xref: /openbmc/u-boot/drivers/net/eepro100.c (revision 51cb23d4)
1 /*
2  * (C) Copyright 2002
3  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 #include <malloc.h>
10 #include <net.h>
11 #include <netdev.h>
12 #include <asm/io.h>
13 #include <pci.h>
14 #include <miiphy.h>
15 
16 #undef DEBUG
17 
18 	/* Ethernet chip registers.
19 	 */
20 #define SCBStatus		0	/* Rx/Command Unit Status *Word* */
21 #define SCBIntAckByte		1	/* Rx/Command Unit STAT/ACK byte */
22 #define SCBCmd			2	/* Rx/Command Unit Command *Word* */
23 #define SCBIntrCtlByte		3	/* Rx/Command Unit Intr.Control Byte */
24 #define SCBPointer		4	/* General purpose pointer. */
25 #define SCBPort			8	/* Misc. commands and operands. */
26 #define SCBflash		12	/* Flash memory control. */
27 #define SCBeeprom		14	/* EEPROM memory control. */
28 #define SCBCtrlMDI		16	/* MDI interface control. */
29 #define SCBEarlyRx		20	/* Early receive byte count. */
30 #define SCBGenControl		28	/* 82559 General Control Register */
31 #define SCBGenStatus		29	/* 82559 General Status register */
32 
33 	/* 82559 SCB status word defnitions
34 	 */
35 #define SCB_STATUS_CX		0x8000	/* CU finished command (transmit) */
36 #define SCB_STATUS_FR		0x4000	/* frame received */
37 #define SCB_STATUS_CNA		0x2000	/* CU left active state */
38 #define SCB_STATUS_RNR		0x1000	/* receiver left ready state */
39 #define SCB_STATUS_MDI		0x0800	/* MDI read/write cycle done */
40 #define SCB_STATUS_SWI		0x0400	/* software generated interrupt */
41 #define SCB_STATUS_FCP		0x0100	/* flow control pause interrupt */
42 
43 #define SCB_INTACK_MASK		0xFD00	/* all the above */
44 
45 #define SCB_INTACK_TX		(SCB_STATUS_CX | SCB_STATUS_CNA)
46 #define SCB_INTACK_RX		(SCB_STATUS_FR | SCB_STATUS_RNR)
47 
48 	/* System control block commands
49 	 */
50 /* CU Commands */
51 #define CU_NOP			0x0000
52 #define CU_START		0x0010
53 #define CU_RESUME		0x0020
54 #define CU_STATSADDR		0x0040	/* Load Dump Statistics ctrs addr */
55 #define CU_SHOWSTATS		0x0050	/* Dump statistics counters. */
56 #define CU_ADDR_LOAD		0x0060	/* Base address to add to CU commands */
57 #define CU_DUMPSTATS		0x0070	/* Dump then reset stats counters. */
58 
59 /* RUC Commands */
60 #define RUC_NOP			0x0000
61 #define RUC_START		0x0001
62 #define RUC_RESUME		0x0002
63 #define RUC_ABORT		0x0004
64 #define RUC_ADDR_LOAD		0x0006	/* (seems not to clear on acceptance) */
65 #define RUC_RESUMENR		0x0007
66 
67 #define CU_CMD_MASK		0x00f0
68 #define RU_CMD_MASK		0x0007
69 
70 #define SCB_M			0x0100	/* 0 = enable interrupt, 1 = disable */
71 #define SCB_SWI			0x0200	/* 1 - cause device to interrupt */
72 
73 #define CU_STATUS_MASK		0x00C0
74 #define RU_STATUS_MASK		0x003C
75 
76 #define RU_STATUS_IDLE		(0<<2)
77 #define RU_STATUS_SUS		(1<<2)
78 #define RU_STATUS_NORES		(2<<2)
79 #define RU_STATUS_READY		(4<<2)
80 #define RU_STATUS_NO_RBDS_SUS	((1<<2)|(8<<2))
81 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
82 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
83 
84 	/* 82559 Port interface commands.
