xref: /openbmc/u-boot/drivers/net/e1000_spi.c (revision 5be93569)
1 #include <common.h>
2 #include <console.h>
3 #include "e1000.h"
4 #include <linux/compiler.h>
5 
6 /*-----------------------------------------------------------------------
7  * SPI transfer
8  *
9  * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
10  * "bitlen" bits in the SPI MISO port.  That's just the way SPI works.
11  *
12  * The source of the outgoing bits is the "dout" parameter and the
13  * destination of the input bits is the "din" parameter.  Note that "dout"
14  * and "din" can point to the same memory location, in which case the
15  * input data overwrites the output data (since both are buffered by
16  * temporary variables, this is OK).
17  *
18  * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will
19  * never return an error.
20  */
21 static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen,
22 		const void *dout_mem, void *din_mem, bool intr)
23 {
24 	const uint8_t *dout = dout_mem;
25 	uint8_t *din = din_mem;
26 
27 	uint8_t mask = 0;
28 	uint32_t eecd;
29 	unsigned long i;
30 
31 	/* Pre-read the control register */
32 	eecd = E1000_READ_REG(hw, EECD);
33 
34 	/* Iterate over each bit */
35 	for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) {
36 		/* Check for interrupt */
37 		if (intr && ctrlc())
38 			return -1;
39 
40 		/* Determine the output bit */
41 		if (dout && dout[i >> 3] & mask)
42 			eecd |=  E1000_EECD_DI;
43 		else
44 			eecd &= ~E1000_EECD_DI;
45 
46 		/* Write the output bit and wait 50us */
47 		E1000_WRITE_REG(hw, EECD, eecd);
48 		E1000_WRITE_FLUSH(hw);
49 		udelay(50);
50 
51 		/* Poke the clock (waits 50us) */
52 		e1000_raise_ee_clk(hw, &eecd);
53 
54 		/* Now read the input bit */
55 		eecd = E1000_READ_REG(hw, EECD);
56 		if (din) {
57 			if (eecd & E1000_EECD_DO)
58 				din[i >> 3] |=  mask;
59 			else
60 				din[i >> 3] &= ~mask;
61 		}
62 
63 		/* Poke the clock again (waits 50us) */
64 		e1000_lower_ee_clk(hw, &eecd);
65 	}
66 
67 	/* Now clear any remaining bits of the input */
68 	if (din && (i & 7))
69 		din[i >> 3] &= ~((mask << 1) - 1);
70 
71 	return 0;
72 }
73 
74 #ifdef CONFIG_E1000_SPI_GENERIC
75 static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi)
76 {
77 	return container_of(spi, struct e1000_hw, spi);
78 }
79 
80 /* Not sure why all of these are necessary */
81 void spi_init_r(void) { /* Nothing to do */ }
82 void spi_init_f(void) { /* Nothing to do */ }
83 void spi_init(void)   { /* Nothing to do */ }
84 
85 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
86 		unsigned int max_hz, unsigned int mode)
87 {
88 	/* Find the right PCI device */
89 	struct e1000_hw *hw = e1000_find_card(bus);
90 	if (!hw) {
91 		printf("ERROR: No such e1000 device: e1000#%u\n", bus);
92 		return NULL;
93 	}
94 
95 	/* Make sure it has an SPI chip */
96 	if (hw->eeprom.type != e1000_eeprom_spi) {
97 		E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
98 		return NULL;
99 	}
100 
101 	/* Argument sanity checks */
102 	if (cs != 0) {
103 		E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs);
104 		return NULL;
105 	}
106 	if (mode != SPI_MODE_0) {
107 		E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n");
108 		return NULL;
109 	}
110 
111 	/* TODO: Use max_hz somehow */
112 	E1000_DBG(hw->nic, "EEPROM SPI access requested\n");
113 	return &hw->spi;
114 }
115 
116 void spi_free_slave(struct spi_slave *spi)
117 {
118 	__maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi);
119 	E1000_DBG(hw->nic, "EEPROM SPI access released\n");
120 }
121 
122 int spi_claim_bus(struct spi_slave *spi)
123 {
124 	struct e1000_hw *hw = e1000_hw_from_spi(spi);
125 
126 	if (e1000_acquire_eeprom(hw)) {
127 		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
128 		return -1;
129 	}
130 
131 	return 0;
132 }
133 
134 void spi_release_bus(struct spi_slave *spi)
135 {
136 	struct e1000_hw *hw = e1000_hw_from_spi(spi);
137 	e1000_release_eeprom(hw);
138 }
139 
140 /* Skinny wrapper around e1000_spi_xfer */
141 int spi_xfer(struct spi_slave *spi, unsigned int bitlen,
