1 /* 2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> 3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> 4 * (C) Copyright 2008 Armadeus Systems nc 5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> 6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of 11 * the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 21 * MA 02111-1307 USA 22 */ 23 24 #include <common.h> 25 #include <malloc.h> 26 #include <net.h> 27 #include <miiphy.h> 28 #include "fec_mxc.h" 29 30 #include <asm/arch/clock.h> 31 #include <asm/arch/imx-regs.h> 32 #include <asm/io.h> 33 #include <asm/errno.h> 34 35 DECLARE_GLOBAL_DATA_PTR; 36 37 #ifndef CONFIG_MII 38 #error "CONFIG_MII has to be defined!" 39 #endif 40 41 #ifndef CONFIG_FEC_XCV_TYPE 42 #define CONFIG_FEC_XCV_TYPE MII100 43 #endif 44 45 /* 46 * The i.MX28 operates with packets in big endian. We need to swap them before 47 * sending and after receiving. 48 */ 49 #ifdef CONFIG_MX28 50 #define CONFIG_FEC_MXC_SWAP_PACKET 51 #endif 52 53 #undef DEBUG 54 55 struct nbuf { 56 uint8_t data[1500]; /**< actual data */ 57 int length; /**< actual length */ 58 int used; /**< buffer in use or not */ 59 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */ 60 }; 61 62 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 63 static void swap_packet(uint32_t *packet, int length) 64 { 65 int i; 66 67 for (i = 0; i < DIV_ROUND_UP(length, 4); i++) 68 packet[i] = __swab32(packet[i]); 69 } 70 #endif 71 72 /* 73 * The i.MX28 has two ethernet interfaces, but they are not equal. 74 * Only the first one can access the MDIO bus. 75 */ 76 #ifdef CONFIG_MX28 77 static inline struct ethernet_regs *fec_miiphy_fec_to_eth(struct fec_priv *fec) 78 { 79 return (struct ethernet_regs *)MXS_ENET0_BASE; 80 } 81 #else 82 static inline struct ethernet_regs *fec_miiphy_fec_to_eth(struct fec_priv *fec) 83 { 84 return fec->eth; 85 } 86 #endif 87 88 /* 89 * MII-interface related functions 90 */ 91 static int fec_miiphy_read(const char *dev, uint8_t phyAddr, uint8_t regAddr, 92 uint16_t *retVal) 93 { 94 struct eth_device *edev = eth_get_dev_by_name(dev); 95 struct fec_priv *fec = (struct fec_priv *)edev->priv; 96 struct ethernet_regs *eth = fec_miiphy_fec_to_eth(fec); 97 98 uint32_t reg; /* convenient holder for the PHY register */ 99 uint32_t phy; /* convenient holder for the PHY */ 100 uint32_t start; 101 102 /* 103 * reading from any PHY's register is done by properly 104 * programming the FEC's MII data register. 105 */ 106 writel(FEC_IEVENT_MII, ð->ievent); 107 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 108 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 109 110 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | 111 phy | reg, ð->mii_data); 112 113 /* 114 * wait for the related interrupt 115 */ 116 start = get_timer(0); 117 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 118 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 119 printf("Read MDIO failed...\n"); 120 return -1; 121 } 122 } 123 124 /* 125 * clear mii interrupt bit 126 */ 127 writel(FEC_IEVENT_MII, ð->ievent); 128 129 /* 130 * it's now safe to read the PHY's register 131 */ 132 *retVal = readl(ð->mii_data); 133 debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr, 134 regAddr, *retVal); 135 return 0; 136 } 137 138 static void fec_mii_setspeed(struct fec_priv *fec) 139 { 140 /* 141 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock 142 * and do not drop the Preamble. 