xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 3eb90bad)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29 
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34 
35 DECLARE_GLOBAL_DATA_PTR;
36 
37 #ifndef CONFIG_MII
38 #error "CONFIG_MII has to be defined!"
39 #endif
40 
41 #undef DEBUG
42 
43 struct nbuf {
44 	uint8_t data[1500];	/**< actual data */
45 	int length;		/**< actual length */
46 	int used;		/**< buffer in use or not */
47 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
48 };
49 
50 struct fec_priv gfec = {
51 	.eth       = (struct ethernet_regs *)IMX_FEC_BASE,
52 	.xcv_type  = MII100,
53 	.rbd_base  = NULL,
54 	.rbd_index = 0,
55 	.tbd_base  = NULL,
56 	.tbd_index = 0,
57 	.bd        = NULL,
58 	.rdb_ptr   = NULL,
59 	.base_ptr  = NULL,
60 };
61 
62 /*
63  * MII-interface related functions
64  */
65 static int fec_miiphy_read(char *dev, uint8_t phyAddr, uint8_t regAddr,
66 		uint16_t *retVal)
67 {
68 	struct eth_device *edev = eth_get_dev_by_name(dev);
69 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
70 
71 	uint32_t reg;		/* convenient holder for the PHY register */
72 	uint32_t phy;		/* convenient holder for the PHY */
73 	uint32_t start;
74 
75 	/*
76 	 * reading from any PHY's register is done by properly
77 	 * programming the FEC's MII data register.
78 	 */
79 	writel(FEC_IEVENT_MII, &fec->eth->ievent);
80 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
81 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
82 
83 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
84 			phy | reg, &fec->eth->mii_data);
85 
86 	/*
87 	 * wait for the related interrupt
88 	 */
89 	start = get_timer_masked();
90 	while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
91 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
92 			printf("Read MDIO failed...\n");
93 			return -1;
94 		}
95 	}
96 
97 	/*
98 	 * clear mii interrupt bit
99 	 */
100 	writel(FEC_IEVENT_MII, &fec->eth->ievent);
101 
102 	/*
103 	 * it's now safe to read the PHY's register
104 	 */
105 	*retVal = readl(&fec->eth->mii_data);
106 	debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
107 			regAddr, *retVal);
108 	return 0;
109 }
110 
111 static int fec_miiphy_write(char *dev, uint8_t phyAddr, uint8_t regAddr,
112 		uint16_t data)
113 {
114 	struct eth_device *edev = eth_get_dev_by_name(dev);
115 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
116 
117 	uint32_t reg;		/* convenient holder for the PHY register */
118 	uint32_t phy;		/* convenient holder for the PHY */
119 	uint32_t start;
120 
121 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
122 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
123 
124 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
125 		FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data);
126 
127 	/*
128 	 * wait for the MII interrupt
129 	 */
130 	start = get_timer_masked();
131 	while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
132 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
133 			printf("Write MDIO failed...\n");
134 			return -1;
135 		}
136 	}
137 
138 	/*
139 	 * clear MII interrupt bit
140 	 */
141 	writel(FEC_IEVENT_MII, &fec->eth->ievent);
142 	debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
143 			regAddr, data);
144 
145 	return 0;
146 }
147 
148 static int miiphy_restart_aneg(struct eth_device *dev)
149 {
150 	/*
151 	 * Wake up from sleep if necessary
152 	 * Reset PHY, then delay 300ns
153 	 */
154 	miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_MIPGSR, 0x00FF);
155 	miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
156 			PHY_BMCR_RESET);
157 	udelay(1000);
158 
159 	/*
160 	 * Set the auto-negotiation advertisement register bits
161 	 */
162 	miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_ANAR,
163 			PHY_ANLPAR_TXFD | PHY_ANLPAR_TX | PHY_ANLPAR_10FD |
164 			PHY_ANLPAR_10 | PHY_ANLPAR_PSB_802_3);
165 	miiphy_write(dev->name, CONFIG_FEC_MXC_PHYADDR, PHY_BMCR,
166 			PHY_BMCR_AUTON | PHY_BMCR_RST_NEG);
167 
168 	return 0;
169 }
170 
171 static int miiphy_wait_aneg(struct eth_device *dev)
172 {
173 	uint32_t start;
174 	uint16_t status;
175 
176 	/*
177 	 * Wait for AN completion
178 	 */
179 	start = get_timer_masked();
180 	do {
181 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
182 			printf("%s: Autonegotiation timeout\n", dev->name);
183 			return -1;
184 		}
185 
186 		if (miiphy_read(dev->name, CONFIG_FEC_MXC_PHYADDR,
187 					PHY_BMSR, &status)) {
188 			printf("%s: Autonegotiation failed. status: 0x%04x\n",
189 					dev->name, status);
190 			return -1;
191 		}
192 	} while (!(status & PHY_BMSR_LS));
193 
194 	return 0;
195 }
196 static int fec_rx_task_enable(struct fec_priv *fec)
197 {
198 	writel(1 << 24, &fec->eth->r_des_active);
199 	return 0;
200 }
201 
202 static int fec_rx_task_disable(struct fec_priv *fec)
203 {
204 	return 0;
205 }
206 
207 static int fec_tx_task_enable(struct fec_priv *fec)
208 {
209 	writel(1 << 24, &fec->eth->x_des_active);
210 	return 0;
211 }
212 
213 static int fec_tx_task_disable(struct fec_priv *fec)
214 {
215 	return 0;
216 }
217 
218 /**
219  * Initialize receive task's buffer descriptors
220  * @param[in] fec all we know about the device yet
221  * @param[in] count receive buffer count to be allocated
222  * @param[in] size size of each receive buffer
223  * @return 0 on success
224  *
225  * For this task we need additional memory for the data buffers. And each
226  * data buffer requires some alignment. Thy must be aligned to a specific
227  * boundary each (DB_DATA_ALIGNMENT).
