xref: /openbmc/u-boot/drivers/net/fec_mxc.c (revision 0a35cc93)
1 /*
2  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4  * (C) Copyright 2008 Armadeus Systems nc
5  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <malloc.h>
13 #include <memalign.h>
14 #include <net.h>
15 #include <netdev.h>
16 #include <miiphy.h>
17 #include "fec_mxc.h"
18 
19 #include <asm/arch/clock.h>
20 #include <asm/arch/imx-regs.h>
21 #include <asm/imx-common/sys_proto.h>
22 #include <asm/io.h>
23 #include <asm/errno.h>
24 #include <linux/compiler.h>
25 
26 DECLARE_GLOBAL_DATA_PTR;
27 
28 /*
29  * Timeout the transfer after 5 mS. This is usually a bit more, since
30  * the code in the tightloops this timeout is used in adds some overhead.
31  */
32 #define FEC_XFER_TIMEOUT	5000
33 
34 /*
35  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
36  * 64-byte alignment in the DMA RX FEC buffer.
37  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
38  * satisfies the alignment on other SoCs (32-bytes)
39  */
40 #define FEC_DMA_RX_MINALIGN	64
41 
42 #ifndef CONFIG_MII
43 #error "CONFIG_MII has to be defined!"
44 #endif
45 
46 #ifndef CONFIG_FEC_XCV_TYPE
47 #define CONFIG_FEC_XCV_TYPE MII100
48 #endif
49 
50 /*
51  * The i.MX28 operates with packets in big endian. We need to swap them before
52  * sending and after receiving.
53  */
54 #ifdef CONFIG_MX28
55 #define CONFIG_FEC_MXC_SWAP_PACKET
56 #endif
57 
58 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
59 
60 /* Check various alignment issues at compile time */
61 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
62 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
63 #endif
64 
65 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
66 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
67 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
68 #endif
69 
70 #undef DEBUG
71 
72 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
73 static void swap_packet(uint32_t *packet, int length)
74 {
75 	int i;
76 
77 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
78 		packet[i] = __swab32(packet[i]);
79 }
80 #endif
81 
82 /*
83  * MII-interface related functions
84  */
85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
86 		uint8_t regAddr)
87 {
88 	uint32_t reg;		/* convenient holder for the PHY register */
89 	uint32_t phy;		/* convenient holder for the PHY */
90 	uint32_t start;
91 	int val;
92 
93 	/*
94 	 * reading from any PHY's register is done by properly
95 	 * programming the FEC's MII data register.
96 	 */
97 	writel(FEC_IEVENT_MII, &eth->ievent);
98 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
99 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
100 
101 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
102 			phy | reg, &eth->mii_data);
103 
104 	/*
105 	 * wait for the related interrupt
106 	 */
107 	start = get_timer(0);
108 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
109 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
110 			printf("Read MDIO failed...\n");
111 			return -1;
112 		}
113 	}
114 
115 	/*
116 	 * clear mii interrupt bit
117 	 */
118 	writel(FEC_IEVENT_MII, &eth->ievent);
119 
120 	/*
121 	 * it's now safe to read the PHY's register
122 	 */
123 	val = (unsigned short)readl(&eth->mii_data);
124 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
125 			regAddr, val);
126 	return val;
127 }
128 
129 static void fec_mii_setspeed(struct ethernet_regs *eth)
130 {
131 	/*
132 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
133 	 * and do not drop the Preamble.
134 	 *
135 	 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
136 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
137 	 * versions are RAZ there, so just ignore the difference and write the
138 	 * register always.
139 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
140 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
141 	 * output.
142 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
143 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
144 	 * holdtime cannot result in a value greater than 3.
