xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 17210643)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <miiphy.h>
28 #include "fec_mxc.h"
29 
30 #include <asm/arch/clock.h>
31 #include <asm/arch/imx-regs.h>
32 #include <asm/io.h>
33 #include <asm/errno.h>
34 
35 DECLARE_GLOBAL_DATA_PTR;
36 
37 #ifndef CONFIG_MII
38 #error "CONFIG_MII has to be defined!"
39 #endif
40 
41 #ifndef	CONFIG_FEC_XCV_TYPE
42 #define	CONFIG_FEC_XCV_TYPE	MII100
43 #endif
44 
45 /*
46  * The i.MX28 operates with packets in big endian. We need to swap them before
47  * sending and after receiving.
48  */
49 #ifdef	CONFIG_MX28
50 #define	CONFIG_FEC_MXC_SWAP_PACKET
51 #endif
52 
53 #undef DEBUG
54 
55 struct nbuf {
56 	uint8_t data[1500];	/**< actual data */
57 	int length;		/**< actual length */
58 	int used;		/**< buffer in use or not */
59 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
60 };
61 
62 #ifdef	CONFIG_FEC_MXC_SWAP_PACKET
63 static void swap_packet(uint32_t *packet, int length)
64 {
65 	int i;
66 
67 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
68 		packet[i] = __swab32(packet[i]);
69 }
70 #endif
71 
72 /*
73  * The i.MX28 has two ethernet interfaces, but they are not equal.
74  * Only the first one can access the MDIO bus.
75  */
76 #ifdef	CONFIG_MX28
77 static inline struct ethernet_regs *fec_miiphy_fec_to_eth(struct fec_priv *fec)
78 {
79 	return (struct ethernet_regs *)MXS_ENET0_BASE;
80 }
81 #else
82 static inline struct ethernet_regs *fec_miiphy_fec_to_eth(struct fec_priv *fec)
83 {
84 	return fec->eth;
85 }
86 #endif
87 
88 /*
89  * MII-interface related functions
90  */
91 static int fec_miiphy_read(const char *dev, uint8_t phyAddr, uint8_t regAddr,
92 		uint16_t *retVal)
93 {
94 	struct eth_device *edev = eth_get_dev_by_name(dev);
95 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
96 	struct ethernet_regs *eth = fec_miiphy_fec_to_eth(fec);
97 
98 	uint32_t reg;		/* convenient holder for the PHY register */
99 	uint32_t phy;		/* convenient holder for the PHY */
100 	uint32_t start;
101 
102 	/*
103 	 * reading from any PHY's register is done by properly
104 	 * programming the FEC's MII data register.
105 	 */
106 	writel(FEC_IEVENT_MII, &eth->ievent);
107 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
108 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
109 
110 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
111 			phy | reg, &eth->mii_data);
112 
113 	/*
114 	 * wait for the related interrupt
115 	 */
116 	start = get_timer(0);
117 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
118 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
119 			printf("Read MDIO failed...\n");
120 			return -1;
121 		}
122 	}
123 
124 	/*
125 	 * clear mii interrupt bit
126 	 */
127 	writel(FEC_IEVENT_MII, &eth->ievent);
128 
129 	/*
130 	 * it's now safe to read the PHY's register
131 	 */
132 	*retVal = readl(&eth->mii_data);
133 	debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
134 			regAddr, *retVal);
135 	return 0;
136 }
137 
138 static void fec_mii_setspeed(struct fec_priv *fec)
139 {
140 	/*
141 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
142 	 * and do not drop the Preamble.
