xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 6f565821)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
4  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
5  * (C) Copyright 2008 Armadeus Systems nc
6  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
7  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8  */
9 
10 #include <common.h>
11 #include <dm.h>
12 #include <environment.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <miiphy.h>
16 #include <net.h>
17 #include <netdev.h>
18 
19 #include <asm/io.h>
20 #include <linux/errno.h>
21 #include <linux/compiler.h>
22 
23 #include <asm/arch/clock.h>
24 #include <asm/arch/imx-regs.h>
25 #include <asm/mach-imx/sys_proto.h>
26 #include <asm-generic/gpio.h>
27 
28 #include "fec_mxc.h"
29 
30 DECLARE_GLOBAL_DATA_PTR;
31 
32 /*
33  * Timeout the transfer after 5 mS. This is usually a bit more, since
34  * the code in the tightloops this timeout is used in adds some overhead.
35  */
36 #define FEC_XFER_TIMEOUT	5000
37 
38 /*
39  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
40  * 64-byte alignment in the DMA RX FEC buffer.
41  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
42  * satisfies the alignment on other SoCs (32-bytes)
43  */
44 #define FEC_DMA_RX_MINALIGN	64
45 
46 #ifndef CONFIG_MII
47 #error "CONFIG_MII has to be defined!"
48 #endif
49 
50 #ifndef CONFIG_FEC_XCV_TYPE
51 #define CONFIG_FEC_XCV_TYPE MII100
52 #endif
53 
54 /*
55  * The i.MX28 operates with packets in big endian. We need to swap them before
56  * sending and after receiving.
57  */
58 #ifdef CONFIG_MX28
59 #define CONFIG_FEC_MXC_SWAP_PACKET
60 #endif
61 
62 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
63 
64 /* Check various alignment issues at compile time */
65 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
66 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
67 #endif
68 
69 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
70 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
71 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
72 #endif
73 
74 #undef DEBUG
75 
76 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
77 static void swap_packet(uint32_t *packet, int length)
78 {
79 	int i;
80 
81 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
82 		packet[i] = __swab32(packet[i]);
83 }
84 #endif
85 
86 /* MII-interface related functions */
87 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
88 		uint8_t regaddr)
89 {
90 	uint32_t reg;		/* convenient holder for the PHY register */
91 	uint32_t phy;		/* convenient holder for the PHY */
92 	uint32_t start;
93 	int val;
94 
95 	/*
96 	 * reading from any PHY's register is done by properly
97 	 * programming the FEC's MII data register.
98 	 */
99 	writel(FEC_IEVENT_MII, &eth->ievent);
100 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
101 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
102 
103 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
104 			phy | reg, &eth->mii_data);
105 
106 	/* wait for the related interrupt */
107 	start = get_timer(0);
108 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
109 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
110 			printf("Read MDIO failed...\n");
111 			return -1;
112 		}
113 	}
114 
115 	/* clear mii interrupt bit */
116 	writel(FEC_IEVENT_MII, &eth->ievent);
117 
118 	/* it's now safe to read the PHY's register */
119 	val = (unsigned short)readl(&eth->mii_data);
120 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
121 	      regaddr, val);
122 	return val;
123 }
124 
125 static void fec_mii_setspeed(struct ethernet_regs *eth)
126 {
127 	/*
128 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
129 	 * and do not drop the Preamble.
130 	 *
131 	 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
132 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
133 	 * versions are RAZ there, so just ignore the difference and write the
134 	 * register always.
135 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
136 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
137 	 * output.
138 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
139 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
140 	 * holdtime cannot result in a value greater than 3.
141 	 */
142 	u32 pclk = imx_get_fecclk();
143 	u32 speed = DIV_ROUND_UP(pclk, 5000000);
144 	u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
145 #ifdef FEC_QUIRK_ENET_MAC
146 	speed--;
147 #endif
148 	writel(speed << 1 | hold << 8, &eth->mii_speed);
149 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
150 }
151 
152 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
153 		uint8_t regaddr, uint16_t data)
154 {
155 	uint32_t reg;		/* convenient holder for the PHY register */
156 	uint32_t phy;		/* convenient holder for the PHY */
157 	uint32_t start;
158 
159 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
160 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
161 
162 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
163 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
164 
165 	/* wait for the MII interrupt */
166 	start = get_timer(0);
167 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
168 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
169 			printf("Write MDIO failed...\n");
170 			return -1;
171 		}
172 	}
173 
