xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 0dfe3ffe)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <dm.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <miiphy.h>
16 #include <net.h>
17 #include <netdev.h>
18 #include "fec_mxc.h"
19 
20 #include <asm/io.h>
21 #include <linux/errno.h>
22 #include <linux/compiler.h>
23 
24 #include <asm/arch/clock.h>
25 #include <asm/arch/imx-regs.h>
26 #include <asm/mach-imx/sys_proto.h>
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
30 /*
31  * Timeout the transfer after 5 mS. This is usually a bit more, since
32  * the code in the tightloops this timeout is used in adds some overhead.
33  */
34 #define FEC_XFER_TIMEOUT	5000
35 
36 /*
37  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
38  * 64-byte alignment in the DMA RX FEC buffer.
39  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
40  * satisfies the alignment on other SoCs (32-bytes)
41  */
42 #define FEC_DMA_RX_MINALIGN	64
43 
44 #ifndef CONFIG_MII
45 #error "CONFIG_MII has to be defined!"
46 #endif
47 
48 #ifndef CONFIG_FEC_XCV_TYPE
49 #define CONFIG_FEC_XCV_TYPE MII100
50 #endif
51 
52 /*
53  * The i.MX28 operates with packets in big endian. We need to swap them before
54  * sending and after receiving.
55  */
56 #ifdef CONFIG_MX28
57 #define CONFIG_FEC_MXC_SWAP_PACKET
58 #endif
59 
60 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
61 
62 /* Check various alignment issues at compile time */
63 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
64 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
65 #endif
66 
67 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
68 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
69 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
70 #endif
71 
72 #undef DEBUG
73 
74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
75 static void swap_packet(uint32_t *packet, int length)
76 {
77 	int i;
78 
79 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
80 		packet[i] = __swab32(packet[i]);
81 }
82 #endif
83 
84 /* MII-interface related functions */
85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
86 		uint8_t regaddr)
87 {
88 	uint32_t reg;		/* convenient holder for the PHY register */
89 	uint32_t phy;		/* convenient holder for the PHY */
90 	uint32_t start;
91 	int val;
92 
93 	/*
94 	 * reading from any PHY's register is done by properly
95 	 * programming the FEC's MII data register.
96 	 */
97 	writel(FEC_IEVENT_MII, &eth->ievent);
98 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
99 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
100 
101 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
102 			phy | reg, &eth->mii_data);
103 
104 	/* wait for the related interrupt */
105 	start = get_timer(0);
106 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
107 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
108 			printf("Read MDIO failed...\n");
109 			return -1;
110 		}
111 	}
112 
113 	/* clear mii interrupt bit */
114 	writel(FEC_IEVENT_MII, &eth->ievent);
115 
116 	/* it's now safe to read the PHY's register */
117 	val = (unsigned short)readl(&eth->mii_data);
118 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
119 	      regaddr, val);
120 	return val;
121 }
122 
123 static void fec_mii_setspeed(struct ethernet_regs *eth)
124 {
125 	/*
126 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
127 	 * and do not drop the Preamble.
128 	 *
129 	 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
130 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
131 	 * versions are RAZ there, so just ignore the difference and write the
132 	 * register always.
133 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
134 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
135 	 * output.
136 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
137 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
138 	 * holdtime cannot result in a value greater than 3.
139 	 */
140 	u32 pclk = imx_get_fecclk();
141 	u32 speed = DIV_ROUND_UP(pclk, 5000000);
142 	u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
143 #ifdef FEC_QUIRK_ENET_MAC
144 	speed--;
145 #endif
146 	writel(speed << 1 | hold << 8, &eth->mii_speed);
147 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
148 }
149 
150 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
151 		uint8_t regaddr, uint16_t data)
152 {
153 	uint32_t reg;		/* convenient holder for the PHY register */
154 	uint32_t phy;		/* convenient holder for the PHY */
155 	uint32_t start;
156 
157 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
158 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
159 
160 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
161 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
162 
163 	/* wait for the MII interrupt */
164 	start = get_timer(0);
165 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
166 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
167 			printf("Write MDIO failed...\n");
168 			return -1;
169 		}
170 	}
171 
172 	/* clear MII interrupt bit */
173 	writel(FEC_IEVENT_MII, &eth->ievent);