143 	 */
144 	writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
145 			&fec->eth->mii_speed);
146 	debug("fec_init: mii_speed %08x\n",
147 			readl(&fec->eth->mii_speed));
148 }
149 static int fec_miiphy_write(const char *dev, uint8_t phyAddr, uint8_t regAddr,
150 		uint16_t data)
151 {
152 	struct eth_device *edev = eth_get_dev_by_name(dev);
153 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
154 	struct ethernet_regs *eth = fec_miiphy_fec_to_eth(fec);
155 
156 	uint32_t reg;		/* convenient holder for the PHY register */
157 	uint32_t phy;		/* convenient holder for the PHY */
158 	uint32_t start;
159 
160 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
161 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
162 
163 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
164 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
165 
166 	/*
167 	 * wait for the MII interrupt
168 	 */
169 	start = get_timer(0);
170 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
171 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
172 			printf("Write MDIO failed...\n");
173 			return -1;
174 		}
175 	}
176 
177 	/*
178 	 * clear MII interrupt bit
179 	 */
180 	writel(FEC_IEVENT_MII, &eth->ievent);
181 	debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
182 			regAddr, data);
183 
184 	return 0;
185 }
186 
187 static int miiphy_restart_aneg(struct eth_device *dev)
188 {
189 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
190 	int ret = 0;
191 
192 	/*
193 	 * Wake up from sleep if necessary
194 	 * Reset PHY, then delay 300ns
195 	 */
196 #ifdef CONFIG_MX27
197 	miiphy_write(dev->name, fec->phy_id, MII_DCOUNTER, 0x00FF);
198 #endif
199 	miiphy_write(dev->name, fec->phy_id, MII_BMCR,
200 			BMCR_RESET);
201 	udelay(1000);
202 
203 	/*
204 	 * Set the auto-negotiation advertisement register bits
205 	 */
206 	miiphy_write(dev->name, fec->phy_id, MII_ADVERTISE,
207 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
208 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
209 	miiphy_write(dev->name, fec->phy_id, MII_BMCR,
210 			BMCR_ANENABLE | BMCR_ANRESTART);
211 
212 	if (fec->mii_postcall)
213 		ret = fec->mii_postcall(fec->phy_id);
214 
215 	return ret;
216 }
217 
218 static int miiphy_wait_aneg(struct eth_device *dev)
219 {
220 	uint32_t start;
221 	uint16_t status;
222 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
223 
224 	/*
225 	 * Wait for AN completion
226 	 */
227 	start = get_timer(0);
228 	do {
229 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
230 			printf("%s: Autonegotiation timeout\n", dev->name);
231 			return -1;
232 		}
233 
234 		if (miiphy_read(dev->name, fec->phy_id,
235 					MII_BMSR, &status)) {
236 			printf("%s: Autonegotiation failed. status: 0x%04x\n",
237 					dev->name, status);
238 			return -1;
239 		}
240 	} while (!(status & BMSR_LSTATUS));
241 
242 	return 0;
243 }
244 static int fec_rx_task_enable(struct fec_priv *fec)
245 {
246 	writel(1 << 24, &fec->eth->r_des_active);
247 	return 0;
248 }
249 
250 static int fec_rx_task_disable(struct fec_priv *fec)
251 {
252 	return 0;
253 }
254 
255 static int fec_tx_task_enable(struct fec_priv *fec)
256 {
257 	writel(1 << 24, &fec->eth->x_des_active);
258 	return 0;
259 }
260 
261 static int fec_tx_task_disable(struct fec_priv *fec)
262 {
263 	return 0;
264 }
265 
266 /**
267  * Initialize receive task's buffer descriptors
268  * @param[in] fec all we know about the device yet
269  * @param[in] count receive buffer count to be allocated
270  * @param[in] size size of each receive buffer
271  * @return 0 on success
272  *
273  * For this task we need additional memory for the data buffers. And each
274  * data buffer requires some alignment. Thy must be aligned to a specific
275  * boundary each (DB_DATA_ALIGNMENT).
276  */
277 static int fec_rbd_init(struct fec_priv *fec, int count, int size)
278 {
279 	int ix;
280 	uint32_t p = 0;
281 
282 	/* reserve data memory and consider alignment */
283 	if (fec->rdb_ptr == NULL)
284 		fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
285 	p = (uint32_t)fec->rdb_ptr;
286 	if (!p) {
287 		puts("fec_mxc: not enough malloc memory\n");
288 		return -ENOMEM;
289 	}
290 	memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
291 	p += DB_DATA_ALIGNMENT-1;
292 	p &= ~(DB_DATA_ALIGNMENT-1);
293 
294 	for (ix = 0; ix < count; ix++) {
295 		writel(p, &fec->rbd_base[ix].data_pointer);
296 		p += size;
297 		writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
298 		writew(0, &fec->rbd_base[ix].data_length);
299 	}
300 	/*
301 	 * mark the last RBD to close the ring
302 	 */
303 	writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
304 	fec->rbd_index = 0;
305 
306 	return 0;
307 }
308 
309 /**
310  * Initialize transmit task's buffer descriptors
311  * @param[in] fec all we know about the device yet
312  *
313  * Transmit buffers are created externally. We only have to init the BDs here.\n
314  * Note: There is a race condition in the hardware. When only one BD is in
315  * use it must be marked with the WRAP bit to use it for every transmitt.