143 */ 144 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1, 145 &fec->eth->mii_speed); 146 debug("fec_init: mii_speed %08x\n", 147 readl(&fec->eth->mii_speed)); 148 } 149 static int fec_miiphy_write(const char *dev, uint8_t phyAddr, uint8_t regAddr, 150 uint16_t data) 151 { 152 struct eth_device *edev = eth_get_dev_by_name(dev); 153 struct fec_priv *fec = (struct fec_priv *)edev->priv; 154 struct ethernet_regs *eth = fec_miiphy_fec_to_eth(fec); 155 156 uint32_t reg; /* convenient holder for the PHY register */ 157 uint32_t phy; /* convenient holder for the PHY */ 158 uint32_t start; 159 160 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 161 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 162 163 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | 164 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); 165 166 /* 167 * wait for the MII interrupt 168 */ 169 start = get_timer(0); 170 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 171 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 172 printf("Write MDIO failed...\n"); 173 return -1; 174 } 175 } 176 177 /* 178 * clear MII interrupt bit 179 */ 180 writel(FEC_IEVENT_MII, ð->ievent); 181 debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr, 182 regAddr, data); 183 184 return 0; 185 } 186 187 static int miiphy_restart_aneg(struct eth_device *dev) 188 { 189 struct fec_priv *fec = (struct fec_priv *)dev->priv; 190 int ret = 0; 191 192 /* 193 * Wake up from sleep if necessary 194 * Reset PHY, then delay 300ns 195 */ 196 #ifdef CONFIG_MX27 197 miiphy_write(dev->name, fec->phy_id, MII_DCOUNTER, 0x00FF); 198 #endif 199 miiphy_write(dev->name, fec->phy_id, MII_BMCR, 200 BMCR_RESET); 201 udelay(1000); 202 203 /* 204 * Set the auto-negotiation advertisement register bits 205 */ 206 miiphy_write(dev->name, fec->phy_id, MII_ADVERTISE, 207 LPA_100FULL | LPA_100HALF | LPA_10FULL | 208 LPA_10HALF | PHY_ANLPAR_PSB_802_3); 209 miiphy_write(dev->name, fec->phy_id, MII_BMCR, 210 BMCR_ANENABLE | BMCR_ANRESTART); 211 212 if (fec->mii_postcall) 213 ret = fec->mii_postcall(fec->phy_id); 214 215 return ret; 216 } 217 218 static int miiphy_wait_aneg(struct eth_device *dev) 219 { 220 uint32_t start; 221 uint16_t status; 222 struct fec_priv *fec = (struct fec_priv *)dev->priv; 223 224 /* 225 * Wait for AN completion 226 */ 227 start = get_timer(0); 228 do { 229 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 230 printf("%s: Autonegotiation timeout\n", dev->name); 231 return -1; 232 } 233 234 if (miiphy_read(dev->name, fec->phy_id, 235 MII_BMSR, &status)) { 236 printf("%s: Autonegotiation failed. status: 0x%04x\n", 237 dev->name, status); 238 return -1; 239 } 240 } while (!(status & BMSR_LSTATUS)); 241 242 return 0; 243 } 244 static int fec_rx_task_enable(struct fec_priv *fec) 245 { 246 writel(1 << 24, &fec->eth->r_des_active); 247 return 0; 248 } 249 250 static int fec_rx_task_disable(struct fec_priv *fec) 251 { 252 return 0; 253 } 254 255 static int fec_tx_task_enable(struct fec_priv *fec) 256 { 257 writel(1 << 24, &fec->eth->x_des_active); 258 return 0; 259 } 260 261 static int fec_tx_task_disable(struct fec_priv *fec) 262 { 263 return 0; 264 } 265 266 /** 267 * Initialize receive task's buffer descriptors 268 * @param[in] fec all we know about the device yet 269 * @param[in] count receive buffer count to be allocated 270 * @param[in] size size of each receive buffer 271 * @return 0 on success 272 * 273 * For this task we need additional memory for the data buffers. And each 274 * data buffer requires some alignment. Thy must be aligned to a specific 275 * boundary each (DB_DATA_ALIGNMENT). 276 */ 277 static int fec_rbd_init(struct fec_priv *fec, int count, int size) 278 { 279 int ix; 280 uint32_t p = 0; 281 282 /* reserve data memory and consider alignment */ 283 if (fec->rdb_ptr == NULL) 284 fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT); 285 p = (uint32_t)fec->rdb_ptr; 286 if (!p) { 287 puts("fec_mxc: not enough malloc memory\n"); 288 return -ENOMEM; 289 } 290 memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT); 291 p += DB_DATA_ALIGNMENT-1; 292 p &= ~(DB_DATA_ALIGNMENT-1); 293 294 for (ix = 0; ix < count; ix++) { 295 writel(p, &fec->rbd_base[ix].data_pointer); 296 p += size; 297 writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status); 298 writew(0, &fec->rbd_base[ix].data_length); 299 } 300 /* 301 * mark the last RBD to close the ring 302 */ 303 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status); 304 fec->rbd_index = 0; 305 306 return 0; 307 } 308 309 /** 310 * Initialize transmit task's buffer descriptors 311 * @param[in] fec all we know about the device yet 312 * 313 * Transmit buffers are created externally. We only have to init the BDs here.