xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 4dd02a75)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <malloc.h>
13 #include <net.h>
14 #include <netdev.h>
15 #include <miiphy.h>
16 #include "fec_mxc.h"
17 
18 #include <asm/arch/clock.h>
19 #include <asm/arch/imx-regs.h>
20 #include <asm/io.h>
21 #include <asm/errno.h>
22 #include <linux/compiler.h>
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 /*
27  * Timeout the transfer after 5 mS. This is usually a bit more, since
28  * the code in the tightloops this timeout is used in adds some overhead.
29  */
30 #define FEC_XFER_TIMEOUT	5000
31 
32 /*
33  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
34  * 64-byte alignment in the DMA RX FEC buffer.
35  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
36  * satisfies the alignment on other SoCs (32-bytes)
37  */
38 #define FEC_DMA_RX_MINALIGN	64
39 
40 #ifndef CONFIG_MII
41 #error "CONFIG_MII has to be defined!"
42 #endif
43 
44 #ifndef CONFIG_FEC_XCV_TYPE
45 #define CONFIG_FEC_XCV_TYPE MII100
46 #endif
47 
48 /*
49  * The i.MX28 operates with packets in big endian. We need to swap them before
50  * sending and after receiving.
51  */
52 #ifdef CONFIG_MX28
53 #define CONFIG_FEC_MXC_SWAP_PACKET
54 #endif
55 
56 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
57 
58 /* Check various alignment issues at compile time */
59 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
60 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
61 #endif
62 
63 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
64 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
65 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
66 #endif
67 
68 #undef DEBUG
69 
70 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
71 static void swap_packet(uint32_t *packet, int length)
72 {
73 	int i;
74 
75 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
76 		packet[i] = __swab32(packet[i]);
77 }
78 #endif
79 
80 /*
81  * MII-interface related functions
82  */
83 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
84 		uint8_t regAddr)
85 {
86 	uint32_t reg;		/* convenient holder for the PHY register */
87 	uint32_t phy;		/* convenient holder for the PHY */
88 	uint32_t start;
89 	int val;
90 
91 	/*
92 	 * reading from any PHY's register is done by properly
93 	 * programming the FEC's MII data register.
94 	 */
95 	writel(FEC_IEVENT_MII, &eth->ievent);
96 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
97 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
98 
99 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
100 			phy | reg, &eth->mii_data);
101 
102 	/*
103 	 * wait for the related interrupt
104 	 */
105 	start = get_timer(0);
106 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
107 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
108 			printf("Read MDIO failed...\n");
109 			return -1;
110 		}
111 	}
112 
113 	/*
114 	 * clear mii interrupt bit
115 	 */
116 	writel(FEC_IEVENT_MII, &eth->ievent);
117 
118 	/*
119 	 * it's now safe to read the PHY's register
120 	 */
121 	val = (unsigned short)readl(&eth->mii_data);
122 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
123 			regAddr, val);
124 	return val;
125 }
126 
127 static void fec_mii_setspeed(struct ethernet_regs *eth)
128 {
129 	/*
130 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
131 	 * and do not drop the Preamble.
