xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 18652864)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29 
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34 #include <linux/compiler.h>
35 
36 DECLARE_GLOBAL_DATA_PTR;
37 
38 /*
39  * Timeout the transfer after 5 mS. This is usually a bit more, since
40  * the code in the tightloops this timeout is used in adds some overhead.
41  */
42 #define FEC_XFER_TIMEOUT	5000
43 
44 #ifndef CONFIG_MII
45 #error "CONFIG_MII has to be defined!"
46 #endif
47 
48 #ifndef CONFIG_FEC_XCV_TYPE
49 #define CONFIG_FEC_XCV_TYPE MII100
50 #endif
51 
52 /*
53  * The i.MX28 operates with packets in big endian. We need to swap them before
54  * sending and after receiving.
55  */
56 #ifdef CONFIG_MX28
57 #define CONFIG_FEC_MXC_SWAP_PACKET
58 #endif
59 
60 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
61 
62 /* Check various alignment issues at compile time */
63 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
65 #endif
66 
67 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
69 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
70 #endif
71 
72 #undef DEBUG
73 
74 struct nbuf {
75 	uint8_t data[1500];	/**< actual data */
76 	int length;		/**< actual length */
77 	int used;		/**< buffer in use or not */
78 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
79 };
80 
81 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
82 static void swap_packet(uint32_t *packet, int length)
83 {
84 	int i;
85 
86 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
87 		packet[i] = __swab32(packet[i]);
88 }
89 #endif
90 
91 /*
92  * MII-interface related functions
93  */
94 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
95 		uint8_t regAddr)
96 {
97 	uint32_t reg;		/* convenient holder for the PHY register */
98 	uint32_t phy;		/* convenient holder for the PHY */
99 	uint32_t start;
100 	int val;
101 
102 	/*
103 	 * reading from any PHY's register is done by properly
104 	 * programming the FEC's MII data register.
105 	 */
106 	writel(FEC_IEVENT_MII, &eth->ievent);
107 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
108 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
109 
110 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
111 			phy | reg, &eth->mii_data);
112 
113 	/*
114 	 * wait for the related interrupt
115 	 */
116 	start = get_timer(0);
117 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
118 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
119 			printf("Read MDIO failed...\n");
120 			return -1;
121 		}
122 	}
123 
124 	/*
125 	 * clear mii interrupt bit
126 	 */
127 	writel(FEC_IEVENT_MII, &eth->ievent);
128 
129 	/*
130 	 * it's now safe to read the PHY's register
131 	 */
132 	val = (unsigned short)readl(&eth->mii_data);
133 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
134 			regAddr, val);
135 	return val;
136 }
137 
138 static void fec_mii_setspeed(struct ethernet_regs *eth)
139 {
140 	/*
141 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
142 	 * and do not drop the Preamble.
143 	 */
144 	writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
145 			&eth->mii_speed);
146 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
147 }
148 
149 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
150 		uint8_t regAddr, uint16_t data)
151 {
152 	uint32_t reg;		/* convenient holder for the PHY register */
153 	uint32_t phy;		/* convenient holder for the PHY */
154 	uint32_t start;
155 
156 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
157 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
158 
159 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
160 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
161 
162 	/*
163 	 * wait for the MII interrupt
164 	 */
165 	start = get_timer(0);
166 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
167 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
168 			printf("Write MDIO failed...\n");
169 			return -1;
170 		}
171 	}
172 
173 	/*
174 	 * clear MII interrupt bit
175 	 */
176 	writel(FEC_IEVENT_MII, &eth->ievent);
177 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
178 			regAddr, data);
179 
180 	return 0;
181 }
182 
183 int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
184 {
185 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
186 }
187 
188 int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
189 		u16 data)
190 {
191 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