316  * This bit in combination with the READY bit results into double transmit
317  * of each data buffer. It seems the state machine checks READY earlier then
318  * resetting it after the first transfer.
319  * Using two BDs solves this issue.
320  */
321 static void fec_tbd_init(struct fec_priv *fec)
322 {
323 	writew(0x0000, &fec->tbd_base[0].status);
324 	writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
325 	fec->tbd_index = 0;
326 }
327 
328 /**
329  * Mark the given read buffer descriptor as free
330  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
331  * @param[in] pRbd buffer descriptor to mark free again
332  */
333 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
334 {
335 	/*
336 	 * Reset buffer descriptor as empty
337 	 */
338 	if (last)
339 		writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
340 	else
341 		writew(FEC_RBD_EMPTY, &pRbd->status);
342 	/*
343 	 * no data in it
344 	 */
345 	writew(0, &pRbd->data_length);
346 }
347 
348 static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
349 {
350 	imx_get_mac_from_fuse(mac);
351 	return !is_valid_ether_addr(mac);
352 }
353 
354 static int fec_set_hwaddr(struct eth_device *dev)
355 {
356 	uchar *mac = dev->enetaddr;
357 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
358 
359 	writel(0, &fec->eth->iaddr1);
360 	writel(0, &fec->eth->iaddr2);
361 	writel(0, &fec->eth->gaddr1);
362 	writel(0, &fec->eth->gaddr2);
363 
364 	/*
365 	 * Set physical address
366 	 */
367 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
368 			&fec->eth->paddr1);
369 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
370 
371 	return 0;
372 }
373 
374 /**
375  * Start the FEC engine
376  * @param[in] dev Our device to handle
377  */
378 static int fec_open(struct eth_device *edev)
379 {
380 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
381 
382 	debug("fec_open: fec_open(dev)\n");
383 	/* full-duplex, heartbeat disabled */
384 	writel(1 << 2, &fec->eth->x_cntrl);
385 	fec->rbd_index = 0;
386 
387 	/*
388 	 * Enable FEC-Lite controller
389 	 */
390 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
391 		&fec->eth->ecntrl);
392 #if defined(CONFIG_MX25) || defined(CONFIG_MX53)
393 	udelay(100);
394 	/*
395 	 * setup the MII gasket for RMII mode
396 	 */
397 
398 	/* disable the gasket */
399 	writew(0, &fec->eth->miigsk_enr);
400 
401 	/* wait for the gasket to be disabled */
402 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
403 		udelay(2);
404 
405 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
406 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
407 
408 	/* re-enable the gasket */
409 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
410 
411 	/* wait until MII gasket is ready */
412 	int max_loops = 10;
413 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
414 		if (--max_loops <= 0) {
415 			printf("WAIT for MII Gasket ready timed out\n");
416 			break;
417 		}
418 	}
419 #endif
420 
421 	miiphy_wait_aneg(edev);
422 	miiphy_speed(edev->name, fec->phy_id);
423 	miiphy_duplex(edev->name, fec->phy_id);
424 
425 	/*
426 	 * Enable SmartDMA receive task
427 	 */
428 	fec_rx_task_enable(fec);
429 
430 	udelay(100000);
431 	return 0;
432 }
433 
434 static int fec_init(struct eth_device *dev, bd_t* bd)
435 {
436 	uint32_t base;
437 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
438 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
439 	uint32_t rcntrl;
440 	int i;
441 
442 	/* Initialize MAC address */
