1 /* 2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> 3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> 4 * (C) Copyright 2008 Armadeus Systems nc 5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> 6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #include <common.h> 12 #include <malloc.h> 13 #include <net.h> 14 #include <netdev.h> 15 #include <miiphy.h> 16 #include "fec_mxc.h" 17 18 #include <asm/arch/clock.h> 19 #include <asm/arch/imx-regs.h> 20 #include <asm/io.h> 21 #include <asm/errno.h> 22 #include <linux/compiler.h> 23 24 DECLARE_GLOBAL_DATA_PTR; 25 26 /* 27 * Timeout the transfer after 5 mS. This is usually a bit more, since 28 * the code in the tightloops this timeout is used in adds some overhead. 29 */ 30 #define FEC_XFER_TIMEOUT 5000 31 32 /* 33 * The standard 32-byte DMA alignment does not work on mx6solox, which requires 34 * 64-byte alignment in the DMA RX FEC buffer. 35 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also 36 * satisfies the alignment on other SoCs (32-bytes) 37 */ 38 #define FEC_DMA_RX_MINALIGN 64 39 40 #ifndef CONFIG_MII 41 #error "CONFIG_MII has to be defined!" 42 #endif 43 44 #ifndef CONFIG_FEC_XCV_TYPE 45 #define CONFIG_FEC_XCV_TYPE MII100 46 #endif 47 48 /* 49 * The i.MX28 operates with packets in big endian. We need to swap them before 50 * sending and after receiving. 51 */ 52 #ifdef CONFIG_MX28 53 #define CONFIG_FEC_MXC_SWAP_PACKET 54 #endif 55 56 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) 57 58 /* Check various alignment issues at compile time */ 59 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) 60 #error "ARCH_DMA_MINALIGN must be multiple of 16!" 61 #endif 62 63 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ 64 (PKTALIGN % ARCH_DMA_MINALIGN != 0)) 65 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" 66 #endif 67 68 #undef DEBUG 69 70 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 71 static void swap_packet(uint32_t *packet, int length) 72 { 73 int i; 74 75 for (i = 0; i < DIV_ROUND_UP(length, 4); i++) 76 packet[i] = __swab32(packet[i]); 77 } 78 #endif 79 80 /* 81 * MII-interface related functions 82 */ 83 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr, 84 uint8_t regAddr) 85 { 86 uint32_t reg; /* convenient holder for the PHY register */ 87 uint32_t phy; /* convenient holder for the PHY */ 88 uint32_t start; 89 int val; 90 91 /* 92 * reading from any PHY's register is done by properly 93 * programming the FEC's MII data register. 94 */ 95 writel(FEC_IEVENT_MII, ð->ievent); 96 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 97 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 98 99 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | 100 phy | reg, ð->mii_data); 101 102 /* 103 * wait for the related interrupt 104 */ 105 start = get_timer(0); 106 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 107 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 108 printf("Read MDIO failed...\n"); 109 return -1; 110 } 111 } 112 113 /* 114 * clear mii interrupt bit 115 */ 116 writel(FEC_IEVENT_MII, ð->ievent); 117 118 /* 119 * it's now safe to read the PHY's register 120 */ 121 val = (unsigned short)readl(ð->mii_data); 122 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 123 regAddr, val); 124 return val; 125 } 126 127 static void fec_mii_setspeed(struct ethernet_regs *eth) 128 { 129 /* 130 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock 131 * and do not drop the Preamble. 