174 	/* clear MII interrupt bit */
175 	writel(FEC_IEVENT_MII, &eth->ievent);
176 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
177 	      regaddr, data);
178 
179 	return 0;
180 }
181 
182 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
183 			int regaddr)
184 {
185 	return fec_mdio_read(bus->priv, phyaddr, regaddr);
186 }
187 
188 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
189 			 int regaddr, u16 data)
190 {
191 	return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
192 }
193 
194 #ifndef CONFIG_PHYLIB
195 static int miiphy_restart_aneg(struct eth_device *dev)
196 {
197 	int ret = 0;
198 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
199 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
200 	struct ethernet_regs *eth = fec->bus->priv;
201 
202 	/*
203 	 * Wake up from sleep if necessary
204 	 * Reset PHY, then delay 300ns
205 	 */
206 #ifdef CONFIG_MX27
207 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
208 #endif
209 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
210 	udelay(1000);
211 
212 	/* Set the auto-negotiation advertisement register bits */
213 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
214 		       LPA_100FULL | LPA_100HALF | LPA_10FULL |
215 		       LPA_10HALF | PHY_ANLPAR_PSB_802_3);
216 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
217 		       BMCR_ANENABLE | BMCR_ANRESTART);
218 
219 	if (fec->mii_postcall)
220 		ret = fec->mii_postcall(fec->phy_id);
221 
222 #endif
223 	return ret;
224 }
225 
226 #ifndef CONFIG_FEC_FIXED_SPEED
227 static int miiphy_wait_aneg(struct eth_device *dev)
228 {
229 	uint32_t start;
230 	int status;
231 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
232 	struct ethernet_regs *eth = fec->bus->priv;
233 
234 	/* Wait for AN completion */
235 	start = get_timer(0);
236 	do {
237 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
238 			printf("%s: Autonegotiation timeout\n", dev->name);
239 			return -1;
240 		}
241 
242 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
243 		if (status < 0) {
244 			printf("%s: Autonegotiation failed. status: %d\n",
245 			       dev->name, status);
246 			return -1;
247 		}
248 	} while (!(status & BMSR_LSTATUS));
249 
250 	return 0;
251 }
252 #endif /* CONFIG_FEC_FIXED_SPEED */
253 #endif
254 
255 static int fec_rx_task_enable(struct fec_priv *fec)
256 {
257 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
258 	return 0;
259 }
260 
261 static int fec_rx_task_disable(struct fec_priv *fec)
262 {
263 	return 0;
264 }
265 
266 static int fec_tx_task_enable(struct fec_priv *fec)
267 {
268 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
269 	return 0;
270 }
271 
272 static int fec_tx_task_disable(struct fec_priv *fec)
273 {
274 	return 0;
275 }
276 
277 /**
278  * Initialize receive task's buffer descriptors
279  * @param[in] fec all we know about the device yet
280  * @param[in] count receive buffer count to be allocated
281  * @param[in] dsize desired size of each receive buffer
282  * @return 0 on success
283  *
284  * Init all RX descriptors to default values.
285  */
286 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
287 {
288 	uint32_t size;
289 	ulong data;
290 	int i;
291 
292 	/*
293 	 * Reload the RX descriptors with default values and wipe
294 	 * the RX buffers.
295 	 */
296 	size = roundup(dsize, ARCH_DMA_MINALIGN);
297 	for (i = 0; i < count; i++) {
298 		data = fec->rbd_base[i].data_pointer;
299 		memset((void *)data, 0, dsize);
300 		flush_dcache_range(data, data + size);
301 
302 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
303 		fec->rbd_base[i].data_length = 0;
304 	}
305 
306 	/* Mark the last RBD to close the ring. */
307 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
308 	fec->rbd_index = 0;
309 
310 	flush_dcache_range((ulong)fec->rbd_base,
311 			   (ulong)fec->rbd_base + size);
312 }
313 
314 /**
315  * Initialize transmit task's buffer descriptors
316  * @param[in] fec all we know about the device yet
317  *
318  * Transmit buffers are created externally. We only have to init the BDs here.\n
319  * Note: There is a race condition in the hardware. When only one BD is in
320  * use it must be marked with the WRAP bit to use it for every transmitt.
321  * This bit in combination with the READY bit results into double transmit
322  * of each data buffer. It seems the state machine checks READY earlier then
323  * resetting it after the first transfer.
324  * Using two BDs solves this issue.
325  */
326 static void fec_tbd_init(struct fec_priv *fec)
327 {
328 	ulong addr = (ulong)fec->tbd_base;
329 	unsigned size = roundup(2 * sizeof(struct fec_bd),
330 				ARCH_DMA_MINALIGN);
331 
332 	memset(fec->tbd_base, 0, size);
333 	fec->tbd_base[0].status = 0;
334 	fec->tbd_base[1].status = FEC_TBD_WRAP;
335 	fec->tbd_index = 0;
336 	flush_dcache_range(addr, addr + size);
337 }
338 
339 /**
340  * Mark the given read buffer descriptor as free
341  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
342  * @param[in] prbd buffer descriptor to mark free again
343  */
344 static void fec_rbd_clean(int last, struct fec_bd *prbd)
345 {
346 	unsigned short flags = FEC_RBD_EMPTY;
347 	if (last)
348 		flags |= FEC_RBD_WRAP;
349 	writew(flags, &prbd->status);
350 	writew(0, &prbd->data_length);
351 }
352 
353 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