443 	fec_set_hwaddr(dev);
444 
445 	/*
446 	 * reserve memory for both buffer descriptor chains at once
447 	 * Datasheet forces the startaddress of each chain is 16 byte
448 	 * aligned
449 	 */
450 	if (fec->base_ptr == NULL)
451 		fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
452 				sizeof(struct fec_bd) + DB_ALIGNMENT);
453 	base = (uint32_t)fec->base_ptr;
454 	if (!base) {
455 		puts("fec_mxc: not enough malloc memory\n");
456 		return -ENOMEM;
457 	}
458 	memset((void *)base, 0, (2 + FEC_RBD_NUM) *
459 			sizeof(struct fec_bd) + DB_ALIGNMENT);
460 	base += (DB_ALIGNMENT-1);
461 	base &= ~(DB_ALIGNMENT-1);
462 
463 	fec->rbd_base = (struct fec_bd *)base;
464 
465 	base += FEC_RBD_NUM * sizeof(struct fec_bd);
466 
467 	fec->tbd_base = (struct fec_bd *)base;
468 
469 	/*
470 	 * Set interrupt mask register
471 	 */
472 	writel(0x00000000, &fec->eth->imask);
473 
474 	/*
475 	 * Clear FEC-Lite interrupt event register(IEVENT)
476 	 */
477 	writel(0xffffffff, &fec->eth->ievent);
478 
479 
480 	/*
481 	 * Set FEC-Lite receive control register(R_CNTRL):
482 	 */
483 
484 	/* Start with frame length = 1518, common for all modes. */
485 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
486 	if (fec->xcv_type == SEVENWIRE)
487 		rcntrl |= FEC_RCNTRL_FCE;
488 	else if (fec->xcv_type == RMII)
489 		rcntrl |= FEC_RCNTRL_RMII;
490 	else	/* MII mode */
491 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
492 
493 	writel(rcntrl, &fec->eth->r_cntrl);
494 
495 	if (fec->xcv_type == MII10 || fec->xcv_type == MII100)
496 		fec_mii_setspeed(fec);
497 
498 	/*
499 	 * Set Opcode/Pause Duration Register
500 	 */
501 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
502 	writel(0x2, &fec->eth->x_wmrk);
503 	/*
504 	 * Set multicast address filter
505 	 */
506 	writel(0x00000000, &fec->eth->gaddr1);
507 	writel(0x00000000, &fec->eth->gaddr2);
508 
509 
510 	/* clear MIB RAM */
511 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
512 		writel(0, i);
513 
514 	/* FIFO receive start register */
515 	writel(0x520, &fec->eth->r_fstart);
516 
517 	/* size and address of each buffer */
518 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
519 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
520 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
521 
522 	/*
523 	 * Initialize RxBD/TxBD rings
524 	 */
525 	if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
526 		free(fec->base_ptr);
527 		fec->base_ptr = NULL;
528 		return -ENOMEM;
529 	}
530 	fec_tbd_init(fec);
531 
532 
533 	if (fec->xcv_type != SEVENWIRE)
534 		miiphy_restart_aneg(dev);
535 
536 	fec_open(dev);
537 	return 0;
538 }
539 
540 /**
541  * Halt the FEC engine
542  * @param[in] dev Our device to handle
543  */
544 static void fec_halt(struct eth_device *dev)
545 {
546 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
547 	int counter = 0xffff;
548 
549 	/*
550 	 * issue graceful stop command to the FEC transmitter if necessary
551 	 */
552 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
553 			&fec->eth->x_cntrl);
554 
555 	debug("eth_halt: wait for stop regs\n");
556 	/*
557 	 * wait for graceful stop to register
558 	 */
559 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
560 		udelay(1);
561 
562 	/*
563 	 * Disable SmartDMA tasks
564 	 */
565 	fec_tx_task_disable(fec);
566 	fec_rx_task_disable(fec);
567 
568 	/*
569 	 * Disable the Ethernet Controller
570 	 * Note: this will also reset the BD index counter!