85 	 */
86 #define I82559_RESET		0x00000000	/* Software reset */
87 #define I82559_SELFTEST		0x00000001	/* 82559 Selftest command */
88 #define I82559_SELECTIVE_RESET	0x00000002
89 #define I82559_DUMP		0x00000003
90 #define I82559_DUMP_WAKEUP	0x00000007
91 
92 	/* 82559 Eeprom interface.
93 	 */
94 #define EE_SHIFT_CLK		0x01	/* EEPROM shift clock. */
95 #define EE_CS			0x02	/* EEPROM chip select. */
96 #define EE_DATA_WRITE		0x04	/* EEPROM chip data in. */
97 #define EE_WRITE_0		0x01
98 #define EE_WRITE_1		0x05
99 #define EE_DATA_READ		0x08	/* EEPROM chip data out. */
100 #define EE_ENB			(0x4800 | EE_CS)
101 #define EE_CMD_BITS		3
102 #define EE_DATA_BITS		16
103 
104 	/* The EEPROM commands include the alway-set leading bit.
105 	 */
106 #define EE_EWENB_CMD		(4 << addr_len)
107 #define EE_WRITE_CMD		(5 << addr_len)
108 #define EE_READ_CMD		(6 << addr_len)
109 #define EE_ERASE_CMD		(7 << addr_len)
110 
111 	/* Receive frame descriptors.
112 	 */
113 struct RxFD {
114 	volatile u16 status;
115 	volatile u16 control;
116 	volatile u32 link;		/* struct RxFD * */
117 	volatile u32 rx_buf_addr;	/* void * */
118 	volatile u32 count;
119 
120 	volatile u8 data[PKTSIZE_ALIGN];
121 };
122 
123 #define RFD_STATUS_C		0x8000	/* completion of received frame */
124 #define RFD_STATUS_OK		0x2000	/* frame received with no errors */
125 
126 #define RFD_CONTROL_EL		0x8000	/* 1=last RFD in RFA */
127 #define RFD_CONTROL_S		0x4000	/* 1=suspend RU after receiving frame */
128 #define RFD_CONTROL_H		0x0010	/* 1=RFD is a header RFD */
129 #define RFD_CONTROL_SF		0x0008	/* 0=simplified, 1=flexible mode */
130 
131 #define RFD_COUNT_MASK		0x3fff
132 #define RFD_COUNT_F		0x4000
133 #define RFD_COUNT_EOF		0x8000
134 
135 #define RFD_RX_CRC		0x0800	/* crc error */
136 #define RFD_RX_ALIGNMENT	0x0400	/* alignment error */
137 #define RFD_RX_RESOURCE		0x0200	/* out of space, no resources */
138 #define RFD_RX_DMA_OVER		0x0100	/* DMA overrun */
139 #define RFD_RX_SHORT		0x0080	/* short frame error */
140 #define RFD_RX_LENGTH		0x0020
141 #define RFD_RX_ERROR		0x0010	/* receive error */
142 #define RFD_RX_NO_ADR_MATCH	0x0004	/* no address match */
143 #define RFD_RX_IA_MATCH		0x0002	/* individual address does not match */
144 #define RFD_RX_TCO		0x0001	/* TCO indication */
145 
146 	/* Transmit frame descriptors
147 	 */
148 struct TxFD {				/* Transmit frame descriptor set. */
149 	volatile u16 status;
150 	volatile u16 command;
151 	volatile u32 link;		/* void * */
152 	volatile u32 tx_desc_addr;	/* Always points to the tx_buf_addr element. */
153 	volatile s32 count;
154 
155 	volatile u32 tx_buf_addr0;	/* void *, frame to be transmitted.  */
156 	volatile s32 tx_buf_size0;	/* Length of Tx frame. */
157 	volatile u32 tx_buf_addr1;	/* void *, frame to be transmitted.  */
158 	volatile s32 tx_buf_size1;	/* Length of Tx frame. */
159 };
160 
161 #define TxCB_CMD_TRANSMIT	0x0004	/* transmit command */
162 #define TxCB_CMD_SF		0x0008	/* 0=simplified, 1=flexible mode */
163 #define TxCB_CMD_NC		0x0010	/* 0=CRC insert by controller */
164 #define TxCB_CMD_I		0x2000	/* generate interrupt on completion */
165 #define TxCB_CMD_S		0x4000	/* suspend on completion */
166 #define TxCB_CMD_EL		0x8000	/* last command block in CBL */
167 
168 #define TxCB_COUNT_MASK		0x3fff
169 #define TxCB_COUNT_EOF		0x8000
170 
171 	/* The Speedo3 Rx and Tx frame/buffer descriptors.
