1 #include <common.h> 2 #include <console.h> 3 #include "e1000.h" 4 #include <linux/compiler.h> 5 6 /*----------------------------------------------------------------------- 7 * SPI transfer 8 * 9 * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks 10 * "bitlen" bits in the SPI MISO port. That's just the way SPI works. 11 * 12 * The source of the outgoing bits is the "dout" parameter and the 13 * destination of the input bits is the "din" parameter. Note that "dout" 14 * and "din" can point to the same memory location, in which case the 15 * input data overwrites the output data (since both are buffered by 16 * temporary variables, this is OK). 17 * 18 * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will 19 * never return an error. 20 */ 21 static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen, 22 const void *dout_mem, void *din_mem, bool intr) 23 { 24 const uint8_t *dout = dout_mem; 25 uint8_t *din = din_mem; 26 27 uint8_t mask = 0; 28 uint32_t eecd; 29 unsigned long i; 30 31 /* Pre-read the control register */ 32 eecd = E1000_READ_REG(hw, EECD); 33 34 /* Iterate over each bit */ 35 for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) { 36 /* Check for interrupt */ 37 if (intr && ctrlc()) 38 return -1; 39 40 /* Determine the output bit */ 41 if (dout && dout[i >> 3] & mask) 42 eecd |= E1000_EECD_DI; 43 else 44 eecd &= ~E1000_EECD_DI; 45 46 /* Write the output bit and wait 50us */ 47 E1000_WRITE_REG(hw, EECD, eecd); 48 E1000_WRITE_FLUSH(hw); 49 udelay(50); 50 51 /* Poke the clock (waits 50us) */ 52 e1000_raise_ee_clk(hw, &eecd); 53 54 /* Now read the input bit */ 55 eecd = E1000_READ_REG(hw, EECD); 56 if (din) { 57 if (eecd & E1000_EECD_DO) 58 din[i >> 3] |= mask; 59 else 60 din[i >> 3] &= ~mask; 61 } 62 63 /* Poke the clock again (waits 50us) */ 64 e1000_lower_ee_clk(hw, &eecd); 65 } 66 67 /* Now clear any remaining bits of the input */ 68 if (din && (i & 7)) 69 din[i >> 3] &= ~((mask << 1) - 1); 70 71 return 0; 72 } 73 74 #ifdef CONFIG_E1000_SPI_GENERIC 75 static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi) 76 { 77 return container_of(spi, struct e1000_hw, spi); 78 } 79 80 /* Not sure why all of these are necessary */ 81 void spi_init_r(void) { /* Nothing to do */ } 82 void spi_init_f(void) { /* Nothing to do */ } 83 void spi_init(void) { /* Nothing to do */ } 84 85 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, 86 unsigned int max_hz, unsigned int mode) 87 { 88 /* Find the right PCI device */ 89 struct e1000_hw *hw = e1000_find_card(bus); 90 if (!hw) { 91 printf("ERROR: No such e1000 device: e1000#%u\n", bus); 92 return NULL; 93 } 94 95 /* Make sure it has an SPI chip */ 96 if (hw->eeprom.type != e1000_eeprom_spi) { 97 E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); 98 return NULL; 99 } 100 101 /* Argument sanity checks */ 102 if (cs != 0) { 103 E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs); 104 return NULL; 105 } 106 if (mode != SPI_MODE_0) { 107 E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n"); 108 return NULL; 109 } 110 111 /* TODO: Use max_hz somehow */ 112 E1000_DBG(hw->nic, "EEPROM SPI access requested\n"); 113 return &hw->spi; 114 } 115 116 void spi_free_slave(struct spi_slave *spi) 117 { 118 __maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi); 119 E1000_DBG(hw->nic, "EEPROM SPI access released\n"); 120 } 121 122 int spi_claim_bus(struct spi_slave *spi) 123 { 124 struct e1000_hw *hw = e1000_hw_from_spi(spi); 125 126 if (e1000_acquire_eeprom(hw)) { 127 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); 128 return -1; 129 } 130 131 return 0; 132 } 133 134 void spi_release_bus(struct spi_slave *spi) 135 { 136 struct e1000_hw *hw = e1000_hw_from_spi(spi); 137 e1000_release_eeprom(hw); 138 } 139 140 /* Skinny wrapper around e1000_spi_xfer */ 141 int spi_xfer(struct spi_slave *spi, unsigned int bitlen, 142 const void *dout_mem, void *din_mem, unsigned long flags) 143 { 144 struct e1000_hw *hw = e1000_hw_from_spi(spi); 145 int ret; 146 147 if (flags & SPI_XFER_BEGIN) 148 e1000_standby_eeprom(hw); 149 150 ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, true); 151 152 if (flags & SPI_XFER_END) 153 e1000_standby_eeprom(hw); 154 155 return ret; 156 } 157 158 #endif /* not CONFIG_E1000_SPI_GENERIC */ 159 160 #ifdef CONFIG_CMD_E1000 161 162 /* The EEPROM opcodes */ 163 #define SPI_EEPROM_ENABLE_WR 0x06 164 #define SPI_EEPROM_DISABLE_WR 0x04 165 #define SPI_EEPROM_WRITE_STATUS 0x01 166 #define SPI_EEPROM_READ_STATUS 0x05 167 #define SPI_EEPROM_WRITE_PAGE 0x02 168 #define SPI_EEPROM_READ_PAGE 0x03 169 170 /* The EEPROM status bits */ 171 #define SPI_EEPROM_STATUS_BUSY 0x01 172 #define SPI_EEPROM_STATUS_WREN 0x02 173 174 static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, bool intr) 175 { 176 u8 op[] = { SPI_EEPROM_ENABLE_WR }; 177 e1000_standby_eeprom(hw); 178 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); 179 } 180 181 /* 182 * These have been tested to perform correctly, but they are not used by any 183 * of the EEPROM commands at this time. 184 */ 185 #if 0 186 static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, bool intr) 187 { 188 u8 op[] = { SPI_EEPROM_DISABLE_WR }; 189 e1000_standby_eeprom(hw); 190 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); 191 } 192 193 static int e1000_spi_eeprom_write_status(struct e1000_hw *hw, 194 u8 status, bool intr) 195 { 196 u8 op[] = { SPI_EEPROM_WRITE_STATUS, status }; 197 e1000_standby_eeprom(hw); 198 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); 199 } 200 #endif 201 202 static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, bool intr) 203 { 204 u8 op[] = { SPI_EEPROM_READ_STATUS, 0 }; 205 e1000_standby_eeprom(hw); 206 if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr)) 207 return -1; 208 return op[1]; 209 } 210 211 static int e1000_spi_eeprom_write_page(struct e1000_hw *hw, 212 const void *data, u16 off, u16 len, bool intr) 213 { 214 u8 op[] = { 215 SPI_EEPROM_WRITE_PAGE, 216 (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff 217 }; 218 219 e1000_standby_eeprom(hw); 220 221 if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) 222 return -1; 223 if (e1000_spi_xfer(hw, len << 3, data, NULL, intr)) 224 return -1; 225 226 return 0; 227 } 228 229 static int e1000_spi_eeprom_read_page(struct e1000_hw *hw, 230 void *data, u16 off, u16 len, bool intr) 231 { 232 u8 op[] = { 233 SPI_EEPROM_READ_PAGE, 234 (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff 235 }; 236 237 e1000_standby_eeprom(hw); 238 239 if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) 240 return -1; 241 if (e1000_spi_xfer(hw, len << 3, NULL, data, intr)) 242 return -1; 243 244 return 0; 245 } 246 247 static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, bool intr) 248 { 249 int status; 250 while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) { 251 if (!(status & SPI_EEPROM_STATUS_BUSY)) 252 return 0; 253 } 254 return -1; 255 } 256 257 static int e1000_spi_eeprom_dump(struct e1000_hw *hw, 258 void *data, u16 off, unsigned int len, bool intr) 259 { 260 /* Interruptibly wait for the EEPROM to be ready */ 261 if (e1000_spi_eeprom_poll_ready(hw, intr)) 262 return -1; 263 264 /* Dump each page in sequence */ 265 while (len) { 266 /* Calculate the data bytes on this page */ 267 u16 pg_off = off & (hw->eeprom.page_size - 1); 268 u16 pg_len = hw->eeprom.page_size - pg_off; 269 if (pg_len > len) 270 pg_len = len; 271 272 /* Now dump the page */ 273 if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr)) 274 return -1; 275 276 /* Otherwise go on to the next page */ 277 len -= pg_len; 278 off += pg_len; 279 data += pg_len; 280 } 281 282 /* We're done! */ 283 return 0; 284 } 285 286 static int e1000_spi_eeprom_program(struct e1000_hw *hw, 287 const void *data, u16 