354 {
355 	imx_get_mac_from_fuse(dev_id, mac);
356 	return !is_valid_ethaddr(mac);
357 }
358 
359 #ifdef CONFIG_DM_ETH
360 static int fecmxc_set_hwaddr(struct udevice *dev)
361 #else
362 static int fec_set_hwaddr(struct eth_device *dev)
363 #endif
364 {
365 #ifdef CONFIG_DM_ETH
366 	struct fec_priv *fec = dev_get_priv(dev);
367 	struct eth_pdata *pdata = dev_get_platdata(dev);
368 	uchar *mac = pdata->enetaddr;
369 #else
370 	uchar *mac = dev->enetaddr;
371 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
372 #endif
373 
374 	writel(0, &fec->eth->iaddr1);
375 	writel(0, &fec->eth->iaddr2);
376 	writel(0, &fec->eth->gaddr1);
377 	writel(0, &fec->eth->gaddr2);
378 
379 	/* Set physical address */
380 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
381 	       &fec->eth->paddr1);
382 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
383 
384 	return 0;
385 }
386 
387 /* Do initial configuration of the FEC registers */
388 static void fec_reg_setup(struct fec_priv *fec)
389 {
390 	uint32_t rcntrl;
391 
392 	/* Set interrupt mask register */
393 	writel(0x00000000, &fec->eth->imask);
394 
395 	/* Clear FEC-Lite interrupt event register(IEVENT) */
396 	writel(0xffffffff, &fec->eth->ievent);
397 
398 	/* Set FEC-Lite receive control register(R_CNTRL): */
399 
400 	/* Start with frame length = 1518, common for all modes. */
401 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
402 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
403 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
404 	if (fec->xcv_type == RGMII)
405 		rcntrl |= FEC_RCNTRL_RGMII;
406 	else if (fec->xcv_type == RMII)
407 		rcntrl |= FEC_RCNTRL_RMII;
408 
409 	writel(rcntrl, &fec->eth->r_cntrl);
410 }
411 
412 /**
413  * Start the FEC engine
414  * @param[in] dev Our device to handle
415  */
416 #ifdef CONFIG_DM_ETH
417 static int fec_open(struct udevice *dev)
418 #else
419 static int fec_open(struct eth_device *edev)
420 #endif
421 {
422 #ifdef CONFIG_DM_ETH
423 	struct fec_priv *fec = dev_get_priv(dev);
424 #else
425 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
426 #endif
427 	int speed;
428 	ulong addr, size;
429 	int i;
430 
431 	debug("fec_open: fec_open(dev)\n");
432 	/* full-duplex, heartbeat disabled */
433 	writel(1 << 2, &fec->eth->x_cntrl);
434 	fec->rbd_index = 0;
435 
436 	/* Invalidate all descriptors */
437 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
438 		fec_rbd_clean(0, &fec->rbd_base[i]);
439 	fec_rbd_clean(1, &fec->rbd_base[i]);
440 
441 	/* Flush the descriptors into RAM */
442 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
443 			ARCH_DMA_MINALIGN);
444 	addr = (ulong)fec->rbd_base;
445 	flush_dcache_range(addr, addr + size);
446 
447 #ifdef FEC_QUIRK_ENET_MAC
448 	/* Enable ENET HW endian SWAP */
449 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
450 	       &fec->eth->ecntrl);
451 	/* Enable ENET store and forward mode */
452 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
453 	       &fec->eth->x_wmrk);
454 #endif
455 	/* Enable FEC-Lite controller */
456 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
457 	       &fec->eth->ecntrl);
458 
459 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
460 	udelay(100);
461 
462 	/* setup the MII gasket for RMII mode */
463 	/* disable the gasket */
464 	writew(0, &fec->eth->miigsk_enr);
465 
466 	/* wait for the gasket to be disabled */
467 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
468 		udelay(2);
469 
470 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
471 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
472 
473 	/* re-enable the gasket */
474 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
475 
476 	/* wait until MII gasket is ready */
477 	int max_loops = 10;
478 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
479 		if (--max_loops <= 0) {
480 			printf("WAIT for MII Gasket ready timed out\n");
481 			break;
482 		}
483 	}
484 #endif
485 
486 #ifdef CONFIG_PHYLIB
487 	{
488 		/* Start up the PHY */
489 		int ret = phy_startup(fec->phydev);
490 
491 		if (ret) {
492 			printf("Could not initialize PHY %s\n",
493 			       fec->phydev->dev->name);
494 			return ret;
495 		}
496 		speed = fec->phydev->speed;
497 	}
498 #elif CONFIG_FEC_FIXED_SPEED
499 	speed = CONFIG_FEC_FIXED_SPEED;
500 #else
501 	miiphy_wait_aneg(edev);
502 	speed = miiphy_speed(edev->name, fec->phy_id);
503 	miiphy_duplex(edev->name, fec->phy_id);
504 #endif
505 
506 #ifdef FEC_QUIRK_ENET_MAC
507 	{
508 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
509 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
510 		if (speed == _1000BASET)
511 			ecr |= FEC_ECNTRL_SPEED;
512 		else if (speed != _100BASET)
513 			rcr |= FEC_RCNTRL_RMII_10T;
514 		writel(ecr, &fec->eth->ecntrl);
515 		writel(rcr, &fec->eth->r_cntrl);
516 	}
517 #endif
518 	debug("%s:Speed=%i\n", __func__, speed);
519 
520 	/* Enable SmartDMA receive task */
521 	fec_rx_task_enable(fec);
522 
523 	udelay(100000);
524 	return 0;
525 }
526 
527 #ifdef CONFIG_DM_ETH
528 static int fecmxc_init(struct udevice *dev)
529 #else
530 static int fec_init(struct eth_device *dev, bd_t *bd)
531 #endif
532 {
533 #ifdef CONFIG_DM_ETH
534 	struct fec_priv *fec = dev_get_priv(dev);
535 #else
536 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
537 #endif
538 	u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
