xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 5750e5e2)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <malloc.h>
13 #include <net.h>
14 #include <netdev.h>
15 #include <miiphy.h>
16 #include "fec_mxc.h"
17 
18 #include <asm/arch/clock.h>
19 #include <asm/arch/imx-regs.h>
20 #include <asm/imx-common/sys_proto.h>
21 #include <asm/io.h>
22 #include <asm/errno.h>
23 #include <linux/compiler.h>
24 
25 DECLARE_GLOBAL_DATA_PTR;
26 
27 /*
28  * Timeout the transfer after 5 mS. This is usually a bit more, since
29  * the code in the tightloops this timeout is used in adds some overhead.
30  */
31 #define FEC_XFER_TIMEOUT	5000
32 
33 /*
34  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
35  * 64-byte alignment in the DMA RX FEC buffer.
36  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
37  * satisfies the alignment on other SoCs (32-bytes)
38  */
39 #define FEC_DMA_RX_MINALIGN	64
40 
41 #ifndef CONFIG_MII
42 #error "CONFIG_MII has to be defined!"
43 #endif
44 
45 #ifndef CONFIG_FEC_XCV_TYPE
46 #define CONFIG_FEC_XCV_TYPE MII100
47 #endif
48 
49 /*
50  * The i.MX28 operates with packets in big endian. We need to swap them before
51  * sending and after receiving.
52  */
53 #ifdef CONFIG_MX28
54 #define CONFIG_FEC_MXC_SWAP_PACKET
55 #endif
56 
57 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
58 
59 /* Check various alignment issues at compile time */
60 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
61 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
62 #endif
63 
64 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
65 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
66 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
67 #endif
68 
69 #undef DEBUG
70 
71 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
72 static void swap_packet(uint32_t *packet, int length)
73 {
74 	int i;
75 
76 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
77 		packet[i] = __swab32(packet[i]);
78 }
79 #endif
80 
81 /*
82  * MII-interface related functions
83  */
84 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
85 		uint8_t regAddr)
86 {
87 	uint32_t reg;		/* convenient holder for the PHY register */
88 	uint32_t phy;		/* convenient holder for the PHY */
89 	uint32_t start;
90 	int val;
91 
92 	/*
93 	 * reading from any PHY's register is done by properly
94 	 * programming the FEC's MII data register.
95 	 */
96 	writel(FEC_IEVENT_MII, &eth->ievent);
97 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
98 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
99 
100 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
101 			phy | reg, &eth->mii_data);
102 
103 	/*
104 	 * wait for the related interrupt
105 	 */
106 	start = get_timer(0);
107 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
108 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
109 			printf("Read MDIO failed...\n");
110 			return -1;
111 		}
112 	}
113 
114 	/*
115 	 * clear mii interrupt bit
116 	 */
117 	writel(FEC_IEVENT_MII, &eth->ievent);
118 
119 	/*
120 	 * it's now safe to read the PHY's register
121 	 */
122 	val = (unsigned short)readl(&eth->mii_data);
123 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
124 			regAddr, val);
125 	return val;
126 }
127 
128 static void fec_mii_setspeed(struct ethernet_regs *eth)
129 {
130 	/*
131 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
132 	 * and do not drop the Preamble.
