xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 1e52fea3)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29 
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34 
35 DECLARE_GLOBAL_DATA_PTR;
36 
37 #ifndef CONFIG_MII
38 #error "CONFIG_MII has to be defined!"
39 #endif
40 
41 #ifndef CONFIG_FEC_XCV_TYPE
42 #define CONFIG_FEC_XCV_TYPE MII100
43 #endif
44 
45 /*
46  * The i.MX28 operates with packets in big endian. We need to swap them before
47  * sending and after receiving.
48  */
49 #ifdef CONFIG_MX28
50 #define CONFIG_FEC_MXC_SWAP_PACKET
51 #endif
52 
53 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
54 
55 /* Check various alignment issues at compile time */
56 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
57 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
58 #endif
59 
60 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
61 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
62 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
63 #endif
64 
65 #undef DEBUG
66 
67 struct nbuf {
68 	uint8_t data[1500];	/**< actual data */
69 	int length;		/**< actual length */
70 	int used;		/**< buffer in use or not */
71 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
72 };
73 
74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
75 static void swap_packet(uint32_t *packet, int length)
76 {
77 	int i;
78 
79 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 		packet[i] = __swab32(packet[i]);
81 }
82 #endif
83 
84 /*
85  * MII-interface related functions
86  */
87 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
88 		uint8_t regAddr)
89 {
90 	uint32_t reg;		/* convenient holder for the PHY register */
91 	uint32_t phy;		/* convenient holder for the PHY */
92 	uint32_t start;
93 	int val;
94 
95 	/*
96 	 * reading from any PHY's register is done by properly
97 	 * programming the FEC's MII data register.
98 	 */
99 	writel(FEC_IEVENT_MII, &eth->ievent);
100 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
101 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
102 
103 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
104 			phy | reg, &eth->mii_data);
105 
106 	/*
107 	 * wait for the related interrupt
108 	 */
109 	start = get_timer(0);
110 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
111 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
112 			printf("Read MDIO failed...\n");
113 			return -1;
114 		}
115 	}
116 
117 	/*
118 	 * clear mii interrupt bit
119 	 */
120 	writel(FEC_IEVENT_MII, &eth->ievent);
121 
122 	/*
123 	 * it's now safe to read the PHY's register
124 	 */
125 	val = (unsigned short)readl(&eth->mii_data);
126 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
127 			regAddr, val);
128 	return val;
129 }
130 
131 static void fec_mii_setspeed(struct fec_priv *fec)
132 {
133 	/*
134 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
135 	 * and do not drop the Preamble.
136 	 */
137 	writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
138 			&fec->eth->mii_speed);
139 	debug("%s: mii_speed %08x\n", __func__, readl(&fec->eth->mii_speed));
140 }
141 
142 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
143 		uint8_t regAddr, uint16_t data)
144 {
145 	uint32_t reg;		/* convenient holder for the PHY register */
146 	uint32_t phy;		/* convenient holder for the PHY */
147 	uint32_t start;
148 
149 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
150 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
151 
152 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
153 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
154 
155 	/*
156 	 * wait for the MII interrupt
157 	 */
158 	start = get_timer(0);
159 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
160 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
161 			printf("Write MDIO failed...\n");
162 			return -1;
163 		}
164 	}
165 
166 	/*
167 	 * clear MII interrupt bit
168 	 */
169 	writel(FEC_IEVENT_MII, &eth->ievent);
170 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
171 			regAddr, data);
172 
173 	return 0;
174 }
175 
176 int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
177 {
178 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
179 }
180 
181 int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
182 		u16 data)
183 {
184 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
