xref: /openbmc/u-boot/drivers/net/e1000.c (revision f62fb999)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16 
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21 
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA	02111-1307, USA.
25 
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28 
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32 
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  */
44 
45 #include "e1000.h"
46 
47 #define TOUT_LOOP   100000
48 
49 #undef	virt_to_bus
50 #define	virt_to_bus(x)	((unsigned long)x)
51 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
52 #define mdelay(n)	udelay((n)*1000)
53 
54 #define E1000_DEFAULT_PBA    0x00000030
55 
56 /* NIC specific static variables go here */
57 
58 static char tx_pool[128 + 16];
59 static char rx_pool[128 + 16];
60 static char packet[2096];
61 
62 static struct e1000_tx_desc *tx_base;
63 static struct e1000_rx_desc *rx_base;
64 
65 static int tx_tail;
66 static int rx_tail, rx_last;
67 
68 static struct pci_device_id supported[] = {
69 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
72 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
85 	{}
86 };
87 
88 /* Function forward declarations */
89 static int e1000_setup_link(struct eth_device *nic);
90 static int e1000_setup_fiber_link(struct eth_device *nic);
91 static int e1000_setup_copper_link(struct eth_device *nic);
92 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
93 static void e1000_config_collision_dist(struct e1000_hw *hw);
94 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
95 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
96 static int e1000_check_for_link(struct eth_device *nic);
97 static int e1000_wait_autoneg(struct e1000_hw *hw);
98 static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
99 				       uint16_t * duplex);
100 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
101 			      uint16_t * phy_data);
102 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
103 			       uint16_t phy_data);
104 static void e1000_phy_hw_reset(struct e1000_hw *hw);
105 static int e1000_phy_reset(struct e1000_hw *hw);
106 static int e1000_detect_gig_phy(struct e1000_hw *hw);
107 
108 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
109 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
110 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
111 			writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
112 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
113 	readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
114 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
115 
116 #ifndef CONFIG_AP1000 /* remove for warnings */
117 /******************************************************************************
118  * Raises the EEPROM's clock input.
119  *
120  * hw - Struct containing variables accessed by shared code
121  * eecd - EECD's current value
122  *****************************************************************************/
123 static void
124 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
125 {
126 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
127 	 * wait 50 microseconds.
128 	 */
129 	*eecd = *eecd | E1000_EECD_SK;
130 	E1000_WRITE_REG(hw, EECD, *eecd);
131 	E1000_WRITE_FLUSH(hw);
132 	udelay(50);
133 }
134 
135 /******************************************************************************
136  * Lowers the EEPROM's clock input.
137  *
138  * hw - Struct containing variables accessed by shared code
139  * eecd - EECD's current value
140  *****************************************************************************/
141 static void
142 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
143 {
144 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
145 	 * wait 50 microseconds.
146 	 */
147 	*eecd = *eecd & ~E1000_EECD_SK;
148 	E1000_WRITE_REG(hw, EECD, *eecd);
149 	E1000_WRITE_FLUSH(hw);
150 	udelay(50);
151 }
152 
153 /******************************************************************************
154  * Shift data bits out to the EEPROM.
155  *
156  * hw - Struct containing variables accessed by shared code
157  * data - data to send to the EEPROM
158  * count - number of bits to shift out
159  *****************************************************************************/
160 static void
161 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
162 {
163 	uint32_t eecd;
164 	uint32_t mask;
165 
166 	/* We need to shift "count" bits out to the EEPROM. So, value in the
167 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
168 	 * In order to do this, "data" must be broken down into bits.
169 	 */
170 	mask = 0x01 << (count - 1);
171 	eecd = E1000_READ_REG(hw, EECD);
172 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
173 	do {
174 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
175 		 * and then raising and then lowering the clock (the SK bit controls
176 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
177 		 * by setting "DI" to "0" and then raising and then lowering the clock.
178 		 */
179 		eecd &= ~E1000_EECD_DI;
180 
181 		if (data & mask)
182 			eecd |= E1000_EECD_DI;
183 
184 		E1000_WRITE_REG(hw, EECD, eecd);
185 		E1000_WRITE_FLUSH(hw);
186 
187 		udelay(50);
188 
189 		e1000_raise_ee_clk(hw, &eecd);
190 		e1000_lower_ee_clk(hw, &eecd);
191 
192 		mask = mask >> 1;
193 
194 	} while (mask);
195 
196 	/* We leave the "DI" bit set to "0" when we leave this routine. */
197 	eecd &= ~E1000_EECD_DI;
198 	E1000_WRITE_REG(hw, EECD, eecd);
199 }
200 
201 /******************************************************************************
202  * Shift data bits in from the EEPROM
203  *
204  * hw - Struct containing variables accessed by shared code
205  *****************************************************************************/
206 static uint16_t
207 e1000_shift_in_ee_bits(struct e1000_hw *hw)
208 {
209 	uint32_t eecd;
210 	uint32_t i;
211 	uint16_t data;
212 
213 	/* In order to read a register from the EEPROM, we need to shift 16 bits
214 	 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
215 	 * the EEPROM (setting the SK bit), and then reading the value of the "DO"
216 	 * bit.  During this "shifting in" process the "DI" bit should always be
217 	 * clear..
218 	 */
219 
220 	eecd = E1000_READ_REG(hw, EECD);
221 
222 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
223 	data = 0;
224 
225 	for (i = 0; i < 16; i++) {
226 		data = data << 1;
227 		e1000_raise_ee_clk(hw, &eecd);
228 
229 		eecd = E1000_READ_REG(hw, EECD);
230 
231 		eecd &= ~(E1000_EECD_DI);
232 		if (eecd & E1000_EECD_DO)
233 			data |= 1;
234 
235 		e1000_lower_ee_clk(hw, &eecd);
236 	}
237 
238 	return data;
239 }
240 
241 /******************************************************************************
242  * Prepares EEPROM for access
243  *
244  * hw - Struct containing variables accessed by shared code
245  *
246  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
247  * function should be called before issuing a command to the EEPROM.
248  *****************************************************************************/
249 static void
250 e1000_setup_eeprom(struct e1000_hw *hw)
251 {
252 	uint32_t eecd;
253 
254 	eecd = E1000_READ_REG(hw, EECD);
255 
256 	/* Clear SK and DI */
257 	eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
258 	E1000_WRITE_REG(hw, EECD, eecd);
259 
260 	/* Set CS */
261 	eecd |= E1000_EECD_CS;
262 	E1000_WRITE_REG(hw, EECD, eecd);
263 }
264 
265 /******************************************************************************
266  * Returns EEPROM to a "standby" state
267  *
268  * hw - Struct containing variables accessed by shared code
269  *****************************************************************************/
270 static void
271 e1000_standby_eeprom(struct e1000_hw *hw)
272 {
273 	uint32_t eecd;
274 
275 	eecd = E1000_READ_REG(hw, EECD);
276 
277 	/* Deselct EEPROM */
278 	eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
279 	E1000_WRITE_REG(hw, EECD, eecd);
280 	E1000_WRITE_FLUSH(hw);
281 	udelay(50);
282 
283 	/* Clock high */
284 	eecd |= E1000_EECD_SK;
285 	E1000_WRITE_REG(hw, EECD, eecd);
286 	E1000_WRITE_FLUSH(hw);
287 	udelay(50);
288 
289 	/* Select EEPROM */
290 	eecd |= E1000_EECD_CS;
291 	E1000_WRITE_REG(hw, EECD, eecd);
292 	E1000_WRITE_FLUSH(hw);
293 	udelay(50);
294 
295 	/* Clock low */
296 	eecd &= ~E1000_EECD_SK;
297 	E1000_WRITE_REG(hw, EECD, eecd);
298 	E1000_WRITE_FLUSH(hw);
299 	udelay(50);
300 }
301 
302 /******************************************************************************
303  * Reads a 16 bit word from the EEPROM.
304  *
305  * hw - Struct containing variables accessed by shared code
306  * offset - offset of  word in the EEPROM to read
307  * data - word read from the EEPROM
308  *****************************************************************************/
309 static int
310 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
311 {
312 	uint32_t eecd;
313 	uint32_t i = 0;
314 	int large_eeprom = FALSE;
315 
316 	/* Request EEPROM Access */
317 	if (hw->mac_type > e1000_82544) {
318 		eecd = E1000_READ_REG(hw, EECD);
319 		if (eecd & E1000_EECD_SIZE)
320 			large_eeprom = TRUE;
321 		eecd |= E1000_EECD_REQ;
322 		E1000_WRITE_REG(hw, EECD, eecd);
323 		eecd = E1000_READ_REG(hw, EECD);
324 		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
325 			i++;
326 			udelay(10);
327 			eecd = E1000_READ_REG(hw, EECD);
328 		}
329 		if (!(eecd & E1000_EECD_GNT)) {
330 			eecd &= ~E1000_EECD_REQ;
331 			E1000_WRITE_REG(hw, EECD, eecd);
332 			DEBUGOUT("Could not acquire EEPROM grant\n");
333 			return -E1000_ERR_EEPROM;
334 		}
335 	}
336 
337 	/*  Prepare the EEPROM for reading  */
338 	e1000_setup_eeprom(hw);
339 
340 	/*  Send the READ command (opcode + addr)  */
341 	e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
342 	e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
343 
344 	/* Read the data */
345 	*data = e1000_shift_in_ee_bits(hw);
346 
347 	/* End this read operation */
348 	e1000_standby_eeprom(hw);
349 
350 	/* Stop requesting EEPROM access */
351 	if (hw->mac_type > e1000_82544) {
352 		eecd = E1000_READ_REG(hw, EECD);
353 		eecd &= ~E1000_EECD_REQ;
354 		E1000_WRITE_REG(hw, EECD, eecd);
355 	}
356 
357 	return 0;
358 }
359 
360 #if 0
361 static void
362 e1000_eeprom_cleanup(struct e1000_hw *hw)
363 {
364 	uint32_t eecd;
365 
366 	eecd = E1000_READ_REG(hw, EECD);
367 	eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
368 	E1000_WRITE_REG(hw, EECD, eecd);
369 	e1000_raise_ee_clk(hw, &eecd);
370 	e1000_lower_ee_clk(hw, &eecd);
371 }
372 
373 static uint16_t
374 e1000_wait_eeprom_done(struct e1000_hw *hw)
375 {
376 	uint32_t eecd;
377 	uint32_t i;
378 
379 	e1000_standby_eeprom(hw);
380 	for (i = 0; i < 200; i++) {
381 		eecd = E1000_READ_REG(hw, EECD);
382 		if (eecd & E1000_EECD_DO)
383 			return (TRUE);
384 		udelay(5);
385 	}
386 	return (FALSE);
387 }
388 
389 static int
390 e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
391 {
392 	uint32_t eecd;
393 	int large_eeprom = FALSE;
394 	int i = 0;
395 
396 	/* Request EEPROM Access */
397 	if (hw->mac_type > e1000_82544) {
398 		eecd = E1000_READ_REG(hw, EECD);
399 		if (eecd & E1000_EECD_SIZE)
400 			large_eeprom = TRUE;
401 		eecd |= E1000_EECD_REQ;
402 		E1000_WRITE_REG(hw, EECD, eecd);
403 		eecd = E1000_READ_REG(hw, EECD);
404 		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
405 			i++;
406 			udelay(5);
407 			eecd = E1000_READ_REG(hw, EECD);
408 		}
409 		if (!(eecd & E1000_EECD_GNT)) {
410 			eecd &= ~E1000_EECD_REQ;
411 			E1000_WRITE_REG(hw, EECD, eecd);
412 			DEBUGOUT("Could not acquire EEPROM grant\n");
413 			return FALSE;
414 		}
415 	}
416 	e1000_setup_eeprom(hw);
417 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
418 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
419 	e1000_standby_eeprom(hw);
420 	e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
421 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
422 	e1000_shift_out_ee_bits(hw, Data, 16);
423 	if (!e1000_wait_eeprom_done(hw)) {
424 		return FALSE;
425 	}
426 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
427 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
428 	e1000_eeprom_cleanup(hw);
429 
430 	/* Stop requesting EEPROM access */
431 	if (hw->mac_type > e1000_82544) {
432 		eecd = E1000_READ_REG(hw, EECD);
433 		eecd &= ~E1000_EECD_REQ;
434 		E1000_WRITE_REG(hw, EECD, eecd);
435 	}
436 	i = 0;
437 	eecd = E1000_READ_REG(hw, EECD);
438 	while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
439 		i++;
440 		udelay(10);
441 		eecd = E1000_READ_REG(hw, EECD);
442 	}
443 	if ((eecd & E1000_EECD_GNT)) {
444 		DEBUGOUT("Could not release EEPROM grant\n");
445 	}
446 	return TRUE;
447 }
448 #endif
449 
450 /******************************************************************************
451  * Verifies that the EEPROM has a valid checksum
452  *
453  * hw - Struct containing variables accessed by shared code
454  *
455  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
456  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
457  * valid.