133 	 */
134 	register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000);
135 #ifdef FEC_QUIRK_ENET_MAC
136 	speed--;
137 #endif
138 	speed <<= 1;
139 	writel(speed, &eth->mii_speed);
140 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
141 }
142 
143 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
144 		uint8_t regAddr, uint16_t data)
145 {
146 	uint32_t reg;		/* convenient holder for the PHY register */
147 	uint32_t phy;		/* convenient holder for the PHY */
148 	uint32_t start;
149 
150 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
151 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
152 
153 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
154 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
155 
156 	/*
157 	 * wait for the MII interrupt
158 	 */
159 	start = get_timer(0);
160 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
161 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
162 			printf("Write MDIO failed...\n");
163 			return -1;
164 		}
165 	}
166 
167 	/*
168 	 * clear MII interrupt bit
169 	 */
170 	writel(FEC_IEVENT_MII, &eth->ievent);
171 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
172 			regAddr, data);
173 
174 	return 0;
175 }
176 
177 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
178 			int regAddr)
179 {
180 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
181 }
182 
183 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
184 			 int regAddr, u16 data)
185 {
186 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
187 }
188 
189 #ifndef CONFIG_PHYLIB
190 static int miiphy_restart_aneg(struct eth_device *dev)
191 {
192 	int ret = 0;
193 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
194 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
195 	struct ethernet_regs *eth = fec->bus->priv;
196 
197 	/*
198 	 * Wake up from sleep if necessary
199 	 * Reset PHY, then delay 300ns
200 	 */
201 #ifdef CONFIG_MX27
202 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
203 #endif
204 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
205 	udelay(1000);
206 
207 	/*
208 	 * Set the auto-negotiation advertisement register bits
209 	 */
210 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
211 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
212 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
213 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
214 			BMCR_ANENABLE | BMCR_ANRESTART);
215 
216 	if (fec->mii_postcall)
217 		ret = fec->mii_postcall(fec->phy_id);
218 
219 #endif
220 	return ret;
221 }
222 
223 static int miiphy_wait_aneg(struct eth_device *dev)
224 {
225 	uint32_t start;
226 	int status;
227 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
228 	struct ethernet_regs *eth = fec->bus->priv;
229 
230 	/*
231 	 * Wait for AN completion
232 	 */
233 	start = get_timer(0);
234 	do {
235 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
236 			printf("%s: Autonegotiation timeout\n", dev->name);
237 			return -1;
238 		}
239 
240 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
241 		if (status < 0) {
242 			printf("%s: Autonegotiation failed. status: %d\n",
243 					dev->name, status);
244 			return -1;
245 		}
246 	} while (!(status & BMSR_LSTATUS));
247 
248 	return 0;
249 }
250 #endif
251 
252 static int fec_rx_task_enable(struct fec_priv *fec)
253 {
254 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
255 	return 0;
256 }
257 
258 static int fec_rx_task_disable(struct fec_priv *fec)
259 {
260 	return 0;
261 }
262 
263 static int fec_tx_task_enable(struct fec_priv *fec)
264 {
265 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
266 	return 0;
267 }
268 
269 static int fec_tx_task_disable(struct fec_priv *fec)
270 {
271 	return 0;
272 }
273 
274 /**
275  * Initialize receive task's buffer descriptors
276  * @param[in] fec all we know about the device yet
277  * @param[in] count receive buffer count to be allocated
278  * @param[in] dsize desired size of each receive buffer
279  * @return 0 on success
280  *
281  * Init all RX descriptors to default values.
282  */
283 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
284 {
285 	uint32_t size;
286 	uint8_t *data;
287 	int i;
288 
289 	/*
290 	 * Reload the RX descriptors with default values and wipe
291 	 * the RX buffers.
292 	 */
293 	size = roundup(dsize, ARCH_DMA_MINALIGN);
294 	for (i = 0; i < count; i++) {
295 		data = (uint8_t *)fec->rbd_base[i].data_pointer;
296 		memset(data, 0, dsize);
297 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
298 
299 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
300 		fec->rbd_base[i].data_length = 0;
301 	}
302 
303 	/* Mark the last RBD to close the ring. */
304 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
305 	fec->rbd_index = 0;
306 
307 	flush_dcache_range((unsigned)fec->rbd_base,
308 			   (unsigned)fec->rbd_base + size);
309 }
310 
311 /**
312  * Initialize transmit task's buffer descriptors
313  * @param[in] fec all we know about the device yet
314  *
315  * Transmit buffers are created externally. We only have to init the BDs here.\n
316  * Note: There is a race condition in the hardware. When only one BD is in
317  * use it must be marked with the WRAP bit to use it for every transmitt.
318  * This bit in combination with the READY bit results into double transmit
319  * of each data buffer. It seems the state machine checks READY earlier then
320  * resetting it after the first transfer.
321  * Using two BDs solves this issue.
