xref: /openbmc/u-boot/drivers/net/eepro100.c (revision 461fa68d)
1 /*
2  * (C) Copyright 2002
3  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4  *
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <asm/io.h>
28 #include <pci.h>
29 #include <miiphy.h>
30 
31 #undef DEBUG
32 
33 	/* Ethernet chip registers.
34 	 */
35 #define SCBStatus		0	/* Rx/Command Unit Status *Word* */
36 #define SCBIntAckByte		1	/* Rx/Command Unit STAT/ACK byte */
37 #define SCBCmd			2	/* Rx/Command Unit Command *Word* */
38 #define SCBIntrCtlByte		3	/* Rx/Command Unit Intr.Control Byte */
39 #define SCBPointer		4	/* General purpose pointer. */
40 #define SCBPort			8	/* Misc. commands and operands. */
41 #define SCBflash		12	/* Flash memory control. */
42 #define SCBeeprom		14	/* EEPROM memory control. */
43 #define SCBCtrlMDI		16	/* MDI interface control. */
44 #define SCBEarlyRx		20	/* Early receive byte count. */
45 #define SCBGenControl		28	/* 82559 General Control Register */
46 #define SCBGenStatus		29	/* 82559 General Status register */
47 
48 	/* 82559 SCB status word defnitions
49 	 */
50 #define SCB_STATUS_CX		0x8000	/* CU finished command (transmit) */
51 #define SCB_STATUS_FR		0x4000	/* frame received */
52 #define SCB_STATUS_CNA		0x2000	/* CU left active state */
53 #define SCB_STATUS_RNR		0x1000	/* receiver left ready state */
54 #define SCB_STATUS_MDI		0x0800	/* MDI read/write cycle done */
55 #define SCB_STATUS_SWI		0x0400	/* software generated interrupt */
56 #define SCB_STATUS_FCP		0x0100	/* flow control pause interrupt */
57 
58 #define SCB_INTACK_MASK		0xFD00	/* all the above */
59 
60 #define SCB_INTACK_TX		(SCB_STATUS_CX | SCB_STATUS_CNA)
61 #define SCB_INTACK_RX		(SCB_STATUS_FR | SCB_STATUS_RNR)
62 
63 	/* System control block commands
64 	 */
65 /* CU Commands */
66 #define CU_NOP			0x0000
67 #define CU_START		0x0010
68 #define CU_RESUME		0x0020
69 #define CU_STATSADDR		0x0040	/* Load Dump Statistics ctrs addr */
70 #define CU_SHOWSTATS		0x0050	/* Dump statistics counters. */
71 #define CU_ADDR_LOAD		0x0060	/* Base address to add to CU commands */
72 #define CU_DUMPSTATS		0x0070	/* Dump then reset stats counters. */
73 
74 /* RUC Commands */
75 #define RUC_NOP			0x0000
76 #define RUC_START		0x0001
77 #define RUC_RESUME		0x0002
78 #define RUC_ABORT		0x0004
79 #define RUC_ADDR_LOAD		0x0006	/* (seems not to clear on acceptance) */
80 #define RUC_RESUMENR		0x0007
81 
82 #define CU_CMD_MASK		0x00f0
83 #define RU_CMD_MASK		0x0007
84 
85 #define SCB_M			0x0100	/* 0 = enable interrupt, 1 = disable */
86 #define SCB_SWI			0x0200	/* 1 - cause device to interrupt */
87 
88 #define CU_STATUS_MASK		0x00C0
89 #define RU_STATUS_MASK		0x003C
90 
91 #define RU_STATUS_IDLE		(0<<2)
92 #define RU_STATUS_SUS		(1<<2)
93 #define RU_STATUS_NORES		(2<<2)
94 #define RU_STATUS_READY		(4<<2)
95 #define RU_STATUS_NO_RBDS_SUS	((1<<2)|(8<<2))
96 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
97 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
98 
99 	/* 82559 Port interface commands.
100 	 */
101 #define I82559_RESET		0x00000000	/* Software reset */
102 #define I82559_SELFTEST		0x00000001	/* 82559 Selftest command */
103 #define I82559_SELECTIVE_RESET	0x00000002
104 #define I82559_DUMP		0x00000003
105 #define I82559_DUMP_WAKEUP	0x00000007
106 
107 	/* 82559 Eeprom interface.
