xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 702e6014)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29 
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34 
35 DECLARE_GLOBAL_DATA_PTR;
36 
37 #ifndef CONFIG_MII
38 #error "CONFIG_MII has to be defined!"
39 #endif
40 
41 #ifndef CONFIG_FEC_XCV_TYPE
42 #define CONFIG_FEC_XCV_TYPE MII100
43 #endif
44 
45 /*
46  * The i.MX28 operates with packets in big endian. We need to swap them before
47  * sending and after receiving.
48  */
49 #ifdef CONFIG_MX28
50 #define CONFIG_FEC_MXC_SWAP_PACKET
51 #endif
52 
53 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
54 
55 /* Check various alignment issues at compile time */
56 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
57 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
58 #endif
59 
60 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
61 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
62 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
63 #endif
64 
65 #undef DEBUG
66 
67 struct nbuf {
68 	uint8_t data[1500];	/**< actual data */
69 	int length;		/**< actual length */
70 	int used;		/**< buffer in use or not */
71 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
72 };
73 
74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
75 static void swap_packet(uint32_t *packet, int length)
76 {
77 	int i;
78 
79 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 		packet[i] = __swab32(packet[i]);
81 }
82 #endif
83 
84 /*
85  * MII-interface related functions
86  */
87 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
88 		uint8_t regAddr)
89 {
90 	uint32_t reg;		/* convenient holder for the PHY register */
91 	uint32_t phy;		/* convenient holder for the PHY */
92 	uint32_t start;
93 	int val;
94 
95 	/*
96 	 * reading from any PHY's register is done by properly
97 	 * programming the FEC's MII data register.
98 	 */
99 	writel(FEC_IEVENT_MII, &eth->ievent);
100 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
101 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
102 
103 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
104 			phy | reg, &eth->mii_data);
105 
106 	/*
107 	 * wait for the related interrupt
108 	 */
109 	start = get_timer(0);
110 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
111 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
112 			printf("Read MDIO failed...\n");
113 			return -1;
114 		}
115 	}
116 
117 	/*
118 	 * clear mii interrupt bit
119 	 */
120 	writel(FEC_IEVENT_MII, &eth->ievent);
121 
122 	/*
123 	 * it's now safe to read the PHY's register
124 	 */
125 	val = (unsigned short)readl(&eth->mii_data);
126 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
127 			regAddr, val);
128 	return val;
129 }
130 
131 static void fec_mii_setspeed(struct fec_priv *fec)
132 {
133 	/*
134 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
135 	 * and do not drop the Preamble.
136 	 */
137 	writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
138 			&fec->eth->mii_speed);
139 	debug("%s: mii_speed %08x\n", __func__, readl(&fec->eth->mii_speed));
140 }
141 
142 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
143 		uint8_t regAddr, uint16_t data)
144 {
145 	uint32_t reg;		/* convenient holder for the PHY register */
146 	uint32_t phy;		/* convenient holder for the PHY */
147 	uint32_t start;
148 
149 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
150 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
151 
152 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
153 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
154 
155 	/*
156 	 * wait for the MII interrupt
157 	 */
158 	start = get_timer(0);
159 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
160 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
161 			printf("Write MDIO failed...\n");
162 			return -1;
163 		}
164 	}
165 
166 	/*
167 	 * clear MII interrupt bit
168 	 */
169 	writel(FEC_IEVENT_MII, &eth->ievent);
170 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
171 			regAddr, data);
172 
173 	return 0;
174 }
175 
176 int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
177 {
178 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
179 }
180 
181 int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
182 		u16 data)
183 {
184 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
185 }
186 