172 	 */
173 struct descriptor {			/* A generic descriptor. */
174 	volatile u16 status;
175 	volatile u16 command;
176 	volatile u32 link;		/* struct descriptor *	*/
177 
178 	unsigned char params[0];
179 };
180 
181 #define CONFIG_SYS_CMD_EL		0x8000
182 #define CONFIG_SYS_CMD_SUSPEND		0x4000
183 #define CONFIG_SYS_CMD_INT		0x2000
184 #define CONFIG_SYS_CMD_IAS		0x0001	/* individual address setup */
185 #define CONFIG_SYS_CMD_CONFIGURE	0x0002	/* configure */
186 
187 #define CONFIG_SYS_STATUS_C		0x8000
188 #define CONFIG_SYS_STATUS_OK		0x2000
189 
190 	/* Misc.
191 	 */
192 #define NUM_RX_DESC		PKTBUFSRX
193 #define NUM_TX_DESC		1	/* Number of TX descriptors   */
194 
195 #define TOUT_LOOP		1000000
196 
197 #define ETH_ALEN		6
198 
199 static struct RxFD rx_ring[NUM_RX_DESC];	/* RX descriptor ring	      */
200 static struct TxFD tx_ring[NUM_TX_DESC];	/* TX descriptor ring	      */
201 static int rx_next;			/* RX descriptor ring pointer */
202 static int tx_next;			/* TX descriptor ring pointer */
203 static int tx_threshold;
204 
205 /*
206  * The parameters for a CmdConfigure operation.
207  * There are so many options that it would be difficult to document
208  * each bit. We mostly use the default or recommended settings.
209  */
210 static const char i82557_config_cmd[] = {
211 	22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1,	/* 1=Use MII  0=Use AUI */
212 	0, 0x2E, 0, 0x60, 0,
213 	0xf2, 0x48, 0, 0x40, 0xf2, 0x80,	/* 0x40=Force full-duplex */
214 	0x3f, 0x05,
215 };
216 static const char i82558_config_cmd[] = {
217 	22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1,	/* 1=Use MII  0=Use AUI */
218 	0, 0x2E, 0, 0x60, 0x08, 0x88,
219 	0x68, 0, 0x40, 0xf2, 0x84,		/* Disable FC */
220 	0x31, 0x05,
221 };
222 
223 static void init_rx_ring (struct eth_device *dev);
224 static void purge_tx_ring (struct eth_device *dev);
225 
226 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
227 
228 static int eepro100_init (struct eth_device *dev, bd_t * bis);
229 static int eepro100_send(struct eth_device *dev, void *packet, int length);
230 static int eepro100_recv (struct eth_device *dev);
231 static void eepro100_halt (struct eth_device *dev);
232 
233 #if defined(CONFIG_E500)
234 #define bus_to_phys(a) (a)
235 #define phys_to_bus(a) (a)
236 #else
237 #define bus_to_phys(a)	pci_mem_to_phys((pci_dev_t)dev->priv, a)
238 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
239 #endif
240 
241 static inline int INW (struct eth_device *dev, u_long addr)
242 {
243 	return le16_to_cpu(*(volatile u16 *)(addr + (u_long)dev->iobase));
244 }
245 
246 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
247 {
248 	*(volatile u16 *)((addr + (u_long)dev->iobase)) = cpu_to_le16(command);
249 }
250 
251 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
252 {
253 	*(volatile u32 *)((addr + (u_long)dev->iobase)) = cpu_to_le32(command);
254 }
255 