458  *****************************************************************************/
459 static int
460 e1000_validate_eeprom_checksum(struct eth_device *nic)
461 {
462 	struct e1000_hw *hw = nic->priv;
463 	uint16_t checksum = 0;
464 	uint16_t i, eeprom_data;
465 
466 	DEBUGFUNC();
467 
468 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
469 		if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
470 			DEBUGOUT("EEPROM Read Error\n");
471 			return -E1000_ERR_EEPROM;
472 		}
473 		checksum += eeprom_data;
474 	}
475 
476 	if (checksum == (uint16_t) EEPROM_SUM) {
477 		return 0;
478 	} else {
479 		DEBUGOUT("EEPROM Checksum Invalid\n");
480 		return -E1000_ERR_EEPROM;
481 	}
482 }
483 #endif /* #ifndef CONFIG_AP1000 */
484 
485 /******************************************************************************
486  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
487  * second function of dual function devices
488  *
489  * nic - Struct containing variables accessed by shared code
490  *****************************************************************************/
491 static int
492 e1000_read_mac_addr(struct eth_device *nic)
493 {
494 #ifndef CONFIG_AP1000
495 	struct e1000_hw *hw = nic->priv;
496 	uint16_t offset;
497 	uint16_t eeprom_data;
498 	int i;
499 
500 	DEBUGFUNC();
501 
502 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
503 		offset = i >> 1;
504 		if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
505 			DEBUGOUT("EEPROM Read Error\n");
506 			return -E1000_ERR_EEPROM;
507 		}
508 		nic->enetaddr[i] = eeprom_data & 0xff;
509 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
510 	}
511 	if ((hw->mac_type == e1000_82546) &&
512 	    (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
513 		/* Invert the last bit if this is the second device */
514 		nic->enetaddr[5] += 1;
515 	}
516 #ifdef CONFIG_E1000_FALLBACK_MAC
517 	if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
518 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
519 
520 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
521 	}
522 #endif
523 #else
524 	/*
525 	 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
526 	 * environment variables.  Currently this does not support the addition
527 	 * of a PMC e1000 card, which is certainly a possibility, so this should
528 	 * be updated to properly use the env variable only for the onboard e1000
529 	 */
530 
531 	int ii;
532 	char *s, *e;
533 
534 	DEBUGFUNC();
535 
536 	s = getenv ("ethaddr");
537 	if (s == NULL) {
538 		return -E1000_ERR_EEPROM;
539 	} else {
540 		for(ii = 0; ii < 6; ii++) {
541 			nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
542 			if (s){
543 				s = (*e) ? e + 1 : e;
544 			}
545 		}
546 	}
547 #endif
548 	return 0;
549 }
550 
551 /******************************************************************************
552  * Initializes receive address filters.
553  *
554  * hw - Struct containing variables accessed by shared code
555  *
556  * Places the MAC address in receive address register 0 and clears the rest
557  * of the receive addresss registers. Clears the multicast table. Assumes
558  * the receiver is in reset when the routine is called.
559  *****************************************************************************/
560 static void
561 e1000_init_rx_addrs(struct eth_device *nic)
562 {
563 	struct e1000_hw *hw = nic->priv;
564 	uint32_t i;
565 	uint32_t addr_low;
566 	uint32_t addr_high;
567 
568 	DEBUGFUNC();
569 
570 	/* Setup the receive address. */
571 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
572 	addr_low = (nic->enetaddr[0] |
573 		    (nic->enetaddr[1] << 8) |
574 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
575 
576 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
577 
578 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
579 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
580 
581 	/* Zero out the other 15 receive addresses. */
582 	DEBUGOUT("Clearing RAR[1-15]\n");
583 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
584 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
585 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
586 	}
587 }
588 
589 /******************************************************************************
590  * Clears the VLAN filer table
591  *
592  * hw - Struct containing variables accessed by shared code
593  *****************************************************************************/
594 static void
595 e1000_clear_vfta(struct e1000_hw *hw)
596 {
597 	uint32_t offset;
598 
599 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
600 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
601 }
602 
603 /******************************************************************************
604  * Set the mac type member in the hw struct.
605  *
606  * hw - Struct containing variables accessed by shared code
607  *****************************************************************************/
608 static int
609 e1000_set_mac_type(struct e1000_hw *hw)
610 {
611 	DEBUGFUNC();
612 
613 	switch (hw->device_id) {
614 	case E1000_DEV_ID_82542:
615 		switch (hw->revision_id) {
616 		case E1000_82542_2_0_REV_ID:
617 			hw->mac_type = e1000_82542_rev2_0;
618 			break;
619 		case E1000_82542_2_1_REV_ID:
620 			hw->mac_type = e1000_82542_rev2_1;
621 			break;
622 		default:
623 			/* Invalid 82542 revision ID */
624 			return -E1000_ERR_MAC_TYPE;
625 		}
626 		break;
627 	case E1000_DEV_ID_82543GC_FIBER:
628 	case E1000_DEV_ID_82543GC_COPPER:
629 		hw->mac_type = e1000_82543;
630 		break;
631 	case E1000_DEV_ID_82544EI_COPPER:
632 	case E1000_DEV_ID_82544EI_FIBER:
633 	case E1000_DEV_ID_82544GC_COPPER:
634 	case E1000_DEV_ID_82544GC_LOM:
635 		hw->mac_type = e1000_82544;
636 		break;
637 	case E1000_DEV_ID_82540EM:
638 	case E1000_DEV_ID_82540EM_LOM:
639 		hw->mac_type = e1000_82540;
640 		break;
641 	case E1000_DEV_ID_82545EM_COPPER:
642 	case E1000_DEV_ID_82545GM_COPPER:
643 	case E1000_DEV_ID_82545EM_FIBER:
644 		hw->mac_type = e1000_82545;
645 		break;
646 	case E1000_DEV_ID_82546EB_COPPER:
647 	case E1000_DEV_ID_82546EB_FIBER:
648 		hw->mac_type = e1000_82546;
649 		break;
650 	case E1000_DEV_ID_82541ER:
651 	case E1000_DEV_ID_82541GI_LF:
652 		hw->mac_type = e1000_82541_rev_2;
653 		break;
654 	default:
655 		/* Should never have loaded on this device */
656 		return -E1000_ERR_MAC_TYPE;
657 	}
658 	return E1000_SUCCESS;
659 }
660 
661 /******************************************************************************
662  * Reset the transmit and receive units; mask and clear all interrupts.
663  *
664  * hw - Struct containing variables accessed by shared code
665  *****************************************************************************/
666 void
667 e1000_reset_hw(struct e1000_hw *hw)
668 {
669 	uint32_t ctrl;
670 	uint32_t ctrl_ext;
671 	uint32_t icr;
672 	uint32_t manc;
673 
674 	DEBUGFUNC();
675 
676 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
677 	if (hw->mac_type == e1000_82542_rev2_0) {
678 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
679 		pci_write_config_word(hw->pdev, PCI_COMMAND,
680 				      hw->
681 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
682 	}
683 
684 	/* Clear interrupt mask to stop board from generating interrupts */
685 	DEBUGOUT("Masking off all interrupts\n");
686 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
687 
688 	/* Disable the Transmit and Receive units.  Then delay to allow
689 	 * any pending transactions to complete before we hit the MAC with
690 	 * the global reset.
691 	 */
692 	E1000_WRITE_REG(hw, RCTL, 0);
693 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
694 	E1000_WRITE_FLUSH(hw);
695 
696 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
697 	hw->tbi_compatibility_on = FALSE;
698 
699 	/* Delay to allow any outstanding PCI transactions to complete before
700 	 * resetting the device
701 	 */
702 	mdelay(10);
703 
704 	/* Issue a global reset to the MAC.  This will reset the chip's
705 	 * transmit, receive, DMA, and link units.  It will not effect
706 	 * the current PCI configuration.  The global reset bit is self-
707 	 * clearing, and should clear within a microsecond.
708 	 */
709 	DEBUGOUT("Issuing a global reset to MAC\n");
710 	ctrl = E1000_READ_REG(hw, CTRL);
711 
712 #if 0
713 	if (hw->mac_type > e1000_82543)
714 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
715 	else
716 #endif
717 		E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
718 
719 	/* Force a reload from the EEPROM if necessary */
720 	if (hw->mac_type < e1000_82540) {
721 		/* Wait for reset to complete */
722 		udelay(10);
723 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
724 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
725 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
726 		E1000_WRITE_FLUSH(hw);
727 		/* Wait for EEPROM reload */
728 		mdelay(2);
729 	} else {
730 		/* Wait for EEPROM reload (it happens automatically) */
731 		mdelay(4);
732 		/* Dissable HW ARPs on ASF enabled adapters */
733 		manc = E1000_READ_REG(hw, MANC);
734 		manc &= ~(E1000_MANC_ARP_EN);
735 		E1000_WRITE_REG(hw, MANC, manc);
736 	}
737 
738 	/* Clear interrupt mask to stop board from generating interrupts */
739 	DEBUGOUT("Masking off all interrupts\n");
740 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
741 
742 	/* Clear any pending interrupt events. */
743 	icr = E1000_READ_REG(hw, ICR);
744 
745 	/* If MWI was previously enabled, reenable it. */
746 	if (hw->mac_type == e1000_82542_rev2_0) {
747 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
748 	}
749 }
750 
751 /******************************************************************************
752  * Performs basic configuration of the adapter.
753  *
754  * hw - Struct containing variables accessed by shared code
755  *
756  * Assumes that the controller has previously been reset and is in a
757  * post-reset uninitialized state. Initializes the receive address registers,
758  * multicast table, and VLAN filter table. Calls routines to setup link
759  * configuration and flow control settings. Clears all on-chip counters. Leaves
760  * the transmit and receive units disabled and uninitialized.
761  *****************************************************************************/
762 static int
763 e1000_init_hw(struct eth_device *nic)
764 {
765 	struct e1000_hw *hw = nic->priv;
766 	uint32_t ctrl, status;
767 	uint32_t i;
768 	int32_t ret_val;
769 	uint16_t pcix_cmd_word;
770 	uint16_t pcix_stat_hi_word;
771 	uint16_t cmd_mmrbc;
772 	uint16_t stat_mmrbc;
773 	e1000_bus_type bus_type = e1000_bus_type_unknown;
774 
775 	DEBUGFUNC();
776 #if 0
777 	/* Initialize Identification LED */
778 	ret_val = e1000_id_led_init(hw);
779 	if (ret_val < 0) {
780 		DEBUGOUT("Error Initializing Identification LED\n");
781 		return ret_val;
782 	}
783 #endif
784 	/* Set the Media Type and exit with error if it is not valid. */
785 	if (hw->mac_type != e1000_82543) {
786 		/* tbi_compatibility is only valid on 82543 */
787 		hw->tbi_compatibility_en = FALSE;
788 	}
789 
790 	if (hw->mac_type >= e1000_82543) {
791 		status = E1000_READ_REG(hw, STATUS);
792 		if (status & E1000_STATUS_TBIMODE) {
793 			hw->media_type = e1000_media_type_fiber;
794 			/* tbi_compatibility not valid on fiber */
795 			hw->tbi_compatibility_en = FALSE;
796 		} else {
797 			hw->media_type = e1000_media_type_copper;
798 		}
799 	} else {
800 		/* This is an 82542 (fiber only) */
801 		hw->media_type = e1000_media_type_fiber;
802 	}
803 
804 	/* Disabling VLAN filtering. */
805 	DEBUGOUT("Initializing the IEEE VLAN\n");
806 	E1000_WRITE_REG(hw, VET, 0);
807 
808 	e1000_clear_vfta(hw);
809 
810 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
811 	if (hw->mac_type == e1000_82542_rev2_0) {
812 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
813 		pci_write_config_word(hw->pdev, PCI_COMMAND,
814 				      hw->
815 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
816 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
817 		E1000_WRITE_FLUSH(hw);
818 		mdelay(5);
819 	}
820 
821 	/* Setup the receive address. This involves initializing all of the Receive
822 	 * Address Registers (RARs 0 - 15).
823 	 */
824 	e1000_init_rx_addrs(nic);
825 
826 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
827 	if (hw->mac_type == e1000_82542_rev2_0) {
828 		E1000_WRITE_REG(hw, RCTL, 0);
829 		E1000_WRITE_FLUSH(hw);
830 		mdelay(1);
831 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
832 	}
833 
834 	/* Zero out the Multicast HASH table */
835 	DEBUGOUT("Zeroing the MTA\n");
836 	for (i = 0; i < E1000_MC_TBL_SIZE; i++)
837 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
838 
839 #if 0
840 	/* Set the PCI priority bit correctly in the CTRL register.  This
841 	 * determines if the adapter gives priority to receives, or if it
842 	 * gives equal priority to transmits and receives.