187 #ifndef CONFIG_PHYLIB
188 static int miiphy_restart_aneg(struct eth_device *dev)
189 {
190 	int ret = 0;
191 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
192 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
193 	struct ethernet_regs *eth = fec->bus->priv;
194 
195 	/*
196 	 * Wake up from sleep if necessary
197 	 * Reset PHY, then delay 300ns
198 	 */
199 #ifdef CONFIG_MX27
200 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
201 #endif
202 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
203 	udelay(1000);
204 
205 	/*
206 	 * Set the auto-negotiation advertisement register bits
207 	 */
208 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
209 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
210 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
211 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
212 			BMCR_ANENABLE | BMCR_ANRESTART);
213 
214 	if (fec->mii_postcall)
215 		ret = fec->mii_postcall(fec->phy_id);
216 
217 #endif
218 	return ret;
219 }
220 
221 static int miiphy_wait_aneg(struct eth_device *dev)
222 {
223 	uint32_t start;
224 	int status;
225 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
226 	struct ethernet_regs *eth = fec->bus->priv;
227 
228 	/*
229 	 * Wait for AN completion
230 	 */
231 	start = get_timer(0);
232 	do {
233 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
234 			printf("%s: Autonegotiation timeout\n", dev->name);
235 			return -1;
236 		}
237 
238 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
239 		if (status < 0) {
240 			printf("%s: Autonegotiation failed. status: %d\n",
241 					dev->name, status);
242 			return -1;
243 		}
244 	} while (!(status & BMSR_LSTATUS));
245 
246 	return 0;
247 }
248 #endif
249 
250 static int fec_rx_task_enable(struct fec_priv *fec)
251 {
252 	writel(1 << 24, &fec->eth->r_des_active);
253 	return 0;
254 }
255 
256 static int fec_rx_task_disable(struct fec_priv *fec)
257 {
258 	return 0;
259 }
260 
261 static int fec_tx_task_enable(struct fec_priv *fec)
262 {
263 	writel(1 << 24, &fec->eth->x_des_active);
264 	return 0;
265 }
266 
267 static int fec_tx_task_disable(struct fec_priv *fec)
268 {
269 	return 0;
270 }
271 
272 /**
273  * Initialize receive task's buffer descriptors
274  * @param[in] fec all we know about the device yet
275  * @param[in] count receive buffer count to be allocated
276  * @param[in] dsize desired size of each receive buffer
277  * @return 0 on success
278  *
279  * For this task we need additional memory for the data buffers. And each
280  * data buffer requires some alignment. Thy must be aligned to a specific
281  * boundary each.
282  */
283 static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
284 {
285 	uint32_t size;
286 	int i;
287 
288 	/*
289 	 * Allocate memory for the buffers. This allocation respects the
290 	 * alignment
291 	 */
292 	size = roundup(dsize, ARCH_DMA_MINALIGN);
293 	for (i = 0; i < count; i++) {
294 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
295 		if (data_ptr == 0) {
296 			uint8_t *data = memalign(ARCH_DMA_MINALIGN,
297 						 size);
298 			if (!data) {
299 				printf("%s: error allocating rxbuf %d\n",
300 				       __func__, i);
301 				goto err;
302 			}
303 			writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
304 		} /* needs allocation */
305 		writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
306 		writew(0, &fec->rbd_base[i].data_length);
307 	}
308 
309 	/* Mark the last RBD to close the ring. */
310 	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
311 	fec->rbd_index = 0;
312 
313 	return 0;
314 
315 err:
316 	for (; i >= 0; i--) {
317 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
318 		free((void *)data_ptr);
319 	}
320 
321 	return -ENOMEM;
322 }
323 
324 /**
325  * Initialize transmit task's buffer descriptors
326  * @param[in] fec all we know about the device yet
327  *
328  * Transmit buffers are created externally. We only have to init the BDs here.\n
329  * Note: There is a race condition in the hardware. When only one BD is in
330  * use it must be marked with the WRAP bit to use it for every transmitt.
331  * This bit in combination with the READY bit results into double transmit
332  * of each data buffer. It seems the state machine checks READY earlier then
333  * resetting it after the first transfer.
334  * Using two BDs solves this issue.