322  */
323 static void fec_tbd_init(struct fec_priv *fec)
324 {
325 	unsigned addr = (unsigned)fec->tbd_base;
326 	unsigned size = roundup(2 * sizeof(struct fec_bd),
327 				ARCH_DMA_MINALIGN);
328 
329 	memset(fec->tbd_base, 0, size);
330 	fec->tbd_base[0].status = 0;
331 	fec->tbd_base[1].status = FEC_TBD_WRAP;
332 	fec->tbd_index = 0;
333 	flush_dcache_range(addr, addr + size);
334 }
335 
336 /**
337  * Mark the given read buffer descriptor as free
338  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
339  * @param[in] pRbd buffer descriptor to mark free again
340  */
341 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
342 {
343 	unsigned short flags = FEC_RBD_EMPTY;
344 	if (last)
345 		flags |= FEC_RBD_WRAP;
346 	writew(flags, &pRbd->status);
347 	writew(0, &pRbd->data_length);
348 }
349 
350 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
351 						unsigned char *mac)
352 {
353 	imx_get_mac_from_fuse(dev_id, mac);
354 	return !is_valid_ethaddr(mac);
355 }
356 
357 static int fec_set_hwaddr(struct eth_device *dev)
358 {
359 	uchar *mac = dev->enetaddr;
360 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
361 
362 	writel(0, &fec->eth->iaddr1);
363 	writel(0, &fec->eth->iaddr2);
364 	writel(0, &fec->eth->gaddr1);
365 	writel(0, &fec->eth->gaddr2);
366 
367 	/*
368 	 * Set physical address
369 	 */
370 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
371 			&fec->eth->paddr1);
372 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
373 
374 	return 0;
375 }
376 
377 /*
378  * Do initial configuration of the FEC registers
379  */
380 static void fec_reg_setup(struct fec_priv *fec)
381 {
382 	uint32_t rcntrl;
383 
384 	/*
385 	 * Set interrupt mask register
386 	 */
387 	writel(0x00000000, &fec->eth->imask);
388 
389 	/*
390 	 * Clear FEC-Lite interrupt event register(IEVENT)
391 	 */
392 	writel(0xffffffff, &fec->eth->ievent);
393 
394 
395 	/*
396 	 * Set FEC-Lite receive control register(R_CNTRL):
397 	 */
398 
399 	/* Start with frame length = 1518, common for all modes. */
400 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
401 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
402 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
403 	if (fec->xcv_type == RGMII)
404 		rcntrl |= FEC_RCNTRL_RGMII;
405 	else if (fec->xcv_type == RMII)
406 		rcntrl |= FEC_RCNTRL_RMII;
407 
408 	writel(rcntrl, &fec->eth->r_cntrl);
409 }
410 
411 /**
412  * Start the FEC engine
413  * @param[in] dev Our device to handle
414  */
415 static int fec_open(struct eth_device *edev)
416 {
417 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
418 	int speed;
419 	uint32_t addr, size;
420 	int i;
421 
422 	debug("fec_open: fec_open(dev)\n");
423 	/* full-duplex, heartbeat disabled */
424 	writel(1 << 2, &fec->eth->x_cntrl);
425 	fec->rbd_index = 0;
426 
427 	/* Invalidate all descriptors */
428 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
429 		fec_rbd_clean(0, &fec->rbd_base[i]);
430 	fec_rbd_clean(1, &fec->rbd_base[i]);
431 
432 	/* Flush the descriptors into RAM */
433 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
434 			ARCH_DMA_MINALIGN);
435 	addr = (uint32_t)fec->rbd_base;
436 	flush_dcache_range(addr, addr + size);
437 
438 #ifdef FEC_QUIRK_ENET_MAC
439 	/* Enable ENET HW endian SWAP */
440 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
441 		&fec->eth->ecntrl);
442 	/* Enable ENET store and forward mode */
443 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
444 		&fec->eth->x_wmrk);
445 #endif
446 	/*
447 	 * Enable FEC-Lite controller
448 	 */
449 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
450 		&fec->eth->ecntrl);
451 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
452 	udelay(100);
453 	/*
454 	 * setup the MII gasket for RMII mode
455 	 */
456 
457 	/* disable the gasket */
458 	writew(0, &fec->eth->miigsk_enr);
459 
460 	/* wait for the gasket to be disabled */
