xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 25b26ec6)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29 
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34 #include <linux/compiler.h>
35 
36 DECLARE_GLOBAL_DATA_PTR;
37 
38 /*
39  * Timeout the transfer after 5 mS. This is usually a bit more, since
40  * the code in the tightloops this timeout is used in adds some overhead.
41  */
42 #define FEC_XFER_TIMEOUT	5000
43 
44 #ifndef CONFIG_MII
45 #error "CONFIG_MII has to be defined!"
46 #endif
47 
48 #ifndef CONFIG_FEC_XCV_TYPE
49 #define CONFIG_FEC_XCV_TYPE MII100
50 #endif
51 
52 /*
53  * The i.MX28 operates with packets in big endian. We need to swap them before
54  * sending and after receiving.
55  */
56 #ifdef CONFIG_MX28
57 #define CONFIG_FEC_MXC_SWAP_PACKET
58 #endif
59 
60 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
61 
62 /* Check various alignment issues at compile time */
63 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
65 #endif
66 
67 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
69 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
70 #endif
71 
72 #undef DEBUG
73 
74 struct nbuf {
75 	uint8_t data[1500];	/**< actual data */
76 	int length;		/**< actual length */
77 	int used;		/**< buffer in use or not */
78 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
79 };
80 
81 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
82 static void swap_packet(uint32_t *packet, int length)
83 {
84 	int i;
85 
86 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
87 		packet[i] = __swab32(packet[i]);
88 }
89 #endif
90 
91 /*
92  * MII-interface related functions
93  */
94 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
95 		uint8_t regAddr)
96 {
97 	uint32_t reg;		/* convenient holder for the PHY register */
98 	uint32_t phy;		/* convenient holder for the PHY */
99 	uint32_t start;
100 	int val;
101 
102 	/*
103 	 * reading from any PHY's register is done by properly
104 	 * programming the FEC's MII data register.
105 	 */
106 	writel(FEC_IEVENT_MII, &eth->ievent);
107 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
108 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
109 
110 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
111 			phy | reg, &eth->mii_data);
112 
113 	/*
114 	 * wait for the related interrupt
115 	 */
116 	start = get_timer(0);
117 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
118 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
119 			printf("Read MDIO failed...\n");
120 			return -1;
121 		}
122 	}
123 
124 	/*
125 	 * clear mii interrupt bit
126 	 */
127 	writel(FEC_IEVENT_MII, &eth->ievent);
128 
129 	/*
130 	 * it's now safe to read the PHY's register
131 	 */
132 	val = (unsigned short)readl(&eth->mii_data);
133 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
134 			regAddr, val);
135 	return val;
136 }
137 
138 static void fec_mii_setspeed(struct fec_priv *fec)
139 {
140 	/*
141 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
142 	 * and do not drop the Preamble.
143 	 */
144 	writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
145 			&fec->eth->mii_speed);
146 	debug("%s: mii_speed %08x\n", __func__, readl(&fec->eth->mii_speed));
147 }
148 
149 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
150 		uint8_t regAddr, uint16_t data)
151 {
152 	uint32_t reg;		/* convenient holder for the PHY register */
153 	uint32_t phy;		/* convenient holder for the PHY */
154 	uint32_t start;
155 
156 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
157 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
158 
159 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
160 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
161 
162 	/*
163 	 * wait for the MII interrupt
164 	 */
165 	start = get_timer(0);
166 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
167 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
168 			printf("Write MDIO failed...\n");
169 			return -1;
170 		}
171 	}
172 
173 	/*
174 	 * clear MII interrupt bit
175 	 */
176 	writel(FEC_IEVENT_MII, &eth->ievent);
177 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
178 			regAddr, data);
179 
180 	return 0;
181 }
182 
183 int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
184 {
185 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
186 }
187 
188 int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
189 		u16 data)
190 {