843 	 */
844 	if (hw->dma_fairness) {
845 		ctrl = E1000_READ_REG(hw, CTRL);
846 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
847 	}
848 #endif
849 	if (hw->mac_type >= e1000_82543) {
850 		status = E1000_READ_REG(hw, STATUS);
851 		bus_type = (status & E1000_STATUS_PCIX_MODE) ?
852 		    e1000_bus_type_pcix : e1000_bus_type_pci;
853 	}
854 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
855 	if (bus_type == e1000_bus_type_pcix) {
856 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
857 				     &pcix_cmd_word);
858 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
859 				     &pcix_stat_hi_word);
860 		cmd_mmrbc =
861 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
862 		    PCIX_COMMAND_MMRBC_SHIFT;
863 		stat_mmrbc =
864 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
865 		    PCIX_STATUS_HI_MMRBC_SHIFT;
866 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
867 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
868 		if (cmd_mmrbc > stat_mmrbc) {
869 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
870 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
871 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
872 					      pcix_cmd_word);
873 		}
874 	}
875 
876 	/* Call a subroutine to configure the link and setup flow control. */
877 	ret_val = e1000_setup_link(nic);
878 
879 	/* Set the transmit descriptor write-back policy */
880 	if (hw->mac_type > e1000_82544) {
881 		ctrl = E1000_READ_REG(hw, TXDCTL);
882 		ctrl =
883 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
884 		    E1000_TXDCTL_FULL_TX_DESC_WB;
885 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
886 	}
887 #if 0
888 	/* Clear all of the statistics registers (clear on read).  It is
889 	 * important that we do this after we have tried to establish link
890 	 * because the symbol error count will increment wildly if there
891 	 * is no link.
892 	 */
893 	e1000_clear_hw_cntrs(hw);
894 #endif
895 
896 	return ret_val;
897 }
898 
899 /******************************************************************************
900  * Configures flow control and link settings.
901  *
902  * hw - Struct containing variables accessed by shared code
903  *
904  * Determines which flow control settings to use. Calls the apropriate media-
905  * specific link configuration function. Configures the flow control settings.
906  * Assuming the adapter has a valid link partner, a valid link should be
907  * established. Assumes the hardware has previously been reset and the
908  * transmitter and receiver are not enabled.
909  *****************************************************************************/
910 static int
911 e1000_setup_link(struct eth_device *nic)
912 {
913 	struct e1000_hw *hw = nic->priv;
914 	uint32_t ctrl_ext;
915 	int32_t ret_val;
916 	uint16_t eeprom_data;
917 
918 	DEBUGFUNC();
919 
920 #ifndef CONFIG_AP1000
921 	/* Read and store word 0x0F of the EEPROM. This word contains bits
922 	 * that determine the hardware's default PAUSE (flow control) mode,
923 	 * a bit that determines whether the HW defaults to enabling or
924 	 * disabling auto-negotiation, and the direction of the
925 	 * SW defined pins. If there is no SW over-ride of the flow
926 	 * control setting, then the variable hw->fc will
927 	 * be initialized based on a value in the EEPROM.
928 	 */
929 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
930 		DEBUGOUT("EEPROM Read Error\n");
931 		return -E1000_ERR_EEPROM;
932 	}
933 #else
934 	/* we have to hardcode the proper value for our hardware. */
935 	/* this value is for the 82540EM pci card used for prototyping, and it works. */
936 	eeprom_data = 0xb220;
937 #endif
938 
939 	if (hw->fc == e1000_fc_default) {
940 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
941 			hw->fc = e1000_fc_none;
942 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
943 			 EEPROM_WORD0F_ASM_DIR)
944 			hw->fc = e1000_fc_tx_pause;
945 		else
946 			hw->fc = e1000_fc_full;
947 	}
948 
949 	/* We want to save off the original Flow Control configuration just
950 	 * in case we get disconnected and then reconnected into a different
951 	 * hub or switch with different Flow Control capabilities.
952 	 */
953 	if (hw->mac_type == e1000_82542_rev2_0)
954 		hw->fc &= (~e1000_fc_tx_pause);
955 
956 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
957 		hw->fc &= (~e1000_fc_rx_pause);
958 
959 	hw->original_fc = hw->fc;
960 
961 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
962 
963 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
964 	 * polarity value for the SW controlled pins, and setup the
965 	 * Extended Device Control reg with that info.
966 	 * This is needed because one of the SW controlled pins is used for
967 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
968 	 * or e1000_phy_setup() is called.
969 	 */
970 	if (hw->mac_type == e1000_82543) {
971 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
972 			    SWDPIO__EXT_SHIFT);
973 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
974 	}
975 
976 	/* Call the necessary subroutine to configure the link. */
977 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
978 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
979 	if (ret_val < 0) {
980 		return ret_val;
981 	}
982 
983 	/* Initialize the flow control address, type, and PAUSE timer
984 	 * registers to their default values.  This is done even if flow
985 	 * control is disabled, because it does not hurt anything to
986 	 * initialize these registers.
987 	 */
988 	DEBUGOUT
989 	    ("Initializing the Flow Control address, type and timer regs\n");
990 
991 	E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
992 	E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
993 	E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
994 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
995 
996 	/* Set the flow control receive threshold registers.  Normally,
997 	 * these registers will be set to a default threshold that may be
998 	 * adjusted later by the driver's runtime code.  However, if the
999 	 * ability to transmit pause frames in not enabled, then these
1000 	 * registers will be set to 0.
1001 	 */
1002 	if (!(hw->fc & e1000_fc_tx_pause)) {
1003 		E1000_WRITE_REG(hw, FCRTL, 0);
1004 		E1000_WRITE_REG(hw, FCRTH, 0);
1005 	} else {
1006 		/* We need to set up the Receive Threshold high and low water marks
1007 		 * as well as (optionally) enabling the transmission of XON frames.
1008 		 */
1009 		if (hw->fc_send_xon) {
1010 			E1000_WRITE_REG(hw, FCRTL,
1011 					(hw->fc_low_water | E1000_FCRTL_XONE));
1012 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1013 		} else {
1014 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1015 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1016 		}
1017 	}
1018 	return ret_val;
1019 }
1020 
1021 /******************************************************************************
1022  * Sets up link for a fiber based adapter
1023  *
1024  * hw - Struct containing variables accessed by shared code
1025  *
1026  * Manipulates Physical Coding Sublayer functions in order to configure
1027  * link. Assumes the hardware has been previously reset and the transmitter
1028  * and receiver are not enabled.
1029  *****************************************************************************/
1030 static int
1031 e1000_setup_fiber_link(struct eth_device *nic)
1032 {
1033 	struct e1000_hw *hw = nic->priv;
1034 	uint32_t ctrl;
1035 	uint32_t status;
1036 	uint32_t txcw = 0;
1037 	uint32_t i;
1038 	uint32_t signal;
1039 	int32_t ret_val;
1040 
1041 	DEBUGFUNC();
1042 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1043 	 * set when the optics detect a signal. On older adapters, it will be
1044 	 * cleared when there is a signal
1045 	 */
1046 	ctrl = E1000_READ_REG(hw, CTRL);
1047 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1048 		signal = E1000_CTRL_SWDPIN1;
1049 	else
1050 		signal = 0;
1051 
1052 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1053 	       ctrl);
1054 	/* Take the link out of reset */
1055 	ctrl &= ~(E1000_CTRL_LRST);
1056 
1057 	e1000_config_collision_dist(hw);
1058 
1059 	/* Check for a software override of the flow control settings, and setup
1060 	 * the device accordingly.  If auto-negotiation is enabled, then software
1061 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1062 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1063 	 * auto-negotiation is disabled, then software will have to manually
1064 	 * configure the two flow control enable bits in the CTRL register.
1065 	 *
1066 	 * The possible values of the "fc" parameter are:
1067 	 *	0:  Flow control is completely disabled
1068 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
1069 	 *	    not send pause frames).
1070 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
1071 	 *	    not support receiving pause frames).
1072 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1073 	 */
1074 	switch (hw->fc) {
1075 	case e1000_fc_none:
1076 		/* Flow control is completely disabled by a software over-ride. */
1077 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1078 		break;
1079 	case e1000_fc_rx_pause:
1080 		/* RX Flow control is enabled and TX Flow control is disabled by a
1081 		 * software over-ride. Since there really isn't a way to advertise
1082 		 * that we are capable of RX Pause ONLY, we will advertise that we
1083 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
1084 		 *  disable the adapter's ability to send PAUSE frames.
1085 		 */
1086 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1087 		break;
1088 	case e1000_fc_tx_pause:
1089 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
1090 		 * software over-ride.
1091 		 */
1092 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1093 		break;
1094 	case e1000_fc_full:
1095 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
1096 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1097 		break;
1098 	default:
1099 		DEBUGOUT("Flow control param set incorrectly\n");
1100 		return -E1000_ERR_CONFIG;
1101 		break;
1102 	}
1103 
1104 	/* Since auto-negotiation is enabled, take the link out of reset (the link
1105 	 * will be in reset, because we previously reset the chip). This will
1106 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
1107 	 * link-up status bit will be set and the flow control enable bits (RFCE
1108 	 * and TFCE) will be set according to their negotiated value.
1109 	 */
1110 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1111 
1112 	E1000_WRITE_REG(hw, TXCW, txcw);
1113 	E1000_WRITE_REG(hw, CTRL, ctrl);
1114 	E1000_WRITE_FLUSH(hw);
1115 
1116 	hw->txcw = txcw;
1117 	mdelay(1);
1118 
1119 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1120 	 * indication in the Device Status Register.  Time-out if a link isn't
1121 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1122 	 * less than 500 milliseconds even if the other end is doing it in SW).
1123 	 */
1124 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1125 		DEBUGOUT("Looking for Link\n");
1126 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1127 			mdelay(10);
1128 			status = E1000_READ_REG(hw, STATUS);
1129 			if (status & E1000_STATUS_LU)
1130 				break;
1131 		}
1132 		if (i == (LINK_UP_TIMEOUT / 10)) {
1133 			/* AutoNeg failed to achieve a link, so we'll call
1134 			 * e1000_check_for_link. This routine will force the link up if we
1135 			 * detect a signal. This will allow us to communicate with
1136 			 * non-autonegotiating link partners.
1137 			 */
1138 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1139 			hw->autoneg_failed = 1;
1140 			ret_val = e1000_check_for_link(nic);
1141 			if (ret_val < 0) {
1142 				DEBUGOUT("Error while checking for link\n");
1143 				return ret_val;
1144 			}
1145 			hw->autoneg_failed = 0;
1146 		} else {
1147 			hw->autoneg_failed = 0;
1148 			DEBUGOUT("Valid Link Found\n");
1149 		}
1150 	} else {
1151 		DEBUGOUT("No Signal Detected\n");
1152 		return -E1000_ERR_NOLINK;
1153 	}
1154 	return 0;
1155 }
1156 
1157 /******************************************************************************
1158 * Detects which PHY is present and the speed and duplex
1159 *
1160 * hw - Struct containing variables accessed by shared code
1161 ******************************************************************************/
1162 static int
1163 e1000_setup_copper_link(struct eth_device *nic)
1164 {
1165 	struct e1000_hw *hw = nic->priv;
1166 	uint32_t ctrl;
1167 	int32_t ret_val;
1168 	uint16_t i;
1169 	uint16_t phy_data;
1170 
1171 	DEBUGFUNC();
1172 
1173 	ctrl = E1000_READ_REG(hw, CTRL);
1174 	/* With 82543, we need to force speed and duplex on the MAC equal to what
1175 	 * the PHY speed and duplex configuration is. In addition, we need to
1176 	 * perform a hardware reset on the PHY to take it out of reset.
1177 	 */
1178 	if (hw->mac_type > e1000_82543) {
1179 		ctrl |= E1000_CTRL_SLU;
1180 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1181 		E1000_WRITE_REG(hw, CTRL, ctrl);
1182 	} else {
1183 		ctrl |=
1184 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1185 		E1000_WRITE_REG(hw, CTRL, ctrl);
1186 		e1000_phy_hw_reset(hw);
1187 	}
1188 
1189 	/* Make sure we have a valid PHY */
1190 	ret_val = e1000_detect_gig_phy(hw);
1191 	if (ret_val < 0) {
1192 		DEBUGOUT("Error, did not detect valid phy.\n");
1193 		return ret_val;
1194 	}
1195 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
1196 
1197 	/* Enable CRS on TX. This must be set for half-duplex operation. */
1198 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
1199 		DEBUGOUT("PHY Read Error\n");
1200 		return -E1000_ERR_PHY;
1201 	}
1202 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1203 
1204 #if 0
1205 	/* Options:
1206 	 *   MDI/MDI-X = 0 (default)
1207 	 *   0 - Auto for all speeds
1208 	 *   1 - MDI mode
1209 	 *   2 - MDI-X mode
1210 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1211 	 */
1212 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1213 	switch (hw->mdix) {
1214 	case 1:
1215 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1216 		break;
1217 	case 2:
1218 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1219 		break;
1220 	case 3:
1221 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1222 		break;
1223 	case 0:
1224 	default:
1225 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1226 		break;
1227 	}
1228 #else
1229 	phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1230 #endif
1231 
1232 #if 0
1233 	/* Options:
1234 	 *   disable_polarity_correction = 0 (default)
1235 	 *	 Automatic Correction for Reversed Cable Polarity
1236 	 *   0 - Disabled
1237 	 *   1 - Enabled
1238 	 */
1239 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1240 	if (hw->disable_polarity_correction == 1)
1241 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1242 #else
1243 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1244 #endif
1245 	if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
1246 		DEBUGOUT("PHY Write Error\n");
1247 		return -E1000_ERR_PHY;
1248 	}
1249 
1250 	/* Force TX_CLK in the Extended PHY Specific Control Register
1251 	 * to 25MHz clock.