461 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
462 		udelay(2);
463 
464 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
465 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
466 
467 	/* re-enable the gasket */
468 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
469 
470 	/* wait until MII gasket is ready */
471 	int max_loops = 10;
472 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
473 		if (--max_loops <= 0) {
474 			printf("WAIT for MII Gasket ready timed out\n");
475 			break;
476 		}
477 	}
478 #endif
479 
480 #ifdef CONFIG_PHYLIB
481 	{
482 		/* Start up the PHY */
483 		int ret = phy_startup(fec->phydev);
484 
485 		if (ret) {
486 			printf("Could not initialize PHY %s\n",
487 			       fec->phydev->dev->name);
488 			return ret;
489 		}
490 		speed = fec->phydev->speed;
491 	}
492 #else
493 	miiphy_wait_aneg(edev);
494 	speed = miiphy_speed(edev->name, fec->phy_id);
495 	miiphy_duplex(edev->name, fec->phy_id);
496 #endif
497 
498 #ifdef FEC_QUIRK_ENET_MAC
499 	{
500 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
501 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
502 		if (speed == _1000BASET)
503 			ecr |= FEC_ECNTRL_SPEED;
504 		else if (speed != _100BASET)
505 			rcr |= FEC_RCNTRL_RMII_10T;
506 		writel(ecr, &fec->eth->ecntrl);
507 		writel(rcr, &fec->eth->r_cntrl);
508 	}
509 #endif
510 	debug("%s:Speed=%i\n", __func__, speed);
511 
512 	/*
513 	 * Enable SmartDMA receive task
514 	 */
515 	fec_rx_task_enable(fec);
516 
517 	udelay(100000);
518 	return 0;
519 }
520 
521 static int fec_init(struct eth_device *dev, bd_t* bd)
522 {
523 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
524 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
525 	int i;
526 
527 	/* Initialize MAC address */
528 	fec_set_hwaddr(dev);
529 
530 	/*
531 	 * Setup transmit descriptors, there are two in total.
532 	 */
533 	fec_tbd_init(fec);
534 
535 	/* Setup receive descriptors. */
536 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
537 
538 	fec_reg_setup(fec);
539 
540 	if (fec->xcv_type != SEVENWIRE)
541 		fec_mii_setspeed(fec->bus->priv);
542 
543 	/*
544 	 * Set Opcode/Pause Duration Register
545 	 */
546 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
547 	writel(0x2, &fec->eth->x_wmrk);
548 	/*
549 	 * Set multicast address filter
550 	 */
551 	writel(0x00000000, &fec->eth->gaddr1);
552 	writel(0x00000000, &fec->eth->gaddr2);
553 
554 
555 	/* Do not access reserved register for i.MX6UL */
556 	if (!is_cpu_type(MXC_CPU_MX6UL)) {
557 		/* clear MIB RAM */
558 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
559 			writel(0, i);
560 
561 		/* FIFO receive start register */
562 		writel(0x520, &fec->eth->r_fstart);
563 	}
564 
565 	/* size and address of each buffer */
566 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
567 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
568 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
569 
570 #ifndef CONFIG_PHYLIB
571 	if (fec->xcv_type != SEVENWIRE)
572 		miiphy_restart_aneg(dev);
573 #endif
574 	fec_open(dev);
575 	return 0;
576 }
577 
578 /**
579  * Halt the FEC engine
580  * @param[in] dev Our device to handle
581  */
582 static void fec_halt(struct eth_device *dev)
583 {
584 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
585 	int counter = 0xffff;
586 
587 	/*
588 	 * issue graceful stop command to the FEC transmitter if necessary
589 	 */
590 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
591 			&fec->eth->x_cntrl);
592 
593 	debug("eth_halt: wait for stop regs\n");
594 	/*
595 	 * wait for graceful stop to register
596 	 */
597 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
598 		udelay(1);
599 
600 	/*
601 	 * Disable SmartDMA tasks
602 	 */
603 	fec_tx_task_disable(fec);
604 	fec_rx_task_disable(fec);
605 
606 	/*
607 	 * Disable the Ethernet Controller
608 	 * Note: this will also reset the BD index counter!