539 	u8 *i;
540 	ulong addr;
541 
542 	/* Initialize MAC address */
543 #ifdef CONFIG_DM_ETH
544 	fecmxc_set_hwaddr(dev);
545 #else
546 	fec_set_hwaddr(dev);
547 #endif
548 
549 	/* Setup transmit descriptors, there are two in total. */
550 	fec_tbd_init(fec);
551 
552 	/* Setup receive descriptors. */
553 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
554 
555 	fec_reg_setup(fec);
556 
557 	if (fec->xcv_type != SEVENWIRE)
558 		fec_mii_setspeed(fec->bus->priv);
559 
560 	/* Set Opcode/Pause Duration Register */
561 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
562 	writel(0x2, &fec->eth->x_wmrk);
563 
564 	/* Set multicast address filter */
565 	writel(0x00000000, &fec->eth->gaddr1);
566 	writel(0x00000000, &fec->eth->gaddr2);
567 
568 	/* Do not access reserved register */
569 	if (!is_mx6ul() && !is_mx6ull() && !is_mx8m()) {
570 		/* clear MIB RAM */
571 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
572 			writel(0, i);
573 
574 		/* FIFO receive start register */
575 		writel(0x520, &fec->eth->r_fstart);
576 	}
577 
578 	/* size and address of each buffer */
579 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
580 
581 	addr = (ulong)fec->tbd_base;
582 	writel((uint32_t)addr, &fec->eth->etdsr);
583 
584 	addr = (ulong)fec->rbd_base;
585 	writel((uint32_t)addr, &fec->eth->erdsr);
586 
587 #ifndef CONFIG_PHYLIB
588 	if (fec->xcv_type != SEVENWIRE)
589 		miiphy_restart_aneg(dev);
590 #endif
591 	fec_open(dev);
592 	return 0;
593 }
594 
595 /**
596  * Halt the FEC engine
597  * @param[in] dev Our device to handle
598  */
599 #ifdef CONFIG_DM_ETH
600 static void fecmxc_halt(struct udevice *dev)
601 #else
602 static void fec_halt(struct eth_device *dev)
603 #endif
604 {
605 #ifdef CONFIG_DM_ETH
606 	struct fec_priv *fec = dev_get_priv(dev);
607 #else
608 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
609 #endif
610 	int counter = 0xffff;
611 
612 	/* issue graceful stop command to the FEC transmitter if necessary */
613 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
614 	       &fec->eth->x_cntrl);
615 
616 	debug("eth_halt: wait for stop regs\n");
617 	/* wait for graceful stop to register */
618 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
619 		udelay(1);
620 
621 	/* Disable SmartDMA tasks */
622 	fec_tx_task_disable(fec);
623 	fec_rx_task_disable(fec);
624 
625 	/*
626 	 * Disable the Ethernet Controller
627 	 * Note: this will also reset the BD index counter!
628 	 */
629 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
630 	       &fec->eth->ecntrl);
631 	fec->rbd_index = 0;
632 	fec->tbd_index = 0;
633 	debug("eth_halt: done\n");
634 }
635 
636 /**
637  * Transmit one frame
638  * @param[in] dev Our ethernet device to handle
639  * @param[in] packet Pointer to the data to be transmitted
640  * @param[in] length Data count in bytes
641  * @return 0 on success
642  */
643 #ifdef CONFIG_DM_ETH
644 static int fecmxc_send(struct udevice *dev, void *packet, int length)
645 #else
646 static int fec_send(struct eth_device *dev, void *packet, int length)
647 #endif
648 {
649 	unsigned int status;
650 	u32 size;
651 	ulong addr, end;
652 	int timeout = FEC_XFER_TIMEOUT;
653 	int ret = 0;
654 
655 	/*
656 	 * This routine transmits one frame.  This routine only accepts
657 	 * 6-byte Ethernet addresses.
658 	 */
659 #ifdef CONFIG_DM_ETH
660 	struct fec_priv *fec = dev_get_priv(dev);
661 #else
662 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
663 #endif
664 
665 	/*
666 	 * Check for valid length of data.
667 	 */
668 	if ((length > 1500) || (length <= 0)) {
669 		printf("Payload (%d) too large\n", length);
670 		return -1;
671 	}
672 
673 	/*
674 	 * Setup the transmit buffer. We are always using the first buffer for
675 	 * transmission, the second will be empty and only used to stop the DMA
676 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
677 	 */
678 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
679 	swap_packet((uint32_t *)packet, length);
680 #endif
681 
682 	addr = (ulong)packet;
683 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
684 	addr &= ~(ARCH_DMA_MINALIGN - 1);
685 	flush_dcache_range(addr, end);
686 
687 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
688 	writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
689 
690 	/*
691 	 * update BD's status now
692 	 * This block:
693 	 * - is always the last in a chain (means no chain)
694 	 * - should transmitt the CRC
695 	 * - might be the last BD in the list, so the address counter should
696 	 *   wrap (-> keep the WRAP flag)
697 	 */
698 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
699 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
700 	writew(status, &fec->tbd_base[fec->tbd_index].status);
701 
702 	/*
703 	 * Flush data cache. This code flushes both TX descriptors to RAM.
704 	 * After this code, the descriptors will be safely in RAM and we
705 	 * can start DMA.
706 	 */
707 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
708 	addr = (ulong)fec->tbd_base;
709 	flush_dcache_range(addr, addr + size);
710 
711 	/*
712 	 * Below we read the DMA descriptor's last four bytes back from the
713 	 * DRAM. This is important in order to make sure that all WRITE
714 	 * operations on the bus that were triggered by previous cache FLUSH
715 	 * have completed.