256 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
257 static inline int INL (struct eth_device *dev, u_long addr)
258 {
259 	return le32_to_cpu(*(volatile u32 *)(addr + (u_long)dev->iobase));
260 }
261 
262 static int get_phyreg (struct eth_device *dev, unsigned char addr,
263 		unsigned char reg, unsigned short *value)
264 {
265 	int cmd;
266 	int timeout = 50;
267 
268 	/* read requested data */
269 	cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
270 	OUTL (dev, cmd, SCBCtrlMDI);
271 
272 	do {
273 		udelay(1000);
274 		cmd = INL (dev, SCBCtrlMDI);
275 	} while (!(cmd & (1 << 28)) && (--timeout));
276 
277 	if (timeout == 0)
278 		return -1;
279 
280 	*value = (unsigned short) (cmd & 0xffff);
281 
282 	return 0;
283 }
284 
285 static int set_phyreg (struct eth_device *dev, unsigned char addr,
286 		unsigned char reg, unsigned short value)
287 {
288 	int cmd;
289 	int timeout = 50;
290 
291 	/* write requested data */
292 	cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
293 	OUTL (dev, cmd | value, SCBCtrlMDI);
294 
295 	while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
296 		udelay(1000);
297 
298 	if (timeout == 0)
299 		return -1;
300 
301 	return 0;
302 }
303 
304 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
305  * Do this by checking model value field from ID2 register.
306  */
307 static struct eth_device* verify_phyaddr (const char *devname,
308 						unsigned char addr)
309 {
310 	struct eth_device *dev;
311 	unsigned short value;
312 	unsigned char model;
313 
314 	dev = eth_get_dev_by_name(devname);
315 	if (dev == NULL) {
316 		printf("%s: no such device\n", devname);
317 		return NULL;
318 	}
319 
320 	/* read id2 register */
321 	if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
322 		printf("%s: mii read timeout!\n", devname);
323 		return NULL;
324 	}
325 
326 	/* get model */
327 	model = (unsigned char)((value >> 4) & 0x003f);
328 
329 	if (model == 0) {
330 		printf("%s: no PHY at address %d\n", devname, addr);
331 		return NULL;
332 	}
333 
334 	return dev;
335 }
336 
337 static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad,
338 				int reg)
339 {
340 	unsigned short value = 0;
341 	struct eth_device *dev;
342 
343 	dev = verify_phyaddr(bus->name, addr);
344 	if (dev == NULL)
345 		return -1;
346 
347 	if (get_phyreg(dev, addr, reg, &value) != 0) {
348 		printf("%s: mii read timeout!\n", bus->name);
349 		return -1;
350 	}
351 
352 	return value;
353 }
354 
355 static int eepro100_miiphy_write(struct mii_dev *bus, int addr, int devad,
356 				 int reg, u16 value)
357 {
358 	struct eth_device *dev;
359 
360 	dev = verify_phyaddr(bus->name, addr);
361 	if (dev == NULL)
362 		return -1;
363 
364 	if (set_phyreg(dev, addr, reg, value) != 0) {
365 		printf("%s: mii write timeout!\n", bus->name);
366 		return -1;
367 	}
368 
369 	return 0;
370 }
371 
372 #endif
373 
374 /* Wait for the chip get the command.