142 		const void *dout_mem, void *din_mem, unsigned long flags)
143 {
144 	struct e1000_hw *hw = e1000_hw_from_spi(spi);
145 	int ret;
146 
147 	if (flags & SPI_XFER_BEGIN)
148 		e1000_standby_eeprom(hw);
149 
150 	ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, true);
151 
152 	if (flags & SPI_XFER_END)
153 		e1000_standby_eeprom(hw);
154 
155 	return ret;
156 }
157 
158 #endif /* not CONFIG_E1000_SPI_GENERIC */
159 
160 #ifdef CONFIG_CMD_E1000
161 
162 /* The EEPROM opcodes */
163 #define SPI_EEPROM_ENABLE_WR	0x06
164 #define SPI_EEPROM_DISABLE_WR	0x04
165 #define SPI_EEPROM_WRITE_STATUS	0x01
166 #define SPI_EEPROM_READ_STATUS	0x05
167 #define SPI_EEPROM_WRITE_PAGE	0x02
168 #define SPI_EEPROM_READ_PAGE	0x03
169 
170 /* The EEPROM status bits */
171 #define SPI_EEPROM_STATUS_BUSY	0x01
172 #define SPI_EEPROM_STATUS_WREN	0x02
173 
174 static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, bool intr)
175 {
176 	u8 op[] = { SPI_EEPROM_ENABLE_WR };
177 	e1000_standby_eeprom(hw);
178 	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
179 }
180 
181 /*
182  * These have been tested to perform correctly, but they are not used by any
183  * of the EEPROM commands at this time.
184  */
185 #if 0
186 static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, bool intr)
187 {
188 	u8 op[] = { SPI_EEPROM_DISABLE_WR };
189 	e1000_standby_eeprom(hw);
190 	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
191 }
192 
193 static int e1000_spi_eeprom_write_status(struct e1000_hw *hw,
194 		u8 status, bool intr)
195 {
196 	u8 op[] = { SPI_EEPROM_WRITE_STATUS, status };
197 	e1000_standby_eeprom(hw);
198 	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
199 }
200 #endif
201 
202 static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, bool intr)
203 {
204 	u8 op[] = { SPI_EEPROM_READ_STATUS, 0 };
205 	e1000_standby_eeprom(hw);
206 	if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr))
207 		return -1;
208 	return op[1];
209 }
210 
211 static int e1000_spi_eeprom_write_page(struct e1000_hw *hw,
212 		const void *data, u16 off, u16 len, bool intr)
213 {
214 	u8 op[] = {
215 		SPI_EEPROM_WRITE_PAGE,
216 		(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
217 	};
218 
219 	e1000_standby_eeprom(hw);
220 
221 	if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
222 		return -1;
223 	if (e1000_spi_xfer(hw, len << 3, data, NULL, intr))
224 		return -1;
225 
226 	return 0;
227 }
228 
229 static int e1000_spi_eeprom_read_page(struct e1000_hw *hw,
230 		void *data, u16 off, u16 len, bool intr)
231 {
232 	u8 op[] = {
233 		SPI_EEPROM_READ_PAGE,
234 		(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
235 	};
236 
237 	e1000_standby_eeprom(hw);
238 
239 	if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
240 		return -1;
241 	if (e1000_spi_xfer(hw, len << 3, NULL, data, intr))
242 		return -1;
243 
244 	return 0;
245 }
246 
247 static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, bool intr)
248 {
249 	int status;
250 	while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) {
251 		if (!(status & SPI_EEPROM_STATUS_BUSY))
252 			return 0;
253 	}
254 	return -1;
255 }
256 
257 static int e1000_spi_eeprom_dump(struct e1000_hw *hw,
258 		void *data, u16 off, unsigned int len, bool intr)
259 {
260 	/* Interruptibly wait for the EEPROM to be ready */
261 	if (e1000_spi_eeprom_poll_ready(hw, intr))
262 		return -1;
263 
264 	/* Dump each page in sequence */
265 	while (len) {
266 		/* Calculate the data bytes on this page */
267 		u16 pg_off = off & (hw->eeprom.page_size - 1);
268 		u16 pg_len = hw->eeprom.page_size - pg_off;
269 		if (pg_len > len)
270 			pg_len = len;
271 
272 		/* Now dump the page */
273 		if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr))
274 			return -1;
275 
276 		/* Otherwise go on to the next page */
277 		len  -= pg_len;
278 		off  += pg_len;
279 		data += pg_len;
280 	}
281 
282 	/* We're done! */
283 	return 0;
284 }
285 
286 static int e1000_spi_eeprom_program(struct e1000_hw *hw,
287 		const void *data, u16 off, u16 len, bool intr)