132 	 */
133 	register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000);
134 #ifdef FEC_QUIRK_ENET_MAC
135 	speed--;
136 #endif
137 	speed <<= 1;
138 	writel(speed, &eth->mii_speed);
139 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
140 }
141 
142 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
143 		uint8_t regAddr, uint16_t data)
144 {
145 	uint32_t reg;		/* convenient holder for the PHY register */
146 	uint32_t phy;		/* convenient holder for the PHY */
147 	uint32_t start;
148 
149 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
150 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
151 
152 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
153 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
154 
155 	/*
156 	 * wait for the MII interrupt
157 	 */
158 	start = get_timer(0);
159 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
160 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
161 			printf("Write MDIO failed...\n");
162 			return -1;
163 		}
164 	}
165 
166 	/*
167 	 * clear MII interrupt bit
168 	 */
169 	writel(FEC_IEVENT_MII, &eth->ievent);
170 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
171 			regAddr, data);
172 
173 	return 0;
174 }
175 
176 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
177 			int regAddr)
178 {
179 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
180 }
181 
182 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
183 			 int regAddr, u16 data)
184 {
185 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
186 }
187 
188 #ifndef CONFIG_PHYLIB
189 static int miiphy_restart_aneg(struct eth_device *dev)
190 {
191 	int ret = 0;
192 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
193 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
194 	struct ethernet_regs *eth = fec->bus->priv;
195 
196 	/*
197 	 * Wake up from sleep if necessary
198 	 * Reset PHY, then delay 300ns
199 	 */
200 #ifdef CONFIG_MX27
201 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
202 #endif
203 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
204 	udelay(1000);
205 
206 	/*
207 	 * Set the auto-negotiation advertisement register bits
208 	 */
209 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
210 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
211 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
212 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
213 			BMCR_ANENABLE | BMCR_ANRESTART);
214 
215 	if (fec->mii_postcall)
216 		ret = fec->mii_postcall(fec->phy_id);
217 
218 #endif
219 	return ret;
220 }
221 
222 static int miiphy_wait_aneg(struct eth_device *dev)
223 {
224 	uint32_t start;
225 	int status;
226 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
227 	struct ethernet_regs *eth = fec->bus->priv;
228 
229 	/*
230 	 * Wait for AN completion
231 	 */
232 	start = get_timer(0);
233 	do {
234 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
235 			printf("%s: Autonegotiation timeout\n", dev->name);
236 			return -1;
237 		}
238 
239 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
240 		if (status < 0) {
241 			printf("%s: Autonegotiation failed. status: %d\n",
242 					dev->name, status);
243 			return -1;
244 		}
245 	} while (!(status & BMSR_LSTATUS));
246 
247 	return 0;
248 }
249 #endif
250 
251 static int fec_rx_task_enable(struct fec_priv *fec)
252 {
253 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
254 	return 0;
255 }
256 
257 static int fec_rx_task_disable(struct fec_priv *fec)
258 {
259 	return 0;
260 }
261 
262 static int fec_tx_task_enable(struct fec_priv *fec)
263 {
264 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
265 	return 0;
266 }
267 
268 static int fec_tx_task_disable(struct fec_priv *fec)
269 {
270 	return 0;
271 }
272 
273 /**
274  * Initialize receive task's buffer descriptors
275  * @param[in] fec all we know about the device yet
276  * @param[in] count receive buffer count to be allocated
277  * @param[in] dsize desired size of each receive buffer
278  * @return 0 on success
279  *
280  * Init all RX descriptors to default values.
281  */
282 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
283 {
284 	uint32_t size;
285 	uint8_t *data;
286 	int i;
287 
288 	/*
289 	 * Reload the RX descriptors with default values and wipe
290 	 * the RX buffers.
291 	 */
292 	size = roundup(dsize, ARCH_DMA_MINALIGN);
293 	for (i = 0; i < count; i++) {
294 		data = (uint8_t *)fec->rbd_base[i].data_pointer;
295 		memset(data, 0, dsize);
296 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
297 
298 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
299 		fec->rbd_base[i].data_length = 0;
300 	}
301 
302 	/* Mark the last RBD to close the ring. */
303 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
304 	fec->rbd_index = 0;
305 
306 	flush_dcache_range((unsigned)fec->rbd_base,
307 			   (unsigned)fec->rbd_base + size);
308 }
309 
310 /**
311  * Initialize transmit task's buffer descriptors
312  * @param[in] fec all we know about the device yet
313  *
314  * Transmit buffers are created externally. We only have to init the BDs here.\n
315  * Note: There is a race condition in the hardware. When only one BD is in
316  * use it must be marked with the WRAP bit to use it for every transmitt.
317  * This bit in combination with the READY bit results into double transmit
318  * of each data buffer. It seems the state machine checks READY earlier then
319  * resetting it after the first transfer.
320  * Using two BDs solves this issue.