335  */
336 static void fec_tbd_init(struct fec_priv *fec)
337 {
338 	unsigned addr = (unsigned)fec->tbd_base;
339 	unsigned size = roundup(2 * sizeof(struct fec_bd),
340 				ARCH_DMA_MINALIGN);
341 	writew(0x0000, &fec->tbd_base[0].status);
342 	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
343 	fec->tbd_index = 0;
344 	flush_dcache_range(addr, addr+size);
345 }
346 
347 /**
348  * Mark the given read buffer descriptor as free
349  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
350  * @param[in] pRbd buffer descriptor to mark free again
351  */
352 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
353 {
354 	unsigned short flags = FEC_RBD_EMPTY;
355 	if (last)
356 		flags |= FEC_RBD_WRAP;
357 	writew(flags, &pRbd->status);
358 	writew(0, &pRbd->data_length);
359 }
360 
361 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
362 						unsigned char *mac)
363 {
364 	imx_get_mac_from_fuse(dev_id, mac);
365 	return !is_valid_ether_addr(mac);
366 }
367 
368 static int fec_set_hwaddr(struct eth_device *dev)
369 {
370 	uchar *mac = dev->enetaddr;
371 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
372 
373 	writel(0, &fec->eth->iaddr1);
374 	writel(0, &fec->eth->iaddr2);
375 	writel(0, &fec->eth->gaddr1);
376 	writel(0, &fec->eth->gaddr2);
377 
378 	/*
379 	 * Set physical address
380 	 */
381 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
382 			&fec->eth->paddr1);
383 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
384 
385 	return 0;
386 }
387 
388 static void fec_eth_phy_config(struct eth_device *dev)
389 {
390 #ifdef CONFIG_PHYLIB
391 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
392 	struct phy_device *phydev;
393 
394 	phydev = phy_connect(fec->bus, fec->phy_id, dev,
395 			PHY_INTERFACE_MODE_RGMII);
396 	if (phydev) {
397 		fec->phydev = phydev;
398 		phy_config(phydev);
399 	}
400 #endif
401 }
402 
403 /*
404  * Do initial configuration of the FEC registers
405  */
406 static void fec_reg_setup(struct fec_priv *fec)
407 {
408 	uint32_t rcntrl;
409 
410 	/*
411 	 * Set interrupt mask register
412 	 */
413 	writel(0x00000000, &fec->eth->imask);
414 
415 	/*
416 	 * Clear FEC-Lite interrupt event register(IEVENT)
417 	 */
418 	writel(0xffffffff, &fec->eth->ievent);
419 
420 
421 	/*
422 	 * Set FEC-Lite receive control register(R_CNTRL):
423 	 */
424 
425 	/* Start with frame length = 1518, common for all modes. */
426 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
427 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
428 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
429 	if (fec->xcv_type == RGMII)
430 		rcntrl |= FEC_RCNTRL_RGMII;
431 	else if (fec->xcv_type == RMII)
432 		rcntrl |= FEC_RCNTRL_RMII;
433 
434 	writel(rcntrl, &fec->eth->r_cntrl);
435 }
436 
437 /**
438  * Start the FEC engine
439  * @param[in] dev Our device to handle
440  */
441 static int fec_open(struct eth_device *edev)
442 {
443 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
444 	int speed;
445 	uint32_t addr, size;
446 	int i;
447 
448 	debug("fec_open: fec_open(dev)\n");
449 	/* full-duplex, heartbeat disabled */
450 	writel(1 << 2, &fec->eth->x_cntrl);
451 	fec->rbd_index = 0;
452 
453 	/* Invalidate all descriptors */
454 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
455 		fec_rbd_clean(0, &fec->rbd_base[i]);
456 	fec_rbd_clean(1, &fec->rbd_base[i]);
457 
458 	/* Flush the descriptors into RAM */
459 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
460 			ARCH_DMA_MINALIGN);
461 	addr = (uint32_t)fec->rbd_base;
462 	flush_dcache_range(addr, addr + size);
463 
464 #ifdef FEC_QUIRK_ENET_MAC
465 	/* Enable ENET HW endian SWAP */
466 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
467 		&fec->eth->ecntrl);
468 	/* Enable ENET store and forward mode */
469 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
470 		&fec->eth->x_wmrk);
471 #endif
472 	/*
473 	 * Enable FEC-Lite controller
474 	 */
475 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