132 */ 133 register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000); 134 #ifdef FEC_QUIRK_ENET_MAC 135 speed--; 136 #endif 137 speed <<= 1; 138 writel(speed, ð->mii_speed); 139 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); 140 } 141 142 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr, 143 uint8_t regAddr, uint16_t data) 144 { 145 uint32_t reg; /* convenient holder for the PHY register */ 146 uint32_t phy; /* convenient holder for the PHY */ 147 uint32_t start; 148 149 reg = regAddr << FEC_MII_DATA_RA_SHIFT; 150 phy = phyAddr << FEC_MII_DATA_PA_SHIFT; 151 152 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | 153 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); 154 155 /* 156 * wait for the MII interrupt 157 */ 158 start = get_timer(0); 159 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 160 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 161 printf("Write MDIO failed...\n"); 162 return -1; 163 } 164 } 165 166 /* 167 * clear MII interrupt bit 168 */ 169 writel(FEC_IEVENT_MII, ð->ievent); 170 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, 171 regAddr, data); 172 173 return 0; 174 } 175 176 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, 177 int regAddr) 178 { 179 return fec_mdio_read(bus->priv, phyAddr, regAddr); 180 } 181 182 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, 183 int regAddr, u16 data) 184 { 185 return fec_mdio_write(bus->priv, phyAddr, regAddr, data); 186 } 187 188 #ifndef CONFIG_PHYLIB 189 static int miiphy_restart_aneg(struct eth_device *dev) 190 { 191 int ret = 0; 192 #if !defined(CONFIG_FEC_MXC_NO_ANEG) 193 struct fec_priv *fec = (struct fec_priv *)dev->priv; 194 struct ethernet_regs *eth = fec->bus->priv; 195 196 /* 197 * Wake up from sleep if necessary 198 * Reset PHY, then delay 300ns 199 */ 200 #ifdef CONFIG_MX27 201 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); 202 #endif 203 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); 204 udelay(1000); 205 206 /* 207 * Set the auto-negotiation advertisement register bits 208 */ 209 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, 210 LPA_100FULL | LPA_100HALF | LPA_10FULL | 211 LPA_10HALF | PHY_ANLPAR_PSB_802_3); 212 fec_mdio_write(eth, fec->phy_id, MII_BMCR, 213 BMCR_ANENABLE | BMCR_ANRESTART); 214 215 if (fec->mii_postcall) 216 ret = fec->mii_postcall(fec->phy_id); 217 218 #endif 219 return ret; 220 } 221 222 static int miiphy_wait_aneg(struct eth_device *dev) 223 { 224 uint32_t start; 225 int status; 226 struct fec_priv *fec = (struct fec_priv *)dev->priv; 227 struct ethernet_regs *eth = fec->bus->priv; 228 229 /* 230 * Wait for AN completion 231 */ 232 start = get_timer(0); 233 do { 234 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 235 printf("%s: Autonegotiation timeout\n", dev->name); 236 return -1; 237 } 238 239 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); 240 if (status < 0) { 241 printf("%s: Autonegotiation failed. status: %d\n", 242 dev->name, status); 243 return -1; 244 } 245 } while (!(status & BMSR_LSTATUS)); 246 247 return 0; 248 } 249 #endif 250 251 static int fec_rx_task_enable(struct fec_priv *fec) 252 { 253 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); 254 return 0; 255 } 256 257 static int fec_rx_task_disable(struct fec_priv *fec) 258 { 259 return 0; 260 } 261 262 static int fec_tx_task_enable(struct fec_priv *fec) 263 { 264 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); 265 return 0; 266 } 267 268 static int fec_tx_task_disable(struct fec_priv *fec) 269 { 270 return 0; 271 } 272 273 /** 274 * Initialize receive task's buffer descriptors 275 * @param[in] fec all we know about the device yet 276 * @param[in] count receive buffer count to be allocated 277 * @param[in] dsize desired size of each receive buffer 278 * @return 0 on success 279 * 280 * Init all RX descriptors to default values. 281 */ 282 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) 283 { 284 uint32_t size; 285 uint8_t *data; 286 int i; 287 288 /* 289 * Reload the RX descriptors with default values and wipe 290 * the RX buffers. 