174 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
175 	      regaddr, data);
176 
177 	return 0;
178 }
179 
180 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
181 			int regaddr)
182 {
183 	return fec_mdio_read(bus->priv, phyaddr, regaddr);
184 }
185 
186 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
187 			 int regaddr, u16 data)
188 {
189 	return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
190 }
191 
192 #ifndef CONFIG_PHYLIB
193 static int miiphy_restart_aneg(struct eth_device *dev)
194 {
195 	int ret = 0;
196 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
197 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
198 	struct ethernet_regs *eth = fec->bus->priv;
199 
200 	/*
201 	 * Wake up from sleep if necessary
202 	 * Reset PHY, then delay 300ns
203 	 */
204 #ifdef CONFIG_MX27
205 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
206 #endif
207 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
208 	udelay(1000);
209 
210 	/* Set the auto-negotiation advertisement register bits */
211 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
212 		       LPA_100FULL | LPA_100HALF | LPA_10FULL |
213 		       LPA_10HALF | PHY_ANLPAR_PSB_802_3);
214 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
215 		       BMCR_ANENABLE | BMCR_ANRESTART);
216 
217 	if (fec->mii_postcall)
218 		ret = fec->mii_postcall(fec->phy_id);
219 
220 #endif
221 	return ret;
222 }
223 
224 #ifndef CONFIG_FEC_FIXED_SPEED
225 static int miiphy_wait_aneg(struct eth_device *dev)
226 {
227 	uint32_t start;
228 	int status;
229 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
230 	struct ethernet_regs *eth = fec->bus->priv;
231 
232 	/* Wait for AN completion */
233 	start = get_timer(0);
234 	do {
235 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
236 			printf("%s: Autonegotiation timeout\n", dev->name);
237 			return -1;
238 		}
239 
240 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
241 		if (status < 0) {
242 			printf("%s: Autonegotiation failed. status: %d\n",
243 			       dev->name, status);
244 			return -1;
245 		}
246 	} while (!(status & BMSR_LSTATUS));
247 
248 	return 0;
249 }
250 #endif /* CONFIG_FEC_FIXED_SPEED */
251 #endif
252 
253 static int fec_rx_task_enable(struct fec_priv *fec)
254 {
255 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
256 	return 0;
257 }
258 
259 static int fec_rx_task_disable(struct fec_priv *fec)
260 {
261 	return 0;
262 }
263 
264 static int fec_tx_task_enable(struct fec_priv *fec)
265 {
266 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
267 	return 0;
268 }
269 
270 static int fec_tx_task_disable(struct fec_priv *fec)
271 {
272 	return 0;
273 }
274 
275 /**
276  * Initialize receive task's buffer descriptors
277  * @param[in] fec all we know about the device yet
278  * @param[in] count receive buffer count to be allocated
279  * @param[in] dsize desired size of each receive buffer
280  * @return 0 on success
281  *
282  * Init all RX descriptors to default values.
283  */
284 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
285 {
286 	uint32_t size;
287 	uint8_t *data;
288 	int i;
289 
290 	/*
291 	 * Reload the RX descriptors with default values and wipe
292 	 * the RX buffers.
293 	 */
294 	size = roundup(dsize, ARCH_DMA_MINALIGN);
295 	for (i = 0; i < count; i++) {
296 		data = (uint8_t *)fec->rbd_base[i].data_pointer;
297 		memset(data, 0, dsize);
298 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
299 
300 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
301 		fec->rbd_base[i].data_length = 0;
302 	}
303 
304 	/* Mark the last RBD to close the ring. */
305 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
306 	fec->rbd_index = 0;
307 
308 	flush_dcache_range((unsigned)fec->rbd_base,
309 			   (unsigned)fec->rbd_base + size);
310 }
311 
312 /**
313  * Initialize transmit task's buffer descriptors
314  * @param[in] fec all we know about the device yet
315  *
316  * Transmit buffers are created externally. We only have to init the BDs here.\n
317  * Note: There is a race condition in the hardware. When only one BD is in
318  * use it must be marked with the WRAP bit to use it for every transmitt.
319  * This bit in combination with the READY bit results into double transmit
320  * of each data buffer. It seems the state machine checks READY earlier then
321  * resetting it after the first transfer.
322  * Using two BDs solves this issue.
323  */
324 static void fec_tbd_init(struct fec_priv *fec)
325 {
326 	unsigned addr = (unsigned)fec->tbd_base;
327 	unsigned size = roundup(2 * sizeof(struct fec_bd),
328 				ARCH_DMA_MINALIGN);
329 
330 	memset(fec->tbd_base, 0, size);
331 	fec->tbd_base[0].status = 0;
332 	fec->tbd_base[1].status = FEC_TBD_WRAP;
333 	fec->tbd_index = 0;
334 	flush_dcache_range(addr, addr + size);
335 }
336 
337 /**
338  * Mark the given read buffer descriptor as free
339  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
340  * @param[in] prbd buffer descriptor to mark free again
341  */
342 static void fec_rbd_clean(int last, struct fec_bd *prbd)
343 {
344 	unsigned short flags = FEC_RBD_EMPTY;
345 	if (last)
346 		flags |= FEC_RBD_WRAP;