228  */
229 static int fec_rbd_init(struct fec_priv *fec, int count, int size)
230 {
231 	int ix;
232 	uint32_t p = 0;
233 
234 	/* reserve data memory and consider alignment */
235 	if (fec->rdb_ptr == NULL)
236 		fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
237 	p = (uint32_t)fec->rdb_ptr;
238 	if (!p) {
239 		puts("fec_imx27: not enough malloc memory!\n");
240 		return -ENOMEM;
241 	}
242 	memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
243 	p += DB_DATA_ALIGNMENT-1;
244 	p &= ~(DB_DATA_ALIGNMENT-1);
245 
246 	for (ix = 0; ix < count; ix++) {
247 		writel(p, &fec->rbd_base[ix].data_pointer);
248 		p += size;
249 		writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
250 		writew(0, &fec->rbd_base[ix].data_length);
251 	}
252 	/*
253 	 * mark the last RBD to close the ring
254 	 */
255 	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
256 	fec->rbd_index = 0;
257 
258 	return 0;
259 }
260 
261 /**
262  * Initialize transmit task's buffer descriptors
263  * @param[in] fec all we know about the device yet
264  *
265  * Transmit buffers are created externally. We only have to init the BDs here.\n
266  * Note: There is a race condition in the hardware. When only one BD is in
267  * use it must be marked with the WRAP bit to use it for every transmitt.
268  * This bit in combination with the READY bit results into double transmit
269  * of each data buffer. It seems the state machine checks READY earlier then
270  * resetting it after the first transfer.
271  * Using two BDs solves this issue.
272  */
273 static void fec_tbd_init(struct fec_priv *fec)
274 {
275 	writew(0x0000, &fec->tbd_base[0].status);
276 	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
277 	fec->tbd_index = 0;
278 }
279 
280 /**
281  * Mark the given read buffer descriptor as free
282  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
283  * @param[in] pRbd buffer descriptor to mark free again
284  */
285 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
286 {
287 	/*
288 	 * Reset buffer descriptor as empty
289 	 */
290 	if (last)
291 		writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
292 	else
293 		writew(FEC_RBD_EMPTY, &pRbd->status);
294 	/*
295 	 * no data in it
296 	 */
297 	writew(0, &pRbd->data_length);
298 }
299 
300 static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
301 {
302 	struct iim_regs *iim = (struct iim_regs *)IMX_IIM_BASE;
303 	int i;
304 
305 	for (i = 0; i < 6; i++)
306 		mac[6-1-i] = readl(&iim->iim_bank_area0[IIM0_MAC + i]);
307 
308 	return is_valid_ether_addr(mac);
309 }
310 
311 static int fec_set_hwaddr(struct eth_device *dev, unsigned char *mac)
312 {
313 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
314 
315 	writel(0, &fec->eth->iaddr1);
316 	writel(0, &fec->eth->iaddr2);
317 	writel(0, &fec->eth->gaddr1);
318 	writel(0, &fec->eth->gaddr2);
319 
320 	/*
321 	 * Set physical address
322 	 */
323 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
324 			&fec->eth->paddr1);
325 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
326 
327 	return 0;
328 }
329 
330 /**
331  * Start the FEC engine
332  * @param[in] dev Our device to handle
333  */
334 static int fec_open(struct eth_device *edev)
335 {
336 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
337 
338 	debug("fec_open: fec_open(dev)\n");
339 	/* full-duplex, heartbeat disabled */
340 	writel(1 << 2, &fec->eth->x_cntrl);
341 	fec->rbd_index = 0;
342 
343 	/*
344 	 * Enable FEC-Lite controller
345 	 */
346 	writel(FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl);
347 
348 	miiphy_wait_aneg(edev);
349 	miiphy_speed(edev->name, CONFIG_FEC_MXC_PHYADDR);
350 	miiphy_duplex(edev->name, CONFIG_FEC_MXC_PHYADDR);
351 
352 	/*
353 	 * Enable SmartDMA receive task
354 	 */
355 	fec_rx_task_enable(fec);