291 */ 292 size = roundup(dsize, ARCH_DMA_MINALIGN); 293 for (i = 0; i < count; i++) { 294 data = (uint8_t *)fec->rbd_base[i].data_pointer; 295 memset(data, 0, dsize); 296 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 297 298 fec->rbd_base[i].status = FEC_RBD_EMPTY; 299 fec->rbd_base[i].data_length = 0; 300 } 301 302 /* Mark the last RBD to close the ring. */ 303 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 304 fec->rbd_index = 0; 305 306 flush_dcache_range((unsigned)fec->rbd_base, 307 (unsigned)fec->rbd_base + size); 308 } 309 310 /** 311 * Initialize transmit task's buffer descriptors 312 * @param[in] fec all we know about the device yet 313 * 314 * Transmit buffers are created externally. We only have to init the BDs here.\n 315 * Note: There is a race condition in the hardware. When only one BD is in 316 * use it must be marked with the WRAP bit to use it for every transmitt. 317 * This bit in combination with the READY bit results into double transmit 318 * of each data buffer. It seems the state machine checks READY earlier then 319 * resetting it after the first transfer. 320 * Using two BDs solves this issue. 321 */ 322 static void fec_tbd_init(struct fec_priv *fec) 323 { 324 unsigned addr = (unsigned)fec->tbd_base; 325 unsigned size = roundup(2 * sizeof(struct fec_bd), 326 ARCH_DMA_MINALIGN); 327 328 memset(fec->tbd_base, 0, size); 329 fec->tbd_base[0].status = 0; 330 fec->tbd_base[1].status = FEC_TBD_WRAP; 331 fec->tbd_index = 0; 332 flush_dcache_range(addr, addr + size); 333 } 334 335 /** 336 * Mark the given read buffer descriptor as free 337 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 338 * @param[in] pRbd buffer descriptor to mark free again 339 */ 340 static void fec_rbd_clean(int last, struct fec_bd *pRbd) 341 { 342 unsigned short flags = FEC_RBD_EMPTY; 343 if (last) 344 flags |= FEC_RBD_WRAP; 345 writew(flags, &pRbd->status); 346 writew(0, &pRbd->data_length); 347 } 348 349 static int fec_get_hwaddr(struct eth_device *dev, int dev_id, 350 unsigned char *mac) 351 { 352 imx_get_mac_from_fuse(dev_id, mac); 353 return !is_valid_ethaddr(mac); 354 } 355 356 static int fec_set_hwaddr(struct eth_device *dev) 357 { 358 uchar *mac = dev->enetaddr; 359 struct fec_priv *fec = (struct fec_priv *)dev->priv; 360 361 writel(0, &fec->eth->iaddr1); 362 writel(0, &fec->eth->iaddr2); 363 writel(0, &fec->eth->gaddr1); 364 writel(0, &fec->eth->gaddr2); 365 366 /* 367 * Set physical address 368 */ 369 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], 370 &fec->eth->paddr1); 371 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); 372 373 return 0; 374 } 375 376 /* 377 * Do initial configuration of the FEC registers 378 */ 379 static void fec_reg_setup(struct fec_priv *fec) 380 { 381 uint32_t rcntrl; 382 383 /* 384 * Set interrupt mask register 385 */ 386 writel(0x00000000, &fec->eth->imask); 387 388 /* 389 * Clear FEC-Lite interrupt event register(IEVENT) 390 */ 391 writel(0xffffffff, &fec->eth->ievent); 392 393 394 /* 395 * Set FEC-Lite receive control register(R_CNTRL): 396 */ 397 398 /* Start with frame length = 1518, common for all modes. */ 399 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; 400 if (fec->xcv_type != SEVENWIRE) /* xMII modes */ 401 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; 402 if (fec->xcv_type == RGMII) 403 rcntrl |= FEC_RCNTRL_RGMII; 404 else if (fec->xcv_type == RMII) 405 rcntrl |= FEC_RCNTRL_RMII; 406 407 writel(rcntrl, &fec->eth->r_cntrl); 408 } 409 410 /** 411 * Start the FEC engine 412 * @param[in] dev Our device to handle 413 */ 414 static int fec_open(struct eth_device *edev) 415 { 416 struct fec_priv *fec = (struct fec_priv *)edev->priv; 417 int speed; 418 uint32_t addr, size; 419 int i; 420 421 debug("fec_open: fec_open(dev)\n"); 422 /* full-duplex, heartbeat disabled */ 423 writel(1 << 2, &fec->eth->x_cntrl); 424 fec->rbd_index = 0; 425 426 /* Invalidate all descriptors */ 427 for (i = 0; i < FEC_RBD_NUM - 1; i++) 428 fec_rbd_clean(0, &fec->rbd_base[i]); 429 fec_rbd_clean(1, &fec->rbd_base[i]); 430 431 /* Flush the descriptors into RAM */ 432 