347 	writew(flags, &prbd->status);
348 	writew(0, &prbd->data_length);
349 }
350 
351 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
352 {
353 	imx_get_mac_from_fuse(dev_id, mac);
354 	return !is_valid_ethaddr(mac);
355 }
356 
357 #ifdef CONFIG_DM_ETH
358 static int fecmxc_set_hwaddr(struct udevice *dev)
359 #else
360 static int fec_set_hwaddr(struct eth_device *dev)
361 #endif
362 {
363 #ifdef CONFIG_DM_ETH
364 	struct fec_priv *fec = dev_get_priv(dev);
365 	struct eth_pdata *pdata = dev_get_platdata(dev);
366 	uchar *mac = pdata->enetaddr;
367 #else
368 	uchar *mac = dev->enetaddr;
369 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
370 #endif
371 
372 	writel(0, &fec->eth->iaddr1);
373 	writel(0, &fec->eth->iaddr2);
374 	writel(0, &fec->eth->gaddr1);
375 	writel(0, &fec->eth->gaddr2);
376 
377 	/* Set physical address */
378 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
379 	       &fec->eth->paddr1);
380 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
381 
382 	return 0;
383 }
384 
385 /* Do initial configuration of the FEC registers */
386 static void fec_reg_setup(struct fec_priv *fec)
387 {
388 	uint32_t rcntrl;
389 
390 	/* Set interrupt mask register */
391 	writel(0x00000000, &fec->eth->imask);
392 
393 	/* Clear FEC-Lite interrupt event register(IEVENT) */
394 	writel(0xffffffff, &fec->eth->ievent);
395 
396 	/* Set FEC-Lite receive control register(R_CNTRL): */
397 
398 	/* Start with frame length = 1518, common for all modes. */
399 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
400 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
401 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
402 	if (fec->xcv_type == RGMII)
403 		rcntrl |= FEC_RCNTRL_RGMII;
404 	else if (fec->xcv_type == RMII)
405 		rcntrl |= FEC_RCNTRL_RMII;
406 
407 	writel(rcntrl, &fec->eth->r_cntrl);
408 }
409 
410 /**
411  * Start the FEC engine
412  * @param[in] dev Our device to handle
413  */
414 #ifdef CONFIG_DM_ETH
415 static int fec_open(struct udevice *dev)
416 #else
417 static int fec_open(struct eth_device *edev)
418 #endif
419 {
420 #ifdef CONFIG_DM_ETH
421 	struct fec_priv *fec = dev_get_priv(dev);
422 #else
423 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
424 #endif
425 	int speed;
426 	uint32_t addr, size;
427 	int i;
428 
429 	debug("fec_open: fec_open(dev)\n");
430 	/* full-duplex, heartbeat disabled */
431 	writel(1 << 2, &fec->eth->x_cntrl);
432 	fec->rbd_index = 0;
433 
434 	/* Invalidate all descriptors */
435 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
436 		fec_rbd_clean(0, &fec->rbd_base[i]);
437 	fec_rbd_clean(1, &fec->rbd_base[i]);
438 
439 	/* Flush the descriptors into RAM */
440 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
441 			ARCH_DMA_MINALIGN);
442 	addr = (uint32_t)fec->rbd_base;
443 	flush_dcache_range(addr, addr + size);
444 
445 #ifdef FEC_QUIRK_ENET_MAC
446 	/* Enable ENET HW endian SWAP */
447 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
448 	       &fec->eth->ecntrl);
449 	/* Enable ENET store and forward mode */
450 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
451 	       &fec->eth->x_wmrk);
452 #endif
453 	/* Enable FEC-Lite controller */
454 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
455 	       &fec->eth->ecntrl);
456 
457 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
458 	udelay(100);
459 
460 	/* setup the MII gasket for RMII mode */
461 	/* disable the gasket */
462 	writew(0, &fec->eth->miigsk_enr);
463 
464 	/* wait for the gasket to be disabled */
465 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
466 		udelay(2);
467 
468 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
469 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
470 
471 	/* re-enable the gasket */
472 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
473 
474 	/* wait until MII gasket is ready */
475 	int max_loops = 10;
476 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
477 		if (--max_loops <= 0) {
478 			printf("WAIT for MII Gasket ready timed out\n");
479 			break;
480 		}
481 	}
482 #endif
483 
484 #ifdef CONFIG_PHYLIB
485 	{
486 		/* Start up the PHY */
487 		int ret = phy_startup(fec->phydev);
488 
489 		if (ret) {
490 			printf("Could not initialize PHY %s\n",
491 			       fec->phydev->dev->name);
492 			return ret;
493 		}
494 		speed = fec->phydev->speed;
495 	}
496 #elif CONFIG_FEC_FIXED_SPEED
497 	speed = CONFIG_FEC_FIXED_SPEED;
498 #else
499 	miiphy_wait_aneg(edev);
500 	speed = miiphy_speed(edev->name, fec->phy_id);
501 	miiphy_duplex(edev->name, fec->phy_id);
502 #endif
503 
504 #ifdef FEC_QUIRK_ENET_MAC
505 	{
506 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
507 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
508 		if (speed == _1000BASET)
509 			ecr |= FEC_ECNTRL_SPEED;
510 		else if (speed != _100BASET)
511 			rcr |= FEC_RCNTRL_RMII_10T;
512 		writel(ecr, &fec->eth->ecntrl);
513 		writel(rcr, &fec->eth->r_cntrl);
514 	}
515 #endif
516 	debug("%s:Speed=%i\n", __func__, speed);
517 
518 	/* Enable SmartDMA receive task */
519 	fec_rx_task_enable(fec);
520 
521 	udelay(100000);
522 	return 0;