108 	 */
109 #define EE_SHIFT_CLK		0x01	/* EEPROM shift clock. */
110 #define EE_CS			0x02	/* EEPROM chip select. */
111 #define EE_DATA_WRITE		0x04	/* EEPROM chip data in. */
112 #define EE_WRITE_0		0x01
113 #define EE_WRITE_1		0x05
114 #define EE_DATA_READ		0x08	/* EEPROM chip data out. */
115 #define EE_ENB			(0x4800 | EE_CS)
116 #define EE_CMD_BITS		3
117 #define EE_DATA_BITS		16
118 
119 	/* The EEPROM commands include the alway-set leading bit.
120 	 */
121 #define EE_EWENB_CMD		(4 << addr_len)
122 #define EE_WRITE_CMD		(5 << addr_len)
123 #define EE_READ_CMD		(6 << addr_len)
124 #define EE_ERASE_CMD		(7 << addr_len)
125 
126 	/* Receive frame descriptors.
127 	 */
128 struct RxFD {
129 	volatile u16 status;
130 	volatile u16 control;
131 	volatile u32 link;		/* struct RxFD * */
132 	volatile u32 rx_buf_addr;	/* void * */
133 	volatile u32 count;
134 
135 	volatile u8 data[PKTSIZE_ALIGN];
136 };
137 
138 #define RFD_STATUS_C		0x8000	/* completion of received frame */
139 #define RFD_STATUS_OK		0x2000	/* frame received with no errors */
140 
141 #define RFD_CONTROL_EL		0x8000	/* 1=last RFD in RFA */
142 #define RFD_CONTROL_S		0x4000	/* 1=suspend RU after receiving frame */
143 #define RFD_CONTROL_H		0x0010	/* 1=RFD is a header RFD */
144 #define RFD_CONTROL_SF		0x0008	/* 0=simplified, 1=flexible mode */
145 
146 #define RFD_COUNT_MASK		0x3fff
147 #define RFD_COUNT_F		0x4000
148 #define RFD_COUNT_EOF		0x8000
149 
150 #define RFD_RX_CRC		0x0800	/* crc error */
151 #define RFD_RX_ALIGNMENT	0x0400	/* alignment error */
152 #define RFD_RX_RESOURCE		0x0200	/* out of space, no resources */
153 #define RFD_RX_DMA_OVER		0x0100	/* DMA overrun */
154 #define RFD_RX_SHORT		0x0080	/* short frame error */
155 #define RFD_RX_LENGTH		0x0020
156 #define RFD_RX_ERROR		0x0010	/* receive error */
157 #define RFD_RX_NO_ADR_MATCH	0x0004	/* no address match */
158 #define RFD_RX_IA_MATCH		0x0002	/* individual address does not match */
159 #define RFD_RX_TCO		0x0001	/* TCO indication */
160 
161 	/* Transmit frame descriptors
162 	 */
163 struct TxFD {				/* Transmit frame descriptor set. */
164 	volatile u16 status;
165 	volatile u16 command;
166 	volatile u32 link;		/* void * */
167 	volatile u32 tx_desc_addr;	/* Always points to the tx_buf_addr element. */
168 	volatile s32 count;
169 
170 	volatile u32 tx_buf_addr0;	/* void *, frame to be transmitted.  */
171 	volatile s32 tx_buf_size0;	/* Length of Tx frame. */
172 	volatile u32 tx_buf_addr1;	/* void *, frame to be transmitted.  */
173 	volatile s32 tx_buf_size1;	/* Length of Tx frame. */
174 };
175 
176 #define TxCB_CMD_TRANSMIT	0x0004	/* transmit command */
177 #define TxCB_CMD_SF		0x0008	/* 0=simplified, 1=flexible mode */
178 #define TxCB_CMD_NC		0x0010	/* 0=CRC insert by controller */
179 #define TxCB_CMD_I		0x2000	/* generate interrupt on completion */
180 #define TxCB_CMD_S		0x4000	/* suspend on completion */
181 #define TxCB_CMD_EL		0x8000	/* last command block in CBL */
182 
183 #define TxCB_COUNT_MASK		0x3fff
184 #define TxCB_COUNT_EOF		0x8000
185 
186 	/* The Speedo3 Rx and Tx frame/buffer descriptors.