375 */
376 static int wait_for_eepro100 (struct eth_device *dev)
377 {
378 	int i;
379 
380 	for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
381 		if (i >= TOUT_LOOP) {
382 			return 0;
383 		}
384 	}
385 
386 	return 1;
387 }
388 
389 static struct pci_device_id supported[] = {
390 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
391 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
392 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
393 	{}
394 };
395 
396 int eepro100_initialize (bd_t * bis)
397 {
398 	pci_dev_t devno;
399 	int card_number = 0;
400 	struct eth_device *dev;
401 	u32 iobase, status;
402 	int idx = 0;
403 
404 	while (1) {
405 		/* Find PCI device
406 		 */
407 		if ((devno = pci_find_devices (supported, idx++)) < 0) {
408 			break;
409 		}
410 
411 		pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
412 		iobase &= ~0xf;
413 
414 #ifdef DEBUG
415 		printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
416 				iobase);
417 #endif
418 
419 		pci_write_config_dword (devno,
420 					PCI_COMMAND,
421 					PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
422 
423 		/* Check if I/O accesses and Bus Mastering are enabled.
424 		 */
425 		pci_read_config_dword (devno, PCI_COMMAND, &status);
426 		if (!(status & PCI_COMMAND_MEMORY)) {
427 			printf ("Error: Can not enable MEM access.\n");
428 			continue;
429 		}
430 
431 		if (!(status & PCI_COMMAND_MASTER)) {
432 			printf ("Error: Can not enable Bus Mastering.\n");
433 			continue;
434 		}
435 
436 		dev = (struct eth_device *) malloc (sizeof *dev);
437 		if (!dev) {
438 			printf("eepro100: Can not allocate memory\n");
439 			break;
440 		}
441 		memset(dev, 0, sizeof(*dev));
442 
443 		sprintf (dev->name, "i82559#%d", card_number);
444 		dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
445 		dev->iobase = bus_to_phys (iobase);
446 		dev->init = eepro100_init;
447 		dev->halt = eepro100_halt;
448 		dev->send = eepro100_send;
449 		dev->recv = eepro100_recv;
450 
451 		eth_register (dev);
452 
453 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
454 		/* register mii command access routines */
455 		int retval;
456 		struct mii_dev *mdiodev = mdio_alloc();
457 		if (!mdiodev)
458 			return -ENOMEM;
459 		strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
460 		mdiodev->read = eepro100_miiphy_read;
461 		mdiodev->write = eepro100_miiphy_write;
462 
463 		retval = mdio_register(mdiodev);
464 		if (retval < 0)
465 			return retval;
466 #endif
467 
468 		card_number++;
469 
470 		/* Set the latency timer for value.
471 		 */
472 		pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
473 
474 		udelay (10 * 1000);
475 
476 		read_hw_addr (dev, bis);
477 	}
478 
479 	return card_number;
480 }
481 
482 
483 static int eepro100_init (struct eth_device *dev, bd_t * bis)
484 {
485 	int i, status = -1;
486 	int tx_cur;
487 	struct descriptor *ias_cmd, *cfg_cmd;
488 
489 	/* Reset the ethernet controller
490 	 */
491 	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
492 	udelay (20);
493 
494 	OUTL (dev, I82559_RESET, SCBPort);
495 	udelay (20);
496 
497 	if (!wait_for_eepro100 (dev)) {
498 		printf ("Error: Can not reset ethernet controller.\n");
499 		goto Done;
500 	}
501 	OUTL (dev, 0, SCBPointer);
502 	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
503 
504 	if (!wait_for_eepro100 (dev)) {
505 		printf ("Error: Can not reset ethernet controller.\n");
506 		goto Done;
507 	}
508 	OUTL (dev, 0, SCBPointer);
509 	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
510 
511 	/* Initialize Rx and Tx rings.
512 	 */
513 	init_rx_ring (dev);
514 	purge_tx_ring (dev);
515 
516 	/* Tell the adapter where the RX ring is located.