145 	 */
146 	u32 pclk = imx_get_fecclk();
147 	u32 speed = DIV_ROUND_UP(pclk, 5000000);
148 	u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
149 #ifdef FEC_QUIRK_ENET_MAC
150 	speed--;
151 #endif
152 	writel(speed << 1 | hold << 8, &eth->mii_speed);
153 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
154 }
155 
156 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
157 		uint8_t regAddr, uint16_t data)
158 {
159 	uint32_t reg;		/* convenient holder for the PHY register */
160 	uint32_t phy;		/* convenient holder for the PHY */
161 	uint32_t start;
162 
163 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
164 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
165 
166 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
167 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
168 
169 	/*
170 	 * wait for the MII interrupt
171 	 */
172 	start = get_timer(0);
173 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
174 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
175 			printf("Write MDIO failed...\n");
176 			return -1;
177 		}
178 	}
179 
180 	/*
181 	 * clear MII interrupt bit
182 	 */
183 	writel(FEC_IEVENT_MII, &eth->ievent);
184 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
185 			regAddr, data);
186 
187 	return 0;
188 }
189 
190 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
191 			int regAddr)
192 {
193 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
194 }
195 
196 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
197 			 int regAddr, u16 data)
198 {
199 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
200 }
201 
202 #ifndef CONFIG_PHYLIB
203 static int miiphy_restart_aneg(struct eth_device *dev)
204 {
205 	int ret = 0;
206 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
207 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
208 	struct ethernet_regs *eth = fec->bus->priv;
209 
210 	/*
211 	 * Wake up from sleep if necessary
212 	 * Reset PHY, then delay 300ns
213 	 */
214 #ifdef CONFIG_MX27
215 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
216 #endif
217 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
218 	udelay(1000);
219 
220 	/*
221 	 * Set the auto-negotiation advertisement register bits
222 	 */
223 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
224 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
225 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
226 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
227 			BMCR_ANENABLE | BMCR_ANRESTART);
228 
229 	if (fec->mii_postcall)
230 		ret = fec->mii_postcall(fec->phy_id);
231 
232 #endif
233 	return ret;
234 }
235 
236 static int miiphy_wait_aneg(struct eth_device *dev)
237 {
238 	uint32_t start;
239 	int status;
240 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
241 	struct ethernet_regs *eth = fec->bus->priv;
242 
243 	/*
244 	 * Wait for AN completion
245 	 */
246 	start = get_timer(0);
247 	do {
248 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
249 			printf("%s: Autonegotiation timeout\n", dev->name);
250 			return -1;
251 		}
252 
253 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
254 		if (status < 0) {
255 			printf("%s: Autonegotiation failed. status: %d\n",
256 					dev->name, status);
257 			return -1;
258 		}
259 	} while (!(status & BMSR_LSTATUS));
260 
261 	return 0;
262 }
263 #endif
264 
265 static int fec_rx_task_enable(struct fec_priv *fec)
266 {
267 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
268 	return 0;
269 }
270 
271 static int fec_rx_task_disable(struct fec_priv *fec)
272 {
273 	return 0;
274 }
275 
276 static int fec_tx_task_enable(struct fec_priv *fec)
277 {
278 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
279 	return 0;
280 }
281 
282 static int fec_tx_task_disable(struct fec_priv *fec)
283 {
284 	return 0;
285 }
286 
287 /**
288  * Initialize receive task's buffer descriptors
289  * @param[in] fec all we know about the device yet
290  * @param[in] count receive buffer count to be allocated
291  * @param[in] dsize desired size of each receive buffer
292  * @return 0 on success
293  *
294  * Init all RX descriptors to default values.
295  */
296 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
297 {
298 	uint32_t size;
299 	uint8_t *data;
300 	int i;
301 
302 	/*
303 	 * Reload the RX descriptors with default values and wipe
304 	 * the RX buffers.
305 	 */
306 	size = roundup(dsize, ARCH_DMA_MINALIGN);
307 	for (i = 0; i < count; i++) {
308 		data = (uint8_t *)fec->rbd_base[i].data_pointer;
309 		memset(data, 0, dsize);
310 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
311 
312 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
313 		fec->rbd_base[i].data_length = 0;
314 	}
315 
316 	/* Mark the last RBD to close the ring. */
317 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
318 	fec->rbd_index = 0;
319 
320 	flush_dcache_range((unsigned)fec->rbd_base,
321 			   (unsigned)fec->rbd_base + size);
322 }
323 
324 /**
325  * Initialize transmit task's buffer descriptors
326  * @param[in] fec all we know about the device yet
327  *
328  * Transmit buffers are created externally. We only have to init the BDs here.\n
329  * Note: There is a race condition in the hardware. When only one BD is in
330  * use it must be marked with the WRAP bit to use it for every transmitt.