185 }
186 
187 #ifndef CONFIG_PHYLIB
188 static int miiphy_restart_aneg(struct eth_device *dev)
189 {
190 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
191 	struct ethernet_regs *eth = fec->bus->priv;
192 	int ret = 0;
193 
194 	/*
195 	 * Wake up from sleep if necessary
196 	 * Reset PHY, then delay 300ns
197 	 */
198 #ifdef CONFIG_MX27
199 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
200 #endif
201 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
202 	udelay(1000);
203 
204 	/*
205 	 * Set the auto-negotiation advertisement register bits
206 	 */
207 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
208 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
209 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
210 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
211 			BMCR_ANENABLE | BMCR_ANRESTART);
212 
213 	if (fec->mii_postcall)
214 		ret = fec->mii_postcall(fec->phy_id);
215 
216 	return ret;
217 }
218 
219 static int miiphy_wait_aneg(struct eth_device *dev)
220 {
221 	uint32_t start;
222 	int status;
223 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
224 	struct ethernet_regs *eth = fec->bus->priv;
225 
226 	/*
227 	 * Wait for AN completion
228 	 */
229 	start = get_timer(0);
230 	do {
231 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
232 			printf("%s: Autonegotiation timeout\n", dev->name);
233 			return -1;
234 		}
235 
236 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
237 		if (status < 0) {
238 			printf("%s: Autonegotiation failed. status: %d\n",
239 					dev->name, status);
240 			return -1;
241 		}
242 	} while (!(status & BMSR_LSTATUS));
243 
244 	return 0;
245 }
246 #endif
247 
248 static int fec_rx_task_enable(struct fec_priv *fec)
249 {
250 	writel(1 << 24, &fec->eth->r_des_active);
251 	return 0;
252 }
253 
254 static int fec_rx_task_disable(struct fec_priv *fec)
255 {
256 	return 0;
257 }
258 
259 static int fec_tx_task_enable(struct fec_priv *fec)
260 {
261 	writel(1 << 24, &fec->eth->x_des_active);
262 	return 0;
263 }
264 
265 static int fec_tx_task_disable(struct fec_priv *fec)
266 {
267 	return 0;
268 }
269 
270 /**
271  * Initialize receive task's buffer descriptors
272  * @param[in] fec all we know about the device yet
273  * @param[in] count receive buffer count to be allocated
274  * @param[in] dsize desired size of each receive buffer
275  * @return 0 on success
276  *
277  * For this task we need additional memory for the data buffers. And each
278  * data buffer requires some alignment. Thy must be aligned to a specific
279  * boundary each.
280  */
281 static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
282 {
283 	uint32_t size;
284 	int i;
285 
286 	/*
287 	 * Allocate memory for the buffers. This allocation respects the
288 	 * alignment
289 	 */
290 	size = roundup(dsize, ARCH_DMA_MINALIGN);
291 	for (i = 0; i < count; i++) {
292 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
293 		if (data_ptr == 0) {
294 			uint8_t *data = memalign(ARCH_DMA_MINALIGN,
295 						 size);
296 			if (!data) {
297 				printf("%s: error allocating rxbuf %d\n",
298 				       __func__, i);
299 				goto err;
300 			}
301 			writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
302 		} /* needs allocation */
303 		writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
304 		writew(0, &fec->rbd_base[i].data_length);
305 	}
306 
307 	/* Mark the last RBD to close the ring. */
308 	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
309 	fec->rbd_index = 0;
310 
311 	return 0;
312 
313 err:
314 	for (; i >= 0; i--) {
315 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
316 		free((void *)data_ptr);
317 	}
318 
319 	return -ENOMEM;
320 }
321 
322 /**
323  * Initialize transmit task's buffer descriptors
324  * @param[in] fec all we know about the device yet
325  *
326  * Transmit buffers are created externally. We only have to init the BDs here.\n
327  * Note: There is a race condition in the hardware. When only one BD is in
328  * use it must be marked with the WRAP bit to use it for every transmitt.
329  * This bit in combination with the READY bit results into double transmit
330  * of each data buffer. It seems the state machine checks READY earlier then
331  * resetting it after the first transfer.
332  * Using two BDs solves this issue.