321  */
322 static void fec_tbd_init(struct fec_priv *fec)
323 {
324 	unsigned addr = (unsigned)fec->tbd_base;
325 	unsigned size = roundup(2 * sizeof(struct fec_bd),
326 				ARCH_DMA_MINALIGN);
327 
328 	memset(fec->tbd_base, 0, size);
329 	fec->tbd_base[0].status = 0;
330 	fec->tbd_base[1].status = FEC_TBD_WRAP;
331 	fec->tbd_index = 0;
332 	flush_dcache_range(addr, addr + size);
333 }
334 
335 /**
336  * Mark the given read buffer descriptor as free
337  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
338  * @param[in] pRbd buffer descriptor to mark free again
339  */
340 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
341 {
342 	unsigned short flags = FEC_RBD_EMPTY;
343 	if (last)
344 		flags |= FEC_RBD_WRAP;
345 	writew(flags, &pRbd->status);
346 	writew(0, &pRbd->data_length);
347 }
348 
349 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
350 						unsigned char *mac)
351 {
352 	imx_get_mac_from_fuse(dev_id, mac);
353 	return !is_valid_ethaddr(mac);
354 }
355 
356 static int fec_set_hwaddr(struct eth_device *dev)
357 {
358 	uchar *mac = dev->enetaddr;
359 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
360 
361 	writel(0, &fec->eth->iaddr1);
362 	writel(0, &fec->eth->iaddr2);
363 	writel(0, &fec->eth->gaddr1);
364 	writel(0, &fec->eth->gaddr2);
365 
366 	/*
367 	 * Set physical address
368 	 */
369 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
370 			&fec->eth->paddr1);
371 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
372 
373 	return 0;
374 }
375 
376 /*
377  * Do initial configuration of the FEC registers
378  */
379 static void fec_reg_setup(struct fec_priv *fec)
380 {
381 	uint32_t rcntrl;
382 
383 	/*
384 	 * Set interrupt mask register
385 	 */
386 	writel(0x00000000, &fec->eth->imask);
387 
388 	/*
389 	 * Clear FEC-Lite interrupt event register(IEVENT)
390 	 */
391 	writel(0xffffffff, &fec->eth->ievent);
392 
393 
394 	/*
395 	 * Set FEC-Lite receive control register(R_CNTRL):
396 	 */
397 
398 	/* Start with frame length = 1518, common for all modes. */
399 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
400 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
401 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
402 	if (fec->xcv_type == RGMII)
403 		rcntrl |= FEC_RCNTRL_RGMII;
404 	else if (fec->xcv_type == RMII)
405 		rcntrl |= FEC_RCNTRL_RMII;
406 
407 	writel(rcntrl, &fec->eth->r_cntrl);
408 }
409 
410 /**
411  * Start the FEC engine
412  * @param[in] dev Our device to handle
413  */
414 static int fec_open(struct eth_device *edev)
415 {
416 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
417 	int speed;
418 	uint32_t addr, size;
419 	int i;
420 
421 	debug("fec_open: fec_open(dev)\n");
422 	/* full-duplex, heartbeat disabled */
423 	writel(1 << 2, &fec->eth->x_cntrl);
424 	fec->rbd_index = 0;
425 
426 	/* Invalidate all descriptors */
427 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
428 		fec_rbd_clean(0, &fec->rbd_base[i]);
429 	fec_rbd_clean(1, &fec->rbd_base[i]);
430 
431 	/* Flush the descriptors into RAM */
432 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
433 			ARCH_DMA_MINALIGN);
434 	addr = (uint32_t)fec->rbd_base;
435 	flush_dcache_range(addr, addr + size);
436 
437 #ifdef FEC_QUIRK_ENET_MAC
438 	/* Enable ENET HW endian SWAP */
439 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
440 		&fec->eth->ecntrl);
441 	/* Enable ENET store and forward mode */
442 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
443 		&fec->eth->x_wmrk);
444 #endif
445 	/*
446 	 * Enable FEC-Lite controller
447 	 */
448 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
449 		&fec->eth->ecntrl);
450 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
451 	udelay(100);
452 	/*
453 	 * setup the MII gasket for RMII mode
454 	 */
455 
456 	/* disable the gasket */
457 	writew(0, &fec->eth->miigsk_enr);
458 