331  * This bit in combination with the READY bit results into double transmit
332  * of each data buffer. It seems the state machine checks READY earlier then
333  * resetting it after the first transfer.
334  * Using two BDs solves this issue.
335  */
336 static void fec_tbd_init(struct fec_priv *fec)
337 {
338 	unsigned addr = (unsigned)fec->tbd_base;
339 	unsigned size = roundup(2 * sizeof(struct fec_bd),
340 				ARCH_DMA_MINALIGN);
341 
342 	memset(fec->tbd_base, 0, size);
343 	fec->tbd_base[0].status = 0;
344 	fec->tbd_base[1].status = FEC_TBD_WRAP;
345 	fec->tbd_index = 0;
346 	flush_dcache_range(addr, addr + size);
347 }
348 
349 /**
350  * Mark the given read buffer descriptor as free
351  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
352  * @param[in] pRbd buffer descriptor to mark free again
353  */
354 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
355 {
356 	unsigned short flags = FEC_RBD_EMPTY;
357 	if (last)
358 		flags |= FEC_RBD_WRAP;
359 	writew(flags, &pRbd->status);
360 	writew(0, &pRbd->data_length);
361 }
362 
363 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
364 						unsigned char *mac)
365 {
366 	imx_get_mac_from_fuse(dev_id, mac);
367 	return !is_valid_ethaddr(mac);
368 }
369 
370 static int fec_set_hwaddr(struct eth_device *dev)
371 {
372 	uchar *mac = dev->enetaddr;
373 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
374 
375 	writel(0, &fec->eth->iaddr1);
376 	writel(0, &fec->eth->iaddr2);
377 	writel(0, &fec->eth->gaddr1);
378 	writel(0, &fec->eth->gaddr2);
379 
380 	/*
381 	 * Set physical address
382 	 */
383 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
384 			&fec->eth->paddr1);
385 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
386 
387 	return 0;
388 }
389 
390 /*
391  * Do initial configuration of the FEC registers
392  */
393 static void fec_reg_setup(struct fec_priv *fec)
394 {
395 	uint32_t rcntrl;
396 
397 	/*
398 	 * Set interrupt mask register
399 	 */
400 	writel(0x00000000, &fec->eth->imask);
401 
402 	/*
403 	 * Clear FEC-Lite interrupt event register(IEVENT)
404 	 */
405 	writel(0xffffffff, &fec->eth->ievent);
406 
407 
408 	/*
409 	 * Set FEC-Lite receive control register(R_CNTRL):
410 	 */
411 
412 	/* Start with frame length = 1518, common for all modes. */
413 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
414 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
415 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
416 	if (fec->xcv_type == RGMII)
417 		rcntrl |= FEC_RCNTRL_RGMII;
418 	else if (fec->xcv_type == RMII)
419 		rcntrl |= FEC_RCNTRL_RMII;
420 
421 	writel(rcntrl, &fec->eth->r_cntrl);
422 }
423 
424 /**
425  * Start the FEC engine
426  * @param[in] dev Our device to handle
427  */
428 static int fec_open(struct eth_device *edev)
429 {
430 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
431 	int speed;
432 	uint32_t addr, size;
433 	int i;
434 
435 	debug("fec_open: fec_open(dev)\n");
436 	/* full-duplex, heartbeat disabled */
437 	writel(1 << 2, &fec->eth->x_cntrl);
438 	fec->rbd_index = 0;
439 
440 	/* Invalidate all descriptors */
441 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
442 		fec_rbd_clean(0, &fec->rbd_base[i]);
443 	fec_rbd_clean(1, &fec->rbd_base[i]);
444 
445 	/* Flush the descriptors into RAM */
446 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
447 			ARCH_DMA_MINALIGN);
448 	addr = (uint32_t)fec->rbd_base;
449 	flush_dcache_range(addr, addr + size);
450 
451 #ifdef FEC_QUIRK_ENET_MAC
452 	/* Enable ENET HW endian SWAP */
453 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
454 		&fec->eth->ecntrl);
455 	/* Enable ENET store and forward mode */
456 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
457 		&fec->eth->x_wmrk);
458 #endif
459 	/*
460 	 * Enable FEC-Lite controller
461 	 */
462 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
463 		&fec->eth->ecntrl);
464 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
465 	udelay(100);
466 	/*
467 	 * setup the MII gasket for RMII mode
468 	 */