523 }
524 
525 #ifdef CONFIG_DM_ETH
526 static int fecmxc_init(struct udevice *dev)
527 #else
528 static int fec_init(struct eth_device *dev, bd_t *bd)
529 #endif
530 {
531 #ifdef CONFIG_DM_ETH
532 	struct fec_priv *fec = dev_get_priv(dev);
533 #else
534 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
535 #endif
536 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
537 	int i;
538 
539 	/* Initialize MAC address */
540 #ifdef CONFIG_DM_ETH
541 	fecmxc_set_hwaddr(dev);
542 #else
543 	fec_set_hwaddr(dev);
544 #endif
545 
546 	/* Setup transmit descriptors, there are two in total. */
547 	fec_tbd_init(fec);
548 
549 	/* Setup receive descriptors. */
550 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
551 
552 	fec_reg_setup(fec);
553 
554 	if (fec->xcv_type != SEVENWIRE)
555 		fec_mii_setspeed(fec->bus->priv);
556 
557 	/* Set Opcode/Pause Duration Register */
558 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
559 	writel(0x2, &fec->eth->x_wmrk);
560 
561 	/* Set multicast address filter */
562 	writel(0x00000000, &fec->eth->gaddr1);
563 	writel(0x00000000, &fec->eth->gaddr2);
564 
565 	/* Do not access reserved register for i.MX6UL */
566 	if (!is_mx6ul() && !is_mx6ull()) {
567 		/* clear MIB RAM */
568 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
569 			writel(0, i);
570 
571 		/* FIFO receive start register */
572 		writel(0x520, &fec->eth->r_fstart);
573 	}
574 
575 	/* size and address of each buffer */
576 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
577 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
578 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
579 
580 #ifndef CONFIG_PHYLIB
581 	if (fec->xcv_type != SEVENWIRE)
582 		miiphy_restart_aneg(dev);
583 #endif
584 	fec_open(dev);
585 	return 0;
586 }
587 
588 /**
589  * Halt the FEC engine
590  * @param[in] dev Our device to handle
591  */
592 #ifdef CONFIG_DM_ETH
593 static void fecmxc_halt(struct udevice *dev)
594 #else
595 static void fec_halt(struct eth_device *dev)
596 #endif
597 {
598 #ifdef CONFIG_DM_ETH
599 	struct fec_priv *fec = dev_get_priv(dev);
600 #else
601 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
602 #endif
603 	int counter = 0xffff;
604 
605 	/* issue graceful stop command to the FEC transmitter if necessary */
606 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
607 	       &fec->eth->x_cntrl);
608 
609 	debug("eth_halt: wait for stop regs\n");
610 	/* wait for graceful stop to register */
611 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
612 		udelay(1);
613 
614 	/* Disable SmartDMA tasks */
615 	fec_tx_task_disable(fec);
616 	fec_rx_task_disable(fec);
617 
618 	/*
619 	 * Disable the Ethernet Controller
620 	 * Note: this will also reset the BD index counter!
621 	 */
622 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
623 	       &fec->eth->ecntrl);
624 	fec->rbd_index = 0;
625 	fec->tbd_index = 0;
626 	debug("eth_halt: done\n");
627 }
628 
629 /**
630  * Transmit one frame
631  * @param[in] dev Our ethernet device to handle
632  * @param[in] packet Pointer to the data to be transmitted
633  * @param[in] length Data count in bytes
634  * @return 0 on success
635  */
636 #ifdef CONFIG_DM_ETH
637 static int fecmxc_send(struct udevice *dev, void *packet, int length)
638 #else
639 static int fec_send(struct eth_device *dev, void *packet, int length)
640 #endif
641 {
642 	unsigned int status;
643 	uint32_t size, end;
644 	uint32_t addr;
645 	int timeout = FEC_XFER_TIMEOUT;
646 	int ret = 0;
647 
648 	/*
649 	 * This routine transmits one frame.  This routine only accepts
650 	 * 6-byte Ethernet addresses.
651 	 */
652 #ifdef CONFIG_DM_ETH
653 	struct fec_priv *fec = dev_get_priv(dev);
654 #else
655 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
656 #endif
657 
658 	/*
659 	 * Check for valid length of data.
660 	 */
661 	if ((length > 1500) || (length <= 0)) {
662 		printf("Payload (%d) too large\n", length);
663 		return -1;
664 	}
665 
666 	/*
667 	 * Setup the transmit buffer. We are always using the first buffer for
668 	 * transmission, the second will be empty and only used to stop the DMA
669 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
670 	 */
671 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
672 	swap_packet((uint32_t *)packet, length);
673 #endif
674 
675 	addr = (uint32_t)packet;
676 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
677 	addr &= ~(ARCH_DMA_MINALIGN - 1);
678 	flush_dcache_range(addr, end);
679 
680 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
681 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
682 
683 	/*
684 	 * update BD's status now
685 	 * This block:
686 	 * - is always the last in a chain (means no chain)
687 	 * - should transmitt the CRC
688 	 * - might be the last BD in the list, so the address counter should
689 	 *   wrap (-> keep the WRAP flag)
690 	 */
691 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
692 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
693 	writew(status, &fec->tbd_base[fec->tbd_index].status);
694 
695 	/*
696 	 * Flush data cache. This code flushes both TX descriptors to RAM.