off, u16 len, bool intr) 288 { 289 /* Program each page in sequence */ 290 while (len) { 291 /* Calculate the data bytes on this page */ 292 u16 pg_off = off & (hw->eeprom.page_size - 1); 293 u16 pg_len = hw->eeprom.page_size - pg_off; 294 if (pg_len > len) 295 pg_len = len; 296 297 /* Interruptibly wait for the EEPROM to be ready */ 298 if (e1000_spi_eeprom_poll_ready(hw, intr)) 299 return -1; 300 301 /* Enable write access */ 302 if (e1000_spi_eeprom_enable_wr(hw, intr)) 303 return -1; 304 305 /* Now program the page */ 306 if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr)) 307 return -1; 308 309 /* Otherwise go on to the next page */ 310 len -= pg_len; 311 off += pg_len; 312 data += pg_len; 313 } 314 315 /* Wait for the last write to complete */ 316 if (e1000_spi_eeprom_poll_ready(hw, intr)) 317 return -1; 318 319 /* We're done! */ 320 return 0; 321 } 322 323 static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 324 int argc, char * const argv[]) 325 { 326 unsigned int length = 0; 327 u16 i, offset = 0; 328 u8 *buffer; 329 int err; 330 331 if (argc > 2) { 332 cmd_usage(cmdtp); 333 return 1; 334 } 335 336 /* Parse the offset and length */ 337 if (argc >= 1) 338 offset = simple_strtoul(argv[0], NULL, 0); 339 if (argc == 2) 340 length = simple_strtoul(argv[1], NULL, 0); 341 else if (offset < (hw->eeprom.word_size << 1)) 342 length = (hw->eeprom.word_size << 1) - offset; 343 344 /* Extra sanity checks */ 345 if (!length) { 346 E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); 347 return 1; 348 } 349 if ((0x10000 < length) || (0x10000 - length < offset)) { 350 E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); 351 return 1; 352 } 353 354 /* Allocate a buffer to hold stuff */ 355 buffer = malloc(length); 356 if (!buffer) { 357 E1000_ERR(hw->nic, "Out of Memory!\n"); 358 return 1; 359 } 360 361 /* Acquire the EEPROM and perform the dump */ 362 if (e1000_acquire_eeprom(hw)) { 363 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); 364 free(buffer); 365 return 1; 366 } 367 err = e1000_spi_eeprom_dump(hw, buffer, offset, length, true); 368 e1000_release_eeprom(hw); 369 if (err) { 370 E1000_ERR(hw->nic, "Interrupted!\n"); 371 free(buffer); 372 return 1; 373 } 374 375 /* Now hexdump the result */ 376 printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====", 377 hw->nic->name, offset, offset + length - 1); 378 for (i = 0; i < length; i++) { 379 if ((i & 0xF) == 0) 380 printf("\n%s: %04hX: ", hw->nic->name, offset + i); 381 else if ((i & 0xF) == 0x8) 382 printf(" "); 383 printf(" %02hx", buffer[i]); 384 } 385 printf("\n"); 386 387 /* Success! */ 388 free(buffer); 389 return 0; 390 } 391 392 static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 393 int argc, char * const argv[]) 394 { 395 unsigned int length; 396 u16 offset; 397 void *dest; 398 399 if (argc != 3) { 400 cmd_usage(cmdtp); 401 return 1; 402 } 403 404 /* Parse the arguments */ 405 dest = (void *)simple_strtoul(argv[0], NULL, 16); 406 offset = simple_strtoul(argv[1], NULL, 0); 407 length = simple_strtoul(argv[2], NULL, 0); 408 409 /* Extra sanity checks */ 410 if (!length) { 411 E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); 412 return 1; 413 } 414 if ((0x10000 < length) || (0x10000 - length < offset)) { 415 E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); 416 return 1; 417 } 418 419 /* Acquire the EEPROM */ 420 if (e1000_acquire_eeprom(hw)) { 421 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); 422 return 1; 423 } 424 425 /* Perform the programming operation */ 426 if (e1000_spi_eeprom_dump(hw, dest, offset, length, true) < 0) { 427 E1000_ERR(hw->nic, "Interrupted!