571 	 */
572 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
573 			&fec->eth->ecntrl);
574 	fec->rbd_index = 0;
575 	fec->tbd_index = 0;
576 	debug("eth_halt: done\n");
577 }
578 
579 /**
580  * Transmit one frame
581  * @param[in] dev Our ethernet device to handle
582  * @param[in] packet Pointer to the data to be transmitted
583  * @param[in] length Data count in bytes
584  * @return 0 on success
585  */
586 static int fec_send(struct eth_device *dev, volatile void* packet, int length)
587 {
588 	unsigned int status;
589 
590 	/*
591 	 * This routine transmits one frame.  This routine only accepts
592 	 * 6-byte Ethernet addresses.
593 	 */
594 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
595 
596 	/*
597 	 * Check for valid length of data.
598 	 */
599 	if ((length > 1500) || (length <= 0)) {
600 		printf("Payload (%d) too large\n", length);
601 		return -1;
602 	}
603 
604 	/*
605 	 * Setup the transmit buffer
606 	 * Note: We are always using the first buffer for transmission,
607 	 * the second will be empty and only used to stop the DMA engine
608 	 */
609 #ifdef	CONFIG_FEC_MXC_SWAP_PACKET
610 	swap_packet((uint32_t *)packet, length);
611 #endif
612 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
613 	writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
614 	/*
615 	 * update BD's status now
616 	 * This block:
617 	 * - is always the last in a chain (means no chain)
618 	 * - should transmitt the CRC
619 	 * - might be the last BD in the list, so the address counter should
620 	 *   wrap (-> keep the WRAP flag)
621 	 */
622 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
623 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
624 	writew(status, &fec->tbd_base[fec->tbd_index].status);
625 
626 	/*
627 	 * Enable SmartDMA transmit task
628 	 */
629 	fec_tx_task_enable(fec);
630 
631 	/*
632 	 * wait until frame is sent .
633 	 */
634 	while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
635 		udelay(1);
636 	}
637 	debug("fec_send: status 0x%x index %d\n",
638 			readw(&fec->tbd_base[fec->tbd_index].status),
639 			fec->tbd_index);
640 	/* for next transmission use the other buffer */
641 	if (fec->tbd_index)
642 		fec->tbd_index = 0;
643 	else
644 		fec->tbd_index = 1;
645 
646 	return 0;
647 }
648 
649 /**
650  * Pull one frame from the card
651  * @param[in] dev Our ethernet device to handle
652  * @return Length of packet read
653  */
654 static int fec_recv(struct eth_device *dev)
655 {
656 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
657 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
658 	unsigned long ievent;
659 	int frame_length, len = 0;
660 	struct nbuf *frame;
661 	uint16_t bd_status;
662 	uchar buff[FEC_MAX_PKT_SIZE];
663 
664 	/*
665 	 * Check if any critical events have happened
666 	 */
667 	ievent = readl(&fec->eth->ievent);
668 	writel(ievent, &fec->eth->ievent);
669 	debug("fec_recv: ievent 0x%lx\n", ievent);
670 	if (ievent & FEC_IEVENT_BABR) {
671 		fec_halt(dev);
672 		fec_init(dev, fec->bd);
673 		printf("some error: 0x%08lx\n", ievent);
674 		return 0;
675 	}
676 	if (ievent & FEC_IEVENT_HBERR) {
677 		/* Heartbeat error */
678 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
679 				&fec->eth->x_cntrl);
680 	}
681 	if (ievent & FEC_IEVENT_GRA) {
682 		/* Graceful stop complete */
683 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
684 			fec_halt(dev);
685 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
686 					&fec->eth->x_cntrl);
687 			fec_init(dev, fec->bd);
688 		}
689 	}
690 
691 	/*
692 	 * ensure reading the right buffer status
693 	 */
694 	bd_status = readw(&rbd->status);
695 	debug("fec_recv: status 0x%x\n", bd_status);
696 
697 	if (!(bd_status & FEC_RBD_EMPTY)) {
698 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
699 			((readw(&rbd->data_length) - 4) > 14)) {
700 			/*
701 			 * Get buffer address and size
702 			 */
703 			frame = (struct nbuf *)readl(&rbd->data_pointer);