469 
470 	/* disable the gasket */
471 	writew(0, &fec->eth->miigsk_enr);
472 
473 	/* wait for the gasket to be disabled */
474 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
475 		udelay(2);
476 
477 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
478 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
479 
480 	/* re-enable the gasket */
481 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
482 
483 	/* wait until MII gasket is ready */
484 	int max_loops = 10;
485 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
486 		if (--max_loops <= 0) {
487 			printf("WAIT for MII Gasket ready timed out\n");
488 			break;
489 		}
490 	}
491 #endif
492 
493 #ifdef CONFIG_PHYLIB
494 	{
495 		/* Start up the PHY */
496 		int ret = phy_startup(fec->phydev);
497 
498 		if (ret) {
499 			printf("Could not initialize PHY %s\n",
500 			       fec->phydev->dev->name);
501 			return ret;
502 		}
503 		speed = fec->phydev->speed;
504 	}
505 #else
506 	miiphy_wait_aneg(edev);
507 	speed = miiphy_speed(edev->name, fec->phy_id);
508 	miiphy_duplex(edev->name, fec->phy_id);
509 #endif
510 
511 #ifdef FEC_QUIRK_ENET_MAC
512 	{
513 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
514 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
515 		if (speed == _1000BASET)
516 			ecr |= FEC_ECNTRL_SPEED;
517 		else if (speed != _100BASET)
518 			rcr |= FEC_RCNTRL_RMII_10T;
519 		writel(ecr, &fec->eth->ecntrl);
520 		writel(rcr, &fec->eth->r_cntrl);
521 	}
522 #endif
523 	debug("%s:Speed=%i\n", __func__, speed);
524 
525 	/*
526 	 * Enable SmartDMA receive task
527 	 */
528 	fec_rx_task_enable(fec);
529 
530 	udelay(100000);
531 	return 0;
532 }
533 
534 static int fec_init(struct eth_device *dev, bd_t* bd)
535 {
536 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
537 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
538 	int i;
539 
540 	/* Initialize MAC address */
541 	fec_set_hwaddr(dev);
542 
543 	/*
544 	 * Setup transmit descriptors, there are two in total.
545 	 */
546 	fec_tbd_init(fec);
547 
548 	/* Setup receive descriptors. */
549 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
550 
551 	fec_reg_setup(fec);
552 
553 	if (fec->xcv_type != SEVENWIRE)
554 		fec_mii_setspeed(fec->bus->priv);
555 
556 	/*
557 	 * Set Opcode/Pause Duration Register
558 	 */
559 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
560 	writel(0x2, &fec->eth->x_wmrk);
561 	/*
562 	 * Set multicast address filter
563 	 */
564 	writel(0x00000000, &fec->eth->gaddr1);
565 	writel(0x00000000, &fec->eth->gaddr2);
566 
567 
568 	/* Do not access reserved register for i.MX6UL */
569 	if (!is_mx6ul()) {
570 		/* clear MIB RAM */
571 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
572 			writel(0, i);
573 
574 		/* FIFO receive start register */
575 		writel(0x520, &fec->eth->r_fstart);
576 	}
577 
578 	/* size and address of each buffer */
579 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
580 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
581 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
582 
583 #ifndef CONFIG_PHYLIB
584 	if (fec->xcv_type != SEVENWIRE)
585 		miiphy_restart_aneg(dev);
586 #endif
587 	fec_open(dev);
588 	return 0;
589 }
590 
591 /**
592  * Halt the FEC engine
593  * @param[in] dev Our device to handle
594  */
595 static void fec_halt(struct eth_device *dev)
596 {
597 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
598 	int counter = 0xffff;
599 
600 	/*
601 	 * issue graceful stop command to the FEC transmitter if necessary
602 	 */
603 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
604 			&fec->eth->x_cntrl);
605 
606 	debug("eth_halt: wait for stop regs\n");
607 	/*
608 	 * wait for graceful stop to register
609 	 */
610 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
611 		udelay(1);
612 
613 	/*
614 	 * Disable SmartDMA tasks
615 	 */
616 	fec_tx_task_disable(fec);
617 	fec_rx_task_disable(fec);
618 
619 	/*
620 	 * Disable the Ethernet Controller
621 	 * Note: this will also reset the BD index counter!
