 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
917 		ret = -ENOMEM;
918 		goto err2;
919 	}
920 
921 	memset(edev, 0, sizeof(*edev));
922 	memset(fec, 0, sizeof(*fec));
923 
924 	edev->priv = fec;
925 	edev->init = fec_init;
926 	edev->send = fec_send;
927 	edev->recv = fec_recv;
928 	edev->halt = fec_halt;
929 	edev->write_hwaddr = fec_set_hwaddr;
930 
931 	fec->eth = (struct ethernet_regs *)base_addr;
932 	fec->bd = bd;
933 
934 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
935 
936 	/* Reset chip. */
937 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
938 	start = get_timer(0);
939 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
940 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
941 			printf("FEC MXC: Timeout reseting chip\n");
942 			goto err3;
943 		}
944 		udelay(10);
945 	}
946 
947 	fec_reg_setup(fec);
948 	fec_mii_setspeed(fec);
949 
950 	if (dev_id == -1) {
951 		sprintf(edev->name, "FEC");
952 		fec->dev_id = 0;
953 	} else {
954 		sprintf(edev->name, "FEC%i", dev_id);
955 		fec->dev_id = dev_id;
956 	}
957 	fec->phy_id = phy_id;
958 
959 	bus = mdio_alloc();
960 	if (!bus) {
961 		printf("mdio_alloc failed\n");
962 		ret = -ENOMEM;
963 		goto err3;
964 	}
965 	bus->read = fec_phy_read;
966 	bus->write = fec_phy_write;
967 	sprintf(bus->name, edev->name);
968 #ifdef CONFIG_MX28
969 	/*
970 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
971 	 * Only the first one can access the MDIO bus.
972 	 */
973 	bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE;
974 #else
975 	bus->priv = fec->eth;
976 #endif
977 	ret = mdio_register(bus);
978 	if (ret) {
979 		printf("mdio_register failed\n");
980 		free(bus);
981 		ret = -ENOMEM;
982 		goto err3;
983 	}
984 	fec->bus = bus;
985 	eth_register(edev);
986 
987 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
988 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
989 		memcpy(edev->enetaddr, ethaddr, 6);
990 	}
991 	/* Configure phy */
992 	fec_eth_phy_config(edev);
993 	return ret;
994 
995 err3:
996 	free(fec);
997 err2:
998 	free(edev);
999 err1:
1000 	return ret;
1001 }
1002 
1003 #ifndef CONFIG_FEC_MXC_MULTI
1004 int fecmxc_initialize(bd_t *bd)
1005 {
1006 	int lout = 1;
1007 
1008 	debug("eth_init: fec_probe(bd)\n");
1009 	lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
1010 
1011 	return lout;
1012 }
1013 #endif
1014 
1015 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1016 {
1017 	int lout = 1;
1018 
1019 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1020 	lout = fec_probe(bd, dev_id, phy_id, addr);
1021 
1022 	return lout;
1023 }
1024 
1025 #ifndef CONFIG_PHYLIB
1026 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1027 {
1028 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1029 	fec->mii_postcall = cb;
1030 	return 0;
1031 }
1032 #endif
1033