459 	/* wait for the gasket to be disabled */
460 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
461 		udelay(2);
462 
463 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
464 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
465 
466 	/* re-enable the gasket */
467 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
468 
469 	/* wait until MII gasket is ready */
470 	int max_loops = 10;
471 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
472 		if (--max_loops <= 0) {
473 			printf("WAIT for MII Gasket ready timed out\n");
474 			break;
475 		}
476 	}
477 #endif
478 
479 #ifdef CONFIG_PHYLIB
480 	{
481 		/* Start up the PHY */
482 		int ret = phy_startup(fec->phydev);
483 
484 		if (ret) {
485 			printf("Could not initialize PHY %s\n",
486 			       fec->phydev->dev->name);
487 			return ret;
488 		}
489 		speed = fec->phydev->speed;
490 	}
491 #else
492 	miiphy_wait_aneg(edev);
493 	speed = miiphy_speed(edev->name, fec->phy_id);
494 	miiphy_duplex(edev->name, fec->phy_id);
495 #endif
496 
497 #ifdef FEC_QUIRK_ENET_MAC
498 	{
499 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
500 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
501 		if (speed == _1000BASET)
502 			ecr |= FEC_ECNTRL_SPEED;
503 		else if (speed != _100BASET)
504 			rcr |= FEC_RCNTRL_RMII_10T;
505 		writel(ecr, &fec->eth->ecntrl);
506 		writel(rcr, &fec->eth->r_cntrl);
507 	}
508 #endif
509 	debug("%s:Speed=%i\n", __func__, speed);
510 
511 	/*
512 	 * Enable SmartDMA receive task
513 	 */
514 	fec_rx_task_enable(fec);
515 
516 	udelay(100000);
517 	return 0;
518 }
519 
520 static int fec_init(struct eth_device *dev, bd_t* bd)
521 {
522 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
523 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
524 	int i;
525 
526 	/* Initialize MAC address */
527 	fec_set_hwaddr(dev);
528 
529 	/*
530 	 * Setup transmit descriptors, there are two in total.
531 	 */
532 	fec_tbd_init(fec);
533 
534 	/* Setup receive descriptors. */
535 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
536 
537 	fec_reg_setup(fec);
538 
539 	if (fec->xcv_type != SEVENWIRE)
540 		fec_mii_setspeed(fec->bus->priv);
541 
542 	/*
543 	 * Set Opcode/Pause Duration Register
544 	 */
545 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
546 	writel(0x2, &fec->eth->x_wmrk);
547 	/*
548 	 * Set multicast address filter
549 	 */
550 	writel(0x00000000, &fec->eth->gaddr1);
551 	writel(0x00000000, &fec->eth->gaddr2);
552 
553 
554 	/* clear MIB RAM */
555 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
556 		writel(0, i);
557 
558 	/* FIFO receive start register */
559 	writel(0x520, &fec->eth->r_fstart);
560 
561 	/* size and address of each buffer */
562 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
563 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
564 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
565 
566 #ifndef CONFIG_PHYLIB
567 	if (fec->xcv_type != SEVENWIRE)
568 		miiphy_restart_aneg(dev);
569 #endif
570 	fec_open(dev);
571 	return 0;
572 }
573 
574 /**
575  * Halt the FEC engine
576  * @param[in] dev Our device to handle
577  */
578 static void fec_halt(struct eth_device *dev)
579 {
580 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
581 	int counter = 0xffff;
582 
583 	/*
584 	 * issue graceful stop command to the FEC transmitter if necessary
585 	 */
586 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
587 			&fec->eth->x_cntrl);
588 
589 	debug("eth_halt: wait for stop regs\n");
590 	/*
591 	 * wait for graceful stop to register
592 	 */
593 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
594 		udelay(1);
595 
596 	/*
597 	 * Disable SmartDMA tasks
598 	 */
599 	fec_tx_task_disable(fec);
600 	fec_rx_task_disable(fec);
601 
602 	/*
603 	 * Disable the Ethernet Controller
604 	 * Note: this will also reset the BD index counter!