192 }
193 
194 #ifndef CONFIG_PHYLIB
195 static int miiphy_restart_aneg(struct eth_device *dev)
196 {
197 	int ret = 0;
198 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
199 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
200 	struct ethernet_regs *eth = fec->bus->priv;
201 
202 	/*
203 	 * Wake up from sleep if necessary
204 	 * Reset PHY, then delay 300ns
205 	 */
206 #ifdef CONFIG_MX27
207 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
208 #endif
209 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
210 	udelay(1000);
211 
212 	/*
213 	 * Set the auto-negotiation advertisement register bits
214 	 */
215 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
216 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
217 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
218 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
219 			BMCR_ANENABLE | BMCR_ANRESTART);
220 
221 	if (fec->mii_postcall)
222 		ret = fec->mii_postcall(fec->phy_id);
223 
224 #endif
225 	return ret;
226 }
227 
228 static int miiphy_wait_aneg(struct eth_device *dev)
229 {
230 	uint32_t start;
231 	int status;
232 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
233 	struct ethernet_regs *eth = fec->bus->priv;
234 
235 	/*
236 	 * Wait for AN completion
237 	 */
238 	start = get_timer(0);
239 	do {
240 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
241 			printf("%s: Autonegotiation timeout\n", dev->name);
242 			return -1;
243 		}
244 
245 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
246 		if (status < 0) {
247 			printf("%s: Autonegotiation failed. status: %d\n",
248 					dev->name, status);
249 			return -1;
250 		}
251 	} while (!(status & BMSR_LSTATUS));
252 
253 	return 0;
254 }
255 #endif
256 
257 static int fec_rx_task_enable(struct fec_priv *fec)
258 {
259 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
260 	return 0;
261 }
262 
263 static int fec_rx_task_disable(struct fec_priv *fec)
264 {
265 	return 0;
266 }
267 
268 static int fec_tx_task_enable(struct fec_priv *fec)
269 {
270 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
271 	return 0;
272 }
273 
274 static int fec_tx_task_disable(struct fec_priv *fec)
275 {
276 	return 0;
277 }
278 
279 /**
280  * Initialize receive task's buffer descriptors
281  * @param[in] fec all we know about the device yet
282  * @param[in] count receive buffer count to be allocated
283  * @param[in] dsize desired size of each receive buffer
284  * @return 0 on success
285  *
286  * For this task we need additional memory for the data buffers. And each
287  * data buffer requires some alignment. Thy must be aligned to a specific
288  * boundary each.
289  */
290 static int fec_rbd_init(struct fec_priv *fec, int count, int dsize)
291 {
292 	uint32_t size;
293 	int i;
294 
295 	/*
296 	 * Allocate memory for the buffers. This allocation respects the
297 	 * alignment
298 	 */
299 	size = roundup(dsize, ARCH_DMA_MINALIGN);
300 	for (i = 0; i < count; i++) {
301 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
302 		if (data_ptr == 0) {
303 			uint8_t *data = memalign(ARCH_DMA_MINALIGN,
304 						 size);
305 			if (!data) {
306 				printf("%s: error allocating rxbuf %d\n",
307 				       __func__, i);
308 				goto err;
309 			}
310 			writel((uint32_t)data, &fec->rbd_base[i].data_pointer);
311 		} /* needs allocation */
312 		writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status);
313 		writew(0, &fec->rbd_base[i].data_length);
314 	}
315 
316 	/* Mark the last RBD to close the ring. */
317 	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status);
318 	fec->rbd_index = 0;
319 
320 	return 0;
321 
322 err:
323 	for (; i >= 0; i--) {
324 		uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer);
325 		free((void *)data_ptr);
326 	}
327 
328 	return -ENOMEM;
329 }
330 
331 /**
332  * Initialize transmit task's buffer descriptors
333  * @param[in] fec all we know about the device yet
334  *
335  * Transmit buffers are created externally. We only have to init the BDs here.\n
336  * Note: There is a race condition in the hardware. When only one BD is in
337  * use it must be marked with the WRAP bit to use it for every transmitt.
338  * This bit in combination with the READY bit results into double transmit
339  * of each data buffer. It seems the state machine checks READY earlier then
340  * resetting it after the first transfer.
341  * Using two BDs solves this issue.