697 	 * After this code, the descriptors will be safely in RAM and we
698 	 * can start DMA.
699 	 */
700 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
701 	addr = (uint32_t)fec->tbd_base;
702 	flush_dcache_range(addr, addr + size);
703 
704 	/*
705 	 * Below we read the DMA descriptor's last four bytes back from the
706 	 * DRAM. This is important in order to make sure that all WRITE
707 	 * operations on the bus that were triggered by previous cache FLUSH
708 	 * have completed.
709 	 *
710 	 * Otherwise, on MX28, it is possible to observe a corruption of the
711 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
712 	 * for the bus structure of MX28. The scenario is as follows:
713 	 *
714 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
715 	 *    to DRAM due to flush_dcache_range()
716 	 * 2) ARM core writes the FEC registers via AHB_ARB2
717 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
718 	 *
719 	 * Note that 2) does sometimes finish before 1) due to reordering of
720 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
721 	 * DMA descriptor is fully written into DRAM. This results in occasional
722 	 * corruption of the DMA descriptor.
723 	 */
724 	readl(addr + size - 4);
725 
726 	/* Enable SmartDMA transmit task */
727 	fec_tx_task_enable(fec);
728 
729 	/*
730 	 * Wait until frame is sent. On each turn of the wait cycle, we must
731 	 * invalidate data cache to see what's really in RAM. Also, we need
732 	 * barrier here.
733 	 */
734 	while (--timeout) {
735 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
736 			break;
737 	}
738 
739 	if (!timeout) {
740 		ret = -EINVAL;
741 		goto out;
742 	}
743 
744 	/*
745 	 * The TDAR bit is cleared when the descriptors are all out from TX
746 	 * but on mx6solox we noticed that the READY bit is still not cleared
747 	 * right after TDAR.
748 	 * These are two distinct signals, and in IC simulation, we found that
749 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
750 	 * cleared.
751 	 * In mx6solox, we use a later version of FEC IP. It looks like that
752 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
753 	 * version.
754 	 *
755 	 * Fix this by polling the READY bit of BD after the TDAR polling,
756 	 * which covers the mx6solox case and does not harm the other SoCs.
757 	 */
758 	timeout = FEC_XFER_TIMEOUT;
759 	while (--timeout) {
760 		invalidate_dcache_range(addr, addr + size);
761 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
762 		    FEC_TBD_READY))
763 			break;
764 	}
765 
766 	if (!timeout)
767 		ret = -EINVAL;
768 
769 out:
770 	debug("fec_send: status 0x%x index %d ret %i\n",
771 	      readw(&fec->tbd_base[fec->tbd_index].status),
772 	      fec->tbd_index, ret);
773 	/* for next transmission use the other buffer */
774 	if (fec->tbd_index)
775 		fec->tbd_index = 0;
776 	else
777 		fec->tbd_index = 1;
778 
779 	return ret;
780 }
781 
782 /**
783  * Pull one frame from the card
784  * @param[in] dev Our ethernet device to handle
785  * @return Length of packet read
786  */
787 #ifdef CONFIG_DM_ETH
788 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
789 #else
790 static int fec_recv(struct eth_device *dev)
791 #endif
792 {
793 #ifdef CONFIG_DM_ETH
794 	struct fec_priv *fec = dev_get_priv(dev);
795 #else
796 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
797 #endif
798 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
799 	unsigned long ievent;
800 	int frame_length, len = 0;
801 	uint16_t bd_status;
802 	uint32_t addr, size, end;
803 	int i;
804 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
805 
806 	/* Check if any critical events have happened */
807 	ievent = readl(&fec->eth->ievent);
808 	writel(ievent, &fec->eth->ievent);
809 	debug("fec_recv: ievent 0x%lx\n", ievent);
810 	if (ievent & FEC_IEVENT_BABR) {
811 #ifdef CONFIG_DM_ETH
812 		fecmxc_halt(dev);
813 		fecmxc_init(dev);
814 #else
815 		fec_halt(dev);
816 		fec_init(dev, fec->bd);
817 #endif
818 		printf("some error: 0x%08lx\n", ievent);
819 		return 0;
820 	}
821 	if (ievent & FEC_IEVENT_HBERR) {
822 		/* Heartbeat error */
823 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
824 		       &fec->eth->x_cntrl);
825 	}
826 	if (ievent & FEC_IEVENT_GRA) {
827 		/* Graceful stop complete */
828 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
829 #ifdef CONFIG_DM_ETH
830 			fecmxc_halt(dev);
831 #else
832 			fec_halt(dev);
833 #endif
834 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
835 			       &fec->eth->x_cntrl);
836 #ifdef CONFIG_DM_ETH
837 			fecmxc_init(dev);
838 #else
839 			fec_init(dev, fec->bd);
840 #endif
841 		}
842 	}
843 
844 	/*
845 	 * Read the buffer status. Before the status can be read, the data cache
846 	 * must be invalidated, because the data in RAM might have been changed
847 	 * by DMA. The descriptors are properly aligned to cachelines so there's
848 	 * no need to worry they'd overlap.