187 	 */
188 struct descriptor {			/* A generic descriptor. */
189 	volatile u16 status;
190 	volatile u16 command;
191 	volatile u32 link;		/* struct descriptor *	*/
192 
193 	unsigned char params[0];
194 };
195 
196 #define CFG_CMD_EL		0x8000
197 #define CFG_CMD_SUSPEND		0x4000
198 #define CFG_CMD_INT		0x2000
199 #define CFG_CMD_IAS		0x0001	/* individual address setup */
200 #define CFG_CMD_CONFIGURE	0x0002	/* configure */
201 
202 #define CFG_STATUS_C		0x8000
203 #define CFG_STATUS_OK		0x2000
204 
205 	/* Misc.
206 	 */
207 #define NUM_RX_DESC		PKTBUFSRX
208 #define NUM_TX_DESC		1	/* Number of TX descriptors   */
209 
210 #define TOUT_LOOP		1000000
211 
212 #define ETH_ALEN		6
213 
214 static struct RxFD rx_ring[NUM_RX_DESC];	/* RX descriptor ring	      */
215 static struct TxFD tx_ring[NUM_TX_DESC];	/* TX descriptor ring	      */
216 static int rx_next;			/* RX descriptor ring pointer */
217 static int tx_next;			/* TX descriptor ring pointer */
218 static int tx_threshold;
219 
220 /*
221  * The parameters for a CmdConfigure operation.
222  * There are so many options that it would be difficult to document
223  * each bit. We mostly use the default or recommended settings.
224  */
225 static const char i82557_config_cmd[] = {
226 	22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1,	/* 1=Use MII  0=Use AUI */
227 	0, 0x2E, 0, 0x60, 0,
228 	0xf2, 0x48, 0, 0x40, 0xf2, 0x80,	/* 0x40=Force full-duplex */
229 	0x3f, 0x05,
230 };
231 static const char i82558_config_cmd[] = {
232 	22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1,	/* 1=Use MII  0=Use AUI */
233 	0, 0x2E, 0, 0x60, 0x08, 0x88,
234 	0x68, 0, 0x40, 0xf2, 0x84,		/* Disable FC */
235 	0x31, 0x05,
236 };
237 
238 static void init_rx_ring (struct eth_device *dev);
239 static void purge_tx_ring (struct eth_device *dev);
240 
241 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
242 
243 static int eepro100_init (struct eth_device *dev, bd_t * bis);
244 static int eepro100_send (struct eth_device *dev, volatile void *packet,
245 						  int length);
246 static int eepro100_recv (struct eth_device *dev);
247 static void eepro100_halt (struct eth_device *dev);
248 
249 #if defined(CONFIG_E500) || defined(CONFIG_DB64360) || defined(CONFIG_DB64460)
250 #define bus_to_phys(a) (a)
251 #define phys_to_bus(a) (a)
252 #else
253 #define bus_to_phys(a)	pci_mem_to_phys((pci_dev_t)dev->priv, a)
254 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
255 #endif
256 
257 static inline int INW (struct eth_device *dev, u_long addr)
258 {
259 	return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
260 }
261 
262 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
263 {
264 	*(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
265 }
266 
267 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
268 {
269 	*(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
270 }
271 
272 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
273 static inline int INL (struct eth_device *dev, u_long addr)
274 {
275 	return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
276 }
277 
278 static int get_phyreg (struct eth_device *dev, unsigned char addr,
279 		unsigned char reg, unsigned short *value)
280 {
281 	int cmd;
282 	int timeout = 50;
283 
284 	/* read requested data */
285 	cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
286 	OUTL (dev, cmd, SCBCtrlMDI);
287 
288 	do {
289 		udelay(1000);
290 		cmd = INL (dev, SCBCtrlMDI);
291 	} while (!(cmd & (1 << 28)) && (--timeout));
292 
293 	if (timeout == 0)
294 		return -1;
295 
296 	*value = (unsigned short) (cmd & 0xffff);
297 
298 	return 0;
299 }
300 
301 static int set_phyreg (struct eth_device *dev, unsigned char addr,
302 		unsigned char reg, unsigned short value)
303 {
304 	int cmd;
305 	int timeout = 50;
306 
307 	/* write requested data */
308 	cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
309 	OUTL (dev, cmd | value, SCBCtrlMDI);
310 
311 	while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
312 		udelay(1000);
313 
314 	if (timeout == 0)
315 		return -1;
316 
317 	return 0;
318 }
319 
320 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
321  * Do this by checking model value field from ID2 register.
