1 /* 2 * (C) Copyright 2002 3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 #include <common.h> 9 #include <malloc.h> 10 #include <net.h> 11 #include <netdev.h> 12 #include <asm/io.h> 13 #include <pci.h> 14 #include <miiphy.h> 15 16 #undef DEBUG 17 18 /* Ethernet chip registers. 19 */ 20 #define SCBStatus 0 /* Rx/Command Unit Status *Word* */ 21 #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */ 22 #define SCBCmd 2 /* Rx/Command Unit Command *Word* */ 23 #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */ 24 #define SCBPointer 4 /* General purpose pointer. */ 25 #define SCBPort 8 /* Misc. commands and operands. */ 26 #define SCBflash 12 /* Flash memory control. */ 27 #define SCBeeprom 14 /* EEPROM memory control. */ 28 #define SCBCtrlMDI 16 /* MDI interface control. */ 29 #define SCBEarlyRx 20 /* Early receive byte count. */ 30 #define SCBGenControl 28 /* 82559 General Control Register */ 31 #define SCBGenStatus 29 /* 82559 General Status register */ 32 33 /* 82559 SCB status word defnitions 34 */ 35 #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */ 36 #define SCB_STATUS_FR 0x4000 /* frame received */ 37 #define SCB_STATUS_CNA 0x2000 /* CU left active state */ 38 #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */ 39 #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */ 40 #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */ 41 #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */ 42 43 #define SCB_INTACK_MASK 0xFD00 /* all the above */ 44 45 #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA) 46 #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR) 47 48 /* System control block commands 49 */ 50 /* CU Commands */ 51 #define CU_NOP 0x0000 52 #define CU_START 0x0010 53 #define CU_RESUME 0x0020 54 #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */ 55 #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */ 56 #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */ 57 #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */ 58 59 /* RUC Commands */ 60 #define RUC_NOP 0x0000 61 #define RUC_START 0x0001 62 #define RUC_RESUME 0x0002 63 #define RUC_ABORT 0x0004 64 #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */ 65 #define RUC_RESUMENR 0x0007 66 67 #define CU_CMD_MASK 0x00f0 68 #define RU_CMD_MASK 0x0007 69 70 #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */ 71 #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */ 72 73 #define CU_STATUS_MASK 0x00C0 74 #define RU_STATUS_MASK 0x003C 75 76 #define RU_STATUS_IDLE (0<<2) 77 #define RU_STATUS_SUS (1<<2) 78 #define RU_STATUS_NORES (2<<2) 79 #define RU_STATUS_READY (4<<2) 80 #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2)) 81 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2)) 82 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2)) 83 84 /* 82559 Port interface commands. 85 */ 86 #define I82559_RESET 0x00000000 /* Software reset */ 87 #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */ 88 #define I82559_SELECTIVE_RESET 0x00000002 89 #define I82559_DUMP 0x00000003 90 #define I82559_DUMP_WAKEUP 0x00000007 91 92 /* 82559 Eeprom interface. 93 */ 94 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */ 95 #define EE_CS 0x02 /* EEPROM chip select. */ 96 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ 97 #define EE_WRITE_0 0x01 98 #define EE_WRITE_1 0x05 99 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ 100 #define EE_ENB (0x4800 | EE_CS) 101 #define EE_CMD_BITS 3 102 #define EE_DATA_BITS 16 103 104 /* The EEPROM commands include the alway-set leading bit. 105 */ 106 #define EE_EWENB_CMD (4 << addr_len) 107 #define EE_WRITE_CMD (5 << addr_len) 108 #define EE_READ_CMD (6 << addr_len) 109 #define EE_ERASE_CMD (7 << addr_len) 110 111 /* Receive frame descriptors. 