191 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
192 }
193 
194 #ifndef CONFIG_PHYLIB
195 static int miiphy_restart_aneg(struct eth_device *dev)
196 {
197 	int ret = 0;
198 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
199 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
200 	struct ethernet_regs *eth = fec->bus->priv;
201 
202 	/*
203 	 * Wake up from sleep if necessary
204 	 * Reset PHY, then delay 300ns
205 	 */
206 #ifdef CONFIG_MX27
207 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
208 #endif
209 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
210 	udelay(1000);
211 
212 	/*
213 	 * Set the auto-negotiation advertisement register bits
214 	 */
215 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
216 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
217 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
218 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
219 			BMCR_ANENABLE | BMCR_ANRESTART);
220 
221 	if (fec->mii_postcall)
222 		ret = fec->mii_postcall(fec->phy_id);
223 
224 #endif
225 	return ret;
226 }
227 
228 static int miiphy_wait_aneg(struct eth_device *dev)
229 {
230 	uint32_t start;
231 	int status;
232 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
233 	struct ethernet_regs *eth = fec->bus->priv;
234 
235 	/*
236 	 * Wait for AN completion
237 	 */
238 	start = get_timer(0);
239 	do {
240 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
241 			printf("%s: Autonegotiation timeout\n", dev->name);
242 			return -1;
243 		}
244 
245 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
246 		if (status < 0) {
247 			printf("%s: Autonegotiation failed. status: %d\n",
248 					dev->name, status);
249 			return -1;
250 		}
251 	} while (!(status & BMSR_LSTATUS));
252 
253 	return 0;
254 }
255 #endif
256 
257 static int fec_rx_task_enable(struct fec_priv *fec)
258 {
259 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
260 	return 0;
261 }
262 
263 static int fec_rx_task_disable(struct fec_priv *fec)
264 {
265 	return 0;
266 }
267 
268 static int fec_tx_task_enable(struct fec_priv *fec)
269 {
270 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
271 	return 0;
272 }
273 
274 static int fec_tx_task_disable(struct fec_priv *fec)
275 {
276 	return 0;
277 }
278 
279 /**
280  * Initialize receive task's buffer descriptors
281  * @param[in] fec all we know about the device yet
282  * @param[in] count receive buffer count to be allocated
283  * @param[in] dsize desired size of each receive buffer
284  * @return 0 on success
285  *
286  * For this task we need additional memory for the data buffers. And each
287  * data buffer requires some alignment. Thy must be aligned to a specific
288  * boundary each.
289  */
290 static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
291 {
292 	uint32_t size;
293 	int i;
294 
295 	/*
296 	 * Allocate memory for the buffers. This allocation respects the
297 	 * alignment
298 	 */
299 	size = roundup(dsize, ARCH_DMA_MINALIGN);
300 	for (i = 0; i < count; i++) {
301 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
302 		if (data_ptr == 0) {
303 			uint8_t *data = memalign(ARCH_DMA_MINALIGN,
304 						 size);
305 			if (!data) {
306 				printf("%s: error allocating rxbuf %d\n",
307 				       __func__, i);
308 				goto err;
309 			}
310 			writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
311 		} /* needs allocation */
312 		writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
313 		writew(0, &fec->rbd_base[i].data_length);
314 	}
315 
316 	/* Mark the last RBD to close the ring. */
317 	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
318 	fec->rbd_index = 0;
319 
320 	return 0;
321 
322 err:
323 	for (; i >= 0; i--) {
324 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
325 		free((void *)data_ptr);
326 	}
327 
328 	return -ENOMEM;
329 }
330 
331 /**
332  * Initialize transmit task's buffer descriptors
333  * @param[in] fec all we know about the device yet
334  *
335  * Transmit buffers are created externally. We only have to init the BDs here.\n
336  * Note: There is a race condition in the hardware. When only one BD is in
337  * use it must be marked with the WRAP bit to use it for every transmitt.
338  * This bit in combination with the READY bit results into double transmit
339  * of each data buffer. It seems the state machine checks READY earlier then
340  * resetting it after the first transfer.
341  * Using two BDs solves this issue.