849 	 *
850 	 * WARNING: By invalidating the descriptor here, we also invalidate
851 	 * the descriptors surrounding this one. Therefore we can NOT change the
852 	 * contents of this descriptor nor the surrounding ones. The problem is
853 	 * that in order to mark the descriptor as processed, we need to change
854 	 * the descriptor. The solution is to mark the whole cache line when all
855 	 * descriptors in the cache line are processed.
856 	 */
857 	addr = (uint32_t)rbd;
858 	addr &= ~(ARCH_DMA_MINALIGN - 1);
859 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
860 	invalidate_dcache_range(addr, addr + size);
861 
862 	bd_status = readw(&rbd->status);
863 	debug("fec_recv: status 0x%x\n", bd_status);
864 
865 	if (!(bd_status & FEC_RBD_EMPTY)) {
866 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
867 		    ((readw(&rbd->data_length) - 4) > 14)) {
868 			/* Get buffer address and size */
869 			addr = readl(&rbd->data_pointer);
870 			frame_length = readw(&rbd->data_length) - 4;
871 			/* Invalidate data cache over the buffer */
872 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
873 			addr &= ~(ARCH_DMA_MINALIGN - 1);
874 			invalidate_dcache_range(addr, end);
875 
876 			/* Fill the buffer and pass it to upper layers */
877 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
878 			swap_packet((uint32_t *)addr, frame_length);
879 #endif
880 			memcpy(buff, (char *)addr, frame_length);
881 			net_process_received_packet(buff, frame_length);
882 			len = frame_length;
883 		} else {
884 			if (bd_status & FEC_RBD_ERR)
885 				printf("error frame: 0x%08x 0x%08x\n",
886 				       addr, bd_status);
887 		}
888 
889 		/*
890 		 * Free the current buffer, restart the engine and move forward
891 		 * to the next buffer. Here we check if the whole cacheline of
892 		 * descriptors was already processed and if so, we mark it free
893 		 * as whole.
894 		 */
895 		size = RXDESC_PER_CACHELINE - 1;
896 		if ((fec->rbd_index & size) == size) {
897 			i = fec->rbd_index - size;
898 			addr = (uint32_t)&fec->rbd_base[i];
899 			for (; i <= fec->rbd_index ; i++) {
900 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
901 					      &fec->rbd_base[i]);
902 			}
903 			flush_dcache_range(addr,
904 					   addr + ARCH_DMA_MINALIGN);
905 		}
906 
907 		fec_rx_task_enable(fec);
908 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
909 	}
910 	debug("fec_recv: stop\n");
911 
912 	return len;
913 }
914 
915 static void fec_set_dev_name(char *dest, int dev_id)
916 {
917 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
918 }
919 
920 static int fec_alloc_descs(struct fec_priv *fec)
921 {
922 	unsigned int size;
923 	int i;
924 	uint8_t *data;
925 
926 	/* Allocate TX descriptors. */
927 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
928 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
929 	if (!fec->tbd_base)
930 		goto err_tx;
931 
932 	/* Allocate RX descriptors. */
933 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
934 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
935 	if (!fec->rbd_base)
936 		goto err_rx;
937 
938 	memset(fec->rbd_base, 0, size);
939 
940 	/* Allocate RX buffers. */
941 
942 	/* Maximum RX buffer size. */
943 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
944 	for (i = 0; i < FEC_RBD_NUM; i++) {
945 		data = memalign(FEC_DMA_RX_MINALIGN, size);
946 		if (!data) {
947 			printf("%s: error allocating rxbuf %d\n", __func__, i);
948 			goto err_ring;
949 		}
950 
951 		memset(data, 0, size);
952 
953 		fec->rbd_base[i].data_pointer = (uint32_t)data;
954 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
955 		fec->rbd_base[i].data_length = 0;
956 		/* Flush the buffer to memory. */
957 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
958 	}
959 
960 	/* Mark the last RBD to close the ring. */
961 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
962 
963 	fec->rbd_index = 0;
964 	fec->tbd_index = 0;
965 
966 	return 0;
967 
968 err_ring:
969 	for (; i >= 0; i--)
970 		free((void *)fec->rbd_base[i].data_pointer);