622 	 */
623 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
624 			&fec->eth->ecntrl);
625 	fec->rbd_index = 0;
626 	fec->tbd_index = 0;
627 	debug("eth_halt: done\n");
628 }
629 
630 /**
631  * Transmit one frame
632  * @param[in] dev Our ethernet device to handle
633  * @param[in] packet Pointer to the data to be transmitted
634  * @param[in] length Data count in bytes
635  * @return 0 on success
636  */
637 static int fec_send(struct eth_device *dev, void *packet, int length)
638 {
639 	unsigned int status;
640 	uint32_t size, end;
641 	uint32_t addr;
642 	int timeout = FEC_XFER_TIMEOUT;
643 	int ret = 0;
644 
645 	/*
646 	 * This routine transmits one frame.  This routine only accepts
647 	 * 6-byte Ethernet addresses.
648 	 */
649 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
650 
651 	/*
652 	 * Check for valid length of data.
653 	 */
654 	if ((length > 1500) || (length <= 0)) {
655 		printf("Payload (%d) too large\n", length);
656 		return -1;
657 	}
658 
659 	/*
660 	 * Setup the transmit buffer. We are always using the first buffer for
661 	 * transmission, the second will be empty and only used to stop the DMA
662 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
663 	 */
664 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
665 	swap_packet((uint32_t *)packet, length);
666 #endif
667 
668 	addr = (uint32_t)packet;
669 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
670 	addr &= ~(ARCH_DMA_MINALIGN - 1);
671 	flush_dcache_range(addr, end);
672 
673 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
674 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
675 
676 	/*
677 	 * update BD's status now
678 	 * This block:
679 	 * - is always the last in a chain (means no chain)
680 	 * - should transmitt the CRC
681 	 * - might be the last BD in the list, so the address counter should
682 	 *   wrap (-> keep the WRAP flag)
683 	 */
684 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
685 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
686 	writew(status, &fec->tbd_base[fec->tbd_index].status);
687 
688 	/*
689 	 * Flush data cache. This code flushes both TX descriptors to RAM.
690 	 * After this code, the descriptors will be safely in RAM and we
691 	 * can start DMA.
692 	 */
693 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
694 	addr = (uint32_t)fec->tbd_base;
695 	flush_dcache_range(addr, addr + size);
696 
697 	/*
698 	 * Below we read the DMA descriptor's last four bytes back from the
699 	 * DRAM. This is important in order to make sure that all WRITE
700 	 * operations on the bus that were triggered by previous cache FLUSH
701 	 * have completed.
702 	 *
703 	 * Otherwise, on MX28, it is possible to observe a corruption of the
704 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
705 	 * for the bus structure of MX28. The scenario is as follows:
706 	 *
707 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
708 	 *    to DRAM due to flush_dcache_range()
709 	 * 2) ARM core writes the FEC registers via AHB_ARB2
710 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
711 	 *
712 	 * Note that 2) does sometimes finish before 1) due to reordering of
713 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
714 	 * DMA descriptor is fully written into DRAM. This results in occasional
715 	 * corruption of the DMA descriptor.
716 	 */
717 	readl(addr + size - 4);
718 
719 	/*
720 	 * Enable SmartDMA transmit task
721 	 */
722 	fec_tx_task_enable(fec);
723 
724 	/*
725 	 * Wait until frame is sent. On each turn of the wait cycle, we must
726 	 * invalidate data cache to see what's really in RAM. Also, we need
727 	 * barrier here.
728 	 */
729 	while (--timeout) {
730 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
731 			break;
732 	}
733 
734 	if (!timeout) {
735 		ret = -EINVAL;
736 		goto out;
737 	}
738 
739 	/*
740 	 * The TDAR bit is cleared when the descriptors are all out from TX
741 	 * but on mx6solox we noticed that the READY bit is still not cleared
742 	 * right after TDAR.