\n 314 * Note: There is a race condition in the hardware. When only one BD is in 315 * use it must be marked with the WRAP bit to use it for every transmitt. 316 * This bit in combination with the READY bit results into double transmit 317 * of each data buffer. It seems the state machine checks READY earlier then 318 * resetting it after the first transfer. 319 * Using two BDs solves this issue. 320 */ 321 static void fec_tbd_init(struct fec_priv *fec) 322 { 323 writew(0x0000, &fec->tbd_base[0].status); 324 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status); 325 fec->tbd_index = 0; 326 } 327 328 /** 329 * Mark the given read buffer descriptor as free 330 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 331 * @param[in] pRbd buffer descriptor to mark free again 332 */ 333 static void fec_rbd_clean(int last, struct fec_bd *pRbd) 334 { 335 /* 336 * Reset buffer descriptor as empty 337 */ 338 if (last) 339 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status); 340 else 341 writew(FEC_RBD_EMPTY, &pRbd->status); 342 /* 343 * no data in it 344 */ 345 writew(0, &pRbd->data_length); 346 } 347 348 static int fec_get_hwaddr(struct eth_device *dev, int dev_id, 349 unsigned char *mac) 350 { 351 imx_get_mac_from_fuse(dev_id, mac); 352 return !is_valid_ether_addr(mac); 353 } 354 355 static int fec_set_hwaddr(struct eth_device *dev) 356 { 357 uchar *mac = dev->enetaddr; 358 struct fec_priv *fec = (struct fec_priv *)dev->priv; 359 360 writel(0, &fec->eth->iaddr1); 361 writel(0, &fec->eth->iaddr2); 362 writel(0, &fec->eth->gaddr1); 363 writel(0, &fec->eth->gaddr2); 364 365 /* 366 * Set physical address 367 */ 368 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], 369 &fec->eth->paddr1); 370 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); 371 372 return 0; 373 } 374 375 /** 376 * Start the FEC engine 377 * @param[in] dev Our device to handle 378 */ 379 static int fec_open(struct eth_device *edev) 380 { 381 struct fec_priv *fec = (struct fec_priv *)edev->priv; 382 383 debug("fec_open: fec_open(dev)\n"); 384 /* full-duplex, heartbeat disabled */ 385 writel(1 << 2, &fec->eth->x_cntrl); 386 fec->rbd_index = 0; 387 388 #if defined(CONFIG_MX6Q) 389 /* Enable ENET HW endian SWAP */ 390 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, 391 &fec->eth->ecntrl); 392 /* Enable ENET store and forward mode */ 393 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, 394 &fec->eth->x_wmrk); 395 #endif 396 /* 397 * Enable FEC-Lite controller 398 */ 399 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, 400 &fec->eth->ecntrl); 401 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) 402 udelay(100); 403 /* 404 * setup the MII gasket for RMII mode 405 */ 406 407 /* disable the gasket */ 408 writew(0, &fec->eth->miigsk_enr); 409 410 /* wait for the gasket to be disabled */ 411 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) 412 udelay(2); 413 414 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ 415 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); 416 417 /* re-enable the gasket */ 418 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); 419 420 /* wait until MII gasket is ready */ 421 int max_loops = 10; 422 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { 423 if (--max_loops <= 0) { 424 printf("WAIT for MII Gasket ready timed out\n"); 425 break; 426 } 427 } 428 #endif 429 430 miiphy_wait_aneg(edev); 431 miiphy_speed(edev->name, fec->phy_id); 432 miiphy_duplex(edev->name, fec->phy_id); 433 434 /* 435 * Enable SmartDMA receive task 436 */ 437 fec_rx_task_enable(fec); 438 439 udelay(100000); 440 return 0; 441 } 442 443 static int fec_init(struct eth_device *dev, bd_t* bd) 444 { 445 uint32_t base; 446 struct fec_priv *fec = (struct fec_priv *)dev->priv; 447 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; 448 uint32_t rcntrl; 449 int i; 450 451 /* Initialize MAC address */ 452 fec_set_hwaddr(dev); 453 454 /* 455 * reserve memory for both buffer descriptor chains at once 456 * Datasheet forces the startaddress of each chain is 16 byte 457 * aligned 458 */ 459 if (fec->base_ptr == NULL) 460 fec->base_ptr = malloc((2 + FEC_RBD_NUM) * 461 sizeof(struct fec_bd) + DB_ALIGNMENT); 462 base = (uint32_t)fec->base_ptr; 463 if (!base) { 464 puts("fec_mxc: not enough malloc memory\n"); 465 return -ENOMEM; 466 } 467 memset((void *)base, 0, (2 + FEC_RBD_NUM) * 468 sizeof(struct fec_bd) + DB_ALIGNMENT); 469 base += (DB_ALIGNMENT-1); 470 base &= ~(DB_ALIGNMENT-1); 471 472 fec->rbd_base = (struct fec_bd *)base; 473 474 base += FEC_RBD_NUM * sizeof(struct fec_bd); 475 476 fec->tbd_base = (struct fec_bd *)base; 477 478 /* 479 * Set interrupt mask register 480 */ 481 writel(0x00000000, &fec->eth->imask); 482 483 /* 484 * Clear FEC-Lite interrupt event register(IEVENT) 485 */ 486 writel(0xffffffff, &fec->eth->ievent); 487 488 489 /* 490 * Set FEC-Lite receive control register(R_CNTRL): 491 */ 492 493 /* Start with frame length = 1518, common for all modes. */ 494 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; 495 if (fec->xcv_type == SEVENWIRE) 496 rcntrl |= FEC_RCNTRL_FCE; 497 else if (fec->xcv_type == RGMII) 498 rcntrl |= FEC_RCNTRL_RGMII; 499 else if (fec->xcv_type == RMII) 500 rcntrl |= FEC_RCNTRL_RMII; 501 else /* MII mode */ 502 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; 503 504 writel(rcntrl, &fec->eth->r_cntrl); 505 506 if (fec->xcv_type == MII10 || fec->xcv_type == MII100) 507 fec_mii_setspeed(fec); 508 509 /* 510 * Set Opcode/Pause Duration Register 511 */ 512 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ 513 writel(0x2, &fec->eth->x_wmrk); 514 /* 515 * Set multicast address filter 516 */ 517 writel(0x00000000, &fec->eth->gaddr1); 518 writel(0x00000000, &fec->eth->gaddr2); 519 520 521 /* clear MIB RAM */ 522 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) 523 writel(0, i); 524 525 /* FIFO receive start register */ 526 writel(0x520, &fec->eth->r_fstart); 527 528 /* size and address of each buffer */ 529 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); 530 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); 531 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); 532 533 /* 534 * Initialize RxBD/TxBD rings 535 */ 536 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) { 537 free(fec->base_ptr); 538 fec->base_ptr = NULL; 539 return -ENOMEM; 540 } 541 fec_tbd_init(fec); 542 543 544 if (fec->xcv_type != SEVENWIRE) 545 miiphy_restart_aneg(dev); 546 547 fec_open(dev); 548 return 0; 549 } 550 551 /** 552 * Halt the FEC engine 553 * @param[in] dev Our device to handle 554 */ 555 static void fec_halt(struct eth_device *dev) 556 { 557 struct fec_priv *fec = (struct fec_priv *)dev->priv; 558 int counter = 0xffff; 559 560 /* 561 * issue graceful stop command to the FEC transmitter if necessary 562 */ 563 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), 564 &fec->eth->x_cntrl); 565 566 debug("eth_halt: wait for stop regs\n"); 567 /* 568 * wait for graceful stop to register 569 */ 570 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) 571 udelay(1); 572 573 /* 574 * Disable SmartDMA tasks 575 */ 576 fec_tx_task_disable(fec); 577 fec_rx_task_disable(fec); 578 579 /* 580 * Disable the Ethernet Controller 581 * Note: this will also reset the BD index counter! 