476 		&fec->eth->ecntrl);
477 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
478 	udelay(100);
479 	/*
480 	 * setup the MII gasket for RMII mode
481 	 */
482 
483 	/* disable the gasket */
484 	writew(0, &fec->eth->miigsk_enr);
485 
486 	/* wait for the gasket to be disabled */
487 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
488 		udelay(2);
489 
490 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
491 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
492 
493 	/* re-enable the gasket */
494 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
495 
496 	/* wait until MII gasket is ready */
497 	int max_loops = 10;
498 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
499 		if (--max_loops <= 0) {
500 			printf("WAIT for MII Gasket ready timed out\n");
501 			break;
502 		}
503 	}
504 #endif
505 
506 #ifdef CONFIG_PHYLIB
507 	if (!fec->phydev)
508 		fec_eth_phy_config(edev);
509 	if (fec->phydev) {
510 		/* Start up the PHY */
511 		int ret = phy_startup(fec->phydev);
512 
513 		if (ret) {
514 			printf("Could not initialize PHY %s\n",
515 			       fec->phydev->dev->name);
516 			return ret;
517 		}
518 		speed = fec->phydev->speed;
519 	} else {
520 		speed = _100BASET;
521 	}
522 #else
523 	miiphy_wait_aneg(edev);
524 	speed = miiphy_speed(edev->name, fec->phy_id);
525 	miiphy_duplex(edev->name, fec->phy_id);
526 #endif
527 
528 #ifdef FEC_QUIRK_ENET_MAC
529 	{
530 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
531 		u32 rcr = (readl(&fec->eth->r_cntrl) &
532 				~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
533 				FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
534 		if (speed == _1000BASET)
535 			ecr |= FEC_ECNTRL_SPEED;
536 		else if (speed != _100BASET)
537 			rcr |= FEC_RCNTRL_RMII_10T;
538 		writel(ecr, &fec->eth->ecntrl);
539 		writel(rcr, &fec->eth->r_cntrl);
540 	}
541 #endif
542 	debug("%s:Speed=%i\n", __func__, speed);
543 
544 	/*
545 	 * Enable SmartDMA receive task
546 	 */
547 	fec_rx_task_enable(fec);
548 
549 	udelay(100000);
550 	return 0;
551 }
552 
553 static int fec_init(struct eth_device *dev, bd_t* bd)
554 {
555 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
556 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
557 	uint32_t size;
558 	int i, ret;
559 
560 	/* Initialize MAC address */
561 	fec_set_hwaddr(dev);
562 
563 	/*
564 	 * Allocate transmit descriptors, there are two in total. This
565 	 * allocation respects cache alignment.
566 	 */
567 	if (!fec->tbd_base) {
568 		size = roundup(2 * sizeof(struct fec_bd),
569 				ARCH_DMA_MINALIGN);
570 		fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
571 		if (!fec->tbd_base) {
572 			ret = -ENOMEM;
573 			goto err1;
574 		}
575 		memset(fec->tbd_base, 0, size);
576 		fec_tbd_init(fec);
577 		flush_dcache_range((unsigned)fec->tbd_base, size);
578 	}
579 
580 	/*
581 	 * Allocate receive descriptors. This allocation respects cache
582 	 * alignment.
583 	 */
584 	if (!fec->rbd_base) {
585 		size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
586 				ARCH_DMA_MINALIGN);
587 		fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
588 		if (!fec->rbd_base) {
589 			ret = -ENOMEM;
590 			goto err2;
591 		}
592 		memset(fec->rbd_base, 0, size);
593 		/*
594 		 * Initialize RxBD ring
595 		 */
596 		if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
597 			ret = -ENOMEM;
598 			goto err3;
599 		}
600 		flush_dcache_range((unsigned)fec->rbd_base,
601 				   (unsigned)fec->rbd_base + size);
602 	}
603 
604 	fec_reg_setup(fec);
605 
606 	if (fec->xcv_type != SEVENWIRE)
607 		fec_mii_setspeed(fec);
608 
609 	/*
610 	 * Set Opcode/Pause Duration Register
611 	 */
612 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
613 	writel(0x2, &fec->eth->x_wmrk);
614 	/*
615 	 * Set multicast address filter
616 	 */
617 	writel(0x00000000, &fec->eth->gaddr1);
618 	writel(0x00000000, &fec->eth->gaddr2);
619 
620 
621 	/* clear MIB RAM */
622 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