342  */
343 static void fec_tbd_init(struct fec_priv *fec)
344 {
345 	unsigned addr = (unsigned)fec->tbd_base;
346 	unsigned size = roundup(2 * sizeof(struct fec_bd),
347 				ARCH_DMA_MINALIGN);
348 	writew(0x0000, &fec->tbd_base[0].status);
349 	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
350 	fec->tbd_index = 0;
351 	flush_dcache_range(addr, addr+size);
352 }
353 
354 /**
355  * Mark the given read buffer descriptor as free
356  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
357  * @param[in] pRbd buffer descriptor to mark free again
358  */
359 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
360 {
361 	unsigned short flags = FEC_RBD_EMPTY;
362 	if (last)
363 		flags |= FEC_RBD_WRAP;
364 	writew(flags, &pRbd->status);
365 	writew(0, &pRbd->data_length);
366 }
367 
368 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
369 						unsigned char *mac)
370 {
371 	imx_get_mac_from_fuse(dev_id, mac);
372 	return !is_valid_ether_addr(mac);
373 }
374 
375 static int fec_set_hwaddr(struct eth_device *dev)
376 {
377 	uchar *mac = dev->enetaddr;
378 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
379 
380 	writel(0, &fec->eth->iaddr1);
381 	writel(0, &fec->eth->iaddr2);
382 	writel(0, &fec->eth->gaddr1);
383 	writel(0, &fec->eth->gaddr2);
384 
385 	/*
386 	 * Set physical address
387 	 */
388 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
389 			&fec->eth->paddr1);
390 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
391 
392 	return 0;
393 }
394 
395 /*
396  * Do initial configuration of the FEC registers
397  */
398 static void fec_reg_setup(struct fec_priv *fec)
399 {
400 	uint32_t rcntrl;
401 
402 	/*
403 	 * Set interrupt mask register
404 	 */
405 	writel(0x00000000, &fec->eth->imask);
406 
407 	/*
408 	 * Clear FEC-Lite interrupt event register(IEVENT)
409 	 */
410 	writel(0xffffffff, &fec->eth->ievent);
411 
412 
413 	/*
414 	 * Set FEC-Lite receive control register(R_CNTRL):
415 	 */
416 
417 	/* Start with frame length = 1518, common for all modes. */
418 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
419 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
420 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
421 	if (fec->xcv_type == RGMII)
422 		rcntrl |= FEC_RCNTRL_RGMII;
423 	else if (fec->xcv_type == RMII)
424 		rcntrl |= FEC_RCNTRL_RMII;
425 
426 	writel(rcntrl, &fec->eth->r_cntrl);
427 }
428 
429 /**
430  * Start the FEC engine
431  * @param[in] dev Our device to handle
432  */
433 static int fec_open(struct eth_device *edev)
434 {
435 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
436 	int speed;
437 	uint32_t addr, size;
438 	int i;
439 
440 	debug("fec_open: fec_open(dev)\n");
441 	/* full-duplex, heartbeat disabled */
442 	writel(1 << 2, &fec->eth->x_cntrl);
443 	fec->rbd_index = 0;
444 
445 	/* Invalidate all descriptors */
446 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
447 		fec_rbd_clean(0, &fec->rbd_base[i]);
448 	fec_rbd_clean(1, &fec->rbd_base[i]);
449 
450 	/* Flush the descriptors into RAM */
451 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
452 			ARCH_DMA_MINALIGN);
453 	addr = (uint32_t)fec->rbd_base;
454 	flush_dcache_range(addr, addr + size);
455 
456 #ifdef FEC_QUIRK_ENET_MAC
457 	/* Enable ENET HW endian SWAP */
458 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
459 		&fec->eth->ecntrl);
460 	/* Enable ENET store and forward mode */
461 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
462 		&fec->eth->x_wmrk);
463 #endif
464 	/*
465 	 * Enable FEC-Lite controller
466 	 */
467 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
468 		&fec->eth->ecntrl);
469 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
470 	udelay(100);
471 	/*
472 	 * setup the MII gasket for RMII mode
473 	 */
474 
475 	/* disable the gasket */
476 	writew(0, &fec->eth->miigsk_enr);
477 
478 	/* wait for the gasket to be disabled */
479 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
480 		udelay(2);
481 
482 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
483 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
484 
485 	/* re-enable the gasket */
486 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
487 
488 	/* wait until MII gasket is ready */
489 	int max_loops = 10;
490 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
491 		if (--max_loops <= 0) {
492 			printf("WAIT for MII Gasket ready timed out\n");
493 			break;
494 		}
495 	}
496 #endif
497 