112 */ 113 struct RxFD { 114 volatile u16 status; 115 volatile u16 control; 116 volatile u32 link; /* struct RxFD * */ 117 volatile u32 rx_buf_addr; /* void * */ 118 volatile u32 count; 119 120 volatile u8 data[PKTSIZE_ALIGN]; 121 }; 122 123 #define RFD_STATUS_C 0x8000 /* completion of received frame */ 124 #define RFD_STATUS_OK 0x2000 /* frame received with no errors */ 125 126 #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */ 127 #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */ 128 #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */ 129 #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */ 130 131 #define RFD_COUNT_MASK 0x3fff 132 #define RFD_COUNT_F 0x4000 133 #define RFD_COUNT_EOF 0x8000 134 135 #define RFD_RX_CRC 0x0800 /* crc error */ 136 #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */ 137 #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */ 138 #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */ 139 #define RFD_RX_SHORT 0x0080 /* short frame error */ 140 #define RFD_RX_LENGTH 0x0020 141 #define RFD_RX_ERROR 0x0010 /* receive error */ 142 #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */ 143 #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */ 144 #define RFD_RX_TCO 0x0001 /* TCO indication */ 145 146 /* Transmit frame descriptors 147 */ 148 struct TxFD { /* Transmit frame descriptor set. */ 149 volatile u16 status; 150 volatile u16 command; 151 volatile u32 link; /* void * */ 152 volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */ 153 volatile s32 count; 154 155 volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */ 156 volatile s32 tx_buf_size0; /* Length of Tx frame. */ 157 volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */ 158 volatile s32 tx_buf_size1; /* Length of Tx frame. */ 159 }; 160 161 #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */ 162 #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */ 163 #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */ 164 #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */ 165 #define TxCB_CMD_S 0x4000 /* suspend on completion */ 166 #define TxCB_CMD_EL 0x8000 /* last command block in CBL */ 167 168 #define TxCB_COUNT_MASK 0x3fff 169 #define TxCB_COUNT_EOF 0x8000 170 171 /* The Speedo3 Rx and Tx frame/buffer descriptors. 172 */ 173 struct descriptor { /* A generic descriptor. */ 174 volatile u16 status; 175 volatile u16 command; 176 volatile u32 link; /* struct descriptor * */ 177 178 unsigned char params[0]; 179 }; 180 181 #define CONFIG_SYS_CMD_EL 0x8000 182 #define CONFIG_SYS_CMD_SUSPEND 0x4000 183 #define CONFIG_SYS_CMD_INT 0x2000 184 #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */ 185 #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */ 186 187 #define CONFIG_SYS_STATUS_C 0x8000 188 #define CONFIG_SYS_STATUS_OK 0x2000 189 190 /* Misc. 191 */ 192 #define NUM_RX_DESC PKTBUFSRX 193 #define NUM_TX_DESC 1 /* Number of TX descriptors */ 194 195 #define TOUT_LOOP 1000000 196 197 #define ETH_ALEN 6 198 199 static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */ 200 static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */ 201 static int rx_next; /* RX descriptor ring pointer */ 202 static int tx_next; /* TX descriptor ring pointer */ 203 static int tx_threshold; 204 205 /* 206 * The parameters for a CmdConfigure operation. 207 * There are so many options that it would be difficult to document 208 * each bit. We mostly use the default or recommended settings. 