605 	 */
606 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
607 			&fec->eth->ecntrl);
608 	fec->rbd_index = 0;
609 	fec->tbd_index = 0;
610 	debug("eth_halt: done\n");
611 }
612 
613 /**
614  * Transmit one frame
615  * @param[in] dev Our ethernet device to handle
616  * @param[in] packet Pointer to the data to be transmitted
617  * @param[in] length Data count in bytes
618  * @return 0 on success
619  */
620 static int fec_send(struct eth_device *dev, void *packet, int length)
621 {
622 	unsigned int status;
623 	uint32_t size, end;
624 	uint32_t addr;
625 	int timeout = FEC_XFER_TIMEOUT;
626 	int ret = 0;
627 
628 	/*
629 	 * This routine transmits one frame.  This routine only accepts
630 	 * 6-byte Ethernet addresses.
631 	 */
632 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
633 
634 	/*
635 	 * Check for valid length of data.
636 	 */
637 	if ((length > 1500) || (length <= 0)) {
638 		printf("Payload (%d) too large\n", length);
639 		return -1;
640 	}
641 
642 	/*
643 	 * Setup the transmit buffer. We are always using the first buffer for
644 	 * transmission, the second will be empty and only used to stop the DMA
645 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
646 	 */
647 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
648 	swap_packet((uint32_t *)packet, length);
649 #endif
650 
651 	addr = (uint32_t)packet;
652 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
653 	addr &= ~(ARCH_DMA_MINALIGN - 1);
654 	flush_dcache_range(addr, end);
655 
656 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
657 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
658 
659 	/*
660 	 * update BD's status now
661 	 * This block:
662 	 * - is always the last in a chain (means no chain)
663 	 * - should transmitt the CRC
664 	 * - might be the last BD in the list, so the address counter should
665 	 *   wrap (-> keep the WRAP flag)
666 	 */
667 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
668 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
669 	writew(status, &fec->tbd_base[fec->tbd_index].status);
670 
671 	/*
672 	 * Flush data cache. This code flushes both TX descriptors to RAM.
673 	 * After this code, the descriptors will be safely in RAM and we
674 	 * can start DMA.
675 	 */
676 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
677 	addr = (uint32_t)fec->tbd_base;
678 	flush_dcache_range(addr, addr + size);
679 
680 	/*
681 	 * Below we read the DMA descriptor's last four bytes back from the
682 	 * DRAM. This is important in order to make sure that all WRITE
683 	 * operations on the bus that were triggered by previous cache FLUSH
684 	 * have completed.
685 	 *
686 	 * Otherwise, on MX28, it is possible to observe a corruption of the
687 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
688 	 * for the bus structure of MX28. The scenario is as follows:
689 	 *
690 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
691 	 *    to DRAM due to flush_dcache_range()
692 	 * 2) ARM core writes the FEC registers via AHB_ARB2
693 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
694 	 *
695 	 * Note that 2) does sometimes finish before 1) due to reordering of
696 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
697 	 * DMA descriptor is fully written into DRAM. This results in occasional
698 	 * corruption of the DMA descriptor.
699 	 */
700 	readl(addr + size - 4);
701 
702 	/*
703 	 * Enable SmartDMA transmit task
704 	 */
705 	fec_tx_task_enable(fec);
706 
707 	/*
708 	 * Wait until frame is sent. On each turn of the wait cycle, we must
709 	 * invalidate data cache to see what's really in RAM. Also, we need
710 	 * barrier here.
711 	 */
712 	while (--timeout) {
713 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
714 			break;
715 	}
716 
717 	if (!timeout) {
718 		ret = -EINVAL;
719 		goto out;
720 	}
721 
722 	/*
723 	 * The TDAR bit is cleared when the descriptors are all out from TX
724 	 * but on mx6solox we noticed that the READY bit is still not cleared
725 	 * right after TDAR.
726 	 * These are two distinct signals, and in IC simulation, we found that
727 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
728 	 * cleared.
729 	 * In mx6solox, we use a later version of FEC IP. It looks like that
730 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
731 	 * version.