1252 	 */
1253 	if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
1254 		DEBUGOUT("PHY Read Error\n");
1255 		return -E1000_ERR_PHY;
1256 	}
1257 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1258 	/* Configure Master and Slave downshift values */
1259 	phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1260 		      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1261 	phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1262 		     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1263 	if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
1264 		DEBUGOUT("PHY Write Error\n");
1265 		return -E1000_ERR_PHY;
1266 	}
1267 
1268 	/* SW Reset the PHY so all changes take effect */
1269 	ret_val = e1000_phy_reset(hw);
1270 	if (ret_val < 0) {
1271 		DEBUGOUT("Error Resetting the PHY\n");
1272 		return ret_val;
1273 	}
1274 
1275 	/* Options:
1276 	 *   autoneg = 1 (default)
1277 	 *	PHY will advertise value(s) parsed from
1278 	 *	autoneg_advertised and fc
1279 	 *   autoneg = 0
1280 	 *	PHY will be set to 10H, 10F, 100H, or 100F
1281 	 *	depending on value parsed from forced_speed_duplex.
1282 	 */
1283 
1284 	/* Is autoneg enabled?	This is enabled by default or by software override.
1285 	 * If so, call e1000_phy_setup_autoneg routine to parse the
1286 	 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
1287 	 * user should have provided a speed/duplex override.  If so, then call
1288 	 * e1000_phy_force_speed_duplex to parse and set this up.
1289 	 */
1290 	/* Perform some bounds checking on the hw->autoneg_advertised
1291 	 * parameter.  If this variable is zero, then set it to the default.
1292 	 */
1293 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1294 
1295 	/* If autoneg_advertised is zero, we assume it was not defaulted
1296 	 * by the calling code so we set to advertise full capability.
1297 	 */
1298 	if (hw->autoneg_advertised == 0)
1299 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1300 
1301 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1302 	ret_val = e1000_phy_setup_autoneg(hw);
1303 	if (ret_val < 0) {
1304 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
1305 		return ret_val;
1306 	}
1307 	DEBUGOUT("Restarting Auto-Neg\n");
1308 
1309 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1310 	 * the Auto Neg Restart bit in the PHY control register.
1311 	 */
1312 	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
1313 		DEBUGOUT("PHY Read Error\n");
1314 		return -E1000_ERR_PHY;
1315 	}
1316 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1317 	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
1318 		DEBUGOUT("PHY Write Error\n");
1319 		return -E1000_ERR_PHY;
1320 	}
1321 #if 0
1322 	/* Does the user want to wait for Auto-Neg to complete here, or
1323 	 * check at a later time (for example, callback routine).
1324 	 */
1325 	if (hw->wait_autoneg_complete) {
1326 		ret_val = e1000_wait_autoneg(hw);
1327 		if (ret_val < 0) {
1328 			DEBUGOUT
1329 			    ("Error while waiting for autoneg to complete\n");
1330 			return ret_val;
1331 		}
1332 	}
1333 #else
1334 	/* If we do not wait for autonegtation to complete I
1335 	 * do not see a valid link status.
1336 	 */
1337 	ret_val = e1000_wait_autoneg(hw);
1338 	if (ret_val < 0) {
1339 		DEBUGOUT("Error while waiting for autoneg to complete\n");
1340 		return ret_val;
1341 	}
1342 #endif
1343 
1344 	/* Check link status. Wait up to 100 microseconds for link to become
1345 	 * valid.
1346 	 */
1347 	for (i = 0; i < 10; i++) {
1348 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1349 			DEBUGOUT("PHY Read Error\n");
1350 			return -E1000_ERR_PHY;
1351 		}
1352 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1353 			DEBUGOUT("PHY Read Error\n");
1354 			return -E1000_ERR_PHY;
1355 		}
1356 		if (phy_data & MII_SR_LINK_STATUS) {
1357 			/* We have link, so we need to finish the config process:
1358 			 *   1) Set up the MAC to the current PHY speed/duplex
1359 			 *	if we are on 82543.  If we
1360 			 *	are on newer silicon, we only need to configure
1361 			 *	collision distance in the Transmit Control Register.
1362 			 *   2) Set up flow control on the MAC to that established with
1363 			 *	the link partner.
1364 			 */
1365 			if (hw->mac_type >= e1000_82544) {
1366 				e1000_config_collision_dist(hw);
1367 			} else {
1368 				ret_val = e1000_config_mac_to_phy(hw);
1369 				if (ret_val < 0) {
1370 					DEBUGOUT
1371 					    ("Error configuring MAC to PHY settings\n");
1372 					return ret_val;
1373 				}
1374 			}
1375 			ret_val = e1000_config_fc_after_link_up(hw);
1376 			if (ret_val < 0) {
1377 				DEBUGOUT("Error Configuring Flow Control\n");
1378 				return ret_val;
1379 			}
1380 			DEBUGOUT("Valid link established!!!\n");
1381 			return 0;
1382 		}
1383 		udelay(10);
1384 	}
1385 
1386 	DEBUGOUT("Unable to establish link!!!\n");
1387 	return -E1000_ERR_NOLINK;
1388 }
1389 
1390 /******************************************************************************
1391 * Configures PHY autoneg and flow control advertisement settings
1392 *
1393 * hw - Struct containing variables accessed by shared code
1394 ******************************************************************************/
1395 static int
1396 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1397 {
1398 	uint16_t mii_autoneg_adv_reg;
1399 	uint16_t mii_1000t_ctrl_reg;
1400 
1401 	DEBUGFUNC();
1402 
1403 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1404 	if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
1405 		DEBUGOUT("PHY Read Error\n");
1406 		return -E1000_ERR_PHY;
1407 	}
1408 
1409 	/* Read the MII 1000Base-T Control Register (Address 9). */
1410 	if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
1411 		DEBUGOUT("PHY Read Error\n");
1412 		return -E1000_ERR_PHY;
1413 	}
1414 
1415 	/* Need to parse both autoneg_advertised and fc and set up
1416 	 * the appropriate PHY registers.  First we will parse for
1417 	 * autoneg_advertised software override.  Since we can advertise
1418 	 * a plethora of combinations, we need to check each bit
1419 	 * individually.
1420 	 */
1421 
1422 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1423 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1424 	 * the	1000Base-T Control Register (Address 9).
1425 	 */
1426 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1427 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1428 
1429 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
1430 
1431 	/* Do we want to advertise 10 Mb Half Duplex? */
1432 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1433 		DEBUGOUT("Advertise 10mb Half duplex\n");
1434 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1435 	}
1436 
1437 	/* Do we want to advertise 10 Mb Full Duplex? */
1438 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1439 		DEBUGOUT("Advertise 10mb Full duplex\n");
1440 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1441 	}
1442 
1443 	/* Do we want to advertise 100 Mb Half Duplex? */
1444 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1445 		DEBUGOUT("Advertise 100mb Half duplex\n");
1446 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1447 	}
1448 
1449 	/* Do we want to advertise 100 Mb Full Duplex? */
1450 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1451 		DEBUGOUT("Advertise 100mb Full duplex\n");
1452 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1453 	}
1454 
1455 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1456 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1457 		DEBUGOUT
1458 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1459 	}
1460 
1461 	/* Do we want to advertise 1000 Mb Full Duplex? */
1462 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1463 		DEBUGOUT("Advertise 1000mb Full duplex\n");
1464 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1465 	}
1466 
1467 	/* Check for a software override of the flow control settings, and
1468 	 * setup the PHY advertisement registers accordingly.  If
1469 	 * auto-negotiation is enabled, then software will have to set the
1470 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1471 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1472 	 *
1473 	 * The possible values of the "fc" parameter are:
1474 	 *	0:  Flow control is completely disabled
1475 	 *	1:  Rx flow control is enabled (we can receive pause frames
1476 	 *	    but not send pause frames).
1477 	 *	2:  Tx flow control is enabled (we can send pause frames
1478 	 *	    but we do not support receiving pause frames).
1479 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1480 	 *  other:  No software override.  The flow control configuration
1481 	 *	    in the EEPROM is used.
1482 	 */
1483 	switch (hw->fc) {
1484 	case e1000_fc_none:	/* 0 */
1485 		/* Flow control (RX & TX) is completely disabled by a
1486 		 * software over-ride.
1487 		 */
1488 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1489 		break;
1490 	case e1000_fc_rx_pause:	/* 1 */
1491 		/* RX Flow control is enabled, and TX Flow control is
1492 		 * disabled, by a software over-ride.
1493 		 */
1494 		/* Since there really isn't a way to advertise that we are
1495 		 * capable of RX Pause ONLY, we will advertise that we
1496 		 * support both symmetric and asymmetric RX PAUSE.  Later
1497 		 * (in e1000_config_fc_after_link_up) we will disable the
1498 		 *hw's ability to send PAUSE frames.
1499 		 */
1500 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1501 		break;
1502 	case e1000_fc_tx_pause:	/* 2 */
1503 		/* TX Flow control is enabled, and RX Flow control is
1504 		 * disabled, by a software over-ride.
1505 		 */
1506 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1507 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1508 		break;
1509 	case e1000_fc_full:	/* 3 */
1510 		/* Flow control (both RX and TX) is enabled by a software
1511 		 * over-ride.
1512 		 */
1513 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1514 		break;
1515 	default:
1516 		DEBUGOUT("Flow control param set incorrectly\n");
1517 		return -E1000_ERR_CONFIG;
1518 	}
1519 
1520 	if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
1521 		DEBUGOUT("PHY Write Error\n");
1522 		return -E1000_ERR_PHY;
1523 	}
1524 
1525 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1526 
1527 	if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
1528 		DEBUGOUT("PHY Write Error\n");
1529 		return -E1000_ERR_PHY;
1530 	}
1531 	return 0;
1532 }
1533 
1534 /******************************************************************************
1535 * Sets the collision distance in the Transmit Control register
1536 *
1537 * hw - Struct containing variables accessed by shared code
1538 *
1539 * Link should have been established previously. Reads the speed and duplex
1540 * information from the Device Status register.
1541 ******************************************************************************/
1542 static void
1543 e1000_config_collision_dist(struct e1000_hw *hw)
1544 {
1545 	uint32_t tctl;
1546 
1547 	tctl = E1000_READ_REG(hw, TCTL);
1548 
1549 	tctl &= ~E1000_TCTL_COLD;
1550 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1551 
1552 	E1000_WRITE_REG(hw, TCTL, tctl);
1553 	E1000_WRITE_FLUSH(hw);
1554 }
1555 
1556 /******************************************************************************
1557 * Sets MAC speed and duplex settings to reflect the those in the PHY
1558 *
1559 * hw - Struct containing variables accessed by shared code
1560 * mii_reg - data to write to the MII control register
1561 *
1562 * The contents of the PHY register containing the needed information need to
1563 * be passed in.
1564 ******************************************************************************/
1565 static int
1566 e1000_config_mac_to_phy(struct e1000_hw *hw)
1567 {
1568 	uint32_t ctrl;
1569 	uint16_t phy_data;
1570 
1571 	DEBUGFUNC();
1572 
1573 	/* Read the Device Control Register and set the bits to Force Speed
1574 	 * and Duplex.
1575 	 */
1576 	ctrl = E1000_READ_REG(hw, CTRL);
1577 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1578 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1579 
1580 	/* Set up duplex in the Device Control and Transmit Control
1581 	 * registers depending on negotiated values.
1582 	 */
1583 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
1584 		DEBUGOUT("PHY Read Error\n");
1585 		return -E1000_ERR_PHY;
1586 	}
1587 	if (phy_data & M88E1000_PSSR_DPLX)
1588 		ctrl |= E1000_CTRL_FD;
1589 	else
1590 		ctrl &= ~E1000_CTRL_FD;
1591 
1592 	e1000_config_collision_dist(hw);
1593 
1594 	/* Set up speed in the Device Control register depending on
1595 	 * negotiated values.
1596 	 */
1597 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1598 		ctrl |= E1000_CTRL_SPD_1000;
1599 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1600 		ctrl |= E1000_CTRL_SPD_100;
1601 	/* Write the configured values back to the Device Control Reg. */
1602 	E1000_WRITE_REG(hw, CTRL, ctrl);
1603 	return 0;
1604 }
1605 
1606 /******************************************************************************
1607  * Forces the MAC's flow control settings.