704 			frame_length = readw(&rbd->data_length) - 4;
705 			/*
706 			 *  Fill the buffer and pass it to upper layers
707 			 */
708 #ifdef	CONFIG_FEC_MXC_SWAP_PACKET
709 			swap_packet((uint32_t *)frame->data, frame_length);
710 #endif
711 			memcpy(buff, frame->data, frame_length);
712 			NetReceive(buff, frame_length);
713 			len = frame_length;
714 		} else {
715 			if (bd_status & FEC_RBD_ERR)
716 				printf("error frame: 0x%08lx 0x%08x\n",
717 						(ulong)rbd->data_pointer,
718 						bd_status);
719 		}
720 		/*
721 		 * free the current buffer, restart the engine
722 		 * and move forward to the next buffer
723 		 */
724 		fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
725 		fec_rx_task_enable(fec);
726 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
727 	}
728 	debug("fec_recv: stop\n");
729 
730 	return len;
731 }
732 
733 static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
734 {
735 	struct eth_device *edev;
736 	struct fec_priv *fec;
737 	unsigned char ethaddr[6];
738 	uint32_t start;
739 	int ret = 0;
740 
741 	/* create and fill edev struct */
742 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
743 	if (!edev) {
744 		puts("fec_mxc: not enough malloc memory for eth_device\n");
745 		ret = -ENOMEM;
746 		goto err1;
747 	}
748 
749 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
750 	if (!fec) {
751 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
752 		ret = -ENOMEM;
753 		goto err2;
754 	}
755 
756 	memset(edev, 0, sizeof(*edev));
757 	memset(fec, 0, sizeof(*fec));
758 
759 	edev->priv = fec;
760 	edev->init = fec_init;
761 	edev->send = fec_send;
762 	edev->recv = fec_recv;
763 	edev->halt = fec_halt;
764 	edev->write_hwaddr = fec_set_hwaddr;
765 
766 	fec->eth = (struct ethernet_regs *)base_addr;
767 	fec->bd = bd;
768 
769 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
770 
771 	/* Reset chip. */
772 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
773 	start = get_timer(0);
774 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
775 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
776 			printf("FEC MXC: Timeout reseting chip\n");
777 			goto err3;
778 		}
779 		udelay(10);
780 	}
781 
782 	/*
783 	 * Set interrupt mask register
784 	 */
785 	writel(0x00000000, &fec->eth->imask);
786 
787 	/*
788 	 * Clear FEC-Lite interrupt event register(IEVENT)
789 	 */
790 	writel(0xffffffff, &fec->eth->ievent);
791 
792 	/*
793 	 * Set FEC-Lite receive control register(R_CNTRL):
794 	 */
795 	/*
796 	 * Frame length=1518; MII mode;
797 	 */
798 	writel((PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT) | FEC_RCNTRL_FCE |
799 		FEC_RCNTRL_MII_MODE, &fec->eth->r_cntrl);
800 	fec_mii_setspeed(fec);
801 
802 	if (dev_id == -1) {
803 		sprintf(edev->name, "FEC");
804 		fec->dev_id = 0;
805 	} else {
806 		sprintf(edev->name, "FEC%i", dev_id);
807 		fec->dev_id = dev_id;
808 	}
809 	fec->phy_id = phy_id;
810 
811 	miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
812 
813 	eth_register(edev);
814 
815 	if (fec_get_hwaddr(edev, ethaddr) == 0) {
816 		debug("got MAC address from fuse: %pM\n", ethaddr);
817 		memcpy(edev->enetaddr, ethaddr, 6);
818 	}
819 
820 	return ret;
821 
822 err3:
823 	free(fec);
824 err2:
825 	free(edev);
826 err1:
827 	return ret;
828 }
829 
830 #ifndef	CONFIG_FEC_MXC_MULTI
831 int fecmxc_initialize(bd_t *bd)
832 {
833 	int lout = 1;
834 
835 	debug("eth_init: fec_probe(bd)\n");
836 	lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
837 
838 	return lout;
839 }
840 #endif
841 
842 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
843 {
844 	int lout = 1;
845 
846 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
847 	lout = fec_probe(bd, dev_id, phy_id, addr);
848 
849 	return lout;
850 }
851 
852 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
853 {
854 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
855 	fec->mii_postcall = cb;
856 	return 0;
857 }
858