333  */
334 static void fec_tbd_init(struct fec_priv *fec)
335 {
336 	unsigned addr = (unsigned)fec->tbd_base;
337 	unsigned size = roundup(2 * sizeof(struct fec_bd),
338 				ARCH_DMA_MINALIGN);
339 	writew(0x0000, &fec->tbd_base[0].status);
340 	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
341 	fec->tbd_index = 0;
342 	flush_dcache_range(addr, addr+size);
343 }
344 
345 /**
346  * Mark the given read buffer descriptor as free
347  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
348  * @param[in] pRbd buffer descriptor to mark free again
349  */
350 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
351 {
352 	unsigned short flags = FEC_RBD_EMPTY;
353 	if (last)
354 		flags |= FEC_RBD_WRAP;
355 	writew(flags, &pRbd->status);
356 	writew(0, &pRbd->data_length);
357 }
358 
359 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
360 						unsigned char *mac)
361 {
362 	imx_get_mac_from_fuse(dev_id, mac);
363 	return !is_valid_ether_addr(mac);
364 }
365 
366 static int fec_set_hwaddr(struct eth_device *dev)
367 {
368 	uchar *mac = dev->enetaddr;
369 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
370 
371 	writel(0, &fec->eth->iaddr1);
372 	writel(0, &fec->eth->iaddr2);
373 	writel(0, &fec->eth->gaddr1);
374 	writel(0, &fec->eth->gaddr2);
375 
376 	/*
377 	 * Set physical address
378 	 */
379 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
380 			&fec->eth->paddr1);
381 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
382 
383 	return 0;
384 }
385 
386 static void fec_eth_phy_config(struct eth_device *dev)
387 {
388 #ifdef CONFIG_PHYLIB
389 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
390 	struct phy_device *phydev;
391 
392 	phydev = phy_connect(fec->bus, fec->phy_id, dev,
393 			PHY_INTERFACE_MODE_RGMII);
394 	if (phydev) {
395 		fec->phydev = phydev;
396 		phy_config(phydev);
397 	}
398 #endif
399 }
400 
401 /**
402  * Start the FEC engine
403  * @param[in] dev Our device to handle
404  */
405 static int fec_open(struct eth_device *edev)
406 {
407 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
408 	int speed;
409 	uint32_t addr, size;
410 	int i;
411 
412 	debug("fec_open: fec_open(dev)\n");
413 	/* full-duplex, heartbeat disabled */
414 	writel(1 << 2, &fec->eth->x_cntrl);
415 	fec->rbd_index = 0;
416 
417 	/* Invalidate all descriptors */
418 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
419 		fec_rbd_clean(0, &fec->rbd_base[i]);
420 	fec_rbd_clean(1, &fec->rbd_base[i]);
421 
422 	/* Flush the descriptors into RAM */
423 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
424 			ARCH_DMA_MINALIGN);
425 	addr = (uint32_t)fec->rbd_base;
426 	flush_dcache_range(addr, addr + size);
427 
428 #ifdef FEC_QUIRK_ENET_MAC
429 	/* Enable ENET HW endian SWAP */
430 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
431 		&fec->eth->ecntrl);
432 	/* Enable ENET store and forward mode */
433 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
434 		&fec->eth->x_wmrk);
435 #endif
436 	/*
437 	 * Enable FEC-Lite controller
438 	 */
439 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
440 		&fec->eth->ecntrl);
441 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
442 	udelay(100);
443 	/*
444 	 * setup the MII gasket for RMII mode
445 	 */
446 
447 	/* disable the gasket */
448 	writew(0, &fec->eth->miigsk_enr);
449 
450 	/* wait for the gasket to be disabled */
451 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
452 		udelay(2);
453 
454 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
455 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
456 
457 	/* re-enable the gasket */
458 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
459 
460 	/* wait until MII gasket is ready */
461 	int max_loops = 10;
462 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
463 		if (--max_loops <= 0) {
464 			printf("WAIT for MII Gasket ready timed out\n");
465 			break;
466 		}
467 	}
468 #endif
469 
470 #ifdef CONFIG_PHYLIB
471 	if (!fec->phydev)
472 		fec_eth_phy_config(edev);
473 	if (fec->phydev) {
474 		/* Start up the PHY */
475 		phy_startup(fec->phydev);
476 		speed = fec->phydev->speed;
477 	} else {
478 		speed = _100BASET;
479 	}
480 #else
481 	miiphy_wait_aneg(edev);
482 	speed = miiphy_speed(edev->name, fec->phy_id);
483 	miiphy_duplex(edev->name, fec->phy_id);
484 #endif
485 
486 #ifdef FEC_QUIRK_ENET_MAC
487 	{
488 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
489 		u32 rcr = (readl(&fec->eth->r_cntrl) &
490 				~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
491 				FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
492 		if (speed == _1000BASET)
493 			ecr |= FEC_ECNTRL_SPEED;
494 		else if (speed != _100BASET)
495 			rcr |= FEC_RCNTRL_RMII_10T;
496 		writel(ecr, &fec->eth->ecntrl);
497 		writel(rcr, &fec->eth->r_cntrl);
498 	}
499 #endif
500 	debug("%s:Speed=%i\n", __func__, speed);
501 
502 	/*
503 	 * Enable SmartDMA receive task
504 	 */
505 	fec_rx_task_enable(fec);
506 
507 	udelay(100000);
508 	return 0;
509 }
510 
511 static int fec_init(struct eth_device *dev, bd_t* bd)
512 {
513 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
514 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
515 	uint32_t rcntrl;
516 	uint32_t size;
517 	int i, ret;
518 
519 	/* Initialize MAC address */
520 	fec_set_hwaddr(dev);
521 
522 	/*
523 	 * Allocate transmit descriptors, there are two in total. This
524 	 * allocation respects cache alignment.