716 	 *
717 	 * Otherwise, on MX28, it is possible to observe a corruption of the
718 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
719 	 * for the bus structure of MX28. The scenario is as follows:
720 	 *
721 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
722 	 *    to DRAM due to flush_dcache_range()
723 	 * 2) ARM core writes the FEC registers via AHB_ARB2
724 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
725 	 *
726 	 * Note that 2) does sometimes finish before 1) due to reordering of
727 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
728 	 * DMA descriptor is fully written into DRAM. This results in occasional
729 	 * corruption of the DMA descriptor.
730 	 */
731 	readl(addr + size - 4);
732 
733 	/* Enable SmartDMA transmit task */
734 	fec_tx_task_enable(fec);
735 
736 	/*
737 	 * Wait until frame is sent. On each turn of the wait cycle, we must
738 	 * invalidate data cache to see what's really in RAM. Also, we need
739 	 * barrier here.
740 	 */
741 	while (--timeout) {
742 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
743 			break;
744 	}
745 
746 	if (!timeout) {
747 		ret = -EINVAL;
748 		goto out;
749 	}
750 
751 	/*
752 	 * The TDAR bit is cleared when the descriptors are all out from TX
753 	 * but on mx6solox we noticed that the READY bit is still not cleared
754 	 * right after TDAR.
755 	 * These are two distinct signals, and in IC simulation, we found that
756 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
757 	 * cleared.
758 	 * In mx6solox, we use a later version of FEC IP. It looks like that
759 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
760 	 * version.
761 	 *
762 	 * Fix this by polling the READY bit of BD after the TDAR polling,
763 	 * which covers the mx6solox case and does not harm the other SoCs.
764 	 */
765 	timeout = FEC_XFER_TIMEOUT;
766 	while (--timeout) {
767 		invalidate_dcache_range(addr, addr + size);
768 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
769 		    FEC_TBD_READY))
770 			break;
771 	}
772 
773 	if (!timeout)
774 		ret = -EINVAL;
775 
776 out:
777 	debug("fec_send: status 0x%x index %d ret %i\n",
778 	      readw(&fec->tbd_base[fec->tbd_index].status),
779 	      fec->tbd_index, ret);
780 	/* for next transmission use the other buffer */
781 	if (fec->tbd_index)
782 		fec->tbd_index = 0;
783 	else
784 		fec->tbd_index = 1;
785 
786 	return ret;
787 }
788 
789 /**
790  * Pull one frame from the card
791  * @param[in] dev Our ethernet device to handle
792  * @return Length of packet read
793  */
794 #ifdef CONFIG_DM_ETH
795 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
796 #else
797 static int fec_recv(struct eth_device *dev)
798 #endif
799 {
800 #ifdef CONFIG_DM_ETH
801 	struct fec_priv *fec = dev_get_priv(dev);
802 #else
803 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
804 #endif
805 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
806 	unsigned long ievent;
807 	int frame_length, len = 0;
808 	uint16_t bd_status;
809 	ulong addr, size, end;
810 	int i;
811 
812 #ifdef CONFIG_DM_ETH
813 	*packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
814 	if (*packetp == 0) {
815 		printf("%s: error allocating packetp\n", __func__);
816 		return -ENOMEM;
817 	}
818 #else
819 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
820 #endif
821 
822 	/* Check if any critical events have happened */
823 	ievent = readl(&fec->eth->ievent);
824 	writel(ievent, &fec->eth->ievent);
825 	debug("fec_recv: ievent 0x%lx\n", ievent);
826 	if (ievent & FEC_IEVENT_BABR) {
827 #ifdef CONFIG_DM_ETH
828 		fecmxc_halt(dev);
829 		fecmxc_init(dev);
830 #else
831 		fec_halt(dev);
832 		fec_init(dev, fec->bd);
833 #endif
834 		printf("some error: 0x%08lx\n", ievent);
835 		return 0;
836 	}
837 	if (ievent & FEC_IEVENT_HBERR) {
838 		/* Heartbeat error */
839 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
840 		       &fec->eth->x_cntrl);
841 	}
842 	if (ievent & FEC_IEVENT_GRA) {
843 		/* Graceful stop complete */
844 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
845 #ifdef CONFIG_DM_ETH
846 			fecmxc_halt(dev);
847 #else
848 			fec_halt(dev);
849 #endif
850 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
851 			       &fec->eth->x_cntrl);
852 #ifdef CONFIG_DM_ETH
853 			fecmxc_init(dev);
854 #else
855 			fec_init(dev, fec->bd);
856 #endif
857 		}
858 	}
859 
860 	/*
861 	 * Read the buffer status. Before the status can be read, the data cache
862 	 * must be invalidated, because the data in RAM might have been changed
863 	 * by DMA. The descriptors are properly aligned to cachelines so there's
864 	 * no need to worry they'd overlap.
865 	 *
866 	 * WARNING: By invalidating the descriptor here, we also invalidate
867 	 * the descriptors surrounding this one. Therefore we can NOT change the
868 	 * contents of this descriptor nor the surrounding ones. The problem is
869 	 * that in order to mark the descriptor as processed, we need to change
870 	 * the descriptor. The solution is to mark the whole cache line when all
871 	 * descriptors in the cache line are processed.