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), 433 ARCH_DMA_MINALIGN); 434 addr = (uint32_t)fec->rbd_base; 435 flush_dcache_range(addr, addr + size); 436 437 #ifdef FEC_QUIRK_ENET_MAC 438 /* Enable ENET HW endian SWAP */ 439 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, 440 &fec->eth->ecntrl); 441 /* Enable ENET store and forward mode */ 442 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, 443 &fec->eth->x_wmrk); 444 #endif 445 /* 446 * Enable FEC-Lite controller 447 */ 448 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, 449 &fec->eth->ecntrl); 450 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) 451 udelay(100); 452 /* 453 * setup the MII gasket for RMII mode 454 */ 455 456 /* disable the gasket */ 457 writew(0, &fec->eth->miigsk_enr); 458 459 /* wait for the gasket to be disabled */ 460 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) 461 udelay(2); 462 463 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ 464 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); 465 466 /* re-enable the gasket */ 467 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); 468 469 /* wait until MII gasket is ready */ 470 int max_loops = 10; 471 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { 472 if (--max_loops <= 0) { 473 printf("WAIT for MII Gasket ready timed out\n"); 474 break; 475 } 476 } 477 #endif 478 479 #ifdef CONFIG_PHYLIB 480 { 481 /* Start up the PHY */ 482 int ret = phy_startup(fec->phydev); 483 484 if (ret) { 485 printf("Could not initialize PHY %s\n", 486 fec->phydev->dev->name); 487 return ret; 488 } 489 speed = fec->phydev->speed; 490 } 491 #else 492 miiphy_wait_aneg(edev); 493 speed = miiphy_speed(edev->name, fec->phy_id); 494 miiphy_duplex(edev->name, fec->phy_id); 495 #endif 496 497 #ifdef FEC_QUIRK_ENET_MAC 498 { 499 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; 500 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; 501 if (speed == _1000BASET) 502 ecr |= FEC_ECNTRL_SPEED; 503 else if (speed != _100BASET) 504 rcr |= FEC_RCNTRL_RMII_10T; 505 writel(ecr, &fec->eth->ecntrl); 506 writel(rcr, &fec->eth->r_cntrl); 507 } 508 #endif 509 debug("%s:Speed=%i\n", __func__, speed); 510 511 /* 512 * Enable SmartDMA receive task 513 */ 514 fec_rx_task_enable(fec); 515 516 udelay(100000); 517 return 0; 518 } 519 520 static int fec_init(struct eth_device *dev, bd_t* bd) 521 { 522 struct fec_priv *fec = (struct fec_priv *)dev->priv; 523 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; 524 int i; 525 526 /* Initialize MAC address */ 527 fec_set_hwaddr(dev); 528 529 /* 530 * Setup transmit descriptors, there are two in total. 531 */ 532 fec_tbd_init(fec); 533 534 /* Setup receive descriptors. */ 535 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); 536 537 fec_reg_setup(fec); 538 539 if (fec->xcv_type != SEVENWIRE) 540 fec_mii_setspeed(fec->bus->priv); 541 542 /* 543 * Set Opcode/Pause Duration Register 544 */ 545 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ 546 writel(0x2, &fec->eth->x_wmrk); 547 /* 548 * Set multicast address filter 549 */ 550 writel(0x00000000, &fec->eth->gaddr1); 551 writel(0x00000000, &fec->eth->gaddr2); 552 553 554 /* clear MIB RAM */ 555 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) 556 writel(0, i); 557 558 /* FIFO receive start register */ 559 writel(0x520, &fec->eth->r_fstart); 560 561 /* size and address of each buffer */ 562 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); 563 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); 564 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); 565 566 #ifndef CONFIG_PHYLIB 567 if (fec->xcv_type != SEVENWIRE) 568 miiphy_restart_aneg(dev); 569 #endif 570 fec_open(dev); 571 return 0; 572 } 573 574 /** 575 * Halt the FEC engine 576 * @param[in] dev Our device to handle 577 */ 578 static void fec_halt(struct eth_device *dev) 579 { 580 struct fec_priv *fec = (struct fec_priv *)dev->priv; 