525 	 */
526 	if (!fec->tbd_base) {
527 		size = roundup(2 * sizeof(struct fec_bd),
528 				ARCH_DMA_MINALIGN);
529 		fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
530 		if (!fec->tbd_base) {
531 			ret = -ENOMEM;
532 			goto err1;
533 		}
534 		memset(fec->tbd_base, 0, size);
535 		fec_tbd_init(fec);
536 		flush_dcache_range((unsigned)fec->tbd_base, size);
537 	}
538 
539 	/*
540 	 * Allocate receive descriptors. This allocation respects cache
541 	 * alignment.
542 	 */
543 	if (!fec->rbd_base) {
544 		size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
545 				ARCH_DMA_MINALIGN);
546 		fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
547 		if (!fec->rbd_base) {
548 			ret = -ENOMEM;
549 			goto err2;
550 		}
551 		memset(fec->rbd_base, 0, size);
552 		/*
553 		 * Initialize RxBD ring
554 		 */
555 		if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
556 			ret = -ENOMEM;
557 			goto err3;
558 		}
559 		flush_dcache_range((unsigned)fec->rbd_base,
560 				   (unsigned)fec->rbd_base + size);
561 	}
562 
563 	/*
564 	 * Set interrupt mask register
565 	 */
566 	writel(0x00000000, &fec->eth->imask);
567 
568 	/*
569 	 * Clear FEC-Lite interrupt event register(IEVENT)
570 	 */
571 	writel(0xffffffff, &fec->eth->ievent);
572 
573 
574 	/*
575 	 * Set FEC-Lite receive control register(R_CNTRL):
576 	 */
577 
578 	/* Start with frame length = 1518, common for all modes. */
579 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
580 	if (fec->xcv_type == SEVENWIRE)
581 		rcntrl |= FEC_RCNTRL_FCE;
582 	else if (fec->xcv_type == RGMII)
583 		rcntrl |= FEC_RCNTRL_RGMII;
584 	else if (fec->xcv_type == RMII)
585 		rcntrl |= FEC_RCNTRL_RMII;
586 	else	/* MII mode */
587 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
588 
589 	writel(rcntrl, &fec->eth->r_cntrl);
590 
591 	if (fec->xcv_type == MII10 || fec->xcv_type == MII100)
592 		fec_mii_setspeed(fec);
593 
594 	/*
595 	 * Set Opcode/Pause Duration Register
596 	 */
597 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
598 	writel(0x2, &fec->eth->x_wmrk);
599 	/*
600 	 * Set multicast address filter
601 	 */
602 	writel(0x00000000, &fec->eth->gaddr1);
603 	writel(0x00000000, &fec->eth->gaddr2);
604 
605 
606 	/* clear MIB RAM */
607 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
608 		writel(0, i);
609 
610 	/* FIFO receive start register */
611 	writel(0x520, &fec->eth->r_fstart);
612 
613 	/* size and address of each buffer */
614 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
615 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
616 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
617 
618 #ifndef CONFIG_PHYLIB
619 	if (fec->xcv_type != SEVENWIRE)
620 		miiphy_restart_aneg(dev);
621 #endif
622 	fec_open(dev);
623 	return 0;
624 
625 err3:
626 	free(fec->rbd_base);
627 err2:
628 	free(fec->tbd_base);
629 err1:
630 	return ret;
631 }
632 
633 /**
634  * Halt the FEC engine
635  * @param[in] dev Our device to handle
636  */
637 static void fec_halt(struct eth_device *dev)
638 {
639 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
640 	int counter = 0xffff;
641 
642 	/*
643 	 * issue graceful stop command to the FEC transmitter if necessary
644 	 */
645 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
646 			&fec->eth->x_cntrl);
647 
648 	debug("eth_halt: wait for stop regs\n");
649 	/*
650 	 * wait for graceful stop to register
651 	 */
652 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
653 		udelay(1);
654 
655 	/*
656 	 * Disable SmartDMA tasks
657 	 */
658 	fec_tx_task_disable(fec);
659 	fec_rx_task_disable(fec);
660 
661 	/*
662 	 * Disable the Ethernet Controller
663 	 * Note: this will also reset the BD index counter!