872 	 */
873 	addr = (ulong)rbd;
874 	addr &= ~(ARCH_DMA_MINALIGN - 1);
875 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
876 	invalidate_dcache_range(addr, addr + size);
877 
878 	bd_status = readw(&rbd->status);
879 	debug("fec_recv: status 0x%x\n", bd_status);
880 
881 	if (!(bd_status & FEC_RBD_EMPTY)) {
882 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
883 		    ((readw(&rbd->data_length) - 4) > 14)) {
884 			/* Get buffer address and size */
885 			addr = readl(&rbd->data_pointer);
886 			frame_length = readw(&rbd->data_length) - 4;
887 			/* Invalidate data cache over the buffer */
888 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
889 			addr &= ~(ARCH_DMA_MINALIGN - 1);
890 			invalidate_dcache_range(addr, end);
891 
892 			/* Fill the buffer and pass it to upper layers */
893 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
894 			swap_packet((uint32_t *)addr, frame_length);
895 #endif
896 
897 #ifdef CONFIG_DM_ETH
898 			memcpy(*packetp, (char *)addr, frame_length);
899 #else
900 			memcpy(buff, (char *)addr, frame_length);
901 			net_process_received_packet(buff, frame_length);
902 #endif
903 			len = frame_length;
904 		} else {
905 			if (bd_status & FEC_RBD_ERR)
906 				debug("error frame: 0x%08lx 0x%08x\n",
907 				      addr, bd_status);
908 		}
909 
910 		/*
911 		 * Free the current buffer, restart the engine and move forward
912 		 * to the next buffer. Here we check if the whole cacheline of
913 		 * descriptors was already processed and if so, we mark it free
914 		 * as whole.
915 		 */
916 		size = RXDESC_PER_CACHELINE - 1;
917 		if ((fec->rbd_index & size) == size) {
918 			i = fec->rbd_index - size;
919 			addr = (ulong)&fec->rbd_base[i];
920 			for (; i <= fec->rbd_index ; i++) {
921 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
922 					      &fec->rbd_base[i]);
923 			}
924 			flush_dcache_range(addr,
925 					   addr + ARCH_DMA_MINALIGN);
926 		}
927 
928 		fec_rx_task_enable(fec);
929 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
930 	}
931 	debug("fec_recv: stop\n");
932 
933 	return len;
934 }
935 
936 static void fec_set_dev_name(char *dest, int dev_id)
937 {
938 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
939 }
940 
941 static int fec_alloc_descs(struct fec_priv *fec)
942 {
943 	unsigned int size;
944 	int i;
945 	uint8_t *data;
946 	ulong addr;
947 
948 	/* Allocate TX descriptors. */
949 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
950 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
951 	if (!fec->tbd_base)
952 		goto err_tx;
953 
954 	/* Allocate RX descriptors. */
955 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
956 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
957 	if (!fec->rbd_base)
958 		goto err_rx;
959 
960 	memset(fec->rbd_base, 0, size);
961 
962 	/* Allocate RX buffers. */
963 
964 	/* Maximum RX buffer size. */
965 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
966 	for (i = 0; i < FEC_RBD_NUM; i++) {
967 		data = memalign(FEC_DMA_RX_MINALIGN, size);
968 		if (!data) {
969 			printf("%s: error allocating rxbuf %d\n", __func__, i);
970 			goto err_ring;
971 		}
972 
973 		memset(data, 0, size);
974 
975 		addr = (ulong)data;
976 		fec->rbd_base[i].data_pointer = (uint32_t)addr;
977 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
978 		fec->rbd_base[i].data_length = 0;
979 		/* Flush the buffer to memory. */
980 		flush_dcache_range(addr, addr + size);
981 	}
982 
983 	/* Mark the last RBD to close the ring. */
984 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
985 
986 	fec->rbd_index = 0;
987 	fec->tbd_index = 0;
988 
989 	return 0;
990 
991 err_ring:
992 	for (; i >= 0; i--) {
993 		addr = fec->rbd_base[i].data_pointer;
994 		free((void *)addr);
995 	}
996 	free(fec->rbd_base);
997 err_rx:
998 	free(fec->tbd_base);
999 err_tx:
1000 	return -ENOMEM;
1001 }
1002 
1003 static void fec_free_descs(struct fec_priv *fec)
1004 {
1005 	int i;
1006 	ulong addr;
1007 
1008 	for (i = 0; i < FEC_RBD_NUM; i++) {
1009 		addr = fec->rbd_base[i].data_pointer;
1010 		free((void *)addr);
1011 	}
1012 	free(fec->rbd_base);
1013 	free(fec->tbd_base);
1014 }
1015 
1016 struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
1017 {
1018 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1019 	struct mii_dev *bus;
1020 	int ret;
1021 
1022 	bus = mdio_alloc();
1023 	if (!bus) {
1024 		printf("mdio_alloc failed\n");
1025 		return NULL;
1026 	}
1027 	bus->read = fec_phy_read;
1028 	bus->write = fec_phy_write;
1029 	bus->priv = eth;
1030 	fec_set_dev_name(bus->name, dev_id);
1031 
1032 	ret = mdio_register(bus);
1033 	if (ret) {
1034 		printf("mdio_register failed\n");
1035 		free(bus);
1036 		return NULL;
1037 	}
1038 	fec_mii_setspeed(eth);
1039 	return bus;