1608  *
1609  * hw - Struct containing variables accessed by shared code
1610  *
1611  * Sets the TFCE and RFCE bits in the device control register to reflect
1612  * the adapter settings. TFCE and RFCE need to be explicitly set by
1613  * software when a Copper PHY is used because autonegotiation is managed
1614  * by the PHY rather than the MAC. Software must also configure these
1615  * bits when link is forced on a fiber connection.
1616  *****************************************************************************/
1617 static int
1618 e1000_force_mac_fc(struct e1000_hw *hw)
1619 {
1620 	uint32_t ctrl;
1621 
1622 	DEBUGFUNC();
1623 
1624 	/* Get the current configuration of the Device Control Register */
1625 	ctrl = E1000_READ_REG(hw, CTRL);
1626 
1627 	/* Because we didn't get link via the internal auto-negotiation
1628 	 * mechanism (we either forced link or we got link via PHY
1629 	 * auto-neg), we have to manually enable/disable transmit an
1630 	 * receive flow control.
1631 	 *
1632 	 * The "Case" statement below enables/disable flow control
1633 	 * according to the "hw->fc" parameter.
1634 	 *
1635 	 * The possible values of the "fc" parameter are:
1636 	 *	0:  Flow control is completely disabled
1637 	 *	1:  Rx flow control is enabled (we can receive pause
1638 	 *	    frames but not send pause frames).
1639 	 *	2:  Tx flow control is enabled (we can send pause frames
1640 	 *	    frames but we do not receive pause frames).
1641 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
1642 	 *  other:  No other values should be possible at this point.
1643 	 */
1644 
1645 	switch (hw->fc) {
1646 	case e1000_fc_none:
1647 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1648 		break;
1649 	case e1000_fc_rx_pause:
1650 		ctrl &= (~E1000_CTRL_TFCE);
1651 		ctrl |= E1000_CTRL_RFCE;
1652 		break;
1653 	case e1000_fc_tx_pause:
1654 		ctrl &= (~E1000_CTRL_RFCE);
1655 		ctrl |= E1000_CTRL_TFCE;
1656 		break;
1657 	case e1000_fc_full:
1658 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1659 		break;
1660 	default:
1661 		DEBUGOUT("Flow control param set incorrectly\n");
1662 		return -E1000_ERR_CONFIG;
1663 	}
1664 
1665 	/* Disable TX Flow Control for 82542 (rev 2.0) */
1666 	if (hw->mac_type == e1000_82542_rev2_0)
1667 		ctrl &= (~E1000_CTRL_TFCE);
1668 
1669 	E1000_WRITE_REG(hw, CTRL, ctrl);
1670 	return 0;
1671 }
1672 
1673 /******************************************************************************
1674  * Configures flow control settings after link is established
1675  *
1676  * hw - Struct containing variables accessed by shared code
1677  *
1678  * Should be called immediately after a valid link has been established.
1679  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1680  * and autonegotiation is enabled, the MAC flow control settings will be set
1681  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1682  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1683  *****************************************************************************/
1684 static int
1685 e1000_config_fc_after_link_up(struct e1000_hw *hw)
1686 {
1687 	int32_t ret_val;
1688 	uint16_t mii_status_reg;
1689 	uint16_t mii_nway_adv_reg;
1690 	uint16_t mii_nway_lp_ability_reg;
1691 	uint16_t speed;
1692 	uint16_t duplex;
1693 
1694 	DEBUGFUNC();
1695 
1696 	/* Check for the case where we have fiber media and auto-neg failed
1697 	 * so we had to force link.  In this case, we need to force the
1698 	 * configuration of the MAC to match the "fc" parameter.
1699 	 */
1700 	if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
1701 		ret_val = e1000_force_mac_fc(hw);
1702 		if (ret_val < 0) {
1703 			DEBUGOUT("Error forcing flow control settings\n");
1704 			return ret_val;
1705 		}
1706 	}
1707 
1708 	/* Check for the case where we have copper media and auto-neg is
1709 	 * enabled.  In this case, we need to check and see if Auto-Neg
1710 	 * has completed, and if so, how the PHY and link partner has
1711 	 * flow control configured.
1712 	 */
1713 	if (hw->media_type == e1000_media_type_copper) {
1714 		/* Read the MII Status Register and check to see if AutoNeg
1715 		 * has completed.  We read this twice because this reg has
1716 		 * some "sticky" (latched) bits.
1717 		 */
1718 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1719 			DEBUGOUT("PHY Read Error \n");
1720 			return -E1000_ERR_PHY;
1721 		}
1722 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1723 			DEBUGOUT("PHY Read Error \n");
1724 			return -E1000_ERR_PHY;
1725 		}
1726 
1727 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
1728 			/* The AutoNeg process has completed, so we now need to
1729 			 * read both the Auto Negotiation Advertisement Register
1730 			 * (Address 4) and the Auto_Negotiation Base Page Ability
1731 			 * Register (Address 5) to determine how flow control was
1732 			 * negotiated.
1733 			 */
1734 			if (e1000_read_phy_reg
1735 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
1736 				DEBUGOUT("PHY Read Error\n");
1737 				return -E1000_ERR_PHY;
1738 			}
1739 			if (e1000_read_phy_reg
1740 			    (hw, PHY_LP_ABILITY,
1741 			     &mii_nway_lp_ability_reg) < 0) {
1742 				DEBUGOUT("PHY Read Error\n");
1743 				return -E1000_ERR_PHY;
1744 			}
1745 
1746 			/* Two bits in the Auto Negotiation Advertisement Register
1747 			 * (Address 4) and two bits in the Auto Negotiation Base
1748 			 * Page Ability Register (Address 5) determine flow control
1749 			 * for both the PHY and the link partner.  The following
1750 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1751 			 * 1999, describes these PAUSE resolution bits and how flow
1752 			 * control is determined based upon these settings.
1753 			 * NOTE:  DC = Don't Care
1754 			 *
1755 			 *   LOCAL DEVICE  |   LINK PARTNER
1756 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1757 			 *-------|---------|-------|---------|--------------------
1758 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
1759 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
1760 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
1761 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
1762 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
1763 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
1764 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
1765 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
1766 			 *
1767 			 */
1768 			/* Are both PAUSE bits set to 1?  If so, this implies
1769 			 * Symmetric Flow Control is enabled at both ends.  The
1770 			 * ASM_DIR bits are irrelevant per the spec.
1771 			 *
1772 			 * For Symmetric Flow Control:
1773 			 *
1774 			 *   LOCAL DEVICE  |   LINK PARTNER
1775 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1776 			 *-------|---------|-------|---------|--------------------
1777 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
1778 			 *
1779 			 */
1780 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1781 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1782 				/* Now we need to check if the user selected RX ONLY
1783 				 * of pause frames.  In this case, we had to advertise
1784 				 * FULL flow control because we could not advertise RX
1785 				 * ONLY. Hence, we must now check to see if we need to
1786 				 * turn OFF  the TRANSMISSION of PAUSE frames.
1787 				 */
1788 				if (hw->original_fc == e1000_fc_full) {
1789 					hw->fc = e1000_fc_full;
1790 					DEBUGOUT("Flow Control = FULL.\r\n");
1791 				} else {
1792 					hw->fc = e1000_fc_rx_pause;
1793 					DEBUGOUT
1794 					    ("Flow Control = RX PAUSE frames only.\r\n");
1795 				}
1796 			}
1797 			/* For receiving PAUSE frames ONLY.
1798 			 *
1799 			 *   LOCAL DEVICE  |   LINK PARTNER
1800 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1801 			 *-------|---------|-------|---------|--------------------
1802 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
1803 			 *
1804 			 */
1805 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1806 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1807 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1808 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1809 			{
1810 				hw->fc = e1000_fc_tx_pause;
1811 				DEBUGOUT
1812 				    ("Flow Control = TX PAUSE frames only.\r\n");
1813 			}
1814 			/* For transmitting PAUSE frames ONLY.
1815 			 *
1816 			 *   LOCAL DEVICE  |   LINK PARTNER
1817 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1818 			 *-------|---------|-------|---------|--------------------
1819 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
1820 			 *
1821 			 */
1822 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1823 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1824 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1825 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1826 			{
1827 				hw->fc = e1000_fc_rx_pause;
1828 				DEBUGOUT
1829 				    ("Flow Control = RX PAUSE frames only.\r\n");
1830 			}
1831 			/* Per the IEEE spec, at this point flow control should be
1832 			 * disabled.  However, we want to consider that we could
1833 			 * be connected to a legacy switch that doesn't advertise
1834 			 * desired flow control, but can be forced on the link
1835 			 * partner.  So if we advertised no flow control, that is
1836 			 * what we will resolve to.  If we advertised some kind of
1837 			 * receive capability (Rx Pause Only or Full Flow Control)
1838 			 * and the link partner advertised none, we will configure
1839 			 * ourselves to enable Rx Flow Control only.  We can do
1840 			 * this safely for two reasons:  If the link partner really
1841 			 * didn't want flow control enabled, and we enable Rx, no
1842 			 * harm done since we won't be receiving any PAUSE frames
1843 			 * anyway.  If the intent on the link partner was to have
1844 			 * flow control enabled, then by us enabling RX only, we
1845 			 * can at least receive pause frames and process them.
1846 			 * This is a good idea because in most cases, since we are
1847 			 * predominantly a server NIC, more times than not we will
1848 			 * be asked to delay transmission of packets than asking
1849 			 * our link partner to pause transmission of frames.
1850 			 */
1851 			else if (hw->original_fc == e1000_fc_none ||
1852 				 hw->original_fc == e1000_fc_tx_pause) {
1853 				hw->fc = e1000_fc_none;
1854 				DEBUGOUT("Flow Control = NONE.\r\n");
1855 			} else {
1856 				hw->fc = e1000_fc_rx_pause;
1857 				DEBUGOUT
1858 				    ("Flow Control = RX PAUSE frames only.\r\n");
1859 			}
1860 
1861 			/* Now we need to do one last check...	If we auto-
1862 			 * negotiated to HALF DUPLEX, flow control should not be
1863 			 * enabled per IEEE 802.3 spec.
1864 			 */
1865 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
1866 
1867 			if (duplex == HALF_DUPLEX)
1868 				hw->fc = e1000_fc_none;
1869 
1870 			/* Now we call a subroutine to actually force the MAC
1871 			 * controller to use the correct flow control settings.
1872 			 */
1873 			ret_val = e1000_force_mac_fc(hw);
1874 			if (ret_val < 0) {
1875 				DEBUGOUT
1876 				    ("Error forcing flow control settings\n");
1877 				return ret_val;
1878 			}
1879 		} else {
1880 			DEBUGOUT
1881 			    ("Copper PHY and Auto Neg has not completed.\r\n");
1882 		}
1883 	}
1884 	return 0;
1885 }
1886 
1887 /******************************************************************************
1888  * Checks to see if the link status of the hardware has changed.
1889  *
1890  * hw - Struct containing variables accessed by shared code
1891  *
1892  * Called by any function that needs to check the link status of the adapter.
1893  *****************************************************************************/
1894 static int
1895 e1000_check_for_link(struct eth_device *nic)
1896 {
1897 	struct e1000_hw *hw = nic->priv;
1898 	uint32_t rxcw;
1899 	uint32_t ctrl;
1900 	uint32_t status;
1901 	uint32_t rctl;
1902 	uint32_t signal;
1903 	int32_t ret_val;
1904 	uint16_t phy_data;
1905 	uint16_t lp_capability;
1906 
1907 	DEBUGFUNC();
1908 
1909 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1910 	 * set when the optics detect a signal. On older adapters, it will be
1911 	 * cleared when there is a signal
1912 	 */
1913 	ctrl = E1000_READ_REG(hw, CTRL);
1914 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1915 		signal = E1000_CTRL_SWDPIN1;
1916 	else
1917 		signal = 0;
1918 
1919 	status = E1000_READ_REG(hw, STATUS);
1920 	rxcw = E1000_READ_REG(hw, RXCW);
1921 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
1922 
1923 	/* If we have a copper PHY then we only want to go out to the PHY
1924 	 * registers to see if Auto-Neg has completed and/or if our link
1925 	 * status has changed.	The get_link_status flag will be set if we
1926 	 * receive a Link Status Change interrupt or we have Rx Sequence
1927 	 * Errors.
1928 	 */
1929 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
1930 		/* First we want to see if the MII Status Register reports
1931 		 * link.  If so, then we want to get the current speed/duplex
1932 		 * of the PHY.
1933 		 * Read the register twice since the link bit is sticky.