732 	 *
733 	 * Fix this by polling the READY bit of BD after the TDAR polling,
734 	 * which covers the mx6solox case and does not harm the other SoCs.
735 	 */
736 	timeout = FEC_XFER_TIMEOUT;
737 	while (--timeout) {
738 		invalidate_dcache_range(addr, addr + size);
739 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
740 		    FEC_TBD_READY))
741 			break;
742 	}
743 
744 	if (!timeout)
745 		ret = -EINVAL;
746 
747 out:
748 	debug("fec_send: status 0x%x index %d ret %i\n",
749 			readw(&fec->tbd_base[fec->tbd_index].status),
750 			fec->tbd_index, ret);
751 	/* for next transmission use the other buffer */
752 	if (fec->tbd_index)
753 		fec->tbd_index = 0;
754 	else
755 		fec->tbd_index = 1;
756 
757 	return ret;
758 }
759 
760 /**
761  * Pull one frame from the card
762  * @param[in] dev Our ethernet device to handle
763  * @return Length of packet read
764  */
765 static int fec_recv(struct eth_device *dev)
766 {
767 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
768 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
769 	unsigned long ievent;
770 	int frame_length, len = 0;
771 	uint16_t bd_status;
772 	uint32_t addr, size, end;
773 	int i;
774 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
775 
776 	/*
777 	 * Check if any critical events have happened
778 	 */
779 	ievent = readl(&fec->eth->ievent);
780 	writel(ievent, &fec->eth->ievent);
781 	debug("fec_recv: ievent 0x%lx\n", ievent);
782 	if (ievent & FEC_IEVENT_BABR) {
783 		fec_halt(dev);
784 		fec_init(dev, fec->bd);
785 		printf("some error: 0x%08lx\n", ievent);
786 		return 0;
787 	}
788 	if (ievent & FEC_IEVENT_HBERR) {
789 		/* Heartbeat error */
790 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
791 				&fec->eth->x_cntrl);
792 	}
793 	if (ievent & FEC_IEVENT_GRA) {
794 		/* Graceful stop complete */
795 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
796 			fec_halt(dev);
797 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
798 					&fec->eth->x_cntrl);
799 			fec_init(dev, fec->bd);
800 		}
801 	}
802 
803 	/*
804 	 * Read the buffer status. Before the status can be read, the data cache
805 	 * must be invalidated, because the data in RAM might have been changed
806 	 * by DMA. The descriptors are properly aligned to cachelines so there's
807 	 * no need to worry they'd overlap.
808 	 *
809 	 * WARNING: By invalidating the descriptor here, we also invalidate
810 	 * the descriptors surrounding this one. Therefore we can NOT change the
811 	 * contents of this descriptor nor the surrounding ones. The problem is
812 	 * that in order to mark the descriptor as processed, we need to change
813 	 * the descriptor. The solution is to mark the whole cache line when all
814 	 * descriptors in the cache line are processed.
815 	 */
816 	addr = (uint32_t)rbd;
817 	addr &= ~(ARCH_DMA_MINALIGN - 1);
818 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
819 	invalidate_dcache_range(addr, addr + size);
820 
821 	bd_status = readw(&rbd->status);
822 	debug("fec_recv: status 0x%x\n", bd_status);
823 
824 	if (!(bd_status & FEC_RBD_EMPTY)) {
825 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
826 			((readw(&rbd->data_length) - 4) > 14)) {
827 			/*
828 			 * Get buffer address and size
829 			 */
830 			addr = readl(&rbd->data_pointer);
831 			frame_length = readw(&rbd->data_length) - 4;
832 			/*
833 			 * Invalidate data cache over the buffer
834 			 */
835 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
836 			addr &= ~(ARCH_DMA_MINALIGN - 1);
837 			invalidate_dcache_range(addr, end);
838 
839 			/*
840 			 *  Fill the buffer and pass it to upper layers
841 			 */
842 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
843 			swap_packet((uint32_t *)addr, frame_length);
844 #endif
845 			memcpy(buff, (char *)addr, frame_length);
846 			net_process_received_packet(buff, frame_length);
847 			len = frame_length;
848 		} else {
849 			if (bd_status & FEC_RBD_ERR)
850 				printf("error frame: 0x%08x 0x%08x\n",
851 				       addr, bd_status);
852 		}
853 
854 		/*
855 		 * Free the current buffer, restart the engine and move forward
856 		 * to the next buffer. Here we check if the whole cacheline of
857 		 * descriptors was already processed and if so, we mark it free
858 		 * as whole.