581 int counter = 0xffff; 582 583 /* 584 * issue graceful stop command to the FEC transmitter if necessary 585 */ 586 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), 587 &fec->eth->x_cntrl); 588 589 debug("eth_halt: wait for stop regs\n"); 590 /* 591 * wait for graceful stop to register 592 */ 593 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) 594 udelay(1); 595 596 /* 597 * Disable SmartDMA tasks 598 */ 599 fec_tx_task_disable(fec); 600 fec_rx_task_disable(fec); 601 602 /* 603 * Disable the Ethernet Controller 604 * Note: this will also reset the BD index counter! 605 */ 606 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, 607 &fec->eth->ecntrl); 608 fec->rbd_index = 0; 609 fec->tbd_index = 0; 610 debug("eth_halt: done\n"); 611 } 612 613 /** 614 * Transmit one frame 615 * @param[in] dev Our ethernet device to handle 616 * @param[in] packet Pointer to the data to be transmitted 617 * @param[in] length Data count in bytes 618 * @return 0 on success 619 */ 620 static int fec_send(struct eth_device *dev, void *packet, int length) 621 { 622 unsigned int status; 623 uint32_t size, end; 624 uint32_t addr; 625 int timeout = FEC_XFER_TIMEOUT; 626 int ret = 0; 627 628 /* 629 * This routine transmits one frame. This routine only accepts 630 * 6-byte Ethernet addresses. 631 */ 632 struct fec_priv *fec = (struct fec_priv *)dev->priv; 633 634 /* 635 * Check for valid length of data. 636 */ 637 if ((length > 1500) || (length <= 0)) { 638 printf("Payload (%d) too large\n", length); 639 return -1; 640 } 641 642 /* 643 * Setup the transmit buffer. We are always using the first buffer for 644 * transmission, the second will be empty and only used to stop the DMA 645 * engine. We also flush the packet to RAM here to avoid cache trouble. 646 */ 647 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 648 swap_packet((uint32_t *)packet, length); 649 #endif 650 651 addr = (uint32_t)packet; 652 end = roundup(addr + length, ARCH_DMA_MINALIGN); 653 addr &= ~(ARCH_DMA_MINALIGN - 1); 654 flush_dcache_range(addr, end); 655 656 writew(length, &fec->tbd_base[fec->tbd_index].data_length); 657 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); 658 659 /* 660 * update BD's status now 661 * This block: 662 * - is always the last in a chain (means no chain) 663 * - should transmitt the CRC 664 * - might be the last BD in the list, so the address counter should 665 * wrap (-> keep the WRAP flag) 666 */ 667 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; 668 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; 669 writew(status, &fec->tbd_base[fec->tbd_index].status); 670 671 /* 672 * Flush data cache. This code flushes both TX descriptors to RAM. 673 * After this code, the descriptors will be safely in RAM and we 674 * can start DMA. 675 */ 676 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 677 addr = (uint32_t)fec->tbd_base; 678 flush_dcache_range(addr, addr + size); 679 680 /* 681 * Below we read the DMA descriptor's last four bytes back from the 682 * DRAM. This is important in order to make sure that all WRITE 683 * operations on the bus that were triggered by previous cache FLUSH 684 * have completed. 685 * 686 * Otherwise, on MX28, it is possible to observe a corruption of the 687 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM 688 * for the bus structure of MX28. The scenario is as follows: 689 * 690 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going 691 * to DRAM due to flush_dcache_range() 692 * 2) ARM core writes the FEC registers via AHB_ARB2 693 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 694 * 695 * Note that 2) does sometimes finish before 1) due to reordering of 696 * WRITE accesses on the AHB bus, therefore triggering 3) before the 697 * DMA descriptor is fully written into DRAM. This results in occasional 698 * corruption of the DMA descriptor. 