1040 }
1041 
1042 #ifndef CONFIG_DM_ETH
1043 #ifdef CONFIG_PHYLIB
1044 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1045 		struct mii_dev *bus, struct phy_device *phydev)
1046 #else
1047 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1048 		struct mii_dev *bus, int phy_id)
1049 #endif
1050 {
1051 	struct eth_device *edev;
1052 	struct fec_priv *fec;
1053 	unsigned char ethaddr[6];
1054 	char mac[16];
1055 	uint32_t start;
1056 	int ret = 0;
1057 
1058 	/* create and fill edev struct */
1059 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1060 	if (!edev) {
1061 		puts("fec_mxc: not enough malloc memory for eth_device\n");
1062 		ret = -ENOMEM;
1063 		goto err1;
1064 	}
1065 
1066 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1067 	if (!fec) {
1068 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
1069 		ret = -ENOMEM;
1070 		goto err2;
1071 	}
1072 
1073 	memset(edev, 0, sizeof(*edev));
1074 	memset(fec, 0, sizeof(*fec));
1075 
1076 	ret = fec_alloc_descs(fec);
1077 	if (ret)
1078 		goto err3;
1079 
1080 	edev->priv = fec;
1081 	edev->init = fec_init;
1082 	edev->send = fec_send;
1083 	edev->recv = fec_recv;
1084 	edev->halt = fec_halt;
1085 	edev->write_hwaddr = fec_set_hwaddr;
1086 
1087 	fec->eth = (struct ethernet_regs *)(ulong)base_addr;
1088 	fec->bd = bd;
1089 
1090 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1091 
1092 	/* Reset chip. */
1093 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1094 	start = get_timer(0);
1095 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1096 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1097 			printf("FEC MXC: Timeout resetting chip\n");
1098 			goto err4;
1099 		}
1100 		udelay(10);
1101 	}
1102 
1103 	fec_reg_setup(fec);
1104 	fec_set_dev_name(edev->name, dev_id);
1105 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1106 	fec->bus = bus;
1107 	fec_mii_setspeed(bus->priv);
1108 #ifdef CONFIG_PHYLIB
1109 	fec->phydev = phydev;
1110 	phy_connect_dev(phydev, edev);
1111 	/* Configure phy */
1112 	phy_config(phydev);
1113 #else
1114 	fec->phy_id = phy_id;
1115 #endif
1116 	eth_register(edev);
1117 	/* only support one eth device, the index number pointed by dev_id */
1118 	edev->index = fec->dev_id;
1119 
1120 	if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1121 		debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1122 		memcpy(edev->enetaddr, ethaddr, 6);
1123 		if (fec->dev_id)
1124 			sprintf(mac, "eth%daddr", fec->dev_id);
1125 		else
1126 			strcpy(mac, "ethaddr");
1127 		if (!env_get(mac))
1128 			eth_env_set_enetaddr(mac, ethaddr);
1129 	}
1130 	return ret;
1131 err4:
1132 	fec_free_descs(fec);
1133 err3:
1134 	free(fec);
1135 err2:
1136 	free(edev);
1137 err1:
1138 	return ret;
1139 }
1140 
1141 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1142 {
1143 	uint32_t base_mii;
1144 	struct mii_dev *bus = NULL;
1145 #ifdef CONFIG_PHYLIB
1146 	struct phy_device *phydev = NULL;
1147 #endif
1148 	int ret;
1149 
1150 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1151 	/*
1152 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1153 	 * Only the first one can access the MDIO bus.
1154 	 */
1155 	base_mii = CONFIG_FEC_MXC_MDIO_BASE;
1156 #else
1157 	base_mii = addr;
1158 #endif
1159 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1160 	bus = fec_get_miibus(base_mii, dev_id);
1161 	if (!bus)
1162 		return -ENOMEM;
1163 #ifdef CONFIG_PHYLIB
1164 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1165 	if (!phydev) {
1166 		mdio_unregister(bus);
1167 		free(bus);
1168 		return -ENOMEM;
1169 	}
1170 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1171 #else
1172 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1173 #endif
1174 	if (ret) {
1175 #ifdef CONFIG_PHYLIB
1176 		free(phydev);
1177 #endif
1178 		mdio_unregister(bus);
1179 		free(bus);
1180 	}
1181 	return ret;
1182 }
1183 
1184 #ifdef CONFIG_FEC_MXC_PHYADDR
1185 int fecmxc_initialize(bd_t *bd)
1186 {
1187 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1188 			IMX_FEC_BASE);
1189 }
1190 #endif
1191 
1192 #ifndef CONFIG_PHYLIB
1193 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1194 {
1195 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1196 	fec->mii_postcall = cb;
1197 	return 0;
1198 }
1199 #endif
1200 
1201 #else
1202 
1203 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1204 {
1205 	struct fec_priv *priv = dev_get_priv(dev);
1206 	struct eth_pdata *pdata = dev_get_platdata(dev);
1207 
1208 	return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1209 }
1210 
1211 static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1212 {
1213 	if (packet)
1214 		free(packet);
1215 
1216 	return 0;
1217 }
1218 
1219 static const struct eth_ops fecmxc_ops = {
1220 	.start			= fecmxc_init,