582 */ 583 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, 584 &fec->eth->ecntrl); 585 fec->rbd_index = 0; 586 fec->tbd_index = 0; 587 debug("eth_halt: done\n"); 588 } 589 590 /** 591 * Transmit one frame 592 * @param[in] dev Our ethernet device to handle 593 * @param[in] packet Pointer to the data to be transmitted 594 * @param[in] length Data count in bytes 595 * @return 0 on success 596 */ 597 static int fec_send(struct eth_device *dev, volatile void* packet, int length) 598 { 599 unsigned int status; 600 601 /* 602 * This routine transmits one frame. This routine only accepts 603 * 6-byte Ethernet addresses. 604 */ 605 struct fec_priv *fec = (struct fec_priv *)dev->priv; 606 607 /* 608 * Check for valid length of data. 609 */ 610 if ((length > 1500) || (length <= 0)) { 611 printf("Payload (%d) too large\n", length); 612 return -1; 613 } 614 615 /* 616 * Setup the transmit buffer 617 * Note: We are always using the first buffer for transmission, 618 * the second will be empty and only used to stop the DMA engine 619 */ 620 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 621 swap_packet((uint32_t *)packet, length); 622 #endif 623 writew(length, &fec->tbd_base[fec->tbd_index].data_length); 624 writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer); 625 /* 626 * update BD's status now 627 * This block: 628 * - is always the last in a chain (means no chain) 629 * - should transmitt the CRC 630 * - might be the last BD in the list, so the address counter should 631 * wrap (-> keep the WRAP flag) 632 */ 633 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; 634 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; 635 writew(status, &fec->tbd_base[fec->tbd_index].status); 636 637 /* 638 * Enable SmartDMA transmit task 639 */ 640 fec_tx_task_enable(fec); 641 642 /* 643 * wait until frame is sent . 644 */ 645 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) { 646 udelay(1); 647 } 648 debug("fec_send: status 0x%x index %d\n", 649 readw(&fec->tbd_base[fec->tbd_index].status), 650 fec->tbd_index); 651 /* for next transmission use the other buffer */ 652 if (fec->tbd_index) 653 fec->tbd_index = 0; 654 else 655 fec->tbd_index = 1; 656 657 return 0; 658 } 659 660 /** 661 * Pull one frame from the card 662 * @param[in] dev Our ethernet device to handle 663 * @return Length of packet read 664 */ 665 static int fec_recv(struct eth_device *dev) 666 { 667 struct fec_priv *fec = (struct fec_priv *)dev->priv; 668 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; 669 unsigned long ievent; 670 int frame_length, len = 0; 671 struct nbuf *frame; 672 uint16_t bd_status; 673 uchar buff[FEC_MAX_PKT_SIZE]; 674 675 /* 676 * Check if any critical events have happened 677 */ 678 ievent = readl(&fec->eth->ievent); 679 writel(ievent, &fec->eth->ievent); 680 debug("fec_recv: ievent 0x%lx\n", ievent); 681 if (ievent & FEC_IEVENT_BABR) { 682 fec_halt(dev); 683 fec_init(dev, fec->bd); 684 printf("some error: 0x%08lx\n", ievent); 685 return 0; 686 } 687 if (ievent & FEC_IEVENT_HBERR) { 688 /* Heartbeat error */ 689 writel(0x00000001 | readl(&fec->eth->x_cntrl), 690 &fec->eth->x_cntrl); 691 } 692 if (ievent & FEC_IEVENT_GRA) { 693 /* Graceful stop complete */ 694 if (readl(&fec->eth->x_cntrl) & 0x00000001) { 695 fec_halt(dev); 696 writel(~0x00000001 & readl(&fec->eth->x_cntrl), 697 &fec->eth->x_cntrl); 698 fec_init(dev, fec->bd); 699 } 700 } 701 702 /* 703 * ensure reading the right buffer status 704 */ 705 bd_status = readw(&rbd->status); 706 debug("fec_recv: status 0x%x\n", bd_status); 707 708 if (!