209 */ 210 static const char i82557_config_cmd[] = { 211 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */ 212 0, 0x2E, 0, 0x60, 0, 213 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */ 214 0x3f, 0x05, 215 }; 216 static const char i82558_config_cmd[] = { 217 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */ 218 0, 0x2E, 0, 0x60, 0x08, 0x88, 219 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */ 220 0x31, 0x05, 221 }; 222 223 static void init_rx_ring (struct eth_device *dev); 224 static void purge_tx_ring (struct eth_device *dev); 225 226 static void read_hw_addr (struct eth_device *dev, bd_t * bis); 227 228 static int eepro100_init (struct eth_device *dev, bd_t * bis); 229 static int eepro100_send(struct eth_device *dev, void *packet, int length); 230 static int eepro100_recv (struct eth_device *dev); 231 static void eepro100_halt (struct eth_device *dev); 232 233 #if defined(CONFIG_E500) 234 #define bus_to_phys(a) (a) 235 #define phys_to_bus(a) (a) 236 #else 237 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a) 238 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a) 239 #endif 240 241 static inline int INW (struct eth_device *dev, u_long addr) 242 { 243 return le16_to_cpu(*(volatile u16 *)(addr + (u_long)dev->iobase)); 244 } 245 246 static inline void OUTW (struct eth_device *dev, int command, u_long addr) 247 { 248 *(volatile u16 *)((addr + (u_long)dev->iobase)) = cpu_to_le16(command); 249 } 250 251 static inline void OUTL (struct eth_device *dev, int command, u_long addr) 252 { 253 *(volatile u32 *)((addr + (u_long)dev->iobase)) = cpu_to_le32(command); 254 } 255 256 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 257 static inline int INL (struct eth_device *dev, u_long addr) 258 { 259 return le32_to_cpu(*(volatile u32 *)(addr + (u_long)dev->iobase)); 260 } 261 262 static int get_phyreg (struct eth_device *dev, unsigned char addr, 263 unsigned char reg, unsigned short *value) 264 { 265 int cmd; 266 int timeout = 50; 267 268 /* read requested data */ 269 cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16); 270 OUTL (dev, cmd, SCBCtrlMDI); 271 272 do { 273 udelay(1000); 274 cmd = INL (dev, SCBCtrlMDI); 275 } while (!(cmd & (1 << 28)) && (--timeout)); 276 277 if (timeout == 0) 278 return -1; 279 280 *value = (unsigned short) (cmd & 0xffff); 281 282 return 0; 283 } 284 285 static int set_phyreg (struct eth_device *dev, unsigned char addr, 286 unsigned char reg, unsigned short value) 287 { 288 int cmd; 289 int timeout = 50; 290 291 /* write requested data */ 292 cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16); 293 OUTL (dev, cmd | value, SCBCtrlMDI); 294 295 while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout)) 296 udelay(1000); 297 298 if (timeout == 0) 299 return -1; 300 301 return 0; 302 } 303 304 /* Check if given phyaddr is valid, i.e. there is a PHY connected. 305 * Do this by checking model value field from ID2 register. 306 */ 307 static struct eth_device* verify_phyaddr (const char *devname, 308 unsigned char addr) 309 { 310 struct eth_device *dev; 311 unsigned short value; 312 unsigned char model; 313 314 dev = eth_get_dev_by_name(devname); 315 if (dev == NULL) { 316 printf("%s: no such device\n", devname); 317 return NULL; 318 } 319 320 /* read id2 register */ 321 if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) { 322 printf("%s: mii read timeout!\n", devname); 323 return NULL; 324 } 325 326 /* get model */ 327 model = (unsigned char)((value >> 4) & 0x003f); 328 329 if (model == 0) { 330 printf("%s: no PHY at address %d\n", devname, addr); 331 return NULL; 332 } 333 334 return dev; 335 } 336 337 static int eepro100_miiphy_read(const char *devname, unsigned char addr, 338 unsigned char reg, unsigned short *value) 339 { 340 struct eth_device *dev; 341 342 dev = verify_phyaddr(devname, addr); 343 if (dev == NULL) 344 return -1; 345 346 if (get_phyreg(dev, addr, reg, value) != 0) { 347 printf("%s: mii read timeout!