342  */
343 static void fec_tbd_init(struct fec_priv *fec)
344 {
345 	unsigned addr = (unsigned)fec->tbd_base;
346 	unsigned size = roundup(2 * sizeof(struct fec_bd),
347 				ARCH_DMA_MINALIGN);
348 	writew(0x0000, &fec->tbd_base[0].status);
349 	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
350 	fec->tbd_index = 0;
351 	flush_dcache_range(addr, addr+size);
352 }
353 
354 /**
355  * Mark the given read buffer descriptor as free
356  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
357  * @param[in] pRbd buffer descriptor to mark free again
358  */
359 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
360 {
361 	unsigned short flags = FEC_RBD_EMPTY;
362 	if (last)
363 		flags |= FEC_RBD_WRAP;
364 	writew(flags, &pRbd->status);
365 	writew(0, &pRbd->data_length);
366 }
367 
368 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
369 						unsigned char *mac)
370 {
371 	imx_get_mac_from_fuse(dev_id, mac);
372 	return !is_valid_ether_addr(mac);
373 }
374 
375 static int fec_set_hwaddr(struct eth_device *dev)
376 {
377 	uchar *mac = dev->enetaddr;
378 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
379 
380 	writel(0, &fec->eth->iaddr1);
381 	writel(0, &fec->eth->iaddr2);
382 	writel(0, &fec->eth->gaddr1);
383 	writel(0, &fec->eth->gaddr2);
384 
385 	/*
386 	 * Set physical address
387 	 */
388 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
389 			&fec->eth->paddr1);
390 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
391 
392 	return 0;
393 }
394 
395 static void fec_eth_phy_config(struct eth_device *dev)
396 {
397 #ifdef CONFIG_PHYLIB
398 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
399 	struct phy_device *phydev;
400 
401 	phydev = phy_connect(fec->bus, fec->phy_id, dev,
402 			PHY_INTERFACE_MODE_RGMII);
403 	if (phydev) {
404 		fec->phydev = phydev;
405 		phy_config(phydev);
406 	}
407 #endif
408 }
409 
410 /*
411  * Do initial configuration of the FEC registers
412  */
413 static void fec_reg_setup(struct fec_priv *fec)
414 {
415 	uint32_t rcntrl;
416 
417 	/*
418 	 * Set interrupt mask register
419 	 */
420 	writel(0x00000000, &fec->eth->imask);
421 
422 	/*
423 	 * Clear FEC-Lite interrupt event register(IEVENT)
424 	 */
425 	writel(0xffffffff, &fec->eth->ievent);
426 
427 
428 	/*
429 	 * Set FEC-Lite receive control register(R_CNTRL):
430 	 */
431 
432 	/* Start with frame length = 1518, common for all modes. */
433 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
434 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
435 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
436 	if (fec->xcv_type == RGMII)
437 		rcntrl |= FEC_RCNTRL_RGMII;
438 	else if (fec->xcv_type == RMII)
439 		rcntrl |= FEC_RCNTRL_RMII;
440 
441 	writel(rcntrl, &fec->eth->r_cntrl);
442 }
443 
444 /**
445  * Start the FEC engine
446  * @param[in] dev Our device to handle
447  */
448 static int fec_open(struct eth_device *edev)
449 {
450 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
451 	int speed;
452 	uint32_t addr, size;
453 	int i;
454 
455 	debug("fec_open: fec_open(dev)\n");
456 	/* full-duplex, heartbeat disabled */
457 	writel(1 << 2, &fec->eth->x_cntrl);
458 	fec->rbd_index = 0;
459 
460 	/* Invalidate all descriptors */
461 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
462 		fec_rbd_clean(0, &fec->rbd_base[i]);
463 	fec_rbd_clean(1, &fec->rbd_base[i]);
464 
465 	/* Flush the descriptors into RAM */
466 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
467 			ARCH_DMA_MINALIGN);
468 	addr = (uint32_t)fec->rbd_base;
469 	flush_dcache_range(addr, addr + size);
470 
471 #ifdef FEC_QUIRK_ENET_MAC
472 	/* Enable ENET HW endian SWAP */
473 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
474 		&fec->eth->ecntrl);
475 	/* Enable ENET store and forward mode */
476 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
477 		&fec->eth->x_wmrk);
478 #endif
479 	/*
480 	 * Enable FEC-Lite controller
481 	 */
482 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
483 		&fec->eth->ecntrl);
484 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
485 	udelay(100);
486 	/*
487 	 * setup the MII gasket for RMII mode
488 	 */
489 
490 	/* disable the gasket */
491 	writew(0, &fec->eth->miigsk_enr);
492 
493 	/* wait for the gasket to be disabled */
494 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
495 		udelay(2);
496 
497 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
498 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
499 
500 	/* re-enable the gasket */
501 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
502 
503 	/* wait until MII gasket is ready */
504 	int max_loops = 10;
505 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