971 	free(fec->rbd_base);
972 err_rx:
973 	free(fec->tbd_base);
974 err_tx:
975 	return -ENOMEM;
976 }
977 
978 static void fec_free_descs(struct fec_priv *fec)
979 {
980 	int i;
981 
982 	for (i = 0; i < FEC_RBD_NUM; i++)
983 		free((void *)fec->rbd_base[i].data_pointer);
984 	free(fec->rbd_base);
985 	free(fec->tbd_base);
986 }
987 
988 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
989 {
990 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
991 	struct mii_dev *bus;
992 	int ret;
993 
994 	bus = mdio_alloc();
995 	if (!bus) {
996 		printf("mdio_alloc failed\n");
997 		return NULL;
998 	}
999 	bus->read = fec_phy_read;
1000 	bus->write = fec_phy_write;
1001 	bus->priv = eth;
1002 	fec_set_dev_name(bus->name, dev_id);
1003 
1004 	ret = mdio_register(bus);
1005 	if (ret) {
1006 		printf("mdio_register failed\n");
1007 		free(bus);
1008 		return NULL;
1009 	}
1010 	fec_mii_setspeed(eth);
1011 	return bus;
1012 }
1013 
1014 #ifndef CONFIG_DM_ETH
1015 #ifdef CONFIG_PHYLIB
1016 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1017 		struct mii_dev *bus, struct phy_device *phydev)
1018 #else
1019 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1020 		struct mii_dev *bus, int phy_id)
1021 #endif
1022 {
1023 	struct eth_device *edev;
1024 	struct fec_priv *fec;
1025 	unsigned char ethaddr[6];
1026 	char mac[16];
1027 	uint32_t start;
1028 	int ret = 0;
1029 
1030 	/* create and fill edev struct */
1031 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1032 	if (!edev) {
1033 		puts("fec_mxc: not enough malloc memory for eth_device\n");
1034 		ret = -ENOMEM;
1035 		goto err1;
1036 	}
1037 
1038 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1039 	if (!fec) {
1040 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
1041 		ret = -ENOMEM;
1042 		goto err2;
1043 	}
1044 
1045 	memset(edev, 0, sizeof(*edev));
1046 	memset(fec, 0, sizeof(*fec));
1047 
1048 	ret = fec_alloc_descs(fec);
1049 	if (ret)
1050 		goto err3;
1051 
1052 	edev->priv = fec;
1053 	edev->init = fec_init;
1054 	edev->send = fec_send;
1055 	edev->recv = fec_recv;
1056 	edev->halt = fec_halt;
1057 	edev->write_hwaddr = fec_set_hwaddr;
1058 
1059 	fec->eth = (struct ethernet_regs *)base_addr;
1060 	fec->bd = bd;
1061 
1062 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1063 
1064 	/* Reset chip. */
1065 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1066 	start = get_timer(0);
1067 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1068 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1069 			printf("FEC MXC: Timeout resetting chip\n");
1070 			goto err4;
1071 		}
1072 		udelay(10);
1073 	}
1074 
1075 	fec_reg_setup(fec);
1076 	fec_set_dev_name(edev->name, dev_id);
1077 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1078 	fec->bus = bus;
1079 	fec_mii_setspeed(bus->priv);
1080 #ifdef CONFIG_PHYLIB
1081 	fec->phydev = phydev;
1082 	phy_connect_dev(phydev, edev);
1083 	/* Configure phy */
1084 	phy_config(phydev);
1085 #else
1086 	fec->phy_id = phy_id;
1087 #endif
1088 	eth_register(edev);
1089 	/* only support one eth device, the index number pointed by dev_id */
1090 	edev->index = fec->dev_id;
1091 
1092 	if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1093 		debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1094 		memcpy(edev->enetaddr, ethaddr, 6);
1095 		if (fec->dev_id)
1096 			sprintf(mac, "eth%daddr", fec->dev_id);
1097 		else
1098 			strcpy(mac, "ethaddr");
1099 		if (!getenv(mac))
1100 			eth_setenv_enetaddr(mac, ethaddr);
1101 	}
1102 	return ret;
1103 err4:
1104 	fec_free_descs(fec);
1105 err3:
1106 	free(fec);
1107 err2:
1108 	free(edev);
1109 err1:
1110 	return ret;
1111 }
1112 
1113 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1114 {
1115 	uint32_t base_mii;
1116 	struct mii_dev *bus = NULL;
1117 #ifdef CONFIG_PHYLIB
1118 	struct phy_device *phydev = NULL;
1119 #endif
1120 	int ret;
1121 
1122 #ifdef CONFIG_MX28
1123 	/*
1124 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1125 	 * Only the first one can access the MDIO bus.