664 	 */
665 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
666 			&fec->eth->ecntrl);
667 	fec->rbd_index = 0;
668 	fec->tbd_index = 0;
669 	debug("eth_halt: done\n");
670 }
671 
672 /**
673  * Transmit one frame
674  * @param[in] dev Our ethernet device to handle
675  * @param[in] packet Pointer to the data to be transmitted
676  * @param[in] length Data count in bytes
677  * @return 0 on success
678  */
679 static int fec_send(struct eth_device *dev, volatile void *packet, int length)
680 {
681 	unsigned int status;
682 	uint32_t size;
683 	uint32_t addr;
684 
685 	/*
686 	 * This routine transmits one frame.  This routine only accepts
687 	 * 6-byte Ethernet addresses.
688 	 */
689 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
690 
691 	/*
692 	 * Check for valid length of data.
693 	 */
694 	if ((length > 1500) || (length <= 0)) {
695 		printf("Payload (%d) too large\n", length);
696 		return -1;
697 	}
698 
699 	/*
700 	 * Setup the transmit buffer. We are always using the first buffer for
701 	 * transmission, the second will be empty and only used to stop the DMA
702 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
703 	 */
704 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
705 	swap_packet((uint32_t *)packet, length);
706 #endif
707 
708 	addr = (uint32_t)packet;
709 	size = roundup(length, ARCH_DMA_MINALIGN);
710 	flush_dcache_range(addr, addr + size);
711 
712 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
713 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
714 
715 	/*
716 	 * update BD's status now
717 	 * This block:
718 	 * - is always the last in a chain (means no chain)
719 	 * - should transmitt the CRC
720 	 * - might be the last BD in the list, so the address counter should
721 	 *   wrap (-> keep the WRAP flag)
722 	 */
723 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
724 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
725 	writew(status, &fec->tbd_base[fec->tbd_index].status);
726 
727 	/*
728 	 * Flush data cache. This code flushes both TX descriptors to RAM.
729 	 * After this code, the descriptors will be safely in RAM and we
730 	 * can start DMA.
731 	 */
732 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
733 	addr = (uint32_t)fec->tbd_base;
734 	flush_dcache_range(addr, addr + size);
735 
736 	/*
737 	 * Enable SmartDMA transmit task
738 	 */
739 	fec_tx_task_enable(fec);
740 
741 	/*
742 	 * Wait until frame is sent. On each turn of the wait cycle, we must
743 	 * invalidate data cache to see what's really in RAM. Also, we need
744 	 * barrier here.