699 */ 700 readl(addr + size - 4); 701 702 /* 703 * Enable SmartDMA transmit task 704 */ 705 fec_tx_task_enable(fec); 706 707 /* 708 * Wait until frame is sent. On each turn of the wait cycle, we must 709 * invalidate data cache to see what's really in RAM. Also, we need 710 * barrier here. 711 */ 712 while (--timeout) { 713 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) 714 break; 715 } 716 717 if (!timeout) { 718 ret = -EINVAL; 719 goto out; 720 } 721 722 /* 723 * The TDAR bit is cleared when the descriptors are all out from TX 724 * but on mx6solox we noticed that the READY bit is still not cleared 725 * right after TDAR. 726 * These are two distinct signals, and in IC simulation, we found that 727 * TDAR always gets cleared prior than the READY bit of last BD becomes 728 * cleared. 729 * In mx6solox, we use a later version of FEC IP. It looks like that 730 * this intrinsic behaviour of TDAR bit has changed in this newer FEC 731 * version. 732 * 733 * Fix this by polling the READY bit of BD after the TDAR polling, 734 * which covers the mx6solox case and does not harm the other SoCs. 735 */ 736 timeout = FEC_XFER_TIMEOUT; 737 while (--timeout) { 738 invalidate_dcache_range(addr, addr + size); 739 if (!(readw(&fec->tbd_base[fec->tbd_index].status) & 740 FEC_TBD_READY)) 741 break; 742 } 743 744 if (!timeout) 745 ret = -EINVAL; 746 747 out: 748 debug("fec_send: status 0x%x index %d ret %i\n", 749 readw(&fec->tbd_base[fec->tbd_index].status), 750 fec->tbd_index, ret); 751 /* for next transmission use the other buffer */ 752 if (fec->tbd_index) 753 fec->tbd_index = 0; 754 else 755 fec->tbd_index = 1; 756 757 return ret; 758 } 759 760 /** 761 * Pull one frame from the card 762 * @param[in] dev Our ethernet device to handle 763 * @return Length of packet read 764 */ 765 static int fec_recv(struct eth_device *dev) 766 { 767 struct fec_priv *fec = (struct fec_priv *)dev->priv; 768 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; 769 unsigned long ievent; 770 int frame_length, len = 0; 771 uint16_t bd_status; 772 uint32_t addr, size, end; 773 int i; 774 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); 775 776 /* 777 * Check if any critical events have happened 778 */ 779 ievent = readl(&fec->eth->ievent); 780 writel(ievent, &fec->eth->ievent); 781 debug("fec_recv: ievent 0x%lx\n", ievent); 782 if (ievent & FEC_IEVENT_BABR) { 783 fec_halt(dev); 784 fec_init(dev, fec->bd); 785 printf("some error: 0x%08lx\n", ievent); 786 return 0; 787 } 788 if (ievent & FEC_IEVENT_HBERR) { 789 /* Heartbeat error */ 790 writel(0x00000001 | readl(&fec->eth->x_cntrl), 791 &fec->eth->x_cntrl); 792 } 793 if (ievent & FEC_IEVENT_GRA) { 794 /* Graceful stop complete */ 795 if (readl(&fec->eth->x_cntrl) & 0x00000001) { 796 fec_halt(dev); 797 writel(~0x00000001 & readl(&fec->eth->x_cntrl), 798 &fec->eth->x_cntrl); 799 fec_init(dev, fec->bd); 800 } 801 } 802 803 /* 804 * Read the buffer status. Before the status can be read, the data cache 805 * must be invalidated, because the data in RAM might have been changed 806 * by DMA. The descriptors are properly aligned to cachelines so there's 807 * no need to worry they'd overlap. 808 * 809 * WARNING: By invalidating the descriptor here, we also invalidate 810 * the descriptors surrounding this one. Therefore we can NOT change the 811 * contents of this descriptor nor the surrounding ones. The problem is 812 * that in order to mark the descriptor as processed, we need to change 813 * the descriptor. The solution is to mark the whole cache line when all 814 * descriptors in the cache line are processed. 815 */ 816 addr = (uint32_t)rbd; 817 addr &= ~(ARCH_DMA_MINALIGN - 1); 818 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 819 invalidate_dcache_range(addr, addr + size); 820 821 bd_status = readw(&rbd->status); 822 debug("fec_recv: status 0x%x\n", bd_status); 823 824 if (!