623 		writel(0, i);
624 
625 	/* FIFO receive start register */
626 	writel(0x520, &fec->eth->r_fstart);
627 
628 	/* size and address of each buffer */
629 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
630 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
631 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
632 
633 #ifndef CONFIG_PHYLIB
634 	if (fec->xcv_type != SEVENWIRE)
635 		miiphy_restart_aneg(dev);
636 #endif
637 	fec_open(dev);
638 	return 0;
639 
640 err3:
641 	free(fec->rbd_base);
642 err2:
643 	free(fec->tbd_base);
644 err1:
645 	return ret;
646 }
647 
648 /**
649  * Halt the FEC engine
650  * @param[in] dev Our device to handle
651  */
652 static void fec_halt(struct eth_device *dev)
653 {
654 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
655 	int counter = 0xffff;
656 
657 	/*
658 	 * issue graceful stop command to the FEC transmitter if necessary
659 	 */
660 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
661 			&fec->eth->x_cntrl);
662 
663 	debug("eth_halt: wait for stop regs\n");
664 	/*
665 	 * wait for graceful stop to register
666 	 */
667 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
668 		udelay(1);
669 
670 	/*
671 	 * Disable SmartDMA tasks
672 	 */
673 	fec_tx_task_disable(fec);
674 	fec_rx_task_disable(fec);
675 
676 	/*
677 	 * Disable the Ethernet Controller
678 	 * Note: this will also reset the BD index counter!
679 	 */
680 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
681 			&fec->eth->ecntrl);
682 	fec->rbd_index = 0;
683 	fec->tbd_index = 0;
684 	debug("eth_halt: done\n");
685 }
686 
687 /**
688  * Transmit one frame
689  * @param[in] dev Our ethernet device to handle
690  * @param[in] packet Pointer to the data to be transmitted
691  * @param[in] length Data count in bytes
692  * @return 0 on success
693  */
694 static int fec_send(struct eth_device *dev, void *packet, int length)
695 {
696 	unsigned int status;
697 	uint32_t size;
698 	uint32_t addr;
699 
700 	/*
701 	 * This routine transmits one frame.  This routine only accepts
702 	 * 6-byte Ethernet addresses.
703 	 */
704 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
705 
706 	/*
707 	 * Check for valid length of data.
708 	 */
709 	if ((length > 1500) || (length <= 0)) {
710 		printf("Payload (%d) too large\n", length);
711 		return -1;
712 	}
713 
714 	/*
715 	 * Setup the transmit buffer. We are always using the first buffer for
716 	 * transmission, the second will be empty and only used to stop the DMA
717 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
718 	 */
719 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
720 	swap_packet((uint32_t *)packet, length);
721 #endif
722 
723 	addr = (uint32_t)packet;
724 	size = roundup(length, ARCH_DMA_MINALIGN);
725 	flush_dcache_range(addr, addr + size);
726 
727 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
728 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
729 
730 	/*
731 	 * update BD's status now
732 	 * This block:
733 	 * - is always the last in a chain (means no chain)
734 	 * - should transmitt the CRC
735 	 * - might be the last BD in the list, so the address counter should
736 	 *   wrap (-> keep the WRAP flag)
737 	 */
738 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
739 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
740 	writew(status, &fec->tbd_base[fec->tbd_index].status);
741 
742 	/*
743 	 * Flush data cache. This code flushes both TX descriptors to RAM.
744 	 * After this code, the descriptors will be safely in RAM and we
745 	 * can start DMA.
746 	 */
747 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
748 	addr = (uint32_t)fec->tbd_base;
749 	flush_dcache_range(addr, addr + size);
750 
751 	/*
752 	 * Enable SmartDMA transmit task
753 	 */
754 	fec_tx_task_enable(fec);
755 
756 	/*
757 	 * Wait until frame is sent. On each turn of the wait cycle, we must
758 	 * invalidate data cache to see what's really in RAM. Also, we need
759 	 * barrier here.