743 	 * These are two distinct signals, and in IC simulation, we found that
744 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
745 	 * cleared.
746 	 * In mx6solox, we use a later version of FEC IP. It looks like that
747 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
748 	 * version.
749 	 *
750 	 * Fix this by polling the READY bit of BD after the TDAR polling,
751 	 * which covers the mx6solox case and does not harm the other SoCs.
752 	 */
753 	timeout = FEC_XFER_TIMEOUT;
754 	while (--timeout) {
755 		invalidate_dcache_range(addr, addr + size);
756 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
757 		    FEC_TBD_READY))
758 			break;
759 	}
760 
761 	if (!timeout)
762 		ret = -EINVAL;
763 
764 out:
765 	debug("fec_send: status 0x%x index %d ret %i\n",
766 			readw(&fec->tbd_base[fec->tbd_index].status),
767 			fec->tbd_index, ret);
768 	/* for next transmission use the other buffer */
769 	if (fec->tbd_index)
770 		fec->tbd_index = 0;
771 	else
772 		fec->tbd_index = 1;
773 
774 	return ret;
775 }
776 
777 /**
778  * Pull one frame from the card
779  * @param[in] dev Our ethernet device to handle
780  * @return Length of packet read
781  */
782 static int fec_recv(struct eth_device *dev)
783 {
784 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
785 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
786 	unsigned long ievent;
787 	int frame_length, len = 0;
788 	uint16_t bd_status;
789 	uint32_t addr, size, end;
790 	int i;
791 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
792 
793 	/*
794 	 * Check if any critical events have happened
795 	 */
796 	ievent = readl(&fec->eth->ievent);
797 	writel(ievent, &fec->eth->ievent);
798 	debug("fec_recv: ievent 0x%lx\n", ievent);
799 	if (ievent & FEC_IEVENT_BABR) {
800 		fec_halt(dev);
801 		fec_init(dev, fec->bd);
802 		printf("some error: 0x%08lx\n", ievent);
803 		return 0;
804 	}
805 	if (ievent & FEC_IEVENT_HBERR) {
806 		/* Heartbeat error */
807 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
808 				&fec->eth->x_cntrl);
809 	}
810 	if (ievent & FEC_IEVENT_GRA) {
811 		/* Graceful stop complete */
812 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
813 			fec_halt(dev);
814 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
815 					&fec->eth->x_cntrl);
816 			fec_init(dev, fec->bd);
817 		}
818 	}
819 
820 	/*
821 	 * Read the buffer status. Before the status can be read, the data cache
822 	 * must be invalidated, because the data in RAM might have been changed
823 	 * by DMA. The descriptors are properly aligned to cachelines so there's
824 	 * no need to worry they'd overlap.
825 	 *
826 	 * WARNING: By invalidating the descriptor here, we also invalidate
827 	 * the descriptors surrounding this one. Therefore we can NOT change the
828 	 * contents of this descriptor nor the surrounding ones. The problem is
829 	 * that in order to mark the descriptor as processed, we need to change
830 	 * the descriptor. The solution is to mark the whole cache line when all
831 	 * descriptors in the cache line are processed.
832 	 */
833 	addr = (uint32_t)rbd;
834 	addr &= ~(ARCH_DMA_MINALIGN - 1);
835 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
836 	invalidate_dcache_range(addr, addr + size);
837 
838 	bd_status = readw(&rbd->status);
839 	debug("fec_recv: status 0x%x\n", bd_status);
840 
841 	if (!(bd_status & FEC_RBD_EMPTY)) {
842 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
843 			((readw(&rbd->data_length) - 4) > 14)) {
844 			/*
845 			 * Get buffer address and size
846 			 */
847 			addr = readl(&rbd->data_pointer);
848 			frame_length = readw(&rbd->data_length) - 4;
849 			/*
850 			 * Invalidate data cache over the buffer
851 			 */
852 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
853 			addr &= ~(ARCH_DMA_MINALIGN - 1);
854 			invalidate_dcache_range(addr, end);
855 
856 			/*
857 			 *  Fill the buffer and pass it to upper layers
858 			 */
859 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
860 			swap_packet((uint32_t *)addr, frame_length);
861 #endif
862 			memcpy(buff, (char *)addr, frame_length);
863 			net_process_received_packet(buff, frame_length);
864 			len = frame_length;
865 		} else {
866 			if (bd_status & FEC_RBD_ERR)
867 				printf("error frame: 0x%08x 0x%08x\n",
868 				       addr, bd_status);
869 		}
870 
871 		/*
872 		 * Free the current buffer, restart the engine and move forward
873 		 * to the next buffer. Here we check if the whole cacheline of
874 		 * descriptors was already processed and if so, we mark it free
875 		 * as whole.