322  */
323 static struct eth_device* verify_phyaddr (char *devname, unsigned char addr)
324 {
325 	struct eth_device *dev;
326 	unsigned short value;
327 	unsigned char model;
328 
329 	dev = eth_get_dev_by_name(devname);
330 	if (dev == NULL) {
331 		printf("%s: no such device\n", devname);
332 		return NULL;
333 	}
334 
335 	/* read id2 register */
336 	if (get_phyreg(dev, addr, PHY_PHYIDR2, &value) != 0) {
337 		printf("%s: mii read timeout!\n", devname);
338 		return NULL;
339 	}
340 
341 	/* get model */
342 	model = (unsigned char)((value >> 4) & 0x003f);
343 
344 	if (model == 0) {
345 		printf("%s: no PHY at address %d\n", devname, addr);
346 		return NULL;
347 	}
348 
349 	return dev;
350 }
351 
352 static int eepro100_miiphy_read (char *devname, unsigned char addr,
353 		unsigned char reg, unsigned short *value)
354 {
355 	struct eth_device *dev;
356 
357 	dev = verify_phyaddr(devname, addr);
358 	if (dev == NULL)
359 		return -1;
360 
361 	if (get_phyreg(dev, addr, reg, value) != 0) {
362 		printf("%s: mii read timeout!\n", devname);
363 		return -1;
364 	}
365 
366 	return 0;
367 }
368 
369 static int eepro100_miiphy_write (char *devname, unsigned char addr,
370 		unsigned char reg, unsigned short value)
371 {
372 	struct eth_device *dev;
373 
374 	dev = verify_phyaddr(devname, addr);
375 	if (dev == NULL)
376 		return -1;
377 
378 	if (set_phyreg(dev, addr, reg, value) != 0) {
379 		printf("%s: mii write timeout!\n", devname);
380 		return -1;
381 	}
382 
383 	return 0;
384 }
385 
386 #endif
387 
388 /* Wait for the chip get the command.
389 */
390 static int wait_for_eepro100 (struct eth_device *dev)
391 {
392 	int i;
393 
394 	for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
395 		if (i >= TOUT_LOOP) {
396 			return 0;
397 		}
398 	}
399 
400 	return 1;
401 }
402 
403 static struct pci_device_id supported[] = {
404 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
405 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
406 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
407 	{}
408 };
409 
410 int eepro100_initialize (bd_t * bis)
411 {
412 	pci_dev_t devno;
413 	int card_number = 0;
414 	struct eth_device *dev;
415 	u32 iobase, status;
416 	int idx = 0;
417 
418 	while (1) {
419 		/* Find PCI device
420 		 */
421 		if ((devno = pci_find_devices (supported, idx++)) < 0) {
422 			break;
423 		}
424 
425 		pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
426 		iobase &= ~0xf;
427 
428 #ifdef DEBUG
429 		printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
430 				iobase);
431 #endif
432 
433 		pci_write_config_dword (devno,
434 					PCI_COMMAND,
435 					PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
436 
437 		/* Check if I/O accesses and Bus Mastering are enabled.
438 		 */
439 		pci_read_config_dword (devno, PCI_COMMAND, &status);
440 		if (!(status & PCI_COMMAND_MEMORY)) {
441 			printf ("Error: Can not enable MEM access.\n");
442 			continue;
443 		}
444 
445 		if (!(status & PCI_COMMAND_MASTER)) {
446 			printf ("Error: Can not enable Bus Mastering.\n");
447 			continue;
448 		}
449 
450 		dev = (struct eth_device *) malloc (sizeof *dev);
451 
452 		sprintf (dev->name, "i82559#%d", card_number);
453 		dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
454 		dev->iobase = bus_to_phys (iobase);
455 		dev->init = eepro100_init;
456 		dev->halt = eepro100_halt;
457 		dev->send = eepro100_send;
458 		dev->recv = eepro100_recv;
459 
460 		eth_register (dev);
461 
462 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
463 		/* register mii command access routines */
464 		miiphy_register(dev->name,
465 				eepro100_miiphy_read, eepro100_miiphy_write);
466 #endif
467 
468 		card_number++;
469 
470 		/* Set the latency timer for value.