288 {
289 	/* Program each page in sequence */
290 	while (len) {
291 		/* Calculate the data bytes on this page */
292 		u16 pg_off = off & (hw->eeprom.page_size - 1);
293 		u16 pg_len = hw->eeprom.page_size - pg_off;
294 		if (pg_len > len)
295 			pg_len = len;
296 
297 		/* Interruptibly wait for the EEPROM to be ready */
298 		if (e1000_spi_eeprom_poll_ready(hw, intr))
299 			return -1;
300 
301 		/* Enable write access */
302 		if (e1000_spi_eeprom_enable_wr(hw, intr))
303 			return -1;
304 
305 		/* Now program the page */
306 		if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr))
307 			return -1;
308 
309 		/* Otherwise go on to the next page */
310 		len  -= pg_len;
311 		off  += pg_len;
312 		data += pg_len;
313 	}
314 
315 	/* Wait for the last write to complete */
316 	if (e1000_spi_eeprom_poll_ready(hw, intr))
317 		return -1;
318 
319 	/* We're done! */
320 	return 0;
321 }
322 
323 static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
324 		int argc, char * const argv[])
325 {
326 	unsigned int length = 0;
327 	u16 i, offset = 0;
328 	u8 *buffer;
329 	int err;
330 
331 	if (argc > 2) {
332 		cmd_usage(cmdtp);
333 		return 1;
334 	}
335 
336 	/* Parse the offset and length */
337 	if (argc >= 1)
338 		offset = simple_strtoul(argv[0], NULL, 0);
339 	if (argc == 2)
340 		length = simple_strtoul(argv[1], NULL, 0);
341 	else if (offset < (hw->eeprom.word_size << 1))
342 		length = (hw->eeprom.word_size << 1) - offset;
343 
344 	/* Extra sanity checks */
345 	if (!length) {
346 		E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
347 		return 1;
348 	}
349 	if ((0x10000 < length) || (0x10000 - length < offset)) {
350 		E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
351 		return 1;
352 	}
353 
354 	/* Allocate a buffer to hold stuff */
355 	buffer = malloc(length);
356 	if (!buffer) {
357 		E1000_ERR(hw->nic, "Out of Memory!\n");
358 		return 1;
359 	}
360 
361 	/* Acquire the EEPROM and perform the dump */
362 	if (e1000_acquire_eeprom(hw)) {
363 		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
364 		free(buffer);
365 		return 1;
366 	}
367 	err = e1000_spi_eeprom_dump(hw, buffer, offset, length, true);
368 	e1000_release_eeprom(hw);
369 	if (err) {
370 		E1000_ERR(hw->nic, "Interrupted!\n");
371 		free(buffer);
372 		return 1;
373 	}
374 
375 	/* Now hexdump the result */
376 	printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====",
377 			hw->nic->name, offset, offset + length - 1);
378 	for (i = 0; i < length; i++) {
379 		if ((i & 0xF) == 0)
380 			printf("\n%s: %04hX: ", hw->nic->name, offset + i);
381 		else if ((i & 0xF) == 0x8)
382 			printf(" ");
383 		printf(" %02hx", buffer[i]);
384 	}
385 	printf("\n");
386 
387 	/* Success! */
388 	free(buffer);
389 	return 0;
390 }
391 
392 static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
393 		int argc, char * const argv[])
394 {
395 	unsigned int length;
396 	u16 offset;
397 	void *dest;
398 
399 	if (argc != 3) {
400 		cmd_usage(cmdtp);
401 		return 1;
402 	}
403 
404 	/* Parse the arguments */
405 	dest = (void *)simple_strtoul(argv[0], NULL, 16);
406 	offset = simple_strtoul(argv[1], NULL, 0);
407 	length = simple_strtoul(argv[2], NULL, 0);
408 
409 	/* Extra sanity checks */
410 	if (!length) {
411 		E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
412 		return 1;
413 	}
414 	if ((0x10000 < length) || (0x10000 - length < offset)) {
415 		E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
416 		return 1;
417 	}
418 
419 	/* Acquire the EEPROM */
420 	if (e1000_acquire_eeprom(hw)) {
421 		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
422 		return 1;
423 	}
424 
425 	/* Perform the programming operation */
426 	if (e1000_spi_eeprom_dump(hw, dest, offset, length, true) < 0) {
427 		E1000_ERR(hw->nic, "Interrupted!\n");
428 		e1000_release_eeprom(hw);
429 		return 1;
430 	}
431 
432 	e1000_release_eeprom(hw);
433 	printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name);
434 	return 0;
435 }
436 
437 static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