(bd_status & FEC_RBD_EMPTY)) { 825 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && 826 ((readw(&rbd->data_length) - 4) > 14)) { 827 /* 828 * Get buffer address and size 829 */ 830 addr = readl(&rbd->data_pointer); 831 frame_length = readw(&rbd->data_length) - 4; 832 /* 833 * Invalidate data cache over the buffer 834 */ 835 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); 836 addr &= ~(ARCH_DMA_MINALIGN - 1); 837 invalidate_dcache_range(addr, end); 838 839 /* 840 * Fill the buffer and pass it to upper layers 841 */ 842 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 843 swap_packet((uint32_t *)addr, frame_length); 844 #endif 845 memcpy(buff, (char *)addr, frame_length); 846 net_process_received_packet(buff, frame_length); 847 len = frame_length; 848 } else { 849 if (bd_status & FEC_RBD_ERR) 850 printf("error frame: 0x%08x 0x%08x\n", 851 addr, bd_status); 852 } 853 854 /* 855 * Free the current buffer, restart the engine and move forward 856 * to the next buffer. Here we check if the whole cacheline of 857 * descriptors was already processed and if so, we mark it free 858 * as whole. 859 */ 860 size = RXDESC_PER_CACHELINE - 1; 861 if ((fec->rbd_index & size) == size) { 862 i = fec->rbd_index - size; 863 addr = (uint32_t)&fec->rbd_base[i]; 864 for (; i <= fec->rbd_index ; i++) { 865 fec_rbd_clean(i == (FEC_RBD_NUM - 1), 866 &fec->rbd_base[i]); 867 } 868 flush_dcache_range(addr, 869 addr + ARCH_DMA_MINALIGN); 870 } 871 872 fec_rx_task_enable(fec); 873 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; 874 } 875 debug("fec_recv: stop\n"); 876 877 return len; 878 } 879 880 static void fec_set_dev_name(char *dest, int dev_id) 881 { 882 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); 883 } 884 885 static int fec_alloc_descs(struct fec_priv *fec) 886 { 887 unsigned int size; 888 int i; 889 uint8_t *data; 890 891 /* Allocate TX descriptors. */ 892 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 893 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); 894 if (!fec->tbd_base) 895 goto err_tx; 896 897 /* Allocate RX descriptors. */ 898 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 899 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); 900 if (!fec->rbd_base) 901 goto err_rx; 902 903 memset(fec->rbd_base, 0, size); 904 905 /* Allocate RX buffers. */ 906 907 /* Maximum RX buffer size. */ 908 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); 909 for (i = 0; i < FEC_RBD_NUM; i++) { 910 data = memalign(FEC_DMA_RX_MINALIGN, size); 911 if (!data) { 912 printf("%s: error allocating rxbuf %d\n", __func__, i); 913 goto err_ring; 914 } 915 916 memset(data, 0, size); 917 918 fec->rbd_base[i].data_pointer = (uint32_t)data; 919 fec->rbd_base[i].status = FEC_RBD_EMPTY; 920 fec->rbd_base[i].data_length = 0; 921 /* Flush the buffer to memory. */ 922 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 923 } 924 925 /* Mark the last RBD to close the ring. */ 926 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 927 928 fec->rbd_index = 0; 929 fec->tbd_index = 0; 930 931 return 0; 932 933 err_ring: 934 for (; i >= 0; i--) 935 free((void *)fec->rbd_base[i].data_pointer); 936 free(fec->rbd_base); 937 err_rx: 938 free(fec->tbd_base); 939 err_tx: 940 return -ENOMEM; 941 } 942 943 static void fec_free_descs(struct fec_priv *fec) 944 { 945 int i; 946 947 for (i = 0; i < FEC_RBD_NUM; i++) 948 free((void *)fec->rbd_base[i].data_pointer); 949 free(fec->rbd_base); 950 free(fec->tbd_base); 951 } 952 953 #ifdef CONFIG_PHYLIB 954 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 955 struct mii_dev *bus, struct phy_device *phydev) 956 #else 957 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 958 struct mii_dev *bus, int phy_id) 959 #endif 960 { 961 struct eth_device *edev; 962 struct fec_priv *fec; 963 unsigned char ethaddr[6]; 964 uint32_t start; 965 int ret = 0; 966 967 /* create and fill edev struct */ 968 edev = (struct eth_device *)malloc(sizeof(struct eth_device)); 969 if (!edev) { 970 puts("fec_mxc: not enough malloc memory for eth_device\n"); 971 ret = -ENOMEM; 972 goto err1; 973 } 974 975 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); 976 if (!fec) { 977 puts("fec_mxc: not enough malloc memory for fec_priv\n"); 978 ret = -ENOMEM; 979 goto err2; 980 } 981 982 memset(edev, 0, sizeof(*edev)); 983 memset(fec, 0, sizeof(*fec)); 984 985 ret = fec_alloc_descs(fec); 986 if (ret) 987 goto err3; 988 989 edev->priv = fec; 990 edev->init = fec_init; 991 edev->send = fec_send; 992 edev->recv = fec_recv; 993 edev->halt = fec_halt; 994 edev->write_hwaddr = fec_set_hwaddr; 995 996 fec->eth = (struct ethernet_regs *)base_addr; 997 fec->bd = bd; 998 999 fec->xcv_type = CONFIG_FEC_XCV_TYPE; 1000 1001 /* Reset chip. */ 1002 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); 1003 start = get_timer(0); 1004 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { 1005 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1006 printf("FEC MXC: Timeout reseting chip\n"); 1007 goto err4; 1008 } 1009 udelay(10); 1010 } 1011 1012 fec_reg_setup(fec); 1013 fec_set_dev_name(edev->name, dev_id); 1014 fec->dev_id = (dev_id == -1) ? 0 : dev_id; 1015 fec->bus = bus; 1016 fec_mii_setspeed(bus->priv); 1017 #ifdef CONFIG_PHYLIB 1018 fec->phydev = phydev; 1019 phy_connect_dev(phydev, edev); 1020 /* Configure phy */ 1021 phy_config(phydev); 1022 #else 1023 fec->phy_id = phy_id; 1024 #endif 1025 eth_register(edev); 1026 1027 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) { 1028 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr); 1029 memcpy(edev->enetaddr, ethaddr, 6); 1030 if (!getenv("ethaddr")) 1031 eth_setenv_enetaddr("ethaddr", ethaddr); 1032 } 1033 return ret; 1034 err4: 1035 fec_free_descs(fec); 1036 err3: 1037 free(fec); 1038 err2: 1039 free(edev); 1040 err1: 1041 return ret; 1042 } 1043 1044 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) 1045 { 1046 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; 1047 struct mii_dev *bus; 1048 int ret; 1049 1050 bus = mdio_alloc(); 1051 if (!bus) { 1052 printf("mdio_alloc failed\n"); 1053 return NULL; 1054 } 1055 bus->read = fec_phy_read; 1056 bus->write = fec_phy_write; 1057 bus->priv = eth; 1058 fec_set_dev_name(bus->name, dev_id); 1059 1060 ret = mdio_register(bus); 1061 if (ret) { 1062 printf("mdio_register failed\n"); 1063 free(bus); 1064 return NULL; 1065 } 1066 fec_mii_setspeed(eth); 1067 return bus; 1068 } 1069 1070 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) 1071 { 1072 uint32_t base_mii; 1073 struct mii_dev *bus = NULL; 1074 #ifdef CONFIG_PHYLIB 1075 struct phy_device *phydev = NULL; 1076 #endif 1077 int ret; 1078 1079 #ifdef CONFIG_MX28 1080 /* 1081 * The i.MX28 has two ethernet interfaces, but they are not equal. 1082 * Only the first one can access the MDIO bus. 1083 */ 1084 base_mii = MXS_ENET0_BASE; 1085 #else 1086 base_mii = addr; 1087 #endif 1088 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); 1089 bus = fec_get_miibus(base_mii, dev_id); 1090 if (!bus) 1091 return -ENOMEM; 1092 #ifdef CONFIG_PHYLIB 1093 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); 1094 if (!phydev) { 1095 free(bus); 1096 return -ENOMEM; 1097 } 1098 ret = fec_probe(bd, dev_id, addr, bus, phydev); 1099 #else 1100 ret = fec_probe(bd, dev_id, addr, bus, phy_id); 1101 #endif 1102 if (ret) { 1103 #ifdef CONFIG_PHYLIB 1104 free(phydev); 1105 #endif 1106 free(bus); 1107 } 1108 return ret; 1109 } 1110 1111 #ifdef CONFIG_FEC_MXC_PHYADDR 1112 int fecmxc_initialize(bd_t *bd) 1113 { 1114 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, 1115 IMX_FEC_BASE); 1116 } 1117 #endif 1118 1119 #ifndef CONFIG_PHYLIB 1120 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) 1121 { 1122 struct fec_priv *fec = (struct fec_priv *)dev->priv; 1123 fec->mii_postcall = cb; 1124 return 0; 1125 } 1126 #endif 1127