506 		if (--max_loops <= 0) {
507 			printf("WAIT for MII Gasket ready timed out\n");
508 			break;
509 		}
510 	}
511 #endif
512 
513 #ifdef CONFIG_PHYLIB
514 	if (!fec->phydev)
515 		fec_eth_phy_config(edev);
516 	if (fec->phydev) {
517 		/* Start up the PHY */
518 		int ret = phy_startup(fec->phydev);
519 
520 		if (ret) {
521 			printf("Could not initialize PHY %s\n",
522 			       fec->phydev->dev->name);
523 			return ret;
524 		}
525 		speed = fec->phydev->speed;
526 	} else {
527 		speed = _100BASET;
528 	}
529 #else
530 	miiphy_wait_aneg(edev);
531 	speed = miiphy_speed(edev->name, fec->phy_id);
532 	miiphy_duplex(edev->name, fec->phy_id);
533 #endif
534 
535 #ifdef FEC_QUIRK_ENET_MAC
536 	{
537 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
538 		u32 rcr = (readl(&fec->eth->r_cntrl) &
539 				~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
540 				FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
541 		if (speed == _1000BASET)
542 			ecr |= FEC_ECNTRL_SPEED;
543 		else if (speed != _100BASET)
544 			rcr |= FEC_RCNTRL_RMII_10T;
545 		writel(ecr, &fec->eth->ecntrl);
546 		writel(rcr, &fec->eth->r_cntrl);
547 	}
548 #endif
549 	debug("%s:Speed=%i\n", __func__, speed);
550 
551 	/*
552 	 * Enable SmartDMA receive task
553 	 */
554 	fec_rx_task_enable(fec);
555 
556 	udelay(100000);
557 	return 0;
558 }
559 
560 static int fec_init(struct eth_device *dev, bd_t* bd)
561 {
562 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
563 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
564 	uint32_t size;
565 	int i, ret;
566 
567 	/* Initialize MAC address */
568 	fec_set_hwaddr(dev);
569 
570 	/*
571 	 * Allocate transmit descriptors, there are two in total. This
572 	 * allocation respects cache alignment.
573 	 */
574 	if (!fec->tbd_base) {
575 		size = roundup(2 * sizeof(struct fec_bd),
576 				ARCH_DMA_MINALIGN);
577 		fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
578 		if (!fec->tbd_base) {
579 			ret = -ENOMEM;
580 			goto err1;
581 		}
582 		memset(fec->tbd_base, 0, size);
583 		fec_tbd_init(fec);
584 		flush_dcache_range((unsigned)fec->tbd_base, size);
585 	}
586 
587 	/*
588 	 * Allocate receive descriptors. This allocation respects cache
589 	 * alignment.
590 	 */
591 	if (!fec->rbd_base) {
592 		size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
593 				ARCH_DMA_MINALIGN);
594 		fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
595 		if (!fec->rbd_base) {
596 			ret = -ENOMEM;
597 			goto err2;
598 		}
599 		memset(fec->rbd_base, 0, size);
600 		/*
601 		 * Initialize RxBD ring
602 		 */
603 		if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
604 			ret = -ENOMEM;
605 			goto err3;
606 		}
607 		flush_dcache_range((unsigned)fec->rbd_base,
608 				   (unsigned)fec->rbd_base + size);
609 	}
610 
611 	fec_reg_setup(fec);
612 
613 	if (fec->xcv_type != SEVENWIRE)
614 		fec_mii_setspeed(fec);
615 
616 	/*
617 	 * Set Opcode/Pause Duration Register
618 	 */
619 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
620 	writel(0x2, &fec->eth->x_wmrk);
621 	/*
622 	 * Set multicast address filter
623 	 */
624 	writel(0x00000000, &fec->eth->gaddr1);
625 	writel(0x00000000, &fec->eth->gaddr2);
626 
627 
628 	/* clear MIB RAM */
629 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
630 		writel(0, i);
631 
632 	/* FIFO receive start register */
633 	writel(0x520, &fec->eth->r_fstart);
634 
635 	/* size and address of each buffer */
636 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
637 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
638 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
639 
640 #ifndef CONFIG_PHYLIB
641 	if (fec->xcv_type != SEVENWIRE)
642 		miiphy_restart_aneg(dev);
643 #endif
644 	fec_open(dev);
645 	return 0;
646 
647 err3:
648 	free(fec->rbd_base);
649 err2:
650 	free(fec->tbd_base);
651 err1:
652 	return ret;
653 }
654 
655 /**
656  * Halt the FEC engine
657  * @param[in] dev Our device to handle
658  */
659 static void fec_halt(struct eth_device *dev)
660 {
661 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
662 	int counter = 0xffff;
663 
664 	/*
665 	 * issue graceful stop command to the FEC transmitter if necessary
666 	 */
667 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
668 			&fec->eth->x_cntrl);
669 
670 	debug("eth_halt: wait for stop regs\n");
671 	/*
672 	 * wait for graceful stop to register
673 	 */
674 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
675 		udelay(1);
676 
677 	/*
678 	 * Disable SmartDMA tasks
679 	 */
680 	fec_tx_task_disable(fec);
681 	fec_rx_task_disable(fec);
682 
683 	/*
684 	 * Disable the Ethernet Controller
685 	 * Note: this will also reset the BD index counter!