471 		 */
472 		pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
473 
474 		udelay (10 * 1000);
475 
476 		read_hw_addr (dev, bis);
477 	}
478 
479 	return card_number;
480 }
481 
482 
483 static int eepro100_init (struct eth_device *dev, bd_t * bis)
484 {
485 	int i, status = -1;
486 	int tx_cur;
487 	struct descriptor *ias_cmd, *cfg_cmd;
488 
489 	/* Reset the ethernet controller
490 	 */
491 	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
492 	udelay (20);
493 
494 	OUTL (dev, I82559_RESET, SCBPort);
495 	udelay (20);
496 
497 	if (!wait_for_eepro100 (dev)) {
498 		printf ("Error: Can not reset ethernet controller.\n");
499 		goto Done;
500 	}
501 	OUTL (dev, 0, SCBPointer);
502 	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
503 
504 	if (!wait_for_eepro100 (dev)) {
505 		printf ("Error: Can not reset ethernet controller.\n");
506 		goto Done;
507 	}
508 	OUTL (dev, 0, SCBPointer);
509 	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
510 
511 	/* Initialize Rx and Tx rings.
512 	 */
513 	init_rx_ring (dev);
514 	purge_tx_ring (dev);
515 
516 	/* Tell the adapter where the RX ring is located.
517 	 */
518 	if (!wait_for_eepro100 (dev)) {
519 		printf ("Error: Can not reset ethernet controller.\n");
520 		goto Done;
521 	}
522 
523 	OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
524 	OUTW (dev, SCB_M | RUC_START, SCBCmd);
525 
526 	/* Send the Configure frame */
527 	tx_cur = tx_next;
528 	tx_next = ((tx_next + 1) % NUM_TX_DESC);
529 
530 	cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
531 	cfg_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_CONFIGURE));
532 	cfg_cmd->status = 0;
533 	cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
534 
535 	memcpy (cfg_cmd->params, i82558_config_cmd,
536 			sizeof (i82558_config_cmd));
537 
538 	if (!wait_for_eepro100 (dev)) {
539 		printf ("Error---CFG_CMD_CONFIGURE: Can not reset ethernet controller.\n");
540 		goto Done;
541 	}
542 
543 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
544 	OUTW (dev, SCB_M | CU_START, SCBCmd);
545 
546 	for (i = 0;
547 	     !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
548 	     i++) {
549 		if (i >= TOUT_LOOP) {
550 			printf ("%s: Tx error buffer not ready\n", dev->name);
551 			goto Done;
552 		}
553 	}
554 
555 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
556 		printf ("TX error status = 0x%08X\n",
557 			le16_to_cpu (tx_ring[tx_cur].status));
558 		goto Done;
559 	}
560 
561 	/* Send the Individual Address Setup frame
562 	 */
563 	tx_cur = tx_next;
564 	tx_next = ((tx_next + 1) % NUM_TX_DESC);
565 
566 	ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
567 	ias_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_IAS));
568 	ias_cmd->status = 0;
569 	ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
570 
571 	memcpy (ias_cmd->params, dev->enetaddr, 6);
572 
573 	/* Tell the adapter where the TX ring is located.
574 	 */
575 	if (!wait_for_eepro100 (dev)) {
576 		printf ("Error: Can not reset ethernet controller.\n");
577 		goto Done;
578 	}
579 
580 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
581 	OUTW (dev, SCB_M | CU_START, SCBCmd);
582 
583 	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
584 		 i++) {
585 		if (i >= TOUT_LOOP) {
586 			printf ("%s: Tx error buffer not ready\n",
587 				dev->name);
588 			goto Done;
589 		}
590 	}
591 
592 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
593 		printf ("TX error status = 0x%08X\n",
594 			le16_to_cpu (tx_ring[tx_cur].status));
595 		goto Done;
596 	}
597 
598 	status = 0;
599 
600   Done:
601 	return status;
602 }
603 
604 static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
605 {
606 	int i, status = -1;
607 	int tx_cur;
608 
609 	if (length <= 0) {
610 		printf ("%s: bad packet size: %d\n", dev->name, length);
611 		goto Done;
612 	}
613 
614 	tx_cur = tx_next;
615 	tx_next = (tx_next + 1) % NUM_TX_DESC;
616 
617 	tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
618 						TxCB_CMD_SF	|
619 						TxCB_CMD_S	|
620 						TxCB_CMD_EL );
621 	tx_ring[tx_cur].status = 0;
622 	tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
623 	tx_ring[tx_cur].link =
624 		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
625 	tx_ring[tx_cur].tx_desc_addr =
626 		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
627 	tx_ring[tx_cur].tx_buf_addr0 =
628 		cpu_to_le32 (phys_to_bus ((u_long) packet));
629 	tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
630 
631 	if (!wait_for_eepro100 (dev)) {
632 		printf ("%s: Tx error ethernet controller not ready.\n",
633 				dev->name);
634 		goto Done;
635 	}
636 
637 	/* Send the packet.