609 	 */
610 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
611 			&fec->eth->ecntrl);
612 	fec->rbd_index = 0;
613 	fec->tbd_index = 0;
614 	debug("eth_halt: done\n");
615 }
616 
617 /**
618  * Transmit one frame
619  * @param[in] dev Our ethernet device to handle
620  * @param[in] packet Pointer to the data to be transmitted
621  * @param[in] length Data count in bytes
622  * @return 0 on success
623  */
624 static int fec_send(struct eth_device *dev, void *packet, int length)
625 {
626 	unsigned int status;
627 	uint32_t size, end;
628 	uint32_t addr;
629 	int timeout = FEC_XFER_TIMEOUT;
630 	int ret = 0;
631 
632 	/*
633 	 * This routine transmits one frame.  This routine only accepts
634 	 * 6-byte Ethernet addresses.
635 	 */
636 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
637 
638 	/*
639 	 * Check for valid length of data.
640 	 */
641 	if ((length > 1500) || (length <= 0)) {
642 		printf("Payload (%d) too large\n", length);
643 		return -1;
644 	}
645 
646 	/*
647 	 * Setup the transmit buffer. We are always using the first buffer for
648 	 * transmission, the second will be empty and only used to stop the DMA
649 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
650 	 */
651 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
652 	swap_packet((uint32_t *)packet, length);
653 #endif
654 
655 	addr = (uint32_t)packet;
656 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
657 	addr &= ~(ARCH_DMA_MINALIGN - 1);
658 	flush_dcache_range(addr, end);
659 
660 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
661 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
662 
663 	/*
664 	 * update BD's status now
665 	 * This block:
666 	 * - is always the last in a chain (means no chain)
667 	 * - should transmitt the CRC
668 	 * - might be the last BD in the list, so the address counter should
669 	 *   wrap (-> keep the WRAP flag)
670 	 */
671 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
672 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
673 	writew(status, &fec->tbd_base[fec->tbd_index].status);
674 
675 	/*
676 	 * Flush data cache. This code flushes both TX descriptors to RAM.
677 	 * After this code, the descriptors will be safely in RAM and we
678 	 * can start DMA.
679 	 */
680 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
681 	addr = (uint32_t)fec->tbd_base;
682 	flush_dcache_range(addr, addr + size);
683 
684 	/*
685 	 * Below we read the DMA descriptor's last four bytes back from the
686 	 * DRAM. This is important in order to make sure that all WRITE
687 	 * operations on the bus that were triggered by previous cache FLUSH
688 	 * have completed.
689 	 *
690 	 * Otherwise, on MX28, it is possible to observe a corruption of the
691 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
692 	 * for the bus structure of MX28. The scenario is as follows:
693 	 *
694 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
695 	 *    to DRAM due to flush_dcache_range()
696 	 * 2) ARM core writes the FEC registers via AHB_ARB2
697 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
698 	 *
699 	 * Note that 2) does sometimes finish before 1) due to reordering of
700 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
701 	 * DMA descriptor is fully written into DRAM. This results in occasional
702 	 * corruption of the DMA descriptor.
703 	 */
704 	readl(addr + size - 4);
705 
706 	/*
707 	 * Enable SmartDMA transmit task
708 	 */
709 	fec_tx_task_enable(fec);
710 
711 	/*
712 	 * Wait until frame is sent. On each turn of the wait cycle, we must
713 	 * invalidate data cache to see what's really in RAM. Also, we need
714 	 * barrier here.
715 	 */
716 	while (--timeout) {
717 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
718 			break;
719 	}
720 
721 	if (!timeout) {
722 		ret = -EINVAL;
723 		goto out;
724 	}
725 
726 	/*
727 	 * The TDAR bit is cleared when the descriptors are all out from TX
728 	 * but on mx6solox we noticed that the READY bit is still not cleared
729 	 * right after TDAR.
730 	 * These are two distinct signals, and in IC simulation, we found that
731 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
732 	 * cleared.