498 #ifdef CONFIG_PHYLIB
499 	{
500 		/* Start up the PHY */
501 		int ret = phy_startup(fec->phydev);
502 
503 		if (ret) {
504 			printf("Could not initialize PHY %s\n",
505 			       fec->phydev->dev->name);
506 			return ret;
507 		}
508 		speed = fec->phydev->speed;
509 	}
510 #else
511 	miiphy_wait_aneg(edev);
512 	speed = miiphy_speed(edev->name, fec->phy_id);
513 	miiphy_duplex(edev->name, fec->phy_id);
514 #endif
515 
516 #ifdef FEC_QUIRK_ENET_MAC
517 	{
518 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
519 		u32 rcr = (readl(&fec->eth->r_cntrl) &
520 				~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
521 				FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
522 		if (speed == _1000BASET)
523 			ecr |= FEC_ECNTRL_SPEED;
524 		else if (speed != _100BASET)
525 			rcr |= FEC_RCNTRL_RMII_10T;
526 		writel(ecr, &fec->eth->ecntrl);
527 		writel(rcr, &fec->eth->r_cntrl);
528 	}
529 #endif
530 	debug("%s:Speed=%i\n", __func__, speed);
531 
532 	/*
533 	 * Enable SmartDMA receive task
534 	 */
535 	fec_rx_task_enable(fec);
536 
537 	udelay(100000);
538 	return 0;
539 }
540 
541 static int fec_init(struct eth_device *dev, bd_t* bd)
542 {
543 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
544 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
545 	uint32_t size;
546 	int i, ret;
547 
548 	/* Initialize MAC address */
549 	fec_set_hwaddr(dev);
550 
551 	/*
552 	 * Allocate transmit descriptors, there are two in total. This
553 	 * allocation respects cache alignment.
554 	 */
555 	if (!fec->tbd_base) {
556 		size = roundup(2 * sizeof(struct fec_bd),
557 				ARCH_DMA_MINALIGN);
558 		fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
559 		if (!fec->tbd_base) {
560 			ret = -ENOMEM;
561 			goto err1;
562 		}
563 		memset(fec->tbd_base, 0, size);
564 		fec_tbd_init(fec);
565 		flush_dcache_range((unsigned)fec->tbd_base, size);
566 	}
567 
568 	/*
569 	 * Allocate receive descriptors. This allocation respects cache
570 	 * alignment.
571 	 */
572 	if (!fec->rbd_base) {
573 		size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
574 				ARCH_DMA_MINALIGN);
575 		fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
576 		if (!fec->rbd_base) {
577 			ret = -ENOMEM;
578 			goto err2;
579 		}
580 		memset(fec->rbd_base, 0, size);
581 		/*
582 		 * Initialize RxBD ring
583 		 */
584 		if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
585 			ret = -ENOMEM;
586 			goto err3;
587 		}
588 		flush_dcache_range((unsigned)fec->rbd_base,
589 				   (unsigned)fec->rbd_base + size);
590 	}
591 
592 	fec_reg_setup(fec);
593 
594 	if (fec->xcv_type != SEVENWIRE)
595 		fec_mii_setspeed(fec->bus->priv);
596 
597 	/*
598 	 * Set Opcode/Pause Duration Register
599 	 */
600 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
601 	writel(0x2, &fec->eth->x_wmrk);
602 	/*
603 	 * Set multicast address filter
604 	 */
605 	writel(0x00000000, &fec->eth->gaddr1);
606 	writel(0x00000000, &fec->eth->gaddr2);
607 
608 
609 	/* clear MIB RAM */
610 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
611 		writel(0, i);
612 
613 	/* FIFO receive start register */
614 	writel(0x520, &fec->eth->r_fstart);
615 
616 	/* size and address of each buffer */
617 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
618 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
619 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
620 
621 #ifndef CONFIG_PHYLIB
622 	if (fec->xcv_type != SEVENWIRE)
623 		miiphy_restart_aneg(dev);
624 #endif
625 	fec_open(dev);
626 	return 0;
627 
628 err3:
629 	free(fec->rbd_base);
630 err2:
631 	free(fec->tbd_base);
632 err1:
633 	return ret;
634 }
635 
636 /**
637  * Halt the FEC engine
638  * @param[in] dev Our device to handle
639  */
640 static void fec_halt(struct eth_device *dev)
641 {
642 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
643 	int counter = 0xffff;
644 
645 	/*
646 	 * issue graceful stop command to the FEC transmitter if necessary
647 	 */
648 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
649 			&fec->eth->x_cntrl);
650 
651 	debug("eth_halt: wait for stop regs\n");
652 	/*
653 	 * wait for graceful stop to register
654 	 */
655 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
656 		udelay(1);
657 
658 	/*
659 	 * Disable SmartDMA tasks
660 	 */
661 	fec_tx_task_disable(fec);
662 	fec_rx_task_disable(fec);
663 
664 	/*
665 	 * Disable the Ethernet Controller
666 	 * Note: this will also reset the BD index counter!