\n", devname); 348 return -1; 349 } 350 351 return 0; 352 } 353 354 static int eepro100_miiphy_write(const char *devname, unsigned char addr, 355 unsigned char reg, unsigned short value) 356 { 357 struct eth_device *dev; 358 359 dev = verify_phyaddr(devname, addr); 360 if (dev == NULL) 361 return -1; 362 363 if (set_phyreg(dev, addr, reg, value) != 0) { 364 printf("%s: mii write timeout!\n", devname); 365 return -1; 366 } 367 368 return 0; 369 } 370 371 #endif 372 373 /* Wait for the chip get the command. 374 */ 375 static int wait_for_eepro100 (struct eth_device *dev) 376 { 377 int i; 378 379 for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) { 380 if (i >= TOUT_LOOP) { 381 return 0; 382 } 383 } 384 385 return 1; 386 } 387 388 static struct pci_device_id supported[] = { 389 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557}, 390 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559}, 391 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER}, 392 {} 393 }; 394 395 int eepro100_initialize (bd_t * bis) 396 { 397 pci_dev_t devno; 398 int card_number = 0; 399 struct eth_device *dev; 400 u32 iobase, status; 401 int idx = 0; 402 403 while (1) { 404 /* Find PCI device 405 */ 406 if ((devno = pci_find_devices (supported, idx++)) < 0) { 407 break; 408 } 409 410 pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase); 411 iobase &= ~0xf; 412 413 #ifdef DEBUG 414 printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n", 415 iobase); 416 #endif 417 418 pci_write_config_dword (devno, 419 PCI_COMMAND, 420 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); 421 422 /* Check if I/O accesses and Bus Mastering are enabled. 423 */ 424 pci_read_config_dword (devno, PCI_COMMAND, &status); 425 if (!(status & PCI_COMMAND_MEMORY)) { 426 printf ("Error: Can not enable MEM access.\n"); 427 continue; 428 } 429 430 if (!(status & PCI_COMMAND_MASTER)) { 431 printf ("Error: Can not enable Bus Mastering.\n"); 432 continue; 433 } 434 435 dev = (struct eth_device *) malloc (sizeof *dev); 436 if (!dev) { 437 printf("eepro100: Can not allocate memory\n"); 438 break; 439 } 440 memset(dev, 0, sizeof(*dev)); 441 442 sprintf (dev->name, "i82559#%d", card_number); 443 dev->priv = (void *) devno; /* this have to come before bus_to_phys() */ 444 dev->iobase = bus_to_phys (iobase); 445 dev->init = eepro100_init; 446 dev->halt = eepro100_halt; 447 dev->send = eepro100_send; 448 dev->recv = eepro100_recv; 449 450 eth_register (dev); 451 452 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII) 453 /* register mii command access routines */ 454 miiphy_register(dev->name, 455 eepro100_miiphy_read, eepro100_miiphy_write); 456 #endif 457 458 card_number++; 459 460 /* Set the latency timer for value. 461 */ 462 pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20); 463 464 udelay (10 * 1000); 465 466 read_hw_addr (dev, bis); 467 } 468 469 return card_number; 470 } 471 472 473 static int eepro100_init (struct eth_device *dev, bd_t * bis) 474 { 475 int i, status = -1; 476 int tx_cur; 477 struct descriptor *ias_cmd, *cfg_cmd; 478 479 /* Reset the ethernet controller 480 */ 481 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort); 482 udelay (20); 483 484 OUTL (dev, I82559_RESET, SCBPort); 485 udelay (20); 486 487 if (!wait_for_eepro100 (dev)) { 488 printf ("Error: Can not reset ethernet controller.\n"); 489 goto Done; 490 } 491 OUTL (dev, 0, SCBPointer); 492 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd); 493 494 if (!wait_for_eepro100 (dev)) { 495 printf ("Error: Can not reset ethernet controller.\n"); 496 goto Done; 497 } 498 OUTL (dev, 0, SCBPointer); 499 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd); 500 501 /* Initialize Rx and Tx rings. 