(bd_status & FEC_RBD_EMPTY)) { 709 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && 710 ((readw(&rbd->data_length) - 4) > 14)) { 711 /* 712 * Get buffer address and size 713 */ 714 frame = (struct nbuf *)readl(&rbd->data_pointer); 715 frame_length = readw(&rbd->data_length) - 4; 716 /* 717 * Fill the buffer and pass it to upper layers 718 */ 719 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 720 swap_packet((uint32_t *)frame->data, frame_length); 721 #endif 722 memcpy(buff, frame->data, frame_length); 723 NetReceive(buff, frame_length); 724 len = frame_length; 725 } else { 726 if (bd_status & FEC_RBD_ERR) 727 printf("error frame: 0x%08lx 0x%08x\n", 728 (ulong)rbd->data_pointer, 729 bd_status); 730 } 731 /* 732 * free the current buffer, restart the engine 733 * and move forward to the next buffer 734 */ 735 fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd); 736 fec_rx_task_enable(fec); 737 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; 738 } 739 debug("fec_recv: stop\n"); 740 741 return len; 742 } 743 744 static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr) 745 { 746 struct eth_device *edev; 747 struct fec_priv *fec; 748 unsigned char ethaddr[6]; 749 uint32_t start; 750 int ret = 0; 751 752 /* create and fill edev struct */ 753 edev = (struct eth_device *)malloc(sizeof(struct eth_device)); 754 if (!edev) { 755 puts("fec_mxc: not enough malloc memory for eth_device\n"); 756 ret = -ENOMEM; 757 goto err1; 758 } 759 760 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); 761 if (!fec) { 762 puts("fec_mxc: not enough malloc memory for fec_priv\n"); 763 ret = -ENOMEM; 764 goto err2; 765 } 766 767 memset(edev, 0, sizeof(*edev)); 768 memset(fec, 0, sizeof(*fec)); 769 770 edev->priv = fec; 771 edev->init = fec_init; 772 edev->send = fec_send; 773 edev->recv = fec_recv; 774 edev->halt = fec_halt; 775 edev->write_hwaddr = fec_set_hwaddr; 776 777 fec->eth = (struct ethernet_regs *)base_addr; 778 fec->bd = bd; 779 780 fec->xcv_type = CONFIG_FEC_XCV_TYPE; 781 782 /* Reset chip. */ 783 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); 784 start = get_timer(0); 785 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { 786 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 787 printf("FEC MXC: Timeout reseting chip\n"); 788 goto err3; 789 } 790 udelay(10); 791 } 792 793 /* 794 * Set interrupt mask register 795 */ 796 writel(0x00000000, &fec->eth->imask); 797 798 /* 799 * Clear FEC-Lite interrupt event register(IEVENT) 800 */ 801 writel(0xffffffff, &fec->eth->ievent); 802 803 /* 804 * Set FEC-Lite receive control register(R_CNTRL): 805 */ 806 /* 807 * Frame length=1518; MII mode; 808 */ 809 writel((PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT) | FEC_RCNTRL_FCE | 810 FEC_RCNTRL_MII_MODE, &fec->eth->r_cntrl); 811 fec_mii_setspeed(fec); 812 813 if (dev_id == -1) { 814 sprintf(edev->name, "FEC"); 815 fec->dev_id = 0; 816 } else { 817 sprintf(edev->name, "FEC%i", dev_id); 818 fec->dev_id = dev_id; 819 } 820 fec->phy_id = phy_id; 821 822 miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write); 823 824 eth_register(edev); 825 826 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) { 827 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr); 828 memcpy(edev->enetaddr, ethaddr, 6); 829 } 830 831 return ret; 832 833 err3: 834 free(fec); 835 err2: 836 free(edev); 837 err1: 838 return ret; 839 } 840 841 #ifndef CONFIG_FEC_MXC_MULTI 842 int fecmxc_initialize(bd_t *bd) 843 { 844 int lout = 1; 845 846 debug("eth_init: fec_probe(bd)\n"); 847 lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE); 848 849 return lout; 850 } 851 #endif 852 853 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) 854 { 855 int lout = 1; 856 857 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); 858 lout = fec_probe(bd, dev_id, phy_id, addr); 859 860 return lout; 861 } 862 863 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) 864 { 865 struct fec_priv *fec = (struct fec_priv *)dev->priv; 866 fec->mii_postcall = cb; 867 return 0; 868 } 869