356 
357 	udelay(100000);
358 	return 0;
359 }
360 
361 static int fec_init(struct eth_device *dev, bd_t* bd)
362 {
363 	uint32_t base;
364 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
365 
366 	/*
367 	 * reserve memory for both buffer descriptor chains at once
368 	 * Datasheet forces the startaddress of each chain is 16 byte
369 	 * aligned
370 	 */
371 	if (fec->base_ptr == NULL)
372 		fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
373 				sizeof(struct fec_bd) + DB_ALIGNMENT);
374 	base = (uint32_t)fec->base_ptr;
375 	if (!base) {
376 		puts("fec_imx27: not enough malloc memory!\n");
377 		return -ENOMEM;
378 	}
379 	memset((void *)base, 0, (2 + FEC_RBD_NUM) *
380 			sizeof(struct fec_bd) + DB_ALIGNMENT);
381 	base += (DB_ALIGNMENT-1);
382 	base &= ~(DB_ALIGNMENT-1);
383 
384 	fec->rbd_base = (struct fec_bd *)base;
385 
386 	base += FEC_RBD_NUM * sizeof(struct fec_bd);
387 
388 	fec->tbd_base = (struct fec_bd *)base;
389 
390 	/*
391 	 * Set interrupt mask register
392 	 */
393 	writel(0x00000000, &fec->eth->imask);
394 
395 	/*
396 	 * Clear FEC-Lite interrupt event register(IEVENT)
397 	 */
398 	writel(0xffffffff, &fec->eth->ievent);
399 
400 
401 	/*
402 	 * Set FEC-Lite receive control register(R_CNTRL):
403 	 */
404 	if (fec->xcv_type == SEVENWIRE) {
405 		/*
406 		 * Frame length=1518; 7-wire mode
407 		 */
408 		writel(0x05ee0020, &fec->eth->r_cntrl);	/* FIXME 0x05ee0000 */
409 	} else {
410 		/*
411 		 * Frame length=1518; MII mode;
412 		 */
413 		writel(0x05ee0024, &fec->eth->r_cntrl);	/* FIXME 0x05ee0004 */
414 		/*
415 		 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
416 		 * and do not drop the Preamble.
417 		 */
418 		writel((((imx_get_ahbclk() / 1000000) + 2) / 5) << 1,
419 				&fec->eth->mii_speed);
420 		debug("fec_init: mii_speed %#lx\n",
421 				(((imx_get_ahbclk() / 1000000) + 2) / 5) << 1);
422 	}
423 	/*
424 	 * Set Opcode/Pause Duration Register
425 	 */
426 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
427 	writel(0x2, &fec->eth->x_wmrk);
428 	/*
429 	 * Set multicast address filter
430 	 */
431 	writel(0x00000000, &fec->eth->gaddr1);
432 	writel(0x00000000, &fec->eth->gaddr2);
433 
434 
435 	/* clear MIB RAM */
436 	long *mib_ptr = (long *)(IMX_FEC_BASE + 0x200);
437 	while (mib_ptr <= (long *)(IMX_FEC_BASE + 0x2FC))
438 		*mib_ptr++ = 0;
439 
440 	/* FIFO receive start register */
441 	writel(0x520, &fec->eth->r_fstart);
442 
443 	/* size and address of each buffer */
444 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
445 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
446 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
447 
448 	/*
449 	 * Initialize RxBD/TxBD rings
450 	 */
451 	if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
452 		free(fec->base_ptr);
453 		return -ENOMEM;
454 	}
455 	fec_tbd_init(fec);
456 
457 
458 	if (fec->xcv_type != SEVENWIRE)
459 		miiphy_restart_aneg(dev);
460 
461 	fec_open(dev);
462 	return 0;
463 }
464 
465 /**
466  * Halt the FEC engine
467  * @param[in] dev Our device to handle
468  */
469 static void fec_halt(struct eth_device *dev)
470 {
471 	struct fec_priv *fec = &gfec;
472 	int counter = 0xffff;
473 
474 	/*
475 	 * issue graceful stop command to the FEC transmitter if necessary
476 	 */
477 	writel(FEC_ECNTRL_RESET | readl(&fec->eth->x_cntrl),
478 			&fec->eth->x_cntrl);
479 
480 	debug("eth_halt: wait for stop regs\n");
481 	/*
482 	 * wait for graceful stop to register
483 	 */
484 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
485 		;	/* FIXME ensure time */
486 
487 	/*
488 	 * Disable SmartDMA tasks
489 	 */
490 	fec_tx_task_disable(fec);
491 	fec_rx_task_disable(fec);
492 
493 	/*
494 	 * Disable the Ethernet Controller
495 	 * Note: this will also reset the BD index counter!