1126 	 */
1127 	base_mii = MXS_ENET0_BASE;
1128 #else
1129 	base_mii = addr;
1130 #endif
1131 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1132 	bus = fec_get_miibus(base_mii, dev_id);
1133 	if (!bus)
1134 		return -ENOMEM;
1135 #ifdef CONFIG_PHYLIB
1136 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1137 	if (!phydev) {
1138 		mdio_unregister(bus);
1139 		free(bus);
1140 		return -ENOMEM;
1141 	}
1142 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1143 #else
1144 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1145 #endif
1146 	if (ret) {
1147 #ifdef CONFIG_PHYLIB
1148 		free(phydev);
1149 #endif
1150 		mdio_unregister(bus);
1151 		free(bus);
1152 	}
1153 	return ret;
1154 }
1155 
1156 #ifdef CONFIG_FEC_MXC_PHYADDR
1157 int fecmxc_initialize(bd_t *bd)
1158 {
1159 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1160 			IMX_FEC_BASE);
1161 }
1162 #endif
1163 
1164 #ifndef CONFIG_PHYLIB
1165 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1166 {
1167 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1168 	fec->mii_postcall = cb;
1169 	return 0;
1170 }
1171 #endif
1172 
1173 #else
1174 
1175 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1176 {
1177 	struct fec_priv *priv = dev_get_priv(dev);
1178 	struct eth_pdata *pdata = dev_get_platdata(dev);
1179 
1180 	return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1181 }
1182 
1183 static const struct eth_ops fecmxc_ops = {
1184 	.start			= fecmxc_init,
1185 	.send			= fecmxc_send,
1186 	.recv			= fecmxc_recv,
1187 	.stop			= fecmxc_halt,
1188 	.write_hwaddr		= fecmxc_set_hwaddr,
1189 	.read_rom_hwaddr	= fecmxc_read_rom_hwaddr,
1190 };
1191 
1192 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1193 {
1194 	struct phy_device *phydev;
1195 	int mask = 0xffffffff;
1196 
1197 #ifdef CONFIG_PHYLIB
1198 	mask = 1 << CONFIG_FEC_MXC_PHYADDR;
1199 #endif
1200 
1201 	phydev = phy_find_by_mask(priv->bus, mask, priv->interface);
1202 	if (!phydev)
1203 		return -ENODEV;
1204 
1205 	phy_connect_dev(phydev, dev);
1206 
1207 	priv->phydev = phydev;
1208 	phy_config(phydev);
1209 
1210 	return 0;
1211 }
1212 
1213 static int fecmxc_probe(struct udevice *dev)
1214 {
1215 	struct eth_pdata *pdata = dev_get_platdata(dev);
1216 	struct fec_priv *priv = dev_get_priv(dev);
1217 	struct mii_dev *bus = NULL;
1218 	int dev_id = -1;
1219 	uint32_t start;
1220 	int ret;
1221 
1222 	ret = fec_alloc_descs(priv);
1223 	if (ret)
1224 		return ret;
1225 
1226 	/* Reset chip. */
1227 	writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1228 	       &priv->eth->ecntrl);
1229 	start = get_timer(0);
1230 	while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1231 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1232 			printf("FEC MXC: Timeout reseting chip\n");
1233 			goto err_timeout;
1234 		}
1235 		udelay(10);
1236 	}
1237 
1238 	fec_reg_setup(priv);
1239 	priv->dev_id = (dev_id == -1) ? 0 : dev_id;
1240 
1241 	bus = fec_get_miibus(dev, dev_id);
1242 	if (!bus) {
1243 		ret = -ENOMEM;
1244 		goto err_mii;
1245 	}
1246 
1247 	priv->bus = bus;
1248 	priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1249 	priv->interface = pdata->phy_interface;
1250 	ret = fec_phy_init(priv, dev);
1251 	if (ret)
1252 		goto err_phy;
1253 
1254 	return 0;
1255 
1256 err_timeout:
1257 	free(priv->phydev);
1258 err_phy:
1259 	mdio_unregister(bus);
1260 	free(bus);
1261 err_mii:
1262 	fec_free_descs(priv);
1263 	return ret;
1264 }
1265 
1266 static int fecmxc_remove(struct udevice *dev)
1267 {
1268 	struct fec_priv *priv = dev_get_priv(dev);
1269 
1270 	free(priv->phydev);
1271 	fec_free_descs(priv);
1272 	mdio_unregister(priv->bus);
1273 	mdio_free(priv->bus);
1274 
1275 	return 0;
1276 }
1277 
1278 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1279 {
1280 	struct eth_pdata *pdata = dev_get_platdata(dev);
1281 	struct fec_priv *priv = dev_get_priv(dev);
1282 	const char *phy_mode;
1283 
1284 	pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
1285 	priv->eth = (struct ethernet_regs *)pdata->iobase;
1286 
1287 	pdata->phy_interface = -1;
1288 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1289 			       NULL);
1290 	if (phy_mode)
1291 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1292 	if (pdata->phy_interface == -1) {
1293 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1294 		return -EINVAL;
1295 	}
1296 
1297 	/* TODO
1298 	 * Need to get the reset-gpio and related properties from DT
1299 	 * and implemet the enet reset code on .probe call
1300 	 */
1301 
1302 	return 0;
1303 }
1304 
1305 static const struct udevice_id fecmxc_ids[] = {
1306 	{ .compatible = "fsl,imx6q-fec" },
1307 	{ }
1308 };
1309 
1310 U_BOOT_DRIVER(fecmxc_gem) = {
1311 	.name	= "fecmxc",
1312 	.id	= UCLASS_ETH,
1313 	.of_match = fecmxc_ids,
1314 	.ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1315 	.probe	= fecmxc_probe,
1316 	.remove	= fecmxc_remove,
1317 	.ops	= &fecmxc_ops,
1318 	.priv_auto_alloc_size = sizeof(struct fec_priv),
1319 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1320 };
1321 #endif
1322