517 	 */
518 	if (!wait_for_eepro100 (dev)) {
519 		printf ("Error: Can not reset ethernet controller.\n");
520 		goto Done;
521 	}
522 
523 	OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
524 	OUTW (dev, SCB_M | RUC_START, SCBCmd);
525 
526 	/* Send the Configure frame */
527 	tx_cur = tx_next;
528 	tx_next = ((tx_next + 1) % NUM_TX_DESC);
529 
530 	cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
531 	cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
532 	cfg_cmd->status = 0;
533 	cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
534 
535 	memcpy (cfg_cmd->params, i82558_config_cmd,
536 			sizeof (i82558_config_cmd));
537 
538 	if (!wait_for_eepro100 (dev)) {
539 		printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
540 		goto Done;
541 	}
542 
543 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
544 	OUTW (dev, SCB_M | CU_START, SCBCmd);
545 
546 	for (i = 0;
547 	     !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
548 	     i++) {
549 		if (i >= TOUT_LOOP) {
550 			printf ("%s: Tx error buffer not ready\n", dev->name);
551 			goto Done;
552 		}
553 	}
554 
555 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
556 		printf ("TX error status = 0x%08X\n",
557 			le16_to_cpu (tx_ring[tx_cur].status));
558 		goto Done;
559 	}
560 
561 	/* Send the Individual Address Setup frame
562 	 */
563 	tx_cur = tx_next;
564 	tx_next = ((tx_next + 1) % NUM_TX_DESC);
565 
566 	ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
567 	ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
568 	ias_cmd->status = 0;
569 	ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
570 
571 	memcpy (ias_cmd->params, dev->enetaddr, 6);
572 
573 	/* Tell the adapter where the TX ring is located.
574 	 */
575 	if (!wait_for_eepro100 (dev)) {
576 		printf ("Error: Can not reset ethernet controller.\n");
577 		goto Done;
578 	}
579 
580 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
581 	OUTW (dev, SCB_M | CU_START, SCBCmd);
582 
583 	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
584 		 i++) {
585 		if (i >= TOUT_LOOP) {
586 			printf ("%s: Tx error buffer not ready\n",
587 				dev->name);
588 			goto Done;
589 		}
590 	}
591 
592 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
593 		printf ("TX error status = 0x%08X\n",
594 			le16_to_cpu (tx_ring[tx_cur].status));
595 		goto Done;
596 	}
597 
598 	status = 0;
599 
600   Done:
601 	return status;
602 }
603 
604 static int eepro100_send(struct eth_device *dev, void *packet, int length)
605 {
606 	int i, status = -1;
607 	int tx_cur;
608 
609 	if (length <= 0) {
610 		printf ("%s: bad packet size: %d\n", dev->name, length);
611 		goto Done;
612 	}
613 
614 	tx_cur = tx_next;
615 	tx_next = (tx_next + 1) % NUM_TX_DESC;
616 
617 	tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
618 						TxCB_CMD_SF	|
619 						TxCB_CMD_S	|
620 						TxCB_CMD_EL );
621 	tx_ring[tx_cur].status = 0;
622 	tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
623 	tx_ring[tx_cur].link =
624 		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
625 	tx_ring[tx_cur].tx_desc_addr =
626 		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
627 	tx_ring[tx_cur].tx_buf_addr0 =
628 		cpu_to_le32 (phys_to_bus ((u_long) packet));
629 	tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
630 
631 	if (!wait_for_eepro100 (dev)) {
632 		printf ("%s: Tx error ethernet controller not ready.\n",
633 				dev->name);
634 		goto Done;
635 	}
636 
637 	/* Send the packet.
638 	 */
639 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
640 	OUTW (dev, SCB_M | CU_START, SCBCmd);
641 
642 	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
643 		 i++) {
644 		if (i >= TOUT_LOOP) {
645 			printf ("%s: Tx error buffer not ready\n", dev->name);
646 			goto Done;
647 		}
648 	}
649 
650 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
651 		printf ("TX error status = 0x%08X\n",
652 			le16_to_cpu (tx_ring[tx_cur].status));
653 		goto Done;
654 	}
655 
656 	status = length;
657 
658   Done:
659 	return status;
660 }
661 
662 static int eepro100_recv (struct eth_device *dev)
663 {
664 	u16 status, stat;
665 	int rx_prev, length = 0;
666 
667 	stat = INW (dev, SCBStatus);
668 	OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
669 
670 	for (;;) {
671 		status = le16_to_cpu (rx_ring[rx_next].status);
672 
673 		if (!(status & RFD_STATUS_C)) {
674 			break;
675 		}
676 
677 		/* Valid frame status.