1934 		 */
1935 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1936 			DEBUGOUT("PHY Read Error\n");
1937 			return -E1000_ERR_PHY;
1938 		}
1939 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1940 			DEBUGOUT("PHY Read Error\n");
1941 			return -E1000_ERR_PHY;
1942 		}
1943 
1944 		if (phy_data & MII_SR_LINK_STATUS) {
1945 			hw->get_link_status = FALSE;
1946 		} else {
1947 			/* No link detected */
1948 			return -E1000_ERR_NOLINK;
1949 		}
1950 
1951 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1952 		 * have Si on board that is 82544 or newer, Auto
1953 		 * Speed Detection takes care of MAC speed/duplex
1954 		 * configuration.  So we only need to configure Collision
1955 		 * Distance in the MAC.  Otherwise, we need to force
1956 		 * speed/duplex on the MAC to the current PHY speed/duplex
1957 		 * settings.
1958 		 */
1959 		if (hw->mac_type >= e1000_82544)
1960 			e1000_config_collision_dist(hw);
1961 		else {
1962 			ret_val = e1000_config_mac_to_phy(hw);
1963 			if (ret_val < 0) {
1964 				DEBUGOUT
1965 				    ("Error configuring MAC to PHY settings\n");
1966 				return ret_val;
1967 			}
1968 		}
1969 
1970 		/* Configure Flow Control now that Auto-Neg has completed. First, we
1971 		 * need to restore the desired flow control settings because we may
1972 		 * have had to re-autoneg with a different link partner.
1973 		 */
1974 		ret_val = e1000_config_fc_after_link_up(hw);
1975 		if (ret_val < 0) {
1976 			DEBUGOUT("Error configuring flow control\n");
1977 			return ret_val;
1978 		}
1979 
1980 		/* At this point we know that we are on copper and we have
1981 		 * auto-negotiated link.  These are conditions for checking the link
1982 		 * parter capability register.	We use the link partner capability to
1983 		 * determine if TBI Compatibility needs to be turned on or off.  If
1984 		 * the link partner advertises any speed in addition to Gigabit, then
1985 		 * we assume that they are GMII-based, and TBI compatibility is not
1986 		 * needed. If no other speeds are advertised, we assume the link
1987 		 * partner is TBI-based, and we turn on TBI Compatibility.
1988 		 */
1989 		if (hw->tbi_compatibility_en) {
1990 			if (e1000_read_phy_reg
1991 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
1992 				DEBUGOUT("PHY Read Error\n");
1993 				return -E1000_ERR_PHY;
1994 			}
1995 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
1996 					     NWAY_LPAR_10T_FD_CAPS |
1997 					     NWAY_LPAR_100TX_HD_CAPS |
1998 					     NWAY_LPAR_100TX_FD_CAPS |
1999 					     NWAY_LPAR_100T4_CAPS)) {
2000 				/* If our link partner advertises anything in addition to
2001 				 * gigabit, we do not need to enable TBI compatibility.
2002 				 */
2003 				if (hw->tbi_compatibility_on) {
2004 					/* If we previously were in the mode, turn it off. */
2005 					rctl = E1000_READ_REG(hw, RCTL);
2006 					rctl &= ~E1000_RCTL_SBP;
2007 					E1000_WRITE_REG(hw, RCTL, rctl);
2008 					hw->tbi_compatibility_on = FALSE;
2009 				}
2010 			} else {
2011 				/* If TBI compatibility is was previously off, turn it on. For
2012 				 * compatibility with a TBI link partner, we will store bad
2013 				 * packets. Some frames have an additional byte on the end and
2014 				 * will look like CRC errors to to the hardware.
2015 				 */
2016 				if (!hw->tbi_compatibility_on) {
2017 					hw->tbi_compatibility_on = TRUE;
2018 					rctl = E1000_READ_REG(hw, RCTL);
2019 					rctl |= E1000_RCTL_SBP;
2020 					E1000_WRITE_REG(hw, RCTL, rctl);
2021 				}
2022 			}
2023 		}
2024 	}
2025 	/* If we don't have link (auto-negotiation failed or link partner cannot
2026 	 * auto-negotiate), the cable is plugged in (we have signal), and our
2027 	 * link partner is not trying to auto-negotiate with us (we are receiving
2028 	 * idles or data), we need to force link up. We also need to give
2029 	 * auto-negotiation time to complete, in case the cable was just plugged
2030 	 * in. The autoneg_failed flag does this.
2031 	 */
2032 	else if ((hw->media_type == e1000_media_type_fiber) &&
2033 		 (!(status & E1000_STATUS_LU)) &&
2034 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
2035 		 (!(rxcw & E1000_RXCW_C))) {
2036 		if (hw->autoneg_failed == 0) {
2037 			hw->autoneg_failed = 1;
2038 			return 0;
2039 		}
2040 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2041 
2042 		/* Disable auto-negotiation in the TXCW register */
2043 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2044 
2045 		/* Force link-up and also force full-duplex. */
2046 		ctrl = E1000_READ_REG(hw, CTRL);
2047 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2048 		E1000_WRITE_REG(hw, CTRL, ctrl);
2049 
2050 		/* Configure Flow Control after forcing link up. */
2051 		ret_val = e1000_config_fc_after_link_up(hw);
2052 		if (ret_val < 0) {
2053 			DEBUGOUT("Error configuring flow control\n");
2054 			return ret_val;
2055 		}
2056 	}
2057 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2058 	 * auto-negotiation in the TXCW register and disable forced link in the
2059 	 * Device Control register in an attempt to auto-negotiate with our link
2060 	 * partner.
2061 	 */
2062 	else if ((hw->media_type == e1000_media_type_fiber) &&
2063 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2064 		DEBUGOUT
2065 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2066 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
2067 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2068 	}
2069 	return 0;
2070 }
2071 
2072 /******************************************************************************
2073  * Detects the current speed and duplex settings of the hardware.
2074  *
2075  * hw - Struct containing variables accessed by shared code
2076  * speed - Speed of the connection
2077  * duplex - Duplex setting of the connection
2078  *****************************************************************************/
2079 static void
2080 e1000_get_speed_and_duplex(struct e1000_hw *hw,
2081 			   uint16_t * speed, uint16_t * duplex)
2082 {
2083 	uint32_t status;
2084 
2085 	DEBUGFUNC();
2086 
2087 	if (hw->mac_type >= e1000_82543) {
2088 		status = E1000_READ_REG(hw, STATUS);
2089 		if (status & E1000_STATUS_SPEED_1000) {
2090 			*speed = SPEED_1000;
2091 			DEBUGOUT("1000 Mbs, ");
2092 		} else if (status & E1000_STATUS_SPEED_100) {
2093 			*speed = SPEED_100;
2094 			DEBUGOUT("100 Mbs, ");
2095 		} else {
2096 			*speed = SPEED_10;
2097 			DEBUGOUT("10 Mbs, ");
2098 		}
2099 
2100 		if (status & E1000_STATUS_FD) {
2101 			*duplex = FULL_DUPLEX;
2102 			DEBUGOUT("Full Duplex\r\n");
2103 		} else {
2104 			*duplex = HALF_DUPLEX;
2105 			DEBUGOUT(" Half Duplex\r\n");
2106 		}
2107 	} else {
2108 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2109 		*speed = SPEED_1000;
2110 		*duplex = FULL_DUPLEX;
2111 	}
2112 }
2113 
2114 /******************************************************************************
2115 * Blocks until autoneg completes or times out (~4.5 seconds)
2116 *
2117 * hw - Struct containing variables accessed by shared code
2118 ******************************************************************************/
2119 static int
2120 e1000_wait_autoneg(struct e1000_hw *hw)
2121 {
2122 	uint16_t i;
2123 	uint16_t phy_data;
2124 
2125 	DEBUGFUNC();
2126 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2127 
2128 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2129 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2130 		/* Read the MII Status Register and wait for Auto-Neg
2131 		 * Complete bit to be set.
2132 		 */
2133 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2134 			DEBUGOUT("PHY Read Error\n");
2135 			return -E1000_ERR_PHY;
2136 		}
2137 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2138 			DEBUGOUT("PHY Read Error\n");
2139 			return -E1000_ERR_PHY;
2140 		}
2141 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2142 			DEBUGOUT("Auto-Neg complete.\n");
2143 			return 0;
2144 		}
2145 		mdelay(100);
2146 	}
2147 	DEBUGOUT("Auto-Neg timedout.\n");
2148 	return -E1000_ERR_TIMEOUT;
2149 }
2150 
2151 /******************************************************************************
2152 * Raises the Management Data Clock
2153 *
2154 * hw - Struct containing variables accessed by shared code
2155 * ctrl - Device control register's current value
2156 ******************************************************************************/
2157 static void
2158 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2159 {
2160 	/* Raise the clock input to the Management Data Clock (by setting the MDC
2161 	 * bit), and then delay 2 microseconds.
2162 	 */
2163 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2164 	E1000_WRITE_FLUSH(hw);
2165 	udelay(2);
2166 }
2167 
2168 /******************************************************************************
2169 * Lowers the Management Data Clock
2170 *
2171 * hw - Struct containing variables accessed by shared code
2172 * ctrl - Device control register's current value
2173 ******************************************************************************/
2174 static void
2175 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2176 {
2177 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
2178 	 * bit), and then delay 2 microseconds.
2179 	 */
2180 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2181 	E1000_WRITE_FLUSH(hw);
2182 	udelay(2);
2183 }
2184 
2185 /******************************************************************************
2186 * Shifts data bits out to the PHY
2187 *
2188 * hw - Struct containing variables accessed by shared code
2189 * data - Data to send out to the PHY
2190 * count - Number of bits to shift out
2191 *
2192 * Bits are shifted out in MSB to LSB order.
2193 ******************************************************************************/
2194 static void
2195 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
2196 {
2197 	uint32_t ctrl;
2198 	uint32_t mask;
2199 
2200 	/* We need to shift "count" number of bits out to the PHY. So, the value
2201 	 * in the "data" parameter will be shifted out to the PHY one bit at a
2202 	 * time. In order to do this, "data" must be broken down into bits.
2203 	 */
2204 	mask = 0x01;
2205 	mask <<= (count - 1);
2206 
2207 	ctrl = E1000_READ_REG(hw, CTRL);
2208 
2209 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2210 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2211 
2212 	while (mask) {
2213 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2214 		 * then raising and lowering the Management Data Clock. A "0" is
2215 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
2216 		 * raising and lowering the clock.
2217 		 */
2218 		if (data & mask)
2219 			ctrl |= E1000_CTRL_MDIO;
2220 		else
2221 			ctrl &= ~E1000_CTRL_MDIO;
2222 
2223 		E1000_WRITE_REG(hw, CTRL, ctrl);
2224 		E1000_WRITE_FLUSH(hw);
2225 
2226 		udelay(2);
2227 
2228 		e1000_raise_mdi_clk(hw, &ctrl);
2229 		e1000_lower_mdi_clk(hw, &ctrl);
2230 
2231 		mask = mask >> 1;
2232 	}
2233 }
2234 
2235 /******************************************************************************
2236 * Shifts data bits in from the PHY
2237 *
2238 * hw - Struct containing variables accessed by shared code
2239 *
2240 * Bits are shifted in in MSB to LSB order.
2241 ******************************************************************************/
2242 static uint16_t
2243 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2244 {
2245 	uint32_t ctrl;
2246 	uint16_t data = 0;
2247 	uint8_t i;
2248 
2249 	/* In order to read a register from the PHY, we need to shift in a total
2250 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2251 	 * to avoid contention on the MDIO pin when a read operation is performed.
2252 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2253 	 * by raising the input to the Management Data Clock (setting the MDC bit),
2254 	 * and then reading the value of the MDIO bit.
2255 	 */
2256 	ctrl = E1000_READ_REG(hw, CTRL);
2257 
2258 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2259 	ctrl &= ~E1000_CTRL_MDIO_DIR;
2260 	ctrl &= ~E1000_CTRL_MDIO;
2261 
2262 	E1000_WRITE_REG(hw, CTRL, ctrl);
2263 	E1000_WRITE_FLUSH(hw);
2264 
2265 	/* Raise and Lower the clock before reading in the data. This accounts for
2266 	 * the turnaround bits. The first clock occurred when we clocked out the
2267 	 * last bit of the Register Address.
2268 	 */
2269 	e1000_raise_mdi_clk(hw, &ctrl);
2270 	e1000_lower_mdi_clk(hw, &ctrl);
2271 
2272 	for (data = 0, i = 0; i < 16; i++) {
2273 		data = data << 1;
2274 		e1000_raise_mdi_clk(hw, &ctrl);
2275 		ctrl = E1000_READ_REG(hw, CTRL);
2276 		/* Check to see if we shifted in a "1". */
2277 		if (ctrl & E1000_CTRL_MDIO)
2278 			data |= 1;
2279 		e1000_lower_mdi_clk(hw, &ctrl);
2280 	}
2281 
2282 	e1000_raise_mdi_clk(hw, &ctrl);
2283 	e1000_lower_mdi_clk(hw, &ctrl);
2284 
2285 	return data;
2286 }
2287 
2288 /*****************************************************************************
2289 * Reads the value from a PHY register
2290 *
2291 * hw - Struct containing variables accessed by shared code
2292 * reg_addr - address of the PHY register to read
2293 ******************************************************************************/
2294 static int
2295 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
2296 {
2297 	uint32_t i;
2298 	uint32_t mdic = 0;
2299 	const uint32_t phy_addr = 1;
2300 
2301 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2302 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2303 		return -E1000_ERR_PARAM;
2304 	}
2305 
2306 	if (hw->mac_type > e1000_82543) {
2307 		/* Set up Op-code, Phy Address, and register address in the MDI
2308 		 * Control register.  The MAC will take care of interfacing with the
2309 		 * PHY to retrieve the desired data.