745 	 */
746 	invalidate_dcache_range(addr, addr + size);
747 	while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
748 		udelay(1);
749 		invalidate_dcache_range(addr, addr + size);
750 	}
751 
752 	debug("fec_send: status 0x%x index %d\n",
753 			readw(&fec->tbd_base[fec->tbd_index].status),
754 			fec->tbd_index);
755 	/* for next transmission use the other buffer */
756 	if (fec->tbd_index)
757 		fec->tbd_index = 0;
758 	else
759 		fec->tbd_index = 1;
760 
761 	return 0;
762 }
763 
764 /**
765  * Pull one frame from the card
766  * @param[in] dev Our ethernet device to handle
767  * @return Length of packet read
768  */
769 static int fec_recv(struct eth_device *dev)
770 {
771 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
772 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
773 	unsigned long ievent;
774 	int frame_length, len = 0;
775 	struct nbuf *frame;
776 	uint16_t bd_status;
777 	uint32_t addr, size;
778 	int i;
779 	uchar buff[FEC_MAX_PKT_SIZE];
780 
781 	/*
782 	 * Check if any critical events have happened
783 	 */
784 	ievent = readl(&fec->eth->ievent);
785 	writel(ievent, &fec->eth->ievent);
786 	debug("fec_recv: ievent 0x%lx\n", ievent);
787 	if (ievent & FEC_IEVENT_BABR) {
788 		fec_halt(dev);
789 		fec_init(dev, fec->bd);
790 		printf("some error: 0x%08lx\n", ievent);
791 		return 0;
792 	}
793 	if (ievent & FEC_IEVENT_HBERR) {
794 		/* Heartbeat error */
795 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
796 				&fec->eth->x_cntrl);
797 	}
798 	if (ievent & FEC_IEVENT_GRA) {
799 		/* Graceful stop complete */
800 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
801 			fec_halt(dev);
802 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
803 					&fec->eth->x_cntrl);
804 			fec_init(dev, fec->bd);
805 		}
806 	}
807 
808 	/*
809 	 * Read the buffer status. Before the status can be read, the data cache
810 	 * must be invalidated, because the data in RAM might have been changed
811 	 * by DMA. The descriptors are properly aligned to cachelines so there's
812 	 * no need to worry they'd overlap.
813 	 *
814 	 * WARNING: By invalidating the descriptor here, we also invalidate
815 	 * the descriptors surrounding this one. Therefore we can NOT change the
816 	 * contents of this descriptor nor the surrounding ones. The problem is
817 	 * that in order to mark the descriptor as processed, we need to change
818 	 * the descriptor. The solution is to mark the whole cache line when all
819 	 * descriptors in the cache line are processed.
820 	 */
821 	addr = (uint32_t)rbd;
822 	addr &= ~(ARCH_DMA_MINALIGN - 1);
823 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
824 	invalidate_dcache_range(addr, addr + size);
825 
826 	bd_status = readw(&rbd->status);
827 	debug("fec_recv: status 0x%x\n", bd_status);
828 
829 	if (!(bd_status & FEC_RBD_EMPTY)) {
830 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
831 			((readw(&rbd->data_length) - 4) > 14)) {
832 			/*
833 			 * Get buffer address and size
834 			 */
835 			frame = (struct nbuf *)readl(&rbd->data_pointer);
836 			frame_length = readw(&rbd->data_length) - 4;
837 			/*
838 			 * Invalidate data cache over the buffer
839 			 */
840 			addr = (uint32_t)frame;
841 			size = roundup(frame_length, ARCH_DMA_MINALIGN);
842 			invalidate_dcache_range(addr, addr + size);
843 
844 			/*
845 			 *  Fill the buffer and pass it to upper layers
846 			 */
847 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
848 			swap_packet((uint32_t *)frame->data, frame_length);
849 #endif
850 			memcpy(buff, frame->data, frame_length);
851 			NetReceive(buff, frame_length);
852 			len = frame_length;
853 		} else {
854 			if (bd_status & FEC_RBD_ERR)
855 				printf("error frame: 0x%08lx 0x%08x\n",
856 						(ulong)rbd->data_pointer,
857 						bd_status);
858 		}
859 
860 		/*
861 		 * Free the current buffer, restart the engine and move forward
862 		 * to the next buffer. Here we check if the whole cacheline of
863 		 * descriptors was already processed and if so, we mark it free
864 		 * as whole.
