1 #include <common.h> 2 #include <console.h> 3 #include "e1000.h" 4 #include <linux/compiler.h> 5 6 /*----------------------------------------------------------------------- 7 * SPI transfer 8 * 9 * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks 10 * "bitlen" bits in the SPI MISO port. That's just the way SPI works. 11 * 12 * The source of the outgoing bits is the "dout" parameter and the 13 * destination of the input bits is the "din" parameter. Note that "dout" 14 * and "din" can point to the same memory location, in which case the 15 * input data overwrites the output data (since both are buffered by 16 * temporary variables, this is OK). 17 * 18 * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will 19 * never return an error. 20 */ 21 static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen, 22 const void *dout_mem, void *din_mem, bool intr) 23 { 24 const uint8_t *dout = dout_mem; 25 uint8_t *din = din_mem; 26 27 uint8_t mask = 0; 28 uint32_t eecd; 29 unsigned long i; 30 31 /* Pre-read the control register */ 32 eecd = E1000_READ_REG(hw, EECD); 33 34 /* Iterate over each bit */ 35 for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) { 36 /* Check for interrupt */ 37 if (intr && ctrlc()) 38 return -1; 39 40 /* Determine the output bit */ 41 if (dout && dout[i >> 3] & mask) 42 eecd |= E1000_EECD_DI; 43 else 44 eecd &= ~E1000_EECD_DI; 45 46 /* Write the output bit and wait 50us */ 47 E1000_WRITE_REG(hw, EECD, eecd); 48 E1000_WRITE_FLUSH(hw); 49 udelay(50); 50 51 /* Poke the clock (waits 50us) */ 52 e1000_raise_ee_clk(hw, &eecd); 53 54 /* Now read the input bit */ 55 eecd = E1000_READ_REG(hw, EECD); 56 if (din) { 57 if (eecd & E1000_EECD_DO) 58 din[i >> 3] |= mask; 59 else 60 din[i >> 3] &= ~mask; 61 } 62 63 /* Poke the clock again (waits 50us) */ 64 e1000_lower_ee_clk(hw, &eecd); 65 } 66 67 /* Now clear any remaining bits of the input */ 68 if (din && (i & 7)) 69 din[i >> 3] &= ~((mask << 1) - 1); 70 71 return 0; 72 } 73 74 #ifdef CONFIG_E1000_SPI_GENERIC 75 static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi) 76 { 77 return container_of(spi, struct e1000_hw, spi); 78 } 79 80 /* Not sure why all of these are necessary */ 81 void spi_init_r(void) { /* Nothing to do */ } 82 void spi_init_f(void) { /* Nothing to do */ } 83 void spi_init(void) { /* Nothing to do */ } 84 85 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, 86 unsigned int max_hz, unsigned int mode) 87 { 88 /* Find the right PCI device */ 89 struct e1000_hw *hw = e1000_find_card(bus); 90 if (!hw) { 91 printf("ERROR: No such e1000 device: e1000#%u\n", bus); 92 return NULL; 93 } 94 95 /* Make sure it has an SPI chip */ 96 if (hw->eeprom.type != e1000_eeprom_spi) { 97 E1000_ERR(hw, "No attached SPI EEPROM found!\n"); 98 return NULL; 99 } 100 101 /* Argument sanity checks */ 102 if (cs != 0) { 103 E1000_ERR(hw, "No such SPI chip: %u\n", cs); 104 return NULL; 105 } 106 if (mode != SPI_MODE_0) { 107 E1000_ERR(hw, "Only SPI MODE-0 is supported!\n"); 108 return NULL; 109 } 110 111 /* TODO: Use max_hz somehow */ 112 E1000_DBG(hw->nic, "EEPROM SPI access requested\n"); 113 return &hw->spi; 114 } 115 116 void spi_free_slave(struct spi_slave *spi) 117 { 118 __maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi); 119 E1000_DBG(hw->nic, "EEPROM SPI access released\n"); 120 } 121 122 int spi_claim_bus(struct spi_slave *spi) 123 { 124 struct e1000_hw *hw = e1000_hw_from_spi(spi); 125 126 if (e1000_acquire_eeprom(hw)) { 127 E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); 128 return -1; 129 } 130 131 return 0; 132 } 133 134 void spi_release_bus(struct spi_slave *spi) 135 { 136 struct e1000_hw *hw = e1000_hw_from_spi(spi); 137 e1000_release_eeprom(hw); 138 } 139 140 /* Skinny wrapper around e1000_spi_xfer */ 141 int spi_xfer(struct spi_slave *spi, unsigned int bitlen, 142 const void *dout_mem, void *din_mem, unsigned long flags) 143 { 144 struct e1000_hw *hw = e1000_hw_from_spi(spi); 145 int ret; 146 147 if (flags & SPI_XFER_BEGIN) 148 e1000_standby_eeprom(hw); 149 150 ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, true); 151 152 if (flags & SPI_XFER_END) 153 e1000_standby_eeprom(hw); 154 155 return ret; 156 } 157 158 #endif /* not CONFIG_E1000_SPI_GENERIC */ 159 160 #ifdef CONFIG_CMD_E1000 161 162 /* The EEPROM opcodes */ 163 #define SPI_EEPROM_ENABLE_WR 0x06 164 #define SPI_EEPROM_DISABLE_WR 0x04 165 #define SPI_EEPROM_WRITE_STATUS 0x01 166 #define SPI_EEPROM_READ_STATUS 0x05 167 #define SPI_EEPROM_WRITE_PAGE 0x02 168 #define SPI_EEPROM_READ_PAGE 0x03 169 170 /* The EEPROM status bits */ 171 #define SPI_EEPROM_STATUS_BUSY 0x01 172 #define SPI_EEPROM_STATUS_WREN 0x02 173 174 static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, bool intr) 175 { 176 u8 op[] = { SPI_EEPROM_ENABLE_WR }; 177 e1000_standby_eeprom(hw); 178 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); 179 } 180 181 /* 182 * These have been tested to perform correctly, but they are not used by any 183 * of the EEPROM commands at this time. 184 */ 185 static __maybe_unused int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, 186 bool intr) 187 { 188 u8 op[] = { SPI_EEPROM_DISABLE_WR }; 189 e1000_standby_eeprom(hw); 190 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); 191 } 192 193 static __maybe_unused int e1000_spi_eeprom_write_status(struct e1000_hw *hw, 194 u8 status, bool intr) 195 { 196 u8 op[] = { SPI_EEPROM_WRITE_STATUS, status }; 197 e1000_standby_eeprom(hw); 198 return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); 199 } 200 201 static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, bool intr) 202 { 203 u8 op[] = { SPI_EEPROM_READ_STATUS, 0 }; 204 e1000_standby_eeprom(hw); 205 if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr)) 206 return -1; 207 return op[1]; 208 } 209 210 static int e1000_spi_eeprom_write_page(struct e1000_hw *hw, 211 const void *data, u16 off, u16 len, bool intr) 212 { 213 u8 op[] = { 214 SPI_EEPROM_WRITE_PAGE, 215 (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff 216 }; 217 218 e1000_standby_eeprom(hw); 219 220 if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) 221 return -1; 222 if (e1000_spi_xfer(hw, len << 3, data, NULL, intr)) 223 return -1; 224 225 return 0; 226 } 227 228 static int e1000_spi_eeprom_read_page(struct e1000_hw *hw, 229 void *data, u16 off, u16 len, bool intr) 230 { 231 u8 op[] = { 232 SPI_EEPROM_READ_PAGE, 233 (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff 234 }; 235 236 e1000_standby_eeprom(hw); 237 238 if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) 239 return -1; 240 if (e1000_spi_xfer(hw, len << 3, NULL, data, intr)) 241 return -1; 242 243 return 0; 244 } 245 246 static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, bool intr) 247 { 248 int status; 249 while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) { 250 if (!(status & SPI_EEPROM_STATUS_BUSY)) 251 return 0; 252 } 253 return -1; 254 } 255 256 static int e1000_spi_eeprom_dump(struct e1000_hw *hw, 257 void *data, u16 off, unsigned int len, bool intr) 258 { 259 /* Interruptibly wait for the EEPROM to be ready */ 260 if (e1000_spi_eeprom_poll_ready(hw, intr)) 261 return -1; 262 263 /* Dump each page in sequence */ 264 while (len) { 265 /* Calculate the data bytes on this page */ 266 u16 pg_off = off & (hw->eeprom.page_size - 1); 267 u16 pg_len = hw->eeprom.page_size - pg_off; 268 if (pg_len > len) 269 pg_len = len; 270 271 /* Now dump the page */ 272 if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr)) 273 return -1; 274 275 /* Otherwise go on to the next page */ 276 len -= pg_len; 277 off += pg_len; 278 data += pg_len; 279 } 280 281 /* We're done! */ 282 return 0; 283 } 284 285 static int e1000_spi_eeprom_program(struct