667 	 */
668 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
669 			&fec->eth->ecntrl);
670 	fec->rbd_index = 0;
671 	fec->tbd_index = 0;
672 	debug("eth_halt: done\n");
673 }
674 
675 /**
676  * Transmit one frame
677  * @param[in] dev Our ethernet device to handle
678  * @param[in] packet Pointer to the data to be transmitted
679  * @param[in] length Data count in bytes
680  * @return 0 on success
681  */
682 static int fec_send(struct eth_device *dev, void *packet, int length)
683 {
684 	unsigned int status;
685 	uint32_t size, end;
686 	uint32_t addr;
687 	int timeout = FEC_XFER_TIMEOUT;
688 	int ret = 0;
689 
690 	/*
691 	 * This routine transmits one frame.  This routine only accepts
692 	 * 6-byte Ethernet addresses.
693 	 */
694 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
695 
696 	/*
697 	 * Check for valid length of data.
698 	 */
699 	if ((length > 1500) || (length <= 0)) {
700 		printf("Payload (%d) too large\n", length);
701 		return -1;
702 	}
703 
704 	/*
705 	 * Setup the transmit buffer. We are always using the first buffer for
706 	 * transmission, the second will be empty and only used to stop the DMA
707 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
708 	 */
709 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
710 	swap_packet((uint32_t *)packet, length);
711 #endif
712 
713 	addr = (uint32_t)packet;
714 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
715 	addr &= ~(ARCH_DMA_MINALIGN - 1);
716 	flush_dcache_range(addr, end);
717 
718 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
719 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
720 
721 	/*
722 	 * update BD's status now
723 	 * This block:
724 	 * - is always the last in a chain (means no chain)
725 	 * - should transmitt the CRC
726 	 * - might be the last BD in the list, so the address counter should
727 	 *   wrap (-> keep the WRAP flag)
728 	 */
729 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
730 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
731 	writew(status, &fec->tbd_base[fec->tbd_index].status);
732 
733 	/*
734 	 * Flush data cache. This code flushes both TX descriptors to RAM.
735 	 * After this code, the descriptors will be safely in RAM and we
736 	 * can start DMA.
737 	 */
738 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
739 	addr = (uint32_t)fec->tbd_base;
740 	flush_dcache_range(addr, addr + size);
741 
742 	/*
743 	 * Enable SmartDMA transmit task
744 	 */
745 	fec_tx_task_enable(fec);
746 
747 	/*
748 	 * Wait until frame is sent. On each turn of the wait cycle, we must
749 	 * invalidate data cache to see what's really in RAM. Also, we need
750 	 * barrier here.
751 	 */
752 	while (--timeout) {
753 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
754 			break;
755 	}
756 
757 	if (!timeout)
758 		ret = -EINVAL;
759 
760 	invalidate_dcache_range(addr, addr + size);
761 	if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY)
762 		ret = -EINVAL;
763 
764 	debug("fec_send: status 0x%x index %d ret %i\n",
765 			readw(&fec->tbd_base[fec->tbd_index].status),
766 			fec->tbd_index, ret);
767 	/* for next transmission use the other buffer */
768 	if (fec->tbd_index)
769 		fec->tbd_index = 0;
770 	else
771 		fec->tbd_index = 1;
772 
773 	return ret;
774 }
775 
776 /**
777  * Pull one frame from the card
778  * @param[in] dev Our ethernet device to handle
779  * @return Length of packet read
780  */
781 static int fec_recv(struct eth_device *dev)
782 {
783 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
784 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
785 	unsigned long ievent;
786 	int frame_length, len = 0;
787 	struct nbuf *frame;
788 	uint16_t bd_status;
789 	uint32_t addr, size, end;
790 	int i;
791 	uchar buff[FEC_MAX_PKT_SIZE] __aligned(ARCH_DMA_MINALIGN);
792 
793 	/*
794 	 * Check if any critical events have happened
795 	 */
796 	ievent = readl(&fec->eth->ievent);
797 	writel(ievent, &fec->eth->ievent);
798 	debug("fec_recv: ievent 0x%lx\n", ievent);
799 	if (ievent & FEC_IEVENT_BABR) {
800 		fec_halt(dev);
801 		fec_init(dev, fec->bd);
802 		printf("some error: 0x%08lx\n", ievent);
803 		return 0;
804 	}
805 	if (ievent & FEC_IEVENT_HBERR) {
806 		/* Heartbeat error */
807 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
808 				&fec->eth->x_cntrl);
809 	}
810 	if (ievent & FEC_IEVENT_GRA) {
811 		/* Graceful stop complete */
812 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
813 			fec_halt(dev);
814 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
815 					&fec->eth->x_cntrl);
816 			fec_init(dev, fec->bd);
817 		}
818 	}
819 
820 	/*
821 	 * Read the buffer status. Before the status can be read, the data cache
822 	 * must be invalidated, because the data in RAM might have been changed
823 	 * by DMA. The descriptors are properly aligned to cachelines so there's
824 	 * no need to worry they'd overlap.