876 		 */
877 		size = RXDESC_PER_CACHELINE - 1;
878 		if ((fec->rbd_index & size) == size) {
879 			i = fec->rbd_index - size;
880 			addr = (uint32_t)&fec->rbd_base[i];
881 			for (; i <= fec->rbd_index ; i++) {
882 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
883 					      &fec->rbd_base[i]);
884 			}
885 			flush_dcache_range(addr,
886 				addr + ARCH_DMA_MINALIGN);
887 		}
888 
889 		fec_rx_task_enable(fec);
890 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
891 	}
892 	debug("fec_recv: stop\n");
893 
894 	return len;
895 }
896 
897 static void fec_set_dev_name(char *dest, int dev_id)
898 {
899 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
900 }
901 
902 static int fec_alloc_descs(struct fec_priv *fec)
903 {
904 	unsigned int size;
905 	int i;
906 	uint8_t *data;
907 
908 	/* Allocate TX descriptors. */
909 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
910 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
911 	if (!fec->tbd_base)
912 		goto err_tx;
913 
914 	/* Allocate RX descriptors. */
915 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
916 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
917 	if (!fec->rbd_base)
918 		goto err_rx;
919 
920 	memset(fec->rbd_base, 0, size);
921 
922 	/* Allocate RX buffers. */
923 
924 	/* Maximum RX buffer size. */
925 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
926 	for (i = 0; i < FEC_RBD_NUM; i++) {
927 		data = memalign(FEC_DMA_RX_MINALIGN, size);
928 		if (!data) {
929 			printf("%s: error allocating rxbuf %d\n", __func__, i);
930 			goto err_ring;
931 		}
932 
933 		memset(data, 0, size);
934 
935 		fec->rbd_base[i].data_pointer = (uint32_t)data;
936 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
937 		fec->rbd_base[i].data_length = 0;
938 		/* Flush the buffer to memory. */
939 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
940 	}
941 
942 	/* Mark the last RBD to close the ring. */
943 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
944 
945 	fec->rbd_index = 0;
946 	fec->tbd_index = 0;
947 
948 	return 0;
949 
950 err_ring:
951 	for (; i >= 0; i--)
952 		free((void *)fec->rbd_base[i].data_pointer);
953 	free(fec->rbd_base);
954 err_rx:
955 	free(fec->tbd_base);
956 err_tx:
957 	return -ENOMEM;
958 }
959 
960 static void fec_free_descs(struct fec_priv *fec)
961 {
962 	int i;
963 
964 	for (i = 0; i < FEC_RBD_NUM; i++)
965 		free((void *)fec->rbd_base[i].data_pointer);
966 	free(fec->rbd_base);
967 	free(fec->tbd_base);
968 }
969 
970 #ifdef CONFIG_PHYLIB
971 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
972 		struct mii_dev *bus, struct phy_device *phydev)
973 #else
974 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
975 		struct mii_dev *bus, int phy_id)
976 #endif
977 {
978 	struct eth_device *edev;
979 	struct fec_priv *fec;
980 	unsigned char ethaddr[6];
981 	uint32_t start;
982 	int ret = 0;
983 
984 	/* create and fill edev struct */
985 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
986 	if (!edev) {
987 		puts("fec_mxc: not enough malloc memory for eth_device\n");
988 		ret = -ENOMEM;
989 		goto err1;
990 	}
991 
992 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
993 	if (!fec) {
994 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
995 		ret = -ENOMEM;
996 		goto err2;
997 	}
998 
999 	memset(edev, 0, sizeof(*edev));
1000 	memset(fec, 0, sizeof(*fec));
1001 
1002 	ret = fec_alloc_descs(fec);
1003 	if (ret)
1004 		goto err3;
1005 
1006 	edev->priv = fec;
1007 	edev->init = fec_init;