502 */ 503 init_rx_ring (dev); 504 purge_tx_ring (dev); 505 506 /* Tell the adapter where the RX ring is located. 507 */ 508 if (!wait_for_eepro100 (dev)) { 509 printf ("Error: Can not reset ethernet controller.\n"); 510 goto Done; 511 } 512 513 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer); 514 OUTW (dev, SCB_M | RUC_START, SCBCmd); 515 516 /* Send the Configure frame */ 517 tx_cur = tx_next; 518 tx_next = ((tx_next + 1) % NUM_TX_DESC); 519 520 cfg_cmd = (struct descriptor *) &tx_ring[tx_cur]; 521 cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE)); 522 cfg_cmd->status = 0; 523 cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next])); 524 525 memcpy (cfg_cmd->params, i82558_config_cmd, 526 sizeof (i82558_config_cmd)); 527 528 if (!wait_for_eepro100 (dev)) { 529 printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n"); 530 goto Done; 531 } 532 533 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer); 534 OUTW (dev, SCB_M | CU_START, SCBCmd); 535 536 for (i = 0; 537 !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C); 538 i++) { 539 if (i >= TOUT_LOOP) { 540 printf ("%s: Tx error buffer not ready\n", dev->name); 541 goto Done; 542 } 543 } 544 545 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) { 546 printf ("TX error status = 0x%08X\n", 547 le16_to_cpu (tx_ring[tx_cur].status)); 548 goto Done; 549 } 550 551 /* Send the Individual Address Setup frame 552 */ 553 tx_cur = tx_next; 554 tx_next = ((tx_next + 1) % NUM_TX_DESC); 555 556 ias_cmd = (struct descriptor *) &tx_ring[tx_cur]; 557 ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS)); 558 ias_cmd->status = 0; 559 ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next])); 560 561 memcpy (ias_cmd->params, dev->enetaddr, 6); 562 563 /* Tell the adapter where the TX ring is located. 564 */ 565 if (!wait_for_eepro100 (dev)) { 566 printf ("Error: Can not reset ethernet controller.\n"); 567 goto Done; 568 } 569 570 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer); 571 OUTW (dev, SCB_M | CU_START, SCBCmd); 572 573 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C); 574 i++) { 575 if (i >= TOUT_LOOP) { 576 printf ("%s: Tx error buffer not ready\n", 577 dev->name); 578 goto Done; 579 } 580 } 581 582 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) { 583 printf ("TX error status = 0x%08X\n", 584 le16_to_cpu (tx_ring[tx_cur].status)); 585 goto Done; 586 } 587 588 status = 0; 589 590 Done: 591 return status; 592 } 593 594 static int eepro100_send(struct eth_device *dev, void *packet, int length) 595 { 596 int i, status = -1; 597 int tx_cur; 598 599 if (length <= 0) { 600 printf ("%s: bad packet size: %d\n", dev->name, length); 601 goto Done; 602 } 603 604 tx_cur = tx_next; 605 tx_next = (tx_next + 1) % NUM_TX_DESC; 606 607 tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT | 608 TxCB_CMD_SF | 609 TxCB_CMD_S | 610 TxCB_CMD_EL ); 611 tx_ring[tx_cur].status = 0; 612 tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold); 613 tx_ring[tx_cur].link = 614 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next])); 615 tx_ring[tx_cur].tx_desc_addr = 616 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0)); 617 tx_ring[tx_cur].tx_buf_addr0 = 618 cpu_to_le32 (phys_to_bus ((u_long) packet)); 619 tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length); 620 621 if (!wait_for_eepro100 (dev)) { 622 printf ("%s: Tx error ethernet controller not ready.\n", 623 dev->name); 624 goto Done; 625 } 626 627 /* Send the packet. 