733 	 * In mx6solox, we use a later version of FEC IP. It looks like that
734 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
735 	 * version.
736 	 *
737 	 * Fix this by polling the READY bit of BD after the TDAR polling,
738 	 * which covers the mx6solox case and does not harm the other SoCs.
739 	 */
740 	timeout = FEC_XFER_TIMEOUT;
741 	while (--timeout) {
742 		invalidate_dcache_range(addr, addr + size);
743 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
744 		    FEC_TBD_READY))
745 			break;
746 	}
747 
748 	if (!timeout)
749 		ret = -EINVAL;
750 
751 out:
752 	debug("fec_send: status 0x%x index %d ret %i\n",
753 			readw(&fec->tbd_base[fec->tbd_index].status),
754 			fec->tbd_index, ret);
755 	/* for next transmission use the other buffer */
756 	if (fec->tbd_index)
757 		fec->tbd_index = 0;
758 	else
759 		fec->tbd_index = 1;
760 
761 	return ret;
762 }
763 
764 /**
765  * Pull one frame from the card
766  * @param[in] dev Our ethernet device to handle
767  * @return Length of packet read
768  */
769 static int fec_recv(struct eth_device *dev)
770 {
771 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
772 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
773 	unsigned long ievent;
774 	int frame_length, len = 0;
775 	uint16_t bd_status;
776 	uint32_t addr, size, end;
777 	int i;
778 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
779 
780 	/*
781 	 * Check if any critical events have happened
782 	 */
783 	ievent = readl(&fec->eth->ievent);
784 	writel(ievent, &fec->eth->ievent);
785 	debug("fec_recv: ievent 0x%lx\n", ievent);
786 	if (ievent & FEC_IEVENT_BABR) {
787 		fec_halt(dev);
788 		fec_init(dev, fec->bd);
789 		printf("some error: 0x%08lx\n", ievent);
790 		return 0;
791 	}
792 	if (ievent & FEC_IEVENT_HBERR) {
793 		/* Heartbeat error */
794 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
795 				&fec->eth->x_cntrl);
796 	}
797 	if (ievent & FEC_IEVENT_GRA) {
798 		/* Graceful stop complete */
799 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
800 			fec_halt(dev);
801 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
802 					&fec->eth->x_cntrl);
803 			fec_init(dev, fec->bd);
804 		}
805 	}
806 
807 	/*
808 	 * Read the buffer status. Before the status can be read, the data cache
809 	 * must be invalidated, because the data in RAM might have been changed
810 	 * by DMA. The descriptors are properly aligned to cachelines so there's
811 	 * no need to worry they'd overlap.
812 	 *
813 	 * WARNING: By invalidating the descriptor here, we also invalidate
814 	 * the descriptors surrounding this one. Therefore we can NOT change the
815 	 * contents of this descriptor nor the surrounding ones. The problem is
816 	 * that in order to mark the descriptor as processed, we need to change
817 	 * the descriptor. The solution is to mark the whole cache line when all
818 	 * descriptors in the cache line are processed.
819 	 */
820 	addr = (uint32_t)rbd;
821 	addr &= ~(ARCH_DMA_MINALIGN - 1);
822 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
823 	invalidate_dcache_range(addr, addr + size);
824 
825 	bd_status = readw(&rbd->status);
826 	debug("fec_recv: status 0x%x\n", bd_status);
827 
828 	if (!(bd_status & FEC_RBD_EMPTY)) {
829 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
830 			((readw(&rbd->data_length) - 4) > 14)) {
831 			/*
832 			 * Get buffer address and size
833 			 */
834 			addr = readl(&rbd->data_pointer);
835 			frame_length = readw(&rbd->data_length) - 4;
836 			/*
837 			 * Invalidate data cache over the buffer
838 			 */
839 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
840 			addr &= ~(ARCH_DMA_MINALIGN - 1);
841 			invalidate_dcache_range(addr, end);
842 
843 			/*
844 			 *  Fill the buffer and pass it to upper layers
845 			 */
846 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
847 			swap_packet((uint32_t *)addr, frame_length);
848 #endif
849 			memcpy(buff, (char *)addr, frame_length);
850 			net_process_received_packet(buff, frame_length);
851 			len = frame_length;
852 		} else {
853 			if (bd_status & FEC_RBD_ERR)
854 				printf("error frame: 0x%08x 0x%08x\n",
855 				       addr, bd_status);
856 		}
857 
858 		/*
859 		 * Free the current buffer, restart the engine and move forward
860 		 * to the next buffer. Here we check if the whole cacheline of
861 		 * descriptors was already processed and if so, we mark it free
862 		 * as whole.