\n"); 428 e1000_release_eeprom(hw); 429 return 1; 430 } 431 432 e1000_release_eeprom(hw); 433 printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name); 434 return 0; 435 } 436 437 static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 438 int argc, char * const argv[]) 439 { 440 unsigned int length; 441 const void *source; 442 u16 offset; 443 444 if (argc != 3) { 445 cmd_usage(cmdtp); 446 return 1; 447 } 448 449 /* Parse the arguments */ 450 source = (const void *)simple_strtoul(argv[0], NULL, 16); 451 offset = simple_strtoul(argv[1], NULL, 0); 452 length = simple_strtoul(argv[2], NULL, 0); 453 454 /* Acquire the EEPROM */ 455 if (e1000_acquire_eeprom(hw)) { 456 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); 457 return 1; 458 } 459 460 /* Perform the programming operation */ 461 if (e1000_spi_eeprom_program(hw, source, offset, length, true) < 0) { 462 E1000_ERR(hw->nic, "Interrupted!\n"); 463 e1000_release_eeprom(hw); 464 return 1; 465 } 466 467 e1000_release_eeprom(hw); 468 printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name); 469 return 0; 470 } 471 472 static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 473 int argc, char * const argv[]) 474 { 475 uint16_t i, length, checksum = 0, checksum_reg; 476 uint16_t *buffer; 477 bool upd; 478 479 if (argc == 0) 480 upd = 0; 481 else if ((argc == 1) && !strcmp(argv[0], "update")) 482 upd = 1; 483 else { 484 cmd_usage(cmdtp); 485 return 1; 486 } 487 488 /* Allocate a temporary buffer */ 489 length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1); 490 buffer = malloc(length); 491 if (!buffer) { 492 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n"); 493 return 1; 494 } 495 496 /* Acquire the EEPROM */ 497 if (e1000_acquire_eeprom(hw)) { 498 E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); 499 return 1; 500 } 501 502 /* Read the EEPROM */ 503 if (e1000_spi_eeprom_dump(hw, buffer, 0, length, true) < 0) { 504 E1000_ERR(hw->nic, "Interrupted!\n"); 505 e1000_release_eeprom(hw); 506 return 1; 507 } 508 509 /* Compute the checksum and read the expected value */ 510 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) 511 checksum += le16_to_cpu(buffer[i]); 512 checksum = ((uint16_t)EEPROM_SUM) - checksum; 513 checksum_reg = le16_to_cpu(buffer[i]); 514 515 /* Verify it! */ 516 if (checksum_reg == checksum) { 517 printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n", 518 hw->nic->name, checksum); 519 e1000_release_eeprom(hw); 520 return 0; 521 } 522 523 /* Hrm, verification failed, print an error */ 524 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n"); 525 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n", 526 checksum_reg, checksum); 527 528 /* If they didn't ask us to update it, just return an error */ 529 if (!upd) { 530 e1000_release_eeprom(hw); 531 return 1; 532 } 533 534 /* Ok, correct it! */ 535 printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name); 536 buffer[i] = cpu_to_le16(checksum); 537 if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t), 538 sizeof(uint16_t), true)) { 539 E1000_ERR(hw->nic, "Interrupted!\n"); 540 e1000_release_eeprom(hw); 541 return 1; 542 } 543 544 e1000_release_eeprom(hw); 545 return 0; 546 } 547 548 int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 549 int argc, char * const argv[]) 550 { 551 if (argc < 1) { 552 cmd_usage(cmdtp); 553 return 1; 554 } 555 556 /* Make sure it has an SPI chip */ 557 if (hw->eeprom.type != e1000_eeprom_spi) { 558 E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); 559 return 1; 560 } 561 562 /* Check the eeprom sub-sub-command arguments */ 563 if (!strcmp(argv[0], "show")) 564 return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1); 565 566 if (!strcmp(argv[0], "dump")) 567 return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1); 568 569 if (!strcmp(argv[0], "program")) 570 return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1); 571 572 if (!strcmp(argv[0], "checksum")) 573 return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1); 574 575 cmd_usage(cmdtp); 576 return 1; 577 } 578 579 #endif /* not CONFIG_CMD_E1000 */ 580