628 */ 629 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer); 630 OUTW (dev, SCB_M | CU_START, SCBCmd); 631 632 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C); 633 i++) { 634 if (i >= TOUT_LOOP) { 635 printf ("%s: Tx error buffer not ready\n", dev->name); 636 goto Done; 637 } 638 } 639 640 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) { 641 printf ("TX error status = 0x%08X\n", 642 le16_to_cpu (tx_ring[tx_cur].status)); 643 goto Done; 644 } 645 646 status = length; 647 648 Done: 649 return status; 650 } 651 652 static int eepro100_recv (struct eth_device *dev) 653 { 654 u16 status, stat; 655 int rx_prev, length = 0; 656 657 stat = INW (dev, SCBStatus); 658 OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus); 659 660 for (;;) { 661 status = le16_to_cpu (rx_ring[rx_next].status); 662 663 if (!(status & RFD_STATUS_C)) { 664 break; 665 } 666 667 /* Valid frame status. 668 */ 669 if ((status & RFD_STATUS_OK)) { 670 /* A valid frame received. 671 */ 672 length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff; 673 674 /* Pass the packet up to the protocol 675 * layers. 676 */ 677 net_process_received_packet((u8 *)rx_ring[rx_next].data, 678 length); 679 } else { 680 /* There was an error. 681 */ 682 printf ("RX error status = 0x%08X\n", status); 683 } 684 685 rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S); 686 rx_ring[rx_next].status = 0; 687 rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16); 688 689 rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC; 690 rx_ring[rx_prev].control = 0; 691 692 /* Update entry information. 693 */ 694 rx_next = (rx_next + 1) % NUM_RX_DESC; 695 } 696 697 if (stat & SCB_STATUS_RNR) { 698 699 printf ("%s: Receiver is not ready, restart it !\n", dev->name); 700 701 /* Reinitialize Rx ring. 702 */ 703 init_rx_ring (dev); 704 705 if (!wait_for_eepro100 (dev)) { 706 printf ("Error: Can not restart ethernet controller.\n"); 707 goto Done; 708 } 709 710 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer); 711 OUTW (dev, SCB_M | RUC_START, SCBCmd); 712 } 713 714 Done: 715 return length; 716 } 717 718 static void eepro100_halt (struct eth_device *dev) 719 { 720 /* Reset the ethernet controller 721 */ 722 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort); 723 udelay (20); 724 725 OUTL (dev, I82559_RESET, SCBPort); 726 udelay (20); 727 728 if (!wait_for_eepro100 (dev)) { 729 printf ("Error: Can not reset ethernet controller.\n"); 730 goto Done; 731 } 732 OUTL (dev, 0, SCBPointer); 733 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd); 734 735 if (!wait_for_eepro100 (dev)) { 736 printf ("Error: Can not reset ethernet controller.\n"); 737 goto Done; 738 } 739 OUTL (dev, 0, SCBPointer); 740 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd); 741 742 Done: 743 return; 744 } 745 746 /* SROM Read. 747 */ 748 static int read_eeprom (struct eth_device *dev, int location, int addr_len) 749 { 750 unsigned short retval = 0; 751 int read_cmd = location | EE_READ_CMD; 752 int i; 753 754 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom); 755 OUTW (dev, EE_ENB, SCBeeprom); 756 757 /* Shift the read command bits out. */ 758 for (i = 12; i >= 0; i--) { 759 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; 760 761 OUTW (dev, EE_ENB | dataval, SCBeeprom); 762 udelay (1); 763 OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom); 764 udelay (1); 765 } 766 OUTW (dev, EE_ENB, SCBeeprom); 767 768 for (i = 15; i >= 0; i--) { 769 OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom); 770 udelay (1); 771 retval = (retval << 1) | 772 ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0); 773 OUTW (dev, EE_ENB, SCBeeprom); 774 udelay (1); 775 } 776 777 /* Terminate the EEPROM access. */ 778 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom); 779 return retval; 780 } 781 782 #ifdef CONFIG_EEPRO100_SROM_WRITE 783 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data) 784 { 785 unsigned short dataval; 786 int enable_cmd = 0x3f | EE_EWENB_CMD; 787 int