686 	 */
687 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
688 			&fec->eth->ecntrl);
689 	fec->rbd_index = 0;
690 	fec->tbd_index = 0;
691 	debug("eth_halt: done\n");
692 }
693 
694 /**
695  * Transmit one frame
696  * @param[in] dev Our ethernet device to handle
697  * @param[in] packet Pointer to the data to be transmitted
698  * @param[in] length Data count in bytes
699  * @return 0 on success
700  */
701 static int fec_send(struct eth_device *dev, void *packet, int length)
702 {
703 	unsigned int status;
704 	uint32_t size, end;
705 	uint32_t addr;
706 	int timeout = FEC_XFER_TIMEOUT;
707 	int ret = 0;
708 
709 	/*
710 	 * This routine transmits one frame.  This routine only accepts
711 	 * 6-byte Ethernet addresses.
712 	 */
713 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
714 
715 	/*
716 	 * Check for valid length of data.
717 	 */
718 	if ((length > 1500) || (length <= 0)) {
719 		printf("Payload (%d) too large\n", length);
720 		return -1;
721 	}
722 
723 	/*
724 	 * Setup the transmit buffer. We are always using the first buffer for
725 	 * transmission, the second will be empty and only used to stop the DMA
726 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
727 	 */
728 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
729 	swap_packet((uint32_t *)packet, length);
730 #endif
731 
732 	addr = (uint32_t)packet;
733 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
734 	addr &= ~(ARCH_DMA_MINALIGN - 1);
735 	flush_dcache_range(addr, end);
736 
737 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
738 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
739 
740 	/*
741 	 * update BD's status now
742 	 * This block:
743 	 * - is always the last in a chain (means no chain)
744 	 * - should transmitt the CRC
745 	 * - might be the last BD in the list, so the address counter should
746 	 *   wrap (-> keep the WRAP flag)
747 	 */
748 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
749 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
750 	writew(status, &fec->tbd_base[fec->tbd_index].status);
751 
752 	/*
753 	 * Flush data cache. This code flushes both TX descriptors to RAM.
754 	 * After this code, the descriptors will be safely in RAM and we
755 	 * can start DMA.
756 	 */
757 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
758 	addr = (uint32_t)fec->tbd_base;
759 	flush_dcache_range(addr, addr + size);
760 
761 	/*
762 	 * Enable SmartDMA transmit task
763 	 */
764 	fec_tx_task_enable(fec);
765 
766 	/*
767 	 * Wait until frame is sent. On each turn of the wait cycle, we must
768 	 * invalidate data cache to see what's really in RAM. Also, we need
769 	 * barrier here.