863 		 */
864 		size = RXDESC_PER_CACHELINE - 1;
865 		if ((fec->rbd_index & size) == size) {
866 			i = fec->rbd_index - size;
867 			addr = (uint32_t)&fec->rbd_base[i];
868 			for (; i <= fec->rbd_index ; i++) {
869 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
870 					      &fec->rbd_base[i]);
871 			}
872 			flush_dcache_range(addr,
873 				addr + ARCH_DMA_MINALIGN);
874 		}
875 
876 		fec_rx_task_enable(fec);
877 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
878 	}
879 	debug("fec_recv: stop\n");
880 
881 	return len;
882 }
883 
884 static void fec_set_dev_name(char *dest, int dev_id)
885 {
886 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
887 }
888 
889 static int fec_alloc_descs(struct fec_priv *fec)
890 {
891 	unsigned int size;
892 	int i;
893 	uint8_t *data;
894 
895 	/* Allocate TX descriptors. */
896 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
897 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
898 	if (!fec->tbd_base)
899 		goto err_tx;
900 
901 	/* Allocate RX descriptors. */
902 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
903 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
904 	if (!fec->rbd_base)
905 		goto err_rx;
906 
907 	memset(fec->rbd_base, 0, size);
908 
909 	/* Allocate RX buffers. */
910 
911 	/* Maximum RX buffer size. */
912 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
913 	for (i = 0; i < FEC_RBD_NUM; i++) {
914 		data = memalign(FEC_DMA_RX_MINALIGN, size);
915 		if (!data) {
916 			printf("%s: error allocating rxbuf %d\n", __func__, i);
917 			goto err_ring;
918 		}
919 
920 		memset(data, 0, size);
921 
922 		fec->rbd_base[i].data_pointer = (uint32_t)data;
923 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
924 		fec->rbd_base[i].data_length = 0;
925 		/* Flush the buffer to memory. */
926 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
927 	}
928 
929 	/* Mark the last RBD to close the ring. */
930 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
931 
932 	fec->rbd_index = 0;
933 	fec->tbd_index = 0;
934 
935 	return 0;
936 
937 err_ring:
938 	for (; i >= 0; i--)
939 		free((void *)fec->rbd_base[i].data_pointer);
940 	free(fec->rbd_base);
941 err_rx:
942 	free(fec->tbd_base);
943 err_tx:
944 	return -ENOMEM;
945 }
946 
947 static void fec_free_descs(struct fec_priv *fec)
948 {
949 	int i;
950 
951 	for (i = 0; i < FEC_RBD_NUM; i++)
952 		free((void *)fec->rbd_base[i].data_pointer);
953 	free(fec->rbd_base);
954 	free(fec->tbd_base);
955 }
956 
957 #ifdef CONFIG_PHYLIB
958 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
959 		struct mii_dev *bus, struct phy_device *phydev)
960 #else
961 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
962 		struct mii_dev *bus, int phy_id)
963 #endif
964 {
965 	struct eth_device *edev;
966 	struct fec_priv *fec;
967 	unsigned char ethaddr[6];
968 	uint32_t start;
969 	int ret = 0;
970 
971 	/* create and fill edev struct */
972 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
973 	if (!edev) {
974 		puts("fec_mxc: not enough malloc memory for eth_device\n");
975 		ret = -ENOMEM;
976 		goto err1;
977 	}
978 
979 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
980 	if (!fec) {
981 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
982 		ret = -ENOMEM;
983 		goto err2;
984 	}
985 
986 	memset(edev, 0, sizeof(*edev));
987 	memset(fec, 0, sizeof(*fec));
988 
989 	ret = fec_alloc_descs(fec);
990 	if (ret)
991 		goto err3;
992 
993 	edev->priv = fec;