1008 	edev->send = fec_send;
1009 	edev->recv = fec_recv;
1010 	edev->halt = fec_halt;
1011 	edev->write_hwaddr = fec_set_hwaddr;
1012 
1013 	fec->eth = (struct ethernet_regs *)base_addr;
1014 	fec->bd = bd;
1015 
1016 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1017 
1018 	/* Reset chip. */
1019 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1020 	start = get_timer(0);
1021 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1022 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1023 			printf("FEC MXC: Timeout reseting chip\n");
1024 			goto err4;
1025 		}
1026 		udelay(10);
1027 	}
1028 
1029 	fec_reg_setup(fec);
1030 	fec_set_dev_name(edev->name, dev_id);
1031 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1032 	fec->bus = bus;
1033 	fec_mii_setspeed(bus->priv);
1034 #ifdef CONFIG_PHYLIB
1035 	fec->phydev = phydev;
1036 	phy_connect_dev(phydev, edev);
1037 	/* Configure phy */
1038 	phy_config(phydev);
1039 #else
1040 	fec->phy_id = phy_id;
1041 #endif
1042 	eth_register(edev);
1043 
1044 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1045 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1046 		memcpy(edev->enetaddr, ethaddr, 6);
1047 		if (!getenv("ethaddr"))
1048 			eth_setenv_enetaddr("ethaddr", ethaddr);
1049 	}
1050 	return ret;
1051 err4:
1052 	fec_free_descs(fec);
1053 err3:
1054 	free(fec);
1055 err2:
1056 	free(edev);
1057 err1:
1058 	return ret;
1059 }
1060 
1061 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1062 {
1063 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1064 	struct mii_dev *bus;
1065 	int ret;
1066 
1067 	bus = mdio_alloc();
1068 	if (!bus) {
1069 		printf("mdio_alloc failed\n");
1070 		return NULL;
1071 	}
1072 	bus->read = fec_phy_read;
1073 	bus->write = fec_phy_write;
1074 	bus->priv = eth;
1075 	fec_set_dev_name(bus->name, dev_id);
1076 
1077 	ret = mdio_register(bus);
1078 	if (ret) {
1079 		printf("mdio_register failed\n");
1080 		free(bus);
1081 		return NULL;
1082 	}
1083 	fec_mii_setspeed(eth);
1084 	return bus;
1085 }
1086 
1087 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1088 {
1089 	uint32_t base_mii;
1090 	struct mii_dev *bus = NULL;
1091 #ifdef CONFIG_PHYLIB
1092 	struct phy_device *phydev = NULL;
1093 #endif
1094 	int ret;
1095 
1096 #ifdef CONFIG_MX28
1097 	/*
1098 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1099 	 * Only the first one can access the MDIO bus.
1100 	 */
1101 	base_mii = MXS_ENET0_BASE;
1102 #else
1103 	base_mii = addr;
1104 #endif
1105 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1106 	bus = fec_get_miibus(base_mii, dev_id);
1107 	if (!bus)
1108 		return -ENOMEM;
1109 #ifdef CONFIG_PHYLIB
1110 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1111 	if (!phydev) {
1112 		mdio_unregister(bus);
1113 		free(bus);
1114 		return -ENOMEM;
1115 	}
1116 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1117 #else
1118 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1119 #endif
1120 	if (ret) {
1121 #ifdef CONFIG_PHYLIB
1122 		free(phydev);
1123 #endif
1124 		mdio_unregister(bus);
1125 		free(bus);
1126 	}
1127 	return ret;
1128 }
1129 
1130 #ifdef CONFIG_FEC_MXC_PHYADDR
1131 int fecmxc_initialize(bd_t *bd)
1132 {
1133 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1134 			IMX_FEC_BASE);
1135 }
1136 #endif
1137 
1138 #ifndef CONFIG_PHYLIB
1139 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1140 {
1141 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1142 	fec->mii_postcall = cb;
1143 	return 0;
1144 }
1145 #endif
1146