865 		 */
866 		size = RXDESC_PER_CACHELINE - 1;
867 		if ((fec->rbd_index & size) == size) {
868 			i = fec->rbd_index - size;
869 			addr = (uint32_t)&fec->rbd_base[i];
870 			for (; i <= fec->rbd_index ; i++) {
871 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
872 					      &fec->rbd_base[i]);
873 			}
874 			flush_dcache_range(addr,
875 				addr + ARCH_DMA_MINALIGN);
876 		}
877 
878 		fec_rx_task_enable(fec);
879 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
880 	}
881 	debug("fec_recv: stop\n");
882 
883 	return len;
884 }
885 
886 static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
887 {
888 	struct eth_device *edev;
889 	struct fec_priv *fec;
890 	struct mii_dev *bus;
891 	unsigned char ethaddr[6];
892 	uint32_t start;
893 	int ret = 0;
894 
895 	/* create and fill edev struct */
896 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
897 	if (!edev) {
898 		puts("fec_mxc: not enough malloc memory for eth_device\n");
899 		ret = -ENOMEM;
900 		goto err1;
901 	}
902 
903 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
904 	if (!fec) {
905 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
906 		ret = -ENOMEM;
907 		goto err2;
908 	}
909 
910 	memset(edev, 0, sizeof(*edev));
911 	memset(fec, 0, sizeof(*fec));
912 
913 	edev->priv = fec;
914 	edev->init = fec_init;
915 	edev->send = fec_send;
916 	edev->recv = fec_recv;
917 	edev->halt = fec_halt;
918 	edev->write_hwaddr = fec_set_hwaddr;
919 
920 	fec->eth = (struct ethernet_regs *)base_addr;
921 	fec->bd = bd;
922 
923 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
924 
925 	/* Reset chip. */
926 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
927 	start = get_timer(0);
928 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
929 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
930 			printf("FEC MXC: Timeout reseting chip\n");
931 			goto err3;
932 		}
933 		udelay(10);
934 	}
935 
936 	/*
937 	 * Set interrupt mask register
938 	 */
939 	writel(0x00000000, &fec->eth->imask);
940 
941 	/*
942 	 * Clear FEC-Lite interrupt event register(IEVENT)
943 	 */
944 	writel(0xffffffff, &fec->eth->ievent);
945 
946 	/*
947 	 * Set FEC-Lite receive control register(R_CNTRL):
948 	 */
949 	/*
950 	 * Frame length=1518; MII mode;
951 	 */
952 	writel((PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT) | FEC_RCNTRL_FCE |
953 		FEC_RCNTRL_MII_MODE, &fec->eth->r_cntrl);
954 	fec_mii_setspeed(fec);
955 
956 	if (dev_id == -1) {
957 		sprintf(edev->name, "FEC");
958 		fec->dev_id = 0;
959 	} else {
960 		sprintf(edev->name, "FEC%i", dev_id);
961 		fec->dev_id = dev_id;
962 	}
963 	fec->phy_id = phy_id;
964 
965 	bus = mdio_alloc();
966 	if (!bus) {
967 		printf("mdio_alloc failed\n");
968 		ret = -ENOMEM;
969 		goto err3;
970 	}
971 	bus->read = fec_phy_read;
972 	bus->write = fec_phy_write;
973 	sprintf(bus->name, edev->name);
974 #ifdef CONFIG_MX28
975 	/*
976 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
977 	 * Only the first one can access the MDIO bus.
978 	 */
979 	bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE;
980 #else
981 	bus->priv = fec->eth;
982 #endif
983 	ret = mdio_register(bus);
984 	if (ret) {
985 		printf("mdio_register failed\n");
986 		free(bus);
987 		ret = -ENOMEM;
988 		goto err3;
989 	}
990 	fec->bus = bus;
991 	eth_register(edev);
992 
993 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
994 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
995 		memcpy(edev->enetaddr, ethaddr, 6);
996 	}
997 	/* Configure phy */
998 	fec_eth_phy_config(edev);
999 	return ret;
1000 
1001 err3:
1002 	free(fec);
1003 err2:
1004 	free(edev);
1005 err1:
1006 	return ret;
1007 }
1008 
1009 #ifndef CONFIG_FEC_MXC_MULTI
1010 int fecmxc_initialize(bd_t *bd)
1011 {
1012 	int lout = 1;
1013 
1014 	debug("eth_init: fec_probe(bd)\n");
1015 	lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
1016 
1017 	return lout;
1018 }
1019 #endif
1020 
1021 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1022 {
1023 	int lout = 1;
1024 
1025 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1026 	lout = fec_probe(bd, dev_id, phy_id, addr);
1027 
1028 	return lout;
1029 }
1030 
1031 #ifndef CONFIG_PHYLIB
1032 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1033 {
1034 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1035 	fec->mii_postcall = cb;
1036 	return 0;
1037 }
1038 #endif
1039