2310 		 */
2311 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2312 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
2313 			(E1000_MDIC_OP_READ));
2314 
2315 		E1000_WRITE_REG(hw, MDIC, mdic);
2316 
2317 		/* Poll the ready bit to see if the MDI read completed */
2318 		for (i = 0; i < 64; i++) {
2319 			udelay(10);
2320 			mdic = E1000_READ_REG(hw, MDIC);
2321 			if (mdic & E1000_MDIC_READY)
2322 				break;
2323 		}
2324 		if (!(mdic & E1000_MDIC_READY)) {
2325 			DEBUGOUT("MDI Read did not complete\n");
2326 			return -E1000_ERR_PHY;
2327 		}
2328 		if (mdic & E1000_MDIC_ERROR) {
2329 			DEBUGOUT("MDI Error\n");
2330 			return -E1000_ERR_PHY;
2331 		}
2332 		*phy_data = (uint16_t) mdic;
2333 	} else {
2334 		/* We must first send a preamble through the MDIO pin to signal the
2335 		 * beginning of an MII instruction.  This is done by sending 32
2336 		 * consecutive "1" bits.
2337 		 */
2338 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2339 
2340 		/* Now combine the next few fields that are required for a read
2341 		 * operation.  We use this method instead of calling the
2342 		 * e1000_shift_out_mdi_bits routine five different times. The format of
2343 		 * a MII read instruction consists of a shift out of 14 bits and is
2344 		 * defined as follows:
2345 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2346 		 * followed by a shift in of 18 bits.  This first two bits shifted in
2347 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
2348 		 * READ operation is performed.  These two bits are thrown away
2349 		 * followed by a shift in of 16 bits which contains the desired data.
2350 		 */
2351 		mdic = ((reg_addr) | (phy_addr << 5) |
2352 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2353 
2354 		e1000_shift_out_mdi_bits(hw, mdic, 14);
2355 
2356 		/* Now that we've shifted out the read command to the MII, we need to
2357 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2358 		 * register address.
2359 		 */
2360 		*phy_data = e1000_shift_in_mdi_bits(hw);
2361 	}
2362 	return 0;
2363 }
2364 
2365 /******************************************************************************
2366 * Writes a value to a PHY register
2367 *
2368 * hw - Struct containing variables accessed by shared code
2369 * reg_addr - address of the PHY register to write
2370 * data - data to write to the PHY
2371 ******************************************************************************/
2372 static int
2373 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
2374 {
2375 	uint32_t i;
2376 	uint32_t mdic = 0;
2377 	const uint32_t phy_addr = 1;
2378 
2379 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2380 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2381 		return -E1000_ERR_PARAM;
2382 	}
2383 
2384 	if (hw->mac_type > e1000_82543) {
2385 		/* Set up Op-code, Phy Address, register address, and data intended
2386 		 * for the PHY register in the MDI Control register.  The MAC will take
2387 		 * care of interfacing with the PHY to send the desired data.
2388 		 */
2389 		mdic = (((uint32_t) phy_data) |
2390 			(reg_addr << E1000_MDIC_REG_SHIFT) |
2391 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
2392 			(E1000_MDIC_OP_WRITE));
2393 
2394 		E1000_WRITE_REG(hw, MDIC, mdic);
2395 
2396 		/* Poll the ready bit to see if the MDI read completed */
2397 		for (i = 0; i < 64; i++) {
2398 			udelay(10);
2399 			mdic = E1000_READ_REG(hw, MDIC);
2400 			if (mdic & E1000_MDIC_READY)
2401 				break;
2402 		}
2403 		if (!(mdic & E1000_MDIC_READY)) {
2404 			DEBUGOUT("MDI Write did not complete\n");
2405 			return -E1000_ERR_PHY;
2406 		}
2407 	} else {
2408 		/* We'll need to use the SW defined pins to shift the write command
2409 		 * out to the PHY. We first send a preamble to the PHY to signal the
2410 		 * beginning of the MII instruction.  This is done by sending 32
2411 		 * consecutive "1" bits.
2412 		 */
2413 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2414 
2415 		/* Now combine the remaining required fields that will indicate a
2416 		 * write operation. We use this method instead of calling the
2417 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
2418 		 * format of a MII write instruction is as follows:
2419 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2420 		 */
2421 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2422 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2423 		mdic <<= 16;
2424 		mdic |= (uint32_t) phy_data;
2425 
2426 		e1000_shift_out_mdi_bits(hw, mdic, 32);
2427 	}
2428 	return 0;
2429 }
2430 
2431 /******************************************************************************
2432 * Returns the PHY to the power-on reset state
2433 *
2434 * hw - Struct containing variables accessed by shared code
2435 ******************************************************************************/
2436 static void
2437 e1000_phy_hw_reset(struct e1000_hw *hw)
2438 {
2439 	uint32_t ctrl;
2440 	uint32_t ctrl_ext;
2441 
2442 	DEBUGFUNC();
2443 
2444 	DEBUGOUT("Resetting Phy...\n");
2445 
2446 	if (hw->mac_type > e1000_82543) {
2447 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
2448 		 * bit. Then, take it out of reset.
2449 		 */
2450 		ctrl = E1000_READ_REG(hw, CTRL);
2451 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2452 		E1000_WRITE_FLUSH(hw);
2453 		mdelay(10);
2454 		E1000_WRITE_REG(hw, CTRL, ctrl);
2455 		E1000_WRITE_FLUSH(hw);
2456 	} else {
2457 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2458 		 * bit to put the PHY into reset. Then, take it out of reset.
2459 		 */
2460 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2461 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2462 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2463 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2464 		E1000_WRITE_FLUSH(hw);
2465 		mdelay(10);
2466 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2467 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2468 		E1000_WRITE_FLUSH(hw);
2469 	}
2470 	udelay(150);
2471 }
2472 
2473 /******************************************************************************
2474 * Resets the PHY
2475 *
2476 * hw - Struct containing variables accessed by shared code
2477 *
2478 * Sets bit 15 of the MII Control regiser
2479 ******************************************************************************/
2480 static int
2481 e1000_phy_reset(struct e1000_hw *hw)
2482 {
2483 	uint16_t phy_data;
2484 
2485 	DEBUGFUNC();
2486 
2487 	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
2488 		DEBUGOUT("PHY Read Error\n");
2489 		return -E1000_ERR_PHY;
2490 	}
2491 	phy_data |= MII_CR_RESET;
2492 	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
2493 		DEBUGOUT("PHY Write Error\n");
2494 		return -E1000_ERR_PHY;
2495 	}
2496 	udelay(1);
2497 	return 0;
2498 }
2499 
2500 static int e1000_set_phy_type (struct e1000_hw *hw)
2501 {
2502 	DEBUGFUNC ();
2503 
2504 	if (hw->mac_type == e1000_undefined)
2505 		return -E1000_ERR_PHY_TYPE;
2506 
2507 	switch (hw->phy_id) {
2508 	case M88E1000_E_PHY_ID:
2509 	case M88E1000_I_PHY_ID:
2510 	case M88E1011_I_PHY_ID:
2511 		hw->phy_type = e1000_phy_m88;
2512 		break;
2513 	case IGP01E1000_I_PHY_ID:
2514 		if (hw->mac_type == e1000_82541 ||
2515 		    hw->mac_type == e1000_82541_rev_2) {
2516 			hw->phy_type = e1000_phy_igp;
2517 			break;
2518 		}
2519 		/* Fall Through */
2520 	default:
2521 		/* Should never have loaded on this device */
2522 		hw->phy_type = e1000_phy_undefined;
2523 		return -E1000_ERR_PHY_TYPE;
2524 	}
2525 
2526 	return E1000_SUCCESS;
2527 }
2528 
2529 /******************************************************************************
2530 * Probes the expected PHY address for known PHY IDs
2531 *
2532 * hw - Struct containing variables accessed by shared code
2533 ******************************************************************************/
2534 static int
2535 e1000_detect_gig_phy(struct e1000_hw *hw)
2536 {
2537 	int32_t phy_init_status;
2538 	uint16_t phy_id_high, phy_id_low;
2539 	int match = FALSE;
2540 
2541 	DEBUGFUNC();
2542 
2543 	/* Read the PHY ID Registers to identify which PHY is onboard. */
2544 	if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
2545 		DEBUGOUT("PHY Read Error\n");
2546 		return -E1000_ERR_PHY;
2547 	}
2548 	hw->phy_id = (uint32_t) (phy_id_high << 16);
2549 	udelay(2);
2550 	if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
2551 		DEBUGOUT("PHY Read Error\n");
2552 		return -E1000_ERR_PHY;
2553 	}
2554 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2555 
2556 	switch (hw->mac_type) {
2557 	case e1000_82543:
2558 		if (hw->phy_id == M88E1000_E_PHY_ID)
2559 			match = TRUE;
2560 		break;
2561 	case e1000_82544:
2562 		if (hw->phy_id == M88E1000_I_PHY_ID)
2563 			match = TRUE;
2564 		break;
2565 	case e1000_82540:
2566 	case e1000_82545:
2567 	case e1000_82546:
2568 		if (hw->phy_id == M88E1011_I_PHY_ID)
2569 			match = TRUE;
2570 		break;
2571 	case e1000_82541_rev_2:
2572 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
2573 			match = TRUE;
2574 
2575 		break;
2576 	default:
2577 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
2578 		return -E1000_ERR_CONFIG;
2579 	}
2580 
2581 	phy_init_status = e1000_set_phy_type(hw);
2582 
2583 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
2584 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
2585 		return 0;
2586 	}
2587 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
2588 	return -E1000_ERR_PHY;
2589 }
2590 
2591 /**
2592  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2593  *
2594  * e1000_sw_init initializes the Adapter private data structure.
2595  * Fields are initialized based on PCI device information and
2596  * OS network device settings (MTU size).
2597  **/
2598 
2599 static int
2600 e1000_sw_init(struct eth_device *nic, int cardnum)
2601 {
2602 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
2603 	int result;
2604 
2605 	/* PCI config space info */
2606 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
2607 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
2608 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
2609 			     &hw->subsystem_vendor_id);
2610 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
2611 
2612 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
2613 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
2614 
2615 	/* identify the MAC */
2616 	result = e1000_set_mac_type(hw);
2617 	if (result) {
2618 		E1000_ERR("Unknown MAC Type\n");
2619 		return result;
2620 	}
2621 
2622 	/* lan a vs. lan b settings */
2623 	if (hw->mac_type == e1000_82546)
2624 		/*this also works w/ multiple 82546 cards */
2625 		/*but not if they're intermingled /w other e1000s */
2626 		hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
2627 	else
2628 		hw->lan_loc = e1000_lan_a;
2629 
2630 	/* flow control settings */
2631 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
2632 	hw->fc_low_water = E1000_FC_LOW_THRESH;
2633 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
2634 	hw->fc_send_xon = 1;
2635 
2636 	/* Media type - copper or fiber */
2637 
2638 	if (hw->mac_type >= e1000_82543) {
2639 		uint32_t status = E1000_READ_REG(hw, STATUS);
2640 
2641 		if (status & E1000_STATUS_TBIMODE) {
2642 			DEBUGOUT("fiber interface\n");
2643 			hw->media_type = e1000_media_type_fiber;
2644 		} else {
2645 			DEBUGOUT("copper interface\n");
2646 			hw->media_type = e1000_media_type_copper;
2647 		}
2648 	} else {
2649 		hw->media_type = e1000_media_type_fiber;
2650 	}
2651 
2652 	if (hw->mac_type < e1000_82543)
2653 		hw->report_tx_early = 0;
2654 	else
2655 		hw->report_tx_early = 1;
2656 
2657 	hw->tbi_compatibility_en = TRUE;
2658 #if 0
2659 	hw->wait_autoneg_complete = FALSE;
2660 	hw->adaptive_ifs = TRUE;
2661 
2662 	/* Copper options */
2663 	if (hw->media_type == e1000_media_type_copper) {
2664 		hw->mdix = AUTO_ALL_MODES;
2665 		hw->disable_polarity_correction = FALSE;
2666 	}
2667 #endif
2668 	return E1000_SUCCESS;
2669 }
2670 
2671 void
2672 fill_rx(struct e1000_hw *hw)
2673 {
2674 	struct e1000_rx_desc *rd;
2675 
2676 	rx_last = rx_tail;
2677 	rd = rx_base + rx_tail;
2678 	rx_tail = (rx_tail + 1) % 8;
2679 	memset(rd, 0, 16);
2680 	rd->buffer_addr = cpu_to_le64((u32) & packet);
2681 	E1000_WRITE_REG(hw, RDT, rx_tail);
2682 }
2683 
2684 /**
2685  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2686  * @adapter: board private structure
2687  *
2688  * Configure the Tx unit of the MAC after a reset.