1221 	.send			= fecmxc_send,
1222 	.recv			= fecmxc_recv,
1223 	.free_pkt		= fecmxc_free_pkt,
1224 	.stop			= fecmxc_halt,
1225 	.write_hwaddr		= fecmxc_set_hwaddr,
1226 	.read_rom_hwaddr	= fecmxc_read_rom_hwaddr,
1227 };
1228 
1229 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1230 {
1231 	struct phy_device *phydev;
1232 	int mask = 0xffffffff;
1233 
1234 #ifdef CONFIG_FEC_MXC_PHYADDR
1235 	mask = 1 << CONFIG_FEC_MXC_PHYADDR;
1236 #endif
1237 
1238 	phydev = phy_find_by_mask(priv->bus, mask, priv->interface);
1239 	if (!phydev)
1240 		return -ENODEV;
1241 
1242 	phy_connect_dev(phydev, dev);
1243 
1244 	priv->phydev = phydev;
1245 	phy_config(phydev);
1246 
1247 	return 0;
1248 }
1249 
1250 #ifdef CONFIG_DM_GPIO
1251 /* FEC GPIO reset */
1252 static void fec_gpio_reset(struct fec_priv *priv)
1253 {
1254 	debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1255 	if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1256 		dm_gpio_set_value(&priv->phy_reset_gpio, 1);
1257 		udelay(priv->reset_delay);
1258 		dm_gpio_set_value(&priv->phy_reset_gpio, 0);
1259 	}
1260 }
1261 #endif
1262 
1263 static int fecmxc_probe(struct udevice *dev)
1264 {
1265 	struct eth_pdata *pdata = dev_get_platdata(dev);
1266 	struct fec_priv *priv = dev_get_priv(dev);
1267 	struct mii_dev *bus = NULL;
1268 	uint32_t start;
1269 	int ret;
1270 
1271 	ret = fec_alloc_descs(priv);
1272 	if (ret)
1273 		return ret;
1274 
1275 #ifdef CONFIG_DM_GPIO
1276 	fec_gpio_reset(priv);
1277 #endif
1278 	/* Reset chip. */
1279 	writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1280 	       &priv->eth->ecntrl);
1281 	start = get_timer(0);
1282 	while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1283 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1284 			printf("FEC MXC: Timeout reseting chip\n");
1285 			goto err_timeout;
1286 		}
1287 		udelay(10);
1288 	}
1289 
1290 	fec_reg_setup(priv);
1291 
1292 	priv->dev_id = dev->seq;
1293 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1294 	bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq);
1295 #else
1296 	bus = fec_get_miibus((ulong)priv->eth, dev->seq);
1297 #endif
1298 	if (!bus) {
1299 		ret = -ENOMEM;
1300 		goto err_mii;
1301 	}
1302 
1303 	priv->bus = bus;
1304 	priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1305 	priv->interface = pdata->phy_interface;
1306 	ret = fec_phy_init(priv, dev);
1307 	if (ret)
1308 		goto err_phy;
1309 
1310 	return 0;
1311 
1312 err_phy:
1313 	mdio_unregister(bus);
1314 	free(bus);
1315 err_mii:
1316 err_timeout:
1317 	fec_free_descs(priv);
1318 	return ret;
1319 }
1320 
1321 static int fecmxc_remove(struct udevice *dev)
1322 {
1323 	struct fec_priv *priv = dev_get_priv(dev);
1324 
1325 	free(priv->phydev);
1326 	fec_free_descs(priv);
1327 	mdio_unregister(priv->bus);
1328 	mdio_free(priv->bus);
1329 
1330 	return 0;
1331 }
1332 
1333 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1334 {
1335 	int ret = 0;
1336 	struct eth_pdata *pdata = dev_get_platdata(dev);
1337 	struct fec_priv *priv = dev_get_priv(dev);
1338 	const char *phy_mode;
1339 
1340 	pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
1341 	priv->eth = (struct ethernet_regs *)pdata->iobase;
1342 
1343 	pdata->phy_interface = -1;
1344 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1345 			       NULL);
1346 	if (phy_mode)
1347 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1348 	if (pdata->phy_interface == -1) {
1349 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1350 		return -EINVAL;
1351 	}
1352 
1353 #ifdef CONFIG_DM_GPIO
1354 	ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
1355 			     &priv->phy_reset_gpio, GPIOD_IS_OUT);
1356 	if (ret == 0) {
1357 		ret = dev_read_u32_array(dev, "phy-reset-duration",
1358 					 &priv->reset_delay, 1);
1359 	} else if (ret == -ENOENT) {
1360 		priv->reset_delay = 1000;
1361 		ret = 0;
1362 	}
1363 
1364 	if (priv->reset_delay > 1000) {
1365 		printf("FEX MXC: gpio reset timeout should be less the 1000\n");
1366 		priv->reset_delay = 1000;
1367 	}
1368 #endif
1369 
1370 	return ret;
1371 }
1372 
1373 static const struct udevice_id fecmxc_ids[] = {
1374 	{ .compatible = "fsl,imx6q-fec" },
1375 	{ .compatible = "fsl,imx6sl-fec" },
1376 	{ .compatible = "fsl,imx6sx-fec" },
1377 	{ .compatible = "fsl,imx6ul-fec" },
1378 	{ .compatible = "fsl,imx53-fec" },
1379 	{ }
1380 };
1381 
1382 U_BOOT_DRIVER(fecmxc_gem) = {
1383 	.name	= "fecmxc",
1384 	.id	= UCLASS_ETH,
1385 	.of_match = fecmxc_ids,
1386 	.ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1387 	.probe	= fecmxc_probe,
1388 	.remove	= fecmxc_remove,
1389 	.ops	= &fecmxc_ops,
1390 	.priv_auto_alloc_size = sizeof(struct fec_priv),
1391 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1392 };
1393 #endif
1394