e1000_hw *hw, 286 const void *data, u16 off, u16 len, bool intr) 287 { 288 /* Program each page in sequence */ 289 while (len) { 290 /* Calculate the data bytes on this page */ 291 u16 pg_off = off & (hw->eeprom.page_size - 1); 292 u16 pg_len = hw->eeprom.page_size - pg_off; 293 if (pg_len > len) 294 pg_len = len; 295 296 /* Interruptibly wait for the EEPROM to be ready */ 297 if (e1000_spi_eeprom_poll_ready(hw, intr)) 298 return -1; 299 300 /* Enable write access */ 301 if (e1000_spi_eeprom_enable_wr(hw, intr)) 302 return -1; 303 304 /* Now program the page */ 305 if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr)) 306 return -1; 307 308 /* Otherwise go on to the next page */ 309 len -= pg_len; 310 off += pg_len; 311 data += pg_len; 312 } 313 314 /* Wait for the last write to complete */ 315 if (e1000_spi_eeprom_poll_ready(hw, intr)) 316 return -1; 317 318 /* We're done! */ 319 return 0; 320 } 321 322 static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 323 int argc, char * const argv[]) 324 { 325 unsigned int length = 0; 326 u16 i, offset = 0; 327 u8 *buffer; 328 int err; 329 330 if (argc > 2) { 331 cmd_usage(cmdtp); 332 return 1; 333 } 334 335 /* Parse the offset and length */ 336 if (argc >= 1) 337 offset = simple_strtoul(argv[0], NULL, 0); 338 if (argc == 2) 339 length = simple_strtoul(argv[1], NULL, 0); 340 else if (offset < (hw->eeprom.word_size << 1)) 341 length = (hw->eeprom.word_size << 1) - offset; 342 343 /* Extra sanity checks */ 344 if (!length) { 345 E1000_ERR(hw, "Requested zero-sized dump!\n"); 346 return 1; 347 } 348 if ((0x10000 < length) || (0x10000 - length < offset)) { 349 E1000_ERR(hw, "Can't dump past 0xFFFF!\n"); 350 return 1; 351 } 352 353 /* Allocate a buffer to hold stuff */ 354 buffer = malloc(length); 355 if (!buffer) { 356 E1000_ERR(hw, "Out of Memory!\n"); 357 return 1; 358 } 359 360 /* Acquire the EEPROM and perform the dump */ 361 if (e1000_acquire_eeprom(hw)) { 362 E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); 363 free(buffer); 364 return 1; 365 } 366 err = e1000_spi_eeprom_dump(hw, buffer, offset, length, true); 367 e1000_release_eeprom(hw); 368 if (err) { 369 E1000_ERR(hw, "Interrupted!\n"); 370 free(buffer); 371 return 1; 372 } 373 374 /* Now hexdump the result */ 375 printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====", 376 hw->name, offset, offset + length - 1); 377 for (i = 0; i < length; i++) { 378 if ((i & 0xF) == 0) 379 printf("\n%s: %04hX: ", hw->name, offset + i); 380 else if ((i & 0xF) == 0x8) 381 printf(" "); 382 printf(" %02hx", buffer[i]); 383 } 384 printf("\n"); 385 386 /* Success! */ 387 free(buffer); 388 return 0; 389 } 390 391 static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 392 int argc, char * const argv[]) 393 { 394 unsigned int length; 395 u16 offset; 396 void *dest; 397 398 if (argc != 3) { 399 cmd_usage(cmdtp); 400 return 1; 401 } 402 403 /* Parse the arguments */ 404 dest = (void *)simple_strtoul(argv[0], NULL, 16); 405 offset = simple_strtoul(argv[1], NULL, 0); 406 length = simple_strtoul(argv[2], NULL, 0); 407 408 /* Extra sanity checks */ 409 if (!length) { 410 E1000_ERR(hw, "Requested zero-sized dump!\n"); 411 return 1; 412 } 413 if ((0x10000 < length) || (0x10000 - length < offset)) { 414 E1000_ERR(hw, "Can't dump past 0xFFFF!\n"); 415 return 1; 416 } 417 418 /* Acquire the EEPROM */ 419 if (e1000_acquire_eeprom(hw)) { 420 E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); 421 return 1; 422 } 423 424 /* Perform the programming operation */ 425 if (e1000_spi_eeprom_dump(hw, dest, offset, length, true) < 0) { 426 E1000_ERR(hw, "Interrupted!