859 		 */
860 		size = RXDESC_PER_CACHELINE - 1;
861 		if ((fec->rbd_index & size) == size) {
862 			i = fec->rbd_index - size;
863 			addr = (uint32_t)&fec->rbd_base[i];
864 			for (; i <= fec->rbd_index ; i++) {
865 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
866 					      &fec->rbd_base[i]);
867 			}
868 			flush_dcache_range(addr,
869 				addr + ARCH_DMA_MINALIGN);
870 		}
871 
872 		fec_rx_task_enable(fec);
873 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
874 	}
875 	debug("fec_recv: stop\n");
876 
877 	return len;
878 }
879 
880 static void fec_set_dev_name(char *dest, int dev_id)
881 {
882 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
883 }
884 
885 static int fec_alloc_descs(struct fec_priv *fec)
886 {
887 	unsigned int size;
888 	int i;
889 	uint8_t *data;
890 
891 	/* Allocate TX descriptors. */
892 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
893 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
894 	if (!fec->tbd_base)
895 		goto err_tx;
896 
897 	/* Allocate RX descriptors. */
898 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
899 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
900 	if (!fec->rbd_base)
901 		goto err_rx;
902 
903 	memset(fec->rbd_base, 0, size);
904 
905 	/* Allocate RX buffers. */
906 
907 	/* Maximum RX buffer size. */
908 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
909 	for (i = 0; i < FEC_RBD_NUM; i++) {
910 		data = memalign(FEC_DMA_RX_MINALIGN, size);
911 		if (!data) {
912 			printf("%s: error allocating rxbuf %d\n", __func__, i);
913 			goto err_ring;
914 		}
915 
916 		memset(data, 0, size);
917 
918 		fec->rbd_base[i].data_pointer = (uint32_t)data;
919 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
920 		fec->rbd_base[i].data_length = 0;
921 		/* Flush the buffer to memory. */
922 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
923 	}
924 
925 	/* Mark the last RBD to close the ring. */
926 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
927 
928 	fec->rbd_index = 0;
929 	fec->tbd_index = 0;
930 
931 	return 0;
932 
933 err_ring:
934 	for (; i >= 0; i--)
935 		free((void *)fec->rbd_base[i].data_pointer);
936 	free(fec->rbd_base);
937 err_rx:
938 	free(fec->tbd_base);
939 err_tx:
940 	return -ENOMEM;
941 }
942 
943 static void fec_free_descs(struct fec_priv *fec)
944 {
945 	int i;
946 
947 	for (i = 0; i < FEC_RBD_NUM; i++)
948 		free((void *)fec->rbd_base[i].data_pointer);
949 	free(fec->rbd_base);
950 	free(fec->tbd_base);
951 }
952 
953 #ifdef CONFIG_PHYLIB
954 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
955 		struct mii_dev *bus, struct phy_device *phydev)
956 #else
957 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
958 		struct mii_dev *bus, int phy_id)
959 #endif
960 {
961 	struct eth_device *edev;
962 	struct fec_priv *fec;
963 	unsigned char ethaddr[6];
964 	uint32_t start;
965 	int ret = 0;
966 
967 	/* create and fill edev struct */
968 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
969 	if (!edev) {
970 		puts("fec_mxc: not enough malloc memory for eth_device\n");
971 		ret = -ENOMEM;
972 		goto err1;
973 	}
974 
975 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
976 	if (!fec) {
977 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
978 		ret = -ENOMEM;
979 		goto err2;
980 	}
981 
982 	memset(edev, 0, sizeof(*edev));
983 	memset(fec, 0, sizeof(*fec));
984 
985 	ret = fec_alloc_descs(fec);
986 	if (ret)
987 		goto err3;
988 
989 	edev->priv = fec;