825 	 *
826 	 * WARNING: By invalidating the descriptor here, we also invalidate
827 	 * the descriptors surrounding this one. Therefore we can NOT change the
828 	 * contents of this descriptor nor the surrounding ones. The problem is
829 	 * that in order to mark the descriptor as processed, we need to change
830 	 * the descriptor. The solution is to mark the whole cache line when all
831 	 * descriptors in the cache line are processed.
832 	 */
833 	addr = (uint32_t)rbd;
834 	addr &= ~(ARCH_DMA_MINALIGN - 1);
835 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
836 	invalidate_dcache_range(addr, addr + size);
837 
838 	bd_status = readw(&rbd->status);
839 	debug("fec_recv: status 0x%x\n", bd_status);
840 
841 	if (!(bd_status & FEC_RBD_EMPTY)) {
842 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
843 			((readw(&rbd->data_length) - 4) > 14)) {
844 			/*
845 			 * Get buffer address and size
846 			 */
847 			frame = (struct nbuf *)readl(&rbd->data_pointer);
848 			frame_length = readw(&rbd->data_length) - 4;
849 			/*
850 			 * Invalidate data cache over the buffer
851 			 */
852 			addr = (uint32_t)frame;
853 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
854 			addr &= ~(ARCH_DMA_MINALIGN - 1);
855 			invalidate_dcache_range(addr, end);
856 
857 			/*
858 			 *  Fill the buffer and pass it to upper layers
859 			 */
860 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
861 			swap_packet((uint32_t *)frame->data, frame_length);
862 #endif
863 			memcpy(buff, frame->data, frame_length);
864 			NetReceive(buff, frame_length);
865 			len = frame_length;
866 		} else {
867 			if (bd_status & FEC_RBD_ERR)
868 				printf("error frame: 0x%08lx 0x%08x\n",
869 						(ulong)rbd->data_pointer,
870 						bd_status);
871 		}
872 
873 		/*
874 		 * Free the current buffer, restart the engine and move forward
875 		 * to the next buffer. Here we check if the whole cacheline of
876 		 * descriptors was already processed and if so, we mark it free
877 		 * as whole.