678 		 */
679 		if ((status & RFD_STATUS_OK)) {
680 			/* A valid frame received.
681 			 */
682 			length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
683 
684 			/* Pass the packet up to the protocol
685 			 * layers.
686 			 */
687 			net_process_received_packet((u8 *)rx_ring[rx_next].data,
688 						    length);
689 		} else {
690 			/* There was an error.
691 			 */
692 			printf ("RX error status = 0x%08X\n", status);
693 		}
694 
695 		rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
696 		rx_ring[rx_next].status = 0;
697 		rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
698 
699 		rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
700 		rx_ring[rx_prev].control = 0;
701 
702 		/* Update entry information.
703 		 */
704 		rx_next = (rx_next + 1) % NUM_RX_DESC;
705 	}
706 
707 	if (stat & SCB_STATUS_RNR) {
708 
709 		printf ("%s: Receiver is not ready, restart it !\n", dev->name);
710 
711 		/* Reinitialize Rx ring.
712 		 */
713 		init_rx_ring (dev);
714 
715 		if (!wait_for_eepro100 (dev)) {
716 			printf ("Error: Can not restart ethernet controller.\n");
717 			goto Done;
718 		}
719 
720 		OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
721 		OUTW (dev, SCB_M | RUC_START, SCBCmd);
722 	}
723 
724   Done:
725 	return length;
726 }
727 
728 static void eepro100_halt (struct eth_device *dev)
729 {
730 	/* Reset the ethernet controller
731 	 */
732 	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
733 	udelay (20);
734 
735 	OUTL (dev, I82559_RESET, SCBPort);
736 	udelay (20);
737 
738 	if (!wait_for_eepro100 (dev)) {
739 		printf ("Error: Can not reset ethernet controller.\n");
740 		goto Done;
741 	}
742 	OUTL (dev, 0, SCBPointer);
743 	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
744 
745 	if (!wait_for_eepro100 (dev)) {
746 		printf ("Error: Can not reset ethernet controller.\n");
747 		goto Done;
748 	}
749 	OUTL (dev, 0, SCBPointer);
750 	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
751 
752   Done:
753 	return;
754 }
755 
756 	/* SROM Read.
757 	 */
758 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
759 {
760 	unsigned short retval = 0;
761 	int read_cmd = location | EE_READ_CMD;
762 	int i;
763 
764 	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
765 	OUTW (dev, EE_ENB, SCBeeprom);
766 
767 	/* Shift the read command bits out. */
768 	for (i = 12; i >= 0; i--) {
769 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
770 
771 		OUTW (dev, EE_ENB | dataval, SCBeeprom);
772 		udelay (1);
773 		OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
774 		udelay (1);
775 	}
776 	OUTW (dev, EE_ENB, SCBeeprom);
777 
778 	for (i = 15; i >= 0; i--) {
779 		OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
780 		udelay (1);
781 		retval = (retval << 1) |
782 				((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
783 		OUTW (dev, EE_ENB, SCBeeprom);
784 		udelay (1);
785 	}
786 
787 	/* Terminate the EEPROM access. */
788 	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
789 	return retval;
790 }
791 
792 #ifdef CONFIG_EEPRO100_SROM_WRITE
793 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
794 {
795     unsigned short dataval;
796     int enable_cmd = 0x3f | EE_EWENB_CMD;
797     int write_cmd  = location | EE_WRITE_CMD;
798     int i;
799     unsigned long datalong, tmplong;
800 
801     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
802     udelay(1);
803     OUTW(dev, EE_ENB, SCBeeprom);
804 
805     /* Shift the enable command bits out. */
806     for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
807     {
808 	dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