760 	 */
761 	invalidate_dcache_range(addr, addr + size);
762 	while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
763 		udelay(1);
764 		invalidate_dcache_range(addr, addr + size);
765 	}
766 
767 	debug("fec_send: status 0x%x index %d\n",
768 			readw(&fec->tbd_base[fec->tbd_index].status),
769 			fec->tbd_index);
770 	/* for next transmission use the other buffer */
771 	if (fec->tbd_index)
772 		fec->tbd_index = 0;
773 	else
774 		fec->tbd_index = 1;
775 
776 	return 0;
777 }
778 
779 /**
780  * Pull one frame from the card
781  * @param[in] dev Our ethernet device to handle
782  * @return Length of packet read
783  */
784 static int fec_recv(struct eth_device *dev)
785 {
786 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
787 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
788 	unsigned long ievent;
789 	int frame_length, len = 0;
790 	struct nbuf *frame;
791 	uint16_t bd_status;
792 	uint32_t addr, size;
793 	int i;
794 	uchar buff[FEC_MAX_PKT_SIZE];
795 
796 	/*
797 	 * Check if any critical events have happened
798 	 */
799 	ievent = readl(&fec->eth->ievent);
800 	writel(ievent, &fec->eth->ievent);
801 	debug("fec_recv: ievent 0x%lx\n", ievent);
802 	if (ievent & FEC_IEVENT_BABR) {
803 		fec_halt(dev);
804 		fec_init(dev, fec->bd);
805 		printf("some error: 0x%08lx\n", ievent);
806 		return 0;
807 	}
808 	if (ievent & FEC_IEVENT_HBERR) {
809 		/* Heartbeat error */
810 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
811 				&fec->eth->x_cntrl);
812 	}
813 	if (ievent & FEC_IEVENT_GRA) {
814 		/* Graceful stop complete */
815 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
816 			fec_halt(dev);
817 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
818 					&fec->eth->x_cntrl);
819 			fec_init(dev, fec->bd);
820 		}
821 	}
822 
823 	/*
824 	 * Read the buffer status. Before the status can be read, the data cache
825 	 * must be invalidated, because the data in RAM might have been changed
826 	 * by DMA. The descriptors are properly aligned to cachelines so there's
827 	 * no need to worry they'd overlap.
828 	 *
829 	 * WARNING: By invalidating the descriptor here, we also invalidate
830 	 * the descriptors surrounding this one. Therefore we can NOT change the
831 	 * contents of this descriptor nor the surrounding ones. The problem is
832 	 * that in order to mark the descriptor as processed, we need to change
833 	 * the descriptor. The solution is to mark the whole cache line when all
834 	 * descriptors in the cache line are processed.
835 	 */
836 	addr = (uint32_t)rbd;
837 	addr &= ~(ARCH_DMA_MINALIGN - 1);
838 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
839 	invalidate_dcache_range(addr, addr + size);
840 
841 	bd_status = readw(&rbd->status);
842 	debug("fec_recv: status 0x%x\n", bd_status);
843 
844 	if (!(bd_status & FEC_RBD_EMPTY)) {
845 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
846 			((readw(&rbd->data_length) - 4) > 14)) {
847 			/*
848 			 * Get buffer address and size
849 			 */
850 			frame = (struct nbuf *)readl(&rbd->data_pointer);
851 			frame_length = readw(&rbd->data_length) - 4;
852 			/*
853 			 * Invalidate data cache over the buffer
854 			 */
855 			addr = (uint32_t)frame;
856 			size = roundup(frame_length, ARCH_DMA_MINALIGN);
857 			invalidate_dcache_range(addr, addr + size);
858 
859 			/*
860 			 *  Fill the buffer and pass it to upper layers
861 			 */
862 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
863 			swap_packet((uint32_t *)frame->data, frame_length);
864 #endif
865 			memcpy(buff, frame->data, frame_length);
866 			NetReceive(buff, frame_length);
867 			len = frame_length;
868 		} else {
869 			if (bd_status & FEC_RBD_ERR)
870 				printf("error frame: 0x%08lx 0x%08x\n",
871 						(ulong)rbd->data_pointer,
872 						bd_status);
873 		}
874 
875 		/*
876 		 * Free the current buffer, restart the engine and move forward
877 		 * to the next buffer. Here we check if the whole cacheline of
878 		 * descriptors was already processed and if so, we mark it free
879 		 * as whole.