638 	 */
639 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
640 	OUTW (dev, SCB_M | CU_START, SCBCmd);
641 
642 	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
643 		 i++) {
644 		if (i >= TOUT_LOOP) {
645 			printf ("%s: Tx error buffer not ready\n", dev->name);
646 			goto Done;
647 		}
648 	}
649 
650 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
651 		printf ("TX error status = 0x%08X\n",
652 			le16_to_cpu (tx_ring[tx_cur].status));
653 		goto Done;
654 	}
655 
656 	status = length;
657 
658   Done:
659 	return status;
660 }
661 
662 static int eepro100_recv (struct eth_device *dev)
663 {
664 	u16 status, stat;
665 	int rx_prev, length = 0;
666 
667 	stat = INW (dev, SCBStatus);
668 	OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
669 
670 	for (;;) {
671 		status = le16_to_cpu (rx_ring[rx_next].status);
672 
673 		if (!(status & RFD_STATUS_C)) {
674 			break;
675 		}
676 
677 		/* Valid frame status.
678 		 */
679 		if ((status & RFD_STATUS_OK)) {
680 			/* A valid frame received.
681 			 */
682 			length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
683 
684 			/* Pass the packet up to the protocol
685 			 * layers.
686 			 */
687 			NetReceive (rx_ring[rx_next].data, length);
688 		} else {
689 			/* There was an error.
690 			 */
691 			printf ("RX error status = 0x%08X\n", status);
692 		}
693 
694 		rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
695 		rx_ring[rx_next].status = 0;
696 		rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
697 
698 		rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
699 		rx_ring[rx_prev].control = 0;
700 
701 		/* Update entry information.
702 		 */
703 		rx_next = (rx_next + 1) % NUM_RX_DESC;
704 	}
705 
706 	if (stat & SCB_STATUS_RNR) {
707 
708 		printf ("%s: Receiver is not ready, restart it !\n", dev->name);
709 
710 		/* Reinitialize Rx ring.
711 		 */
712 		init_rx_ring (dev);
713 
714 		if (!wait_for_eepro100 (dev)) {
715 			printf ("Error: Can not restart ethernet controller.\n");
716 			goto Done;
717 		}
718 
719 		OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
720 		OUTW (dev, SCB_M | RUC_START, SCBCmd);
721 	}
722 
723   Done:
724 	return length;
725 }
726 
727 static void eepro100_halt (struct eth_device *dev)
728 {
729 	/* Reset the ethernet controller
730 	 */
731 	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
732 	udelay (20);
733 
734 	OUTL (dev, I82559_RESET, SCBPort);
735 	udelay (20);
736 
737 	if (!wait_for_eepro100 (dev)) {
738 		printf ("Error: Can not reset ethernet controller.\n");
739 		goto Done;
740 	}
741 	OUTL (dev, 0, SCBPointer);
742 	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
743 
744 	if (!wait_for_eepro100 (dev)) {
745 		printf ("Error: Can not reset ethernet controller.\n");
746 		goto Done;
747 	}
748 	OUTL (dev, 0, SCBPointer);
749 	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
750 
751   Done:
752 	return;
753 }
754 
755 	/* SROM Read.