2689  **/
2690 
2691 static void
2692 e1000_configure_tx(struct e1000_hw *hw)
2693 {
2694 	unsigned long ptr;
2695 	unsigned long tctl;
2696 	unsigned long tipg;
2697 
2698 	ptr = (u32) tx_pool;
2699 	if (ptr & 0xf)
2700 		ptr = (ptr + 0x10) & (~0xf);
2701 
2702 	tx_base = (typeof(tx_base)) ptr;
2703 
2704 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
2705 	E1000_WRITE_REG(hw, TDBAH, 0);
2706 
2707 	E1000_WRITE_REG(hw, TDLEN, 128);
2708 
2709 	/* Setup the HW Tx Head and Tail descriptor pointers */
2710 	E1000_WRITE_REG(hw, TDH, 0);
2711 	E1000_WRITE_REG(hw, TDT, 0);
2712 	tx_tail = 0;
2713 
2714 	/* Set the default values for the Tx Inter Packet Gap timer */
2715 	switch (hw->mac_type) {
2716 	case e1000_82542_rev2_0:
2717 	case e1000_82542_rev2_1:
2718 		tipg = DEFAULT_82542_TIPG_IPGT;
2719 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2720 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2721 		break;
2722 	default:
2723 		if (hw->media_type == e1000_media_type_fiber)
2724 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2725 		else
2726 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2727 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2728 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2729 	}
2730 	E1000_WRITE_REG(hw, TIPG, tipg);
2731 #if 0
2732 	/* Set the Tx Interrupt Delay register */
2733 	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
2734 	if (hw->mac_type >= e1000_82540)
2735 		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
2736 #endif
2737 	/* Program the Transmit Control Register */
2738 	tctl = E1000_READ_REG(hw, TCTL);
2739 	tctl &= ~E1000_TCTL_CT;
2740 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
2741 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2742 	E1000_WRITE_REG(hw, TCTL, tctl);
2743 
2744 	e1000_config_collision_dist(hw);
2745 #if 0
2746 	/* Setup Transmit Descriptor Settings for this adapter */
2747 	adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
2748 
2749 	if (adapter->hw.report_tx_early == 1)
2750 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
2751 	else
2752 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
2753 #endif
2754 }
2755 
2756 /**
2757  * e1000_setup_rctl - configure the receive control register
2758  * @adapter: Board private structure
2759  **/
2760 static void
2761 e1000_setup_rctl(struct e1000_hw *hw)
2762 {
2763 	uint32_t rctl;
2764 
2765 	rctl = E1000_READ_REG(hw, RCTL);
2766 
2767 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2768 
2769 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF;	/* |
2770 												   (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
2771 
2772 	if (hw->tbi_compatibility_on == 1)
2773 		rctl |= E1000_RCTL_SBP;
2774 	else
2775 		rctl &= ~E1000_RCTL_SBP;
2776 
2777 	rctl &= ~(E1000_RCTL_SZ_4096);
2778 #if 0
2779 	switch (adapter->rx_buffer_len) {
2780 	case E1000_RXBUFFER_2048:
2781 	default:
2782 #endif
2783 		rctl |= E1000_RCTL_SZ_2048;
2784 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
2785 #if 0
2786 		break;
2787 	case E1000_RXBUFFER_4096:
2788 		rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2789 		break;
2790 	case E1000_RXBUFFER_8192:
2791 		rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2792 		break;
2793 	case E1000_RXBUFFER_16384:
2794 		rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2795 		break;
2796 	}
2797 #endif
2798 	E1000_WRITE_REG(hw, RCTL, rctl);
2799 }
2800 
2801 /**
2802  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2803  * @adapter: board private structure
2804  *
2805  * Configure the Rx unit of the MAC after a reset.
2806  **/
2807 static void
2808 e1000_configure_rx(struct e1000_hw *hw)
2809 {
2810 	unsigned long ptr;
2811 	unsigned long rctl;
2812 #if 0
2813 	unsigned long rxcsum;
2814 #endif
2815 	rx_tail = 0;
2816 	/* make sure receives are disabled while setting up the descriptors */
2817 	rctl = E1000_READ_REG(hw, RCTL);
2818 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2819 #if 0
2820 	/* set the Receive Delay Timer Register */
2821 
2822 	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2823 #endif
2824 	if (hw->mac_type >= e1000_82540) {
2825 #if 0
2826 		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2827 #endif
2828 		/* Set the interrupt throttling rate.  Value is calculated
2829 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
2830 #define MAX_INTS_PER_SEC	8000
2831 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
2832 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
2833 	}
2834 
2835 	/* Setup the Base and Length of the Rx Descriptor Ring */
2836 	ptr = (u32) rx_pool;
2837 	if (ptr & 0xf)
2838 		ptr = (ptr + 0x10) & (~0xf);
2839 	rx_base = (typeof(rx_base)) ptr;
2840 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
2841 	E1000_WRITE_REG(hw, RDBAH, 0);
2842 
2843 	E1000_WRITE_REG(hw, RDLEN, 128);
2844 
2845 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
2846 	E1000_WRITE_REG(hw, RDH, 0);
2847 	E1000_WRITE_REG(hw, RDT, 0);
2848 #if 0
2849 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2850 	if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
2851 		rxcsum = E1000_READ_REG(hw, RXCSUM);
2852 		rxcsum |= E1000_RXCSUM_TUOFL;
2853 		E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2854 	}
2855 #endif
2856 	/* Enable Receives */
2857 
2858 	E1000_WRITE_REG(hw, RCTL, rctl);
2859 	fill_rx(hw);
2860 }
2861 
2862 /**************************************************************************
2863 POLL - Wait for a frame
2864 ***************************************************************************/
2865 static int
2866 e1000_poll(struct eth_device *nic)
2867 {
2868 	struct e1000_hw *hw = nic->priv;
2869 	struct e1000_rx_desc *rd;
2870 	/* return true if there's an ethernet packet ready to read */
2871 	rd = rx_base + rx_last;
2872 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
2873 		return 0;
2874 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
2875 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
2876 	fill_rx(hw);
2877 	return 1;
2878 }
2879 
2880 /**************************************************************************
2881 TRANSMIT - Transmit a frame
2882 ***************************************************************************/
2883 static int
2884 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
2885 {
2886 	struct e1000_hw *hw = nic->priv;
2887 	struct e1000_tx_desc *txp;
2888 	int i = 0;
2889 
2890 	txp = tx_base + tx_tail;
2891 	tx_tail = (tx_tail + 1) % 8;
2892 
2893 	txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
2894 	txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
2895 				      E1000_TXD_CMD_IFCS | length);
2896 	txp->upper.data = 0;
2897 	E1000_WRITE_REG(hw, TDT, tx_tail);
2898 
2899 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
2900 		if (i++ > TOUT_LOOP) {
2901 			DEBUGOUT("e1000: tx timeout\n");
2902 			return 0;
2903 		}
2904 		udelay(10);	/* give the nic a chance to write to the register */
2905 	}
2906 	return 1;
2907 }
2908 
2909 /*reset function*/
2910 static inline int
2911 e1000_reset(struct eth_device *nic)
2912 {
2913 	struct e1000_hw *hw = nic->priv;
2914 
2915 	e1000_reset_hw(hw);
2916 	if (hw->mac_type >= e1000_82544) {
2917 		E1000_WRITE_REG(hw, WUC, 0);
2918 	}
2919 	return e1000_init_hw(nic);
2920 }
2921 
2922 /**************************************************************************
2923 DISABLE - Turn off ethernet interface
2924 ***************************************************************************/
2925 static void
2926 e1000_disable(struct eth_device *nic)
2927 {
2928 	struct e1000_hw *hw = nic->priv;
2929 
2930 	/* Turn off the ethernet interface */
2931 	E1000_WRITE_REG(hw, RCTL, 0);
2932 	E1000_WRITE_REG(hw, TCTL, 0);
2933 
2934 	/* Clear the transmit ring */
2935 	E1000_WRITE_REG(hw, TDH, 0);
2936 	E1000_WRITE_REG(hw, TDT, 0);
2937 
2938 	/* Clear the receive ring */
2939 	E1000_WRITE_REG(hw, RDH, 0);
2940 	E1000_WRITE_REG(hw, RDT, 0);
2941 
2942 	/* put the card in its initial state */
2943 #if 0
2944 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
2945 #endif
2946 	mdelay(10);
2947 
2948 }
2949 
2950 /**************************************************************************
2951 INIT - set up ethernet interface(s)
2952 ***************************************************************************/
2953 static int
2954 e1000_init(struct eth_device *nic, bd_t * bis)
2955 {
2956 	struct e1000_hw *hw = nic->priv;
2957 	int ret_val = 0;
2958 
2959 	ret_val = e1000_reset(nic);
2960 	if (ret_val < 0) {
2961 		if ((ret_val == -E1000_ERR_NOLINK) ||
2962 		    (ret_val == -E1000_ERR_TIMEOUT)) {
2963 			E1000_ERR("Valid Link not detected\n");
2964 		} else {
2965 			E1000_ERR("Hardware Initialization Failed\n");
2966 		}
2967 		return 0;
2968 	}
2969 	e1000_configure_tx(hw);
2970 	e1000_setup_rctl(hw);
2971 	e1000_configure_rx(hw);
2972 	return 1;
2973 }
2974 
2975 /**************************************************************************
2976 PROBE - Look for an adapter, this routine's visible to the outside
2977 You should omit the last argument struct pci_device * for a non-PCI NIC
2978 ***************************************************************************/
2979 int
2980 e1000_initialize(bd_t * bis)
2981 {
2982 	pci_dev_t devno;
2983 	int card_number = 0;
2984 	struct eth_device *nic = NULL;
2985 	struct e1000_hw *hw = NULL;
2986 	u32 iobase;
2987 	int idx = 0;
2988 	u32 PciCommandWord;
2989 
2990 	while (1) {		/* Find PCI device(s) */
2991 		if ((devno = pci_find_devices(supported, idx++)) < 0) {
2992 			break;
2993 		}
2994 
2995 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
2996 		iobase &= ~0xf;	/* Mask the bits that say "this is an io addr" */
2997 		DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
2998 
2999 		pci_write_config_dword(devno, PCI_COMMAND,
3000 				       PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
3001 		/* Check if I/O accesses and Bus Mastering are enabled. */
3002 		pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
3003 		if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
3004 			printf("Error: Can not enable MEM access.\n");
3005 			continue;
3006 		} else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
3007 			printf("Error: Can not enable Bus Mastering.\n");
3008 			continue;
3009 		}
3010 
3011 		nic = (struct eth_device *) malloc(sizeof (*nic));
3012 		hw = (struct e1000_hw *) malloc(sizeof (*hw));
3013 		hw->pdev = devno;
3014 		nic->priv = hw;
3015 		nic->iobase = bus_to_phys(devno, iobase);
3016 
3017 		sprintf(nic->name, "e1000#%d", card_number);
3018 
3019 		/* Are these variables needed? */
3020 #if 0
3021 		hw->fc = e1000_fc_none;
3022 		hw->original_fc = e1000_fc_none;
3023 #else
3024 		hw->fc = e1000_fc_default;
3025 		hw->original_fc = e1000_fc_default;
3026 #endif
3027 		hw->autoneg_failed = 0;
3028 		hw->get_link_status = TRUE;
3029 		hw->hw_addr = (typeof(hw->hw_addr)) iobase;
3030 		hw->mac_type = e1000_undefined;
3031 
3032 		/* MAC and Phy settings */
3033 		if (e1000_sw_init(nic, card_number) < 0) {
3034 			free(hw);
3035 			free(nic);
3036 			return 0;
3037 		}
3038 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
3039 		if (e1000_validate_eeprom_checksum(nic) < 0) {
3040 			printf("The EEPROM Checksum Is Not Valid\n");
3041 			free(hw);
3042 			free(nic);
3043 			return 0;
3044 		}
3045 #endif
3046 		e1000_read_mac_addr(nic);
3047 
3048 		E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
3049 
3050 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
3051 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
3052 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
3053 
3054 		nic->init = e1000_init;
3055 		nic->recv = e1000_poll;
3056 		nic->send = e1000_transmit;
3057 		nic->halt = e1000_disable;
3058 
3059 		eth_register(nic);
3060 
3061 		card_number++;
3062 	}
3063 	return card_number;
3064 }
3065