990 	edev->init = fec_init;
991 	edev->send = fec_send;
992 	edev->recv = fec_recv;
993 	edev->halt = fec_halt;
994 	edev->write_hwaddr = fec_set_hwaddr;
995 
996 	fec->eth = (struct ethernet_regs *)base_addr;
997 	fec->bd = bd;
998 
999 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1000 
1001 	/* Reset chip. */
1002 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1003 	start = get_timer(0);
1004 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1005 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1006 			printf("FEC MXC: Timeout reseting chip\n");
1007 			goto err4;
1008 		}
1009 		udelay(10);
1010 	}
1011 
1012 	fec_reg_setup(fec);
1013 	fec_set_dev_name(edev->name, dev_id);
1014 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1015 	fec->bus = bus;
1016 	fec_mii_setspeed(bus->priv);
1017 #ifdef CONFIG_PHYLIB
1018 	fec->phydev = phydev;
1019 	phy_connect_dev(phydev, edev);
1020 	/* Configure phy */
1021 	phy_config(phydev);
1022 #else
1023 	fec->phy_id = phy_id;
1024 #endif
1025 	eth_register(edev);
1026 
1027 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1028 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1029 		memcpy(edev->enetaddr, ethaddr, 6);
1030 		if (!getenv("ethaddr"))
1031 			eth_setenv_enetaddr("ethaddr", ethaddr);
1032 	}
1033 	return ret;
1034 err4:
1035 	fec_free_descs(fec);
1036 err3:
1037 	free(fec);
1038 err2:
1039 	free(edev);
1040 err1:
1041 	return ret;
1042 }
1043 
1044 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1045 {
1046 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1047 	struct mii_dev *bus;
1048 	int ret;
1049 
1050 	bus = mdio_alloc();
1051 	if (!bus) {
1052 		printf("mdio_alloc failed\n");
1053 		return NULL;
1054 	}
1055 	bus->read = fec_phy_read;
1056 	bus->write = fec_phy_write;
1057 	bus->priv = eth;
1058 	fec_set_dev_name(bus->name, dev_id);
1059 
1060 	ret = mdio_register(bus);
1061 	if (ret) {
1062 		printf("mdio_register failed\n");
1063 		free(bus);
1064 		return NULL;
1065 	}
1066 	fec_mii_setspeed(eth);
1067 	return bus;
1068 }
1069 
1070 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1071 {
1072 	uint32_t base_mii;
1073 	struct mii_dev *bus = NULL;
1074 #ifdef CONFIG_PHYLIB
1075 	struct phy_device *phydev = NULL;
1076 #endif
1077 	int ret;
1078 
1079 #ifdef CONFIG_MX28
1080 	/*
1081 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1082 	 * Only the first one can access the MDIO bus.
1083 	 */
1084 	base_mii = MXS_ENET0_BASE;
1085 #else
1086 	base_mii = addr;
1087 #endif
1088 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1089 	bus = fec_get_miibus(base_mii, dev_id);
1090 	if (!bus)
1091 		return -ENOMEM;
1092 #ifdef CONFIG_PHYLIB
1093 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1094 	if (!phydev) {
1095 		free(bus);
1096 		return -ENOMEM;
1097 	}
1098 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1099 #else
1100 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1101 #endif
1102 	if (ret) {
1103 #ifdef CONFIG_PHYLIB
1104 		free(phydev);
1105 #endif
1106 		free(bus);
1107 	}
1108 	return ret;
1109 }
1110 
1111 #ifdef CONFIG_FEC_MXC_PHYADDR
1112 int fecmxc_initialize(bd_t *bd)
1113 {
1114 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1115 			IMX_FEC_BASE);
1116 }
1117 #endif
1118 
1119 #ifndef CONFIG_PHYLIB
1120 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1121 {
1122 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1123 	fec->mii_postcall = cb;
1124 	return 0;
1125 }
1126 #endif
1127