\n"); 427 e1000_release_eeprom(hw); 428 return 1; 429 } 430 431 e1000_release_eeprom(hw); 432 printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->name); 433 return 0; 434 } 435 436 static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 437 int argc, char * const argv[]) 438 { 439 unsigned int length; 440 const void *source; 441 u16 offset; 442 443 if (argc != 3) { 444 cmd_usage(cmdtp); 445 return 1; 446 } 447 448 /* Parse the arguments */ 449 source = (const void *)simple_strtoul(argv[0], NULL, 16); 450 offset = simple_strtoul(argv[1], NULL, 0); 451 length = simple_strtoul(argv[2], NULL, 0); 452 453 /* Acquire the EEPROM */ 454 if (e1000_acquire_eeprom(hw)) { 455 E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); 456 return 1; 457 } 458 459 /* Perform the programming operation */ 460 if (e1000_spi_eeprom_program(hw, source, offset, length, true) < 0) { 461 E1000_ERR(hw, "Interrupted!\n"); 462 e1000_release_eeprom(hw); 463 return 1; 464 } 465 466 e1000_release_eeprom(hw); 467 printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->name); 468 return 0; 469 } 470 471 static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 472 int argc, char * const argv[]) 473 { 474 uint16_t i, length, checksum = 0, checksum_reg; 475 uint16_t *buffer; 476 bool upd; 477 478 if (argc == 0) 479 upd = 0; 480 else if ((argc == 1) && !strcmp(argv[0], "update")) 481 upd = 1; 482 else { 483 cmd_usage(cmdtp); 484 return 1; 485 } 486 487 /* Allocate a temporary buffer */ 488 length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1); 489 buffer = malloc(length); 490 if (!buffer) { 491 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n"); 492 return 1; 493 } 494 495 /* Acquire the EEPROM */ 496 if (e1000_acquire_eeprom(hw)) { 497 E1000_ERR(hw, "EEPROM SPI cannot be acquired!\n"); 498 return 1; 499 } 500 501 /* Read the EEPROM */ 502 if (e1000_spi_eeprom_dump(hw, buffer, 0, length, true) < 0) { 503 E1000_ERR(hw, "Interrupted!\n"); 504 e1000_release_eeprom(hw); 505 return 1; 506 } 507 508 /* Compute the checksum and read the expected value */ 509 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) 510 checksum += le16_to_cpu(buffer[i]); 511 checksum = ((uint16_t)EEPROM_SUM) - checksum; 512 checksum_reg = le16_to_cpu(buffer[i]); 513 514 /* Verify it! */ 515 if (checksum_reg == checksum) { 516 printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n", 517 hw->name, checksum); 518 e1000_release_eeprom(hw); 519 return 0; 520 } 521 522 /* Hrm, verification failed, print an error */ 523 E1000_ERR(hw, "EEPROM checksum is incorrect!\n"); 524 E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n", 525 checksum_reg, checksum); 526 527 /* If they didn't ask us to update it, just return an error */ 528 if (!upd) { 529 e1000_release_eeprom(hw); 530 return 1; 531 } 532 533 /* Ok, correct it! */ 534 printf("%s: Reprogramming the EEPROM checksum...\n", hw->name); 535 buffer[i] = cpu_to_le16(checksum); 536 if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t), 537 sizeof(uint16_t), true)) { 538 E1000_ERR(hw, "Interrupted!\n"); 539 e1000_release_eeprom(hw); 540 return 1; 541 } 542 543 e1000_release_eeprom(hw); 544 return 0; 545 } 546 547 int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw, 548 int argc, char * const argv[]) 549 { 550 if (argc < 1) { 551 cmd_usage(cmdtp); 552 return 1; 553 } 554 555 /* Make sure it has an SPI chip */ 556 if (hw->eeprom.type != e1000_eeprom_spi) { 557 E1000_ERR(hw, "No attached SPI EEPROM found (%d)!\n", 558 hw->eeprom.type); 559 return 1; 560 } 561 562 /* Check the eeprom sub-sub-command arguments */ 563 if (!strcmp(argv[0], "show")) 564 return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1); 565 566 if (!strcmp(argv[0], "dump")) 567 return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1); 568 569 if (!strcmp(argv[0], "program")) 570 return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1); 571 572 if (!strcmp(argv[0], "checksum")) 573 return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1); 574 575 cmd_usage(cmdtp); 576 return 1; 577 } 578 579 #endif /* not CONFIG_CMD_E1000 */ 580