880 		 */
881 		size = RXDESC_PER_CACHELINE - 1;
882 		if ((fec->rbd_index & size) == size) {
883 			i = fec->rbd_index - size;
884 			addr = (uint32_t)&fec->rbd_base[i];
885 			for (; i <= fec->rbd_index ; i++) {
886 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
887 					      &fec->rbd_base[i]);
888 			}
889 			flush_dcache_range(addr,
890 				addr + ARCH_DMA_MINALIGN);
891 		}
892 
893 		fec_rx_task_enable(fec);
894 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
895 	}
896 	debug("fec_recv: stop\n");
897 
898 	return len;
899 }
900 
901 static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
902 {
903 	struct eth_device *edev;
904 	struct fec_priv *fec;
905 	struct mii_dev *bus;
906 	unsigned char ethaddr[6];
907 	uint32_t start;
908 	int ret = 0;
909 
910 	/* create and fill edev struct */
911 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
912 	if (!edev) {
913 		puts("fec_mxc: not enough malloc memory for eth_device\n");
914 		ret = -ENOMEM;
915 		goto err1;
916 	}
917 
918 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
919 	if (!fec) {
920 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
921 		ret = -ENOMEM;
922 		goto err2;
923 	}
924 
925 	memset(edev, 0, sizeof(*edev));
926 	memset(fec, 0, sizeof(*fec));
927 
928 	edev->priv = fec;
929 	edev->init = fec_init;
930 	edev->send = fec_send;
931 	edev->recv = fec_recv;
932 	edev->halt = fec_halt;
933 	edev->write_hwaddr = fec_set_hwaddr;
934 
935 	fec->eth = (struct ethernet_regs *)base_addr;
936 	fec->bd = bd;
937 
938 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
939 
940 	/* Reset chip. */
941 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
942 	start = get_timer(0);
943 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
944 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
945 			printf("FEC MXC: Timeout reseting chip\n");
946 			goto err3;
947 		}
948 		udelay(10);
949 	}
950 
951 	fec_reg_setup(fec);
952 	fec_mii_setspeed(fec);
953 
954 	if (dev_id == -1) {
955 		sprintf(edev->name, "FEC");
956 		fec->dev_id = 0;
957 	} else {
958 		sprintf(edev->name, "FEC%i", dev_id);
959 		fec->dev_id = dev_id;
960 	}
961 	fec->phy_id = phy_id;
962 
963 	bus = mdio_alloc();
964 	if (!bus) {
965 		printf("mdio_alloc failed\n");
966 		ret = -ENOMEM;
967 		goto err3;
968 	}
969 	bus->read = fec_phy_read;
970 	bus->write = fec_phy_write;
971 	sprintf(bus->name, edev->name);
972 #ifdef CONFIG_MX28
973 	/*
974 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
975 	 * Only the first one can access the MDIO bus.
976 	 */
977 	bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE;
978 #else
979 	bus->priv = fec->eth;
980 #endif
981 	ret = mdio_register(bus);
982 	if (ret) {
983 		printf("mdio_register failed\n");
984 		free(bus);
985 		ret = -ENOMEM;
986 		goto err3;
987 	}
988 	fec->bus = bus;
989 	eth_register(edev);
990 
991 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
992 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
993 		memcpy(edev->enetaddr, ethaddr, 6);
994 	}
995 	/* Configure phy */
996 	fec_eth_phy_config(edev);
997 	return ret;
998 
999 err3:
1000 	free(fec);
1001 err2:
1002 	free(edev);
1003 err1:
1004 	return ret;
1005 }
1006 
1007 #ifndef CONFIG_FEC_MXC_MULTI
1008 int fecmxc_initialize(bd_t *bd)
1009 {
1010 	int lout = 1;
1011 
1012 	debug("eth_init: fec_probe(bd)\n");
1013 	lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
1014 
1015 	return lout;
1016 }
1017 #endif
1018 
1019 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1020 {
1021 	int lout = 1;
1022 
1023 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1024 	lout = fec_probe(bd, dev_id, phy_id, addr);
1025 
1026 	return lout;
1027 }
1028 
1029 #ifndef CONFIG_PHYLIB
1030 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1031 {
1032 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1033 	fec->mii_postcall = cb;
1034 	return 0;
1035 }
1036 #endif
1037