496 	 */
497 	writel(0, &fec->eth->ecntrl);
498 	fec->rbd_index = 0;
499 	fec->tbd_index = 0;
500 	debug("eth_halt: done\n");
501 }
502 
503 /**
504  * Transmit one frame
505  * @param[in] dev Our ethernet device to handle
506  * @param[in] packet Pointer to the data to be transmitted
507  * @param[in] length Data count in bytes
508  * @return 0 on success
509  */
510 static int fec_send(struct eth_device *dev, volatile void* packet, int length)
511 {
512 	unsigned int status;
513 
514 	/*
515 	 * This routine transmits one frame.  This routine only accepts
516 	 * 6-byte Ethernet addresses.
517 	 */
518 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
519 
520 	/*
521 	 * Check for valid length of data.
522 	 */
523 	if ((length > 1500) || (length <= 0)) {
524 		printf("Payload (%d) to large!\n", length);
525 		return -1;
526 	}
527 
528 	/*
529 	 * Setup the transmit buffer
530 	 * Note: We are always using the first buffer for transmission,
531 	 * the second will be empty and only used to stop the DMA engine
532 	 */
533 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
534 	writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
535 	/*
536 	 * update BD's status now
537 	 * This block:
538 	 * - is always the last in a chain (means no chain)
539 	 * - should transmitt the CRC
540 	 * - might be the last BD in the list, so the address counter should
541 	 *   wrap (-> keep the WRAP flag)
542 	 */
543 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
544 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
545 	writew(status, &fec->tbd_base[fec->tbd_index].status);
546 
547 	/*
548 	 * Enable SmartDMA transmit task
549 	 */
550 	fec_tx_task_enable(fec);
551 
552 	/*
553 	 * wait until frame is sent .
554 	 */
555 	while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
556 		/* FIXME: Timeout */
557 	}
558 	debug("fec_send: status 0x%x index %d\n",
559 			readw(&fec->tbd_base[fec->tbd_index].status),
560 			fec->tbd_index);
561 	/* for next transmission use the other buffer */
562 	if (fec->tbd_index)
563 		fec->tbd_index = 0;
564 	else
565 		fec->tbd_index = 1;
566 
567 	return 0;
568 }
569 
570 /**
571  * Pull one frame from the card
572  * @param[in] dev Our ethernet device to handle
573  * @return Length of packet read
574  */
575 static int fec_recv(struct eth_device *dev)
576 {
577 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
578 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
579 	unsigned long ievent;
580 	int frame_length, len = 0;
581 	struct nbuf *frame;
582 	uint16_t bd_status;
583 	uchar buff[FEC_MAX_PKT_SIZE];
584 
585 	/*
586 	 * Check if any critical events have happened
587 	 */
588 	ievent = readl(&fec->eth->ievent);
589 	writel(ievent, &fec->eth->ievent);
590 	debug("fec_recv: ievent 0x%x\n", ievent);
591 	if (ievent & FEC_IEVENT_BABR) {
592 		fec_halt(dev);
593 		fec_init(dev, fec->bd);
594 		printf("some error: 0x%08lx\n", ievent);
595 		return 0;
596 	}
597 	if (ievent & FEC_IEVENT_HBERR) {
598 		/* Heartbeat error */
599 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
600 				&fec->eth->x_cntrl);
601 	}
602 	if (ievent & FEC_IEVENT_GRA) {
603 		/* Graceful stop complete */
604 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
605 			fec_halt(dev);
606 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
607 					&fec->eth->x_cntrl);
608 			fec_init(dev, fec->bd);
609 		}
610 	}
611 
612 	/*
613 	 * ensure reading the right buffer status
614 	 */
615 	bd_status = readw(&rbd->status);
616 	debug("fec_recv: status 0x%x\n", bd_status);
617 