770 	 */
771 	while (--timeout) {
772 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
773 			break;
774 	}
775 
776 	if (!timeout)
777 		ret = -EINVAL;
778 
779 	invalidate_dcache_range(addr, addr + size);
780 	if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY)
781 		ret = -EINVAL;
782 
783 	debug("fec_send: status 0x%x index %d ret %i\n",
784 			readw(&fec->tbd_base[fec->tbd_index].status),
785 			fec->tbd_index, ret);
786 	/* for next transmission use the other buffer */
787 	if (fec->tbd_index)
788 		fec->tbd_index = 0;
789 	else
790 		fec->tbd_index = 1;
791 
792 	return ret;
793 }
794 
795 /**
796  * Pull one frame from the card
797  * @param[in] dev Our ethernet device to handle
798  * @return Length of packet read
799  */
800 static int fec_recv(struct eth_device *dev)
801 {
802 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
803 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
804 	unsigned long ievent;
805 	int frame_length, len = 0;
806 	struct nbuf *frame;
807 	uint16_t bd_status;
808 	uint32_t addr, size, end;
809 	int i;
810 	uchar buff[FEC_MAX_PKT_SIZE] __aligned(ARCH_DMA_MINALIGN);
811 
812 	/*
813 	 * Check if any critical events have happened
814 	 */
815 	ievent = readl(&fec->eth->ievent);
816 	writel(ievent, &fec->eth->ievent);
817 	debug("fec_recv: ievent 0x%lx\n", ievent);
818 	if (ievent & FEC_IEVENT_BABR) {
819 		fec_halt(dev);
820 		fec_init(dev, fec->bd);
821 		printf("some error: 0x%08lx\n", ievent);
822 		return 0;
823 	}
824 	if (ievent & FEC_IEVENT_HBERR) {
825 		/* Heartbeat error */
826 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
827 				&fec->eth->x_cntrl);
828 	}
829 	if (ievent & FEC_IEVENT_GRA) {
830 		/* Graceful stop complete */
831 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
832 			fec_halt(dev);
833 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
834 					&fec->eth->x_cntrl);
835 			fec_init(dev, fec->bd);
836 		}
837 	}
838 
839 	/*
840 	 * Read the buffer status. Before the status can be read, the data cache
841 	 * must be invalidated, because the data in RAM might have been changed
842 	 * by DMA. The descriptors are properly aligned to cachelines so there's
843 	 * no need to worry they'd overlap.
844 	 *
845 	 * WARNING: By invalidating the descriptor here, we also invalidate
846 	 * the descriptors surrounding this one. Therefore we can NOT change the
847 	 * contents of this descriptor nor the surrounding ones. The problem is
848 	 * that in order to mark the descriptor as processed, we need to change
849 	 * the descriptor. The solution is to mark the whole cache line when all
850 	 * descriptors in the cache line are processed.
851 	 */
852 	addr = (uint32_t)rbd;
853 	addr &= ~(ARCH_DMA_MINALIGN - 1);
854 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
855 	invalidate_dcache_range(addr, addr + size);
856 
857 	bd_status = readw(&rbd->status);
858 	debug("fec_recv: status 0x%x\n", bd_status);
859 
860 	if (!(bd_status & FEC_RBD_EMPTY)) {
861 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
862 			((readw(&rbd->data_length) - 4) > 14)) {
863 			/*
864 			 * Get buffer address and size
865 			 */
866 			frame = (struct nbuf *)readl(&rbd->data_pointer);
867 			frame_length = readw(&rbd->data_length) - 4;
868 			/*
869 			 * Invalidate data cache over the buffer
870 			 */
871 			addr = (uint32_t)frame;
872 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
873 			addr &= ~(ARCH_DMA_MINALIGN - 1);
874 			invalidate_dcache_range(addr, end);
875 
876 			/*
877 			 *  Fill the buffer and pass it to upper layers
878 			 */
879 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
880 			swap_packet((uint32_t *)frame->data, frame_length);
881 #endif
882 			memcpy(buff, frame->data, frame_length);
883 			NetReceive(buff, frame_length);
884 			len = frame_length;
885 		} else {
886 			if (bd_status & FEC_RBD_ERR)
887 				printf("error frame: 0x%08lx 0x%08x\n",
888 						(ulong)rbd->data_pointer,
889 						bd_status);
890 		}
891 
892 		/*
893 		 * Free the current buffer, restart the engine and move forward
894 		 * to the next buffer. Here we check if the whole cacheline of
895 		 * descriptors was already processed and if so, we mark it free
896 		 * as whole.