878 		 */
879 		size = RXDESC_PER_CACHELINE - 1;
880 		if ((fec->rbd_index & size) == size) {
881 			i = fec->rbd_index - size;
882 			addr = (uint32_t)&fec->rbd_base[i];
883 			for (; i <= fec->rbd_index ; i++) {
884 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
885 					      &fec->rbd_base[i]);
886 			}
887 			flush_dcache_range(addr,
888 				addr + ARCH_DMA_MINALIGN);
889 		}
890 
891 		fec_rx_task_enable(fec);
892 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
893 	}
894 	debug("fec_recv: stop\n");
895 
896 	return len;
897 }
898 
899 static void fec_set_dev_name(char *dest, int dev_id)
900 {
901 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
902 }
903 
904 #ifdef CONFIG_PHYLIB
905 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
906 		struct mii_dev *bus, struct phy_device *phydev)
907 #else
908 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
909 		struct mii_dev *bus, int phy_id)
910 #endif
911 {
912 	struct eth_device *edev;
913 	struct fec_priv *fec;
914 	unsigned char ethaddr[6];
915 	uint32_t start;
916 	int ret = 0;
917 
918 	/* create and fill edev struct */
919 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
920 	if (!edev) {
921 		puts("fec_mxc: not enough malloc memory for eth_device\n");
922 		ret = -ENOMEM;
923 		goto err1;
924 	}
925 
926 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
927 	if (!fec) {
928 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
929 		ret = -ENOMEM;
930 		goto err2;
931 	}
932 
933 	memset(edev, 0, sizeof(*edev));
934 	memset(fec, 0, sizeof(*fec));
935 
936 	edev->priv = fec;
937 	edev->init = fec_init;
938 	edev->send = fec_send;
939 	edev->recv = fec_recv;
940 	edev->halt = fec_halt;
941 	edev->write_hwaddr = fec_set_hwaddr;
942 
943 	fec->eth = (struct ethernet_regs *)base_addr;
944 	fec->bd = bd;
945 
946 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
947 
948 	/* Reset chip. */
949 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
950 	start = get_timer(0);
951 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
952 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
953 			printf("FEC MXC: Timeout reseting chip\n");
954 			goto err3;
955 		}
956 		udelay(10);
957 	}
958 
959 	fec_reg_setup(fec);
960 	fec_set_dev_name(edev->name, dev_id);
961 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
962 	fec->bus = bus;
963 	fec_mii_setspeed(bus->priv);
964 #ifdef CONFIG_PHYLIB
965 	fec->phydev = phydev;
966 	phy_connect_dev(phydev, edev);
967 	/* Configure phy */
968 	phy_config(phydev);
969 #else
970 	fec->phy_id = phy_id;
971 #endif
972 	eth_register(edev);
973 
974 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
975 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
976 		memcpy(edev->enetaddr, ethaddr, 6);
977 	}
978 	return ret;
979 err3:
980 	free(fec);
981 err2:
982 	free(edev);
983 err1:
984 	return ret;
985 }
986 
987 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
988 {
989 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
990 	struct mii_dev *bus;
991 	int ret;
992 
993 	bus = mdio_alloc();
994 	if (!bus) {
995 		printf("mdio_alloc failed\n");
996 		return NULL;
997 	}
998 	bus->read = fec_phy_read;
999 	bus->write = fec_phy_write;
1000 	bus->priv = eth;
1001 	fec_set_dev_name(bus->name, dev_id);
1002 
1003 	ret = mdio_register(bus);
1004 	if (ret) {
1005 		printf("mdio_register failed\n");
1006 		free(bus);
1007 		return NULL;
1008 	}
1009 	fec_mii_setspeed(eth);
1010 	return bus;
1011 }
1012 
1013 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1014 {
1015 	uint32_t base_mii;
1016 	struct mii_dev *bus = NULL;
1017 #ifdef CONFIG_PHYLIB
1018 	struct phy_device *phydev = NULL;
1019 #endif
1020 	int ret;
1021 
1022 #ifdef CONFIG_MX28
1023 	/*
1024 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1025 	 * Only the first one can access the MDIO bus.
1026 	 */
1027 	base_mii = MXS_ENET0_BASE;
1028 #else
1029 	base_mii = addr;
1030 #endif
1031 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1032 	bus = fec_get_miibus(base_mii, dev_id);
1033 	if (!bus)
1034 		return -ENOMEM;
1035 #ifdef CONFIG_PHYLIB
1036 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1037 	if (!phydev) {
1038 		free(bus);
1039 		return -ENOMEM;
1040 	}
1041 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1042 #else
1043 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1044 #endif
1045 	if (ret) {
1046 #ifdef CONFIG_PHYLIB
1047 		free(phydev);
1048 #endif
1049 		free(bus);
1050 	}
1051 	return ret;
1052 }
1053 
1054 #ifdef CONFIG_FEC_MXC_PHYADDR
1055 int fecmxc_initialize(bd_t *bd)
1056 {
1057 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1058 			IMX_FEC_BASE);
1059 }
1060 #endif
1061 
1062 #ifndef CONFIG_PHYLIB
1063 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1064 {
1065 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1066 	fec->mii_postcall = cb;
1067 	return 0;
1068 }
1069 #endif
1070