618 	if (!(bd_status & FEC_RBD_EMPTY)) {
619 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
620 			((readw(&rbd->data_length) - 4) > 14)) {
621 			/*
622 			 * Get buffer address and size
623 			 */
624 			frame = (struct nbuf *)readl(&rbd->data_pointer);
625 			frame_length = readw(&rbd->data_length) - 4;
626 			/*
627 			 *  Fill the buffer and pass it to upper layers
628 			 */
629 			memcpy(buff, frame->data, frame_length);
630 			NetReceive(buff, frame_length);
631 			len = frame_length;
632 		} else {
633 			if (bd_status & FEC_RBD_ERR)
634 				printf("error frame: 0x%08lx 0x%08x\n",
635 						(ulong)rbd->data_pointer,
636 						bd_status);
637 		}
638 		/*
639 		 * free the current buffer, restart the engine
640 		 * and move forward to the next buffer
641 		 */
642 		fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
643 		fec_rx_task_enable(fec);
644 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
645 	}
646 	debug("fec_recv: stop\n");
647 
648 	return len;
649 }
650 
651 static int fec_probe(bd_t *bd)
652 {
653 	struct pll_regs *pll = (struct pll_regs *)IMX_PLL_BASE;
654 	struct eth_device *edev;
655 	struct fec_priv *fec = &gfec;
656 	unsigned char ethaddr_str[20];
657 	unsigned char ethaddr[6];
658 	char *tmp = getenv("ethaddr");
659 	char *end;
660 
661 	/* enable FEC clock */
662 	writel(readl(&pll->pccr1) | PCCR1_HCLK_FEC, &pll->pccr1);
663 	writel(readl(&pll->pccr0) | PCCR0_FEC_EN, &pll->pccr0);
664 
665 	/* create and fill edev struct */
666 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
667 	if (!edev) {
668 		puts("fec_imx27: not enough malloc memory!\n");
669 		return -ENOMEM;
670 	}
671 	edev->priv = fec;
672 	edev->init = fec_init;
673 	edev->send = fec_send;
674 	edev->recv = fec_recv;
675 	edev->halt = fec_halt;
676 
677 	fec->eth = (struct ethernet_regs *)IMX_FEC_BASE;
678 	fec->bd = bd;
679 
680 	fec->xcv_type = MII100;
681 
682 	/* Reset chip. */
683 	writel(FEC_ECNTRL_RESET, &fec->eth->ecntrl);
684 	while (readl(&fec->eth->ecntrl) & 1)
685 		udelay(10);
686 
687 	/*
688 	 * Set interrupt mask register
689 	 */
690 	writel(0x00000000, &fec->eth->imask);
691 
692 	/*
693 	 * Clear FEC-Lite interrupt event register(IEVENT)
694 	 */
695 	writel(0xffffffff, &fec->eth->ievent);
696 
697 	/*
698 	 * Set FEC-Lite receive control register(R_CNTRL):
699 	 */
700 	/*
701 	 * Frame length=1518; MII mode;
702 	 */
703 	writel(0x05ee0024, &fec->eth->r_cntrl);	/* FIXME 0x05ee0004 */
704 	/*
705 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
706 	 * and do not drop the Preamble.
707 	 */
708 	writel((((imx_get_ahbclk() / 1000000) + 2) / 5) << 1,
709 			&fec->eth->mii_speed);
710 	debug("fec_init: mii_speed %#lx\n",
711 			(((imx_get_ahbclk() / 1000000) + 2) / 5) << 1);
712 
713 	sprintf(edev->name, "FEC_MXC");
714 
715 	miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
716 
717 	eth_register(edev);
718 
719 	if ((NULL != tmp) && (12 <= strlen(tmp))) {
720 		int i;
721 		/* convert MAC from string to int */
722 		for (i = 0; i < 6; i++) {
723 			ethaddr[i] = tmp ? simple_strtoul(tmp, &end, 16) : 0;
724 			if (tmp)
725 				tmp = (*end) ? end + 1 : end;
726 		}
727 	} else if (fec_get_hwaddr(edev, ethaddr) == 0) {
728 		printf("got MAC address from EEPROM: %pM\n", ethaddr);
729 		setenv("ethaddr", (char *)ethaddr_str);
730 	}
731 	memcpy(edev->enetaddr, ethaddr, 6);
732 	fec_set_hwaddr(edev, ethaddr);
733 
734 	return 0;
735 }
736 
737 int fecmxc_initialize(bd_t *bd)
738 {
739 	int lout = 1;
740 
741 	debug("eth_init: fec_probe(bd)\n");
742 	lout = fec_probe(bd);
743 
744 	return lout;
745 }
746