897 		 */
898 		size = RXDESC_PER_CACHELINE - 1;
899 		if ((fec->rbd_index & size) == size) {
900 			i = fec->rbd_index - size;
901 			addr = (uint32_t)&fec->rbd_base[i];
902 			for (; i <= fec->rbd_index ; i++) {
903 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
904 					      &fec->rbd_base[i]);
905 			}
906 			flush_dcache_range(addr,
907 				addr + ARCH_DMA_MINALIGN);
908 		}
909 
910 		fec_rx_task_enable(fec);
911 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
912 	}
913 	debug("fec_recv: stop\n");
914 
915 	return len;
916 }
917 
918 static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
919 {
920 	struct eth_device *edev;
921 	struct fec_priv *fec;
922 	struct mii_dev *bus;
923 	unsigned char ethaddr[6];
924 	uint32_t start;
925 	int ret = 0;
926 
927 	/* create and fill edev struct */
928 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
929 	if (!edev) {
930 		puts("fec_mxc: not enough malloc memory for eth_device\n");
931 		ret = -ENOMEM;
932 		goto err1;
933 	}
934 
935 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
936 	if (!fec) {
937 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
938 		ret = -ENOMEM;
939 		goto err2;
940 	}
941 
942 	memset(edev, 0, sizeof(*edev));
943 	memset(fec, 0, sizeof(*fec));
944 
945 	edev->priv = fec;
946 	edev->init = fec_init;
947 	edev->send = fec_send;
948 	edev->recv = fec_recv;
949 	edev->halt = fec_halt;
950 	edev->write_hwaddr = fec_set_hwaddr;
951 
952 	fec->eth = (struct ethernet_regs *)base_addr;
953 	fec->bd = bd;
954 
955 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
956 
957 	/* Reset chip. */
958 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
959 	start = get_timer(0);
960 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
961 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
962 			printf("FEC MXC: Timeout reseting chip\n");
963 			goto err3;
964 		}
965 		udelay(10);
966 	}
967 
968 	fec_reg_setup(fec);
969 	fec_mii_setspeed(fec);
970 
971 	if (dev_id == -1) {
972 		sprintf(edev->name, "FEC");
973 		fec->dev_id = 0;
974 	} else {
975 		sprintf(edev->name, "FEC%i", dev_id);
976 		fec->dev_id = dev_id;
977 	}
978 	fec->phy_id = phy_id;
979 
980 	bus = mdio_alloc();
981 	if (!bus) {
982 		printf("mdio_alloc failed\n");
983 		ret = -ENOMEM;
984 		goto err3;
985 	}
986 	bus->read = fec_phy_read;
987 	bus->write = fec_phy_write;
988 	sprintf(bus->name, edev->name);
989 #ifdef CONFIG_MX28
990 	/*
991 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
992 	 * Only the first one can access the MDIO bus.
993 	 */
994 	bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE;
995 #else
996 	bus->priv = fec->eth;
997 #endif
998 	ret = mdio_register(bus);
999 	if (ret) {
1000 		printf("mdio_register failed\n");
1001 		free(bus);
1002 		ret = -ENOMEM;
1003 		goto err3;
1004 	}
1005 	fec->bus = bus;
1006 	eth_register(edev);
1007 
1008 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1009 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1010 		memcpy(edev->enetaddr, ethaddr, 6);
1011 	}
1012 	/* Configure phy */
1013 	fec_eth_phy_config(edev);
1014 	return ret;
1015 
1016 err3:
1017 	free(fec);
1018 err2:
1019 	free(edev);
1020 err1:
1021 	return ret;
1022 }
1023 
1024 #ifndef CONFIG_FEC_MXC_MULTI
1025 int fecmxc_initialize(bd_t *bd)
1026 {
1027 	int lout = 1;
1028 
1029 	debug("eth_init: fec_probe(bd)\n");
1030 	lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
1031 
1032 	return lout;
1033 }
1034 #endif
1035 
1036 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1037 {
1038 	int lout = 1;
1039 
1040 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1041 	lout = fec_probe(bd, dev_id, phy_id, addr);
1042 
1043 	return lout;
1044 }
1045 
1046 #ifndef CONFIG_PHYLIB
1047 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1048 {
1049 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1050 	fec->mii_postcall = cb;
1051 	return 0;
1052 }
1053 #endif
1054