756 	 */
757 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
758 {
759 	unsigned short retval = 0;
760 	int read_cmd = location | EE_READ_CMD;
761 	int i;
762 
763 	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
764 	OUTW (dev, EE_ENB, SCBeeprom);
765 
766 	/* Shift the read command bits out. */
767 	for (i = 12; i >= 0; i--) {
768 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
769 
770 		OUTW (dev, EE_ENB | dataval, SCBeeprom);
771 		udelay (1);
772 		OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
773 		udelay (1);
774 	}
775 	OUTW (dev, EE_ENB, SCBeeprom);
776 
777 	for (i = 15; i >= 0; i--) {
778 		OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
779 		udelay (1);
780 		retval = (retval << 1) |
781 				((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
782 		OUTW (dev, EE_ENB, SCBeeprom);
783 		udelay (1);
784 	}
785 
786 	/* Terminate the EEPROM access. */
787 	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
788 	return retval;
789 }
790 
791 #ifdef CONFIG_EEPRO100_SROM_WRITE
792 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
793 {
794     unsigned short dataval;
795     int enable_cmd = 0x3f | EE_EWENB_CMD;
796     int write_cmd  = location | EE_WRITE_CMD;
797     int i;
798     unsigned long datalong, tmplong;
799 
800     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
801     udelay(1);
802     OUTW(dev, EE_ENB, SCBeeprom);
803 
804     /* Shift the enable command bits out. */
805     for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
806     {
807 	dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
808 	OUTW(dev, EE_ENB | dataval, SCBeeprom);
809 	udelay(1);
810 	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
811 	udelay(1);
812     }
813 
814     OUTW(dev, EE_ENB, SCBeeprom);
815     udelay(1);
816     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
817     udelay(1);
818     OUTW(dev, EE_ENB, SCBeeprom);
819 
820 
821     /* Shift the write command bits out. */
822     for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
823     {
824 	dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
825 	OUTW(dev, EE_ENB | dataval, SCBeeprom);
826 	udelay(1);
827 	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
828 	udelay(1);
829     }
830 
831     /* Write the data */
832     datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
833 
834     for (i = 0; i< EE_DATA_BITS; i++)
835     {
836     /* Extract and move data bit to bit DI */
837     dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
838 
839     OUTW(dev, EE_ENB | dataval, SCBeeprom);
840     udelay(1);
841     OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
842     udelay(1);
843     OUTW(dev, EE_ENB | dataval, SCBeeprom);
844     udelay(1);
845 
846     datalong = datalong << 1;	/* Adjust significant data bit*/
847     }
848 
849     /* Finish up command  (toggle CS) */
850     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
851     udelay(1);			/* delay for more than 250 ns */
852     OUTW(dev, EE_ENB, SCBeeprom);
853 
854     /* Wait for programming ready (D0 = 1) */
855     tmplong = 10;
856     do
857     {
858 	dataval = INW(dev, SCBeeprom);
859 	if (dataval & EE_DATA_READ)
860 	    break;
861 	udelay(10000);
862     }
863     while (-- tmplong);
864 
865     if (tmplong == 0)
866     {
867 	printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
868 	return -1;
869     }
870 
871     /* Terminate the EEPROM access. */
872     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
873 
874     return 0;
875 }
876 #endif
877 
878 static void init_rx_ring (struct eth_device *dev)
879 {
880 	int i;
881 
882 	for (i = 0; i < NUM_RX_DESC; i++) {
883 		rx_ring[i].status = 0;
884 		rx_ring[i].control =
885 				(i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
886 		rx_ring[i].link =
887 				cpu_to_le32 (phys_to_bus
888 							 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
889 		rx_ring[i].rx_buf_addr = 0xffffffff;
890 		rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
891 	}
892 
893 	rx_next = 0;
894 }
895 
896 static void purge_tx_ring (struct eth_device *dev)
897 {
898 	int i;
899 
900 	tx_next = 0;
901 	tx_threshold = 0x01208000;
902 
903 	for (i = 0; i < NUM_TX_DESC; i++) {
904 		tx_ring[i].status = 0;
905 		tx_ring[i].command = 0;
906 		tx_ring[i].link = 0;
907 		tx_ring[i].tx_desc_addr = 0;
908 		tx_ring[i].count = 0;
909 
910 		tx_ring[i].tx_buf_addr0 = 0;
911 		tx_ring[i].tx_buf_size0 = 0;
912 		tx_ring[i].tx_buf_addr1 = 0;
913 		tx_ring[i].tx_buf_size1 = 0;
914 	}
915 }
916 
917 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
918 {
919 	u16 eeprom[0x40];
920 	u16 sum = 0;
921 	int i, j;
922 	int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
923 
924 	for (j = 0, i = 0; i < 0x40; i++) {
925 		u16 value = read_eeprom (dev, i, addr_len);
926 
927 		eeprom[i] = value;
928 		sum += value;
929 		if (i < 3) {
930 			dev->enetaddr[j++] = value;
931 			dev->enetaddr[j++] = value >> 8;
932 		}
933 	}
934 
935 	if (sum != 0xBABA) {
936 		memset (dev->enetaddr, 0, ETH_ALEN);
937 #ifdef DEBUG
938 		printf ("%s: Invalid EEPROM checksum %#4.4x, "
939 			"check settings before activating this device!\n",
940 			dev->name, sum);
941 #endif
942 	}
943 }
944