809 	OUTW(dev, EE_ENB | dataval, SCBeeprom);
810 	udelay(1);
811 	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
812 	udelay(1);
813     }
814 
815     OUTW(dev, EE_ENB, SCBeeprom);
816     udelay(1);
817     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
818     udelay(1);
819     OUTW(dev, EE_ENB, SCBeeprom);
820 
821 
822     /* Shift the write command bits out. */
823     for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
824     {
825 	dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
826 	OUTW(dev, EE_ENB | dataval, SCBeeprom);
827 	udelay(1);
828 	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
829 	udelay(1);
830     }
831 
832     /* Write the data */
833     datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
834 
835     for (i = 0; i< EE_DATA_BITS; i++)
836     {
837     /* Extract and move data bit to bit DI */
838     dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
839 
840     OUTW(dev, EE_ENB | dataval, SCBeeprom);
841     udelay(1);
842     OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
843     udelay(1);
844     OUTW(dev, EE_ENB | dataval, SCBeeprom);
845     udelay(1);
846 
847     datalong = datalong << 1;	/* Adjust significant data bit*/
848     }
849 
850     /* Finish up command  (toggle CS) */
851     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
852     udelay(1);			/* delay for more than 250 ns */
853     OUTW(dev, EE_ENB, SCBeeprom);
854 
855     /* Wait for programming ready (D0 = 1) */
856     tmplong = 10;
857     do
858     {
859 	dataval = INW(dev, SCBeeprom);
860 	if (dataval & EE_DATA_READ)
861 	    break;
862 	udelay(10000);
863     }
864     while (-- tmplong);
865 
866     if (tmplong == 0)
867     {
868 	printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
869 	return -1;
870     }
871 
872     /* Terminate the EEPROM access. */
873     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
874 
875     return 0;
876 }
877 #endif
878 
879 static void init_rx_ring (struct eth_device *dev)
880 {
881 	int i;
882 
883 	for (i = 0; i < NUM_RX_DESC; i++) {
884 		rx_ring[i].status = 0;
885 		rx_ring[i].control =
886 				(i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
887 		rx_ring[i].link =
888 				cpu_to_le32 (phys_to_bus
889 							 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
890 		rx_ring[i].rx_buf_addr = 0xffffffff;
891 		rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
892 	}
893 
894 	rx_next = 0;
895 }
896 
897 static void purge_tx_ring (struct eth_device *dev)
898 {
899 	int i;
900 
901 	tx_next = 0;
902 	tx_threshold = 0x01208000;
903 
904 	for (i = 0; i < NUM_TX_DESC; i++) {
905 		tx_ring[i].status = 0;
906 		tx_ring[i].command = 0;
907 		tx_ring[i].link = 0;
908 		tx_ring[i].tx_desc_addr = 0;
909 		tx_ring[i].count = 0;
910 
911 		tx_ring[i].tx_buf_addr0 = 0;
912 		tx_ring[i].tx_buf_size0 = 0;
913 		tx_ring[i].tx_buf_addr1 = 0;
914 		tx_ring[i].tx_buf_size1 = 0;
915 	}
916 }
917 
918 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
919 {
920 	u16 sum = 0;
921 	int i, j;
922 	int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
923 
924 	for (j = 0, i = 0; i < 0x40; i++) {
925 		u16 value = read_eeprom (dev, i, addr_len);
926 
927 		sum += value;
928 		if (i < 3) {
929 			dev->enetaddr[j++] = value;
930 			dev->enetaddr[j++] = value >> 8;
931 		}
932 	}
933 
934 	if (sum != 0xBABA) {
935 		memset (dev->enetaddr, 0, ETH_ALEN);
936 #ifdef DEBUG
937 		printf ("%s: Invalid EEPROM checksum %#4.4x, "
938 			"check settings before activating this device!\n",
939 			dev->name, sum);
940 #endif
941 	}
942 }
943