438 		int argc, char * const argv[])
439 {
440 	unsigned int length;
441 	const void *source;
442 	u16 offset;
443 
444 	if (argc != 3) {
445 		cmd_usage(cmdtp);
446 		return 1;
447 	}
448 
449 	/* Parse the arguments */
450 	source = (const void *)simple_strtoul(argv[0], NULL, 16);
451 	offset = simple_strtoul(argv[1], NULL, 0);
452 	length = simple_strtoul(argv[2], NULL, 0);
453 
454 	/* Acquire the EEPROM */
455 	if (e1000_acquire_eeprom(hw)) {
456 		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
457 		return 1;
458 	}
459 
460 	/* Perform the programming operation */
461 	if (e1000_spi_eeprom_program(hw, source, offset, length, true) < 0) {
462 		E1000_ERR(hw->nic, "Interrupted!\n");
463 		e1000_release_eeprom(hw);
464 		return 1;
465 	}
466 
467 	e1000_release_eeprom(hw);
468 	printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name);
469 	return 0;
470 }
471 
472 static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
473 		int argc, char * const argv[])
474 {
475 	uint16_t i, length, checksum = 0, checksum_reg;
476 	uint16_t *buffer;
477 	bool upd;
478 
479 	if (argc == 0)
480 		upd = 0;
481 	else if ((argc == 1) && !strcmp(argv[0], "update"))
482 		upd = 1;
483 	else {
484 		cmd_usage(cmdtp);
485 		return 1;
486 	}
487 
488 	/* Allocate a temporary buffer */
489 	length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1);
490 	buffer = malloc(length);
491 	if (!buffer) {
492 		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
493 		return 1;
494 	}
495 
496 	/* Acquire the EEPROM */
497 	if (e1000_acquire_eeprom(hw)) {
498 		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
499 		return 1;
500 	}
501 
502 	/* Read the EEPROM */
503 	if (e1000_spi_eeprom_dump(hw, buffer, 0, length, true) < 0) {
504 		E1000_ERR(hw->nic, "Interrupted!\n");
505 		e1000_release_eeprom(hw);
506 		return 1;
507 	}
508 
509 	/* Compute the checksum and read the expected value */
510 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
511 		checksum += le16_to_cpu(buffer[i]);
512 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
513 	checksum_reg = le16_to_cpu(buffer[i]);
514 
515 	/* Verify it! */
516 	if (checksum_reg == checksum) {
517 		printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n",
518 				hw->nic->name, checksum);
519 		e1000_release_eeprom(hw);
520 		return 0;
521 	}
522 
523 	/* Hrm, verification failed, print an error */
524 	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
525 	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
526 			checksum_reg, checksum);
527 
528 	/* If they didn't ask us to update it, just return an error */
529 	if (!upd) {
530 		e1000_release_eeprom(hw);
531 		return 1;
532 	}
533 
534 	/* Ok, correct it! */
535 	printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name);
536 	buffer[i] = cpu_to_le16(checksum);
537 	if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t),
538 			sizeof(uint16_t), true)) {
539 		E1000_ERR(hw->nic, "Interrupted!\n");
540 		e1000_release_eeprom(hw);
541 		return 1;
542 	}
543 
544 	e1000_release_eeprom(hw);
545 	return 0;
546 }
547 
548 int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
549 		int argc, char * const argv[])
550 {
551 	if (argc < 1) {
552 		cmd_usage(cmdtp);
553 		return 1;
554 	}
555 
556 	/* Make sure it has an SPI chip */
557 	if (hw->eeprom.type != e1000_eeprom_spi) {
558 		E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
559 		return 1;
560 	}
561 
562 	/* Check the eeprom sub-sub-command arguments */
563 	if (!strcmp(argv[0], "show"))
564 		return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1);
565 
566 	if (!strcmp(argv[0], "dump"))
567 		return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1);
568 
569 	if (!strcmp(argv[0], "program"))
570 		return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1);
571 
572 	if (!strcmp(argv[0], "checksum"))
573 		return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1);
574 
575 	cmd_usage(cmdtp);
576 	return 1;
577 }
578 
579 #endif /* not CONFIG_CMD_E1000 */
580