994 	edev->init = fec_init;
995 	edev->send = fec_send;
996 	edev->recv = fec_recv;
997 	edev->halt = fec_halt;
998 	edev->write_hwaddr = fec_set_hwaddr;
999 
1000 	fec->eth = (struct ethernet_regs *)base_addr;
1001 	fec->bd = bd;
1002 
1003 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1004 
1005 	/* Reset chip. */
1006 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1007 	start = get_timer(0);
1008 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1009 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1010 			printf("FEC MXC: Timeout reseting chip\n");
1011 			goto err4;
1012 		}
1013 		udelay(10);
1014 	}
1015 
1016 	fec_reg_setup(fec);
1017 	fec_set_dev_name(edev->name, dev_id);
1018 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1019 	fec->bus = bus;
1020 	fec_mii_setspeed(bus->priv);
1021 #ifdef CONFIG_PHYLIB
1022 	fec->phydev = phydev;
1023 	phy_connect_dev(phydev, edev);
1024 	/* Configure phy */
1025 	phy_config(phydev);
1026 #else
1027 	fec->phy_id = phy_id;
1028 #endif
1029 	eth_register(edev);
1030 
1031 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1032 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1033 		memcpy(edev->enetaddr, ethaddr, 6);
1034 		if (!getenv("ethaddr"))
1035 			eth_setenv_enetaddr("ethaddr", ethaddr);
1036 	}
1037 	return ret;
1038 err4:
1039 	fec_free_descs(fec);
1040 err3:
1041 	free(fec);
1042 err2:
1043 	free(edev);
1044 err1:
1045 	return ret;
1046 }
1047 
1048 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1049 {
1050 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1051 	struct mii_dev *bus;
1052 	int ret;
1053 
1054 	bus = mdio_alloc();
1055 	if (!bus) {
1056 		printf("mdio_alloc failed\n");
1057 		return NULL;
1058 	}
1059 	bus->read = fec_phy_read;
1060 	bus->write = fec_phy_write;
1061 	bus->priv = eth;
1062 	fec_set_dev_name(bus->name, dev_id);
1063 
1064 	ret = mdio_register(bus);
1065 	if (ret) {
1066 		printf("mdio_register failed\n");
1067 		free(bus);
1068 		return NULL;
1069 	}
1070 	fec_mii_setspeed(eth);
1071 	return bus;
1072 }
1073 
1074 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1075 {
1076 	uint32_t base_mii;
1077 	struct mii_dev *bus = NULL;
1078 #ifdef CONFIG_PHYLIB
1079 	struct phy_device *phydev = NULL;
1080 #endif
1081 	int ret;
1082 
1083 #ifdef CONFIG_MX28
1084 	/*
1085 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1086 	 * Only the first one can access the MDIO bus.
1087 	 */
1088 	base_mii = MXS_ENET0_BASE;
1089 #else
1090 	base_mii = addr;
1091 #endif
1092 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1093 	bus = fec_get_miibus(base_mii, dev_id);
1094 	if (!bus)
1095 		return -ENOMEM;
1096 #ifdef CONFIG_PHYLIB
1097 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1098 	if (!phydev) {
1099 		free(bus);
1100 		return -ENOMEM;
1101 	}
1102 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1103 #else
1104 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1105 #endif
1106 	if (ret) {
1107 #ifdef CONFIG_PHYLIB
1108 		free(phydev);
1109 #endif
1110 		free(bus);
1111 	}
1112 	return ret;
1113 }
1114 
1115 #ifdef CONFIG_FEC_MXC_PHYADDR
1116 int fecmxc_initialize(bd_t *bd)
1117 {
1118 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1119 			IMX_FEC_BASE);
1120 }
1121 #endif
1122 
1123 #ifndef CONFIG_PHYLIB
1124 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1125 {
1126 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1127 	fec->mii_postcall = cb;
1128 	return 0;
1129 }
1130 #endif
1131