write_cmd = location | EE_WRITE_CMD; 788 int i; 789 unsigned long datalong, tmplong; 790 791 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); 792 udelay(1); 793 OUTW(dev, EE_ENB, SCBeeprom); 794 795 /* Shift the enable command bits out. */ 796 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--) 797 { 798 dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0; 799 OUTW(dev, EE_ENB | dataval, SCBeeprom); 800 udelay(1); 801 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom); 802 udelay(1); 803 } 804 805 OUTW(dev, EE_ENB, SCBeeprom); 806 udelay(1); 807 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); 808 udelay(1); 809 OUTW(dev, EE_ENB, SCBeeprom); 810 811 812 /* Shift the write command bits out. */ 813 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--) 814 { 815 dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0; 816 OUTW(dev, EE_ENB | dataval, SCBeeprom); 817 udelay(1); 818 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom); 819 udelay(1); 820 } 821 822 /* Write the data */ 823 datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8)); 824 825 for (i = 0; i< EE_DATA_BITS; i++) 826 { 827 /* Extract and move data bit to bit DI */ 828 dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0; 829 830 OUTW(dev, EE_ENB | dataval, SCBeeprom); 831 udelay(1); 832 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom); 833 udelay(1); 834 OUTW(dev, EE_ENB | dataval, SCBeeprom); 835 udelay(1); 836 837 datalong = datalong << 1; /* Adjust significant data bit*/ 838 } 839 840 /* Finish up command (toggle CS) */ 841 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); 842 udelay(1); /* delay for more than 250 ns */ 843 OUTW(dev, EE_ENB, SCBeeprom); 844 845 /* Wait for programming ready (D0 = 1) */ 846 tmplong = 10; 847 do 848 { 849 dataval = INW(dev, SCBeeprom); 850 if (dataval & EE_DATA_READ) 851 break; 852 udelay(10000); 853 } 854 while (-- tmplong); 855 856 if (tmplong == 0) 857 { 858 printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n"); 859 return -1; 860 } 861 862 /* Terminate the EEPROM access. */ 863 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); 864 865 return 0; 866 } 867 #endif 868 869 static void init_rx_ring (struct eth_device *dev) 870 { 871 int i; 872 873 for (i = 0; i < NUM_RX_DESC; i++) { 874 rx_ring[i].status = 0; 875 rx_ring[i].control = 876 (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0; 877 rx_ring[i].link = 878 cpu_to_le32 (phys_to_bus 879 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC])); 880 rx_ring[i].rx_buf_addr = 0xffffffff; 881 rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16); 882 } 883 884 rx_next = 0; 885 } 886 887 static void purge_tx_ring (struct eth_device *dev) 888 { 889 int i; 890 891 tx_next = 0; 892 tx_threshold = 0x01208000; 893 894 for (i = 0; i < NUM_TX_DESC; i++) { 895 tx_ring[i].status = 0; 896 tx_ring[i].command = 0; 897 tx_ring[i].link = 0; 898 tx_ring[i].tx_desc_addr = 0; 899 tx_ring[i].count = 0; 900 901 tx_ring[i].tx_buf_addr0 = 0; 902 tx_ring[i].tx_buf_size0 = 0; 903 tx_ring[i].tx_buf_addr1 = 0; 904 tx_ring[i].tx_buf_size1 = 0; 905 } 906 } 907 908 static void read_hw_addr (struct eth_device *dev, bd_t * bis) 909 { 910 u16 sum = 0; 911 int i, j; 912 int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6; 913 914 for (j = 0, i = 0; i < 0x40; i++) { 915 u16 value = read_eeprom (dev, i, addr_len); 916 917 sum += value; 918 if (i < 3) { 919 dev->enetaddr[j++] = value; 920 dev->enetaddr[j++] = value >> 8; 921 } 922 } 923 924 if (sum != 0xBABA) { 925 memset (dev->enetaddr, 0, ETH_ALEN); 926 #ifdef DEBUG 927 printf ("%s: Invalid EEPROM checksum %#4.4x, " 928 "check settings before activating this device!\n", 929 dev->name, sum); 930 #endif 931 } 932 } 933