xref: /openbmc/u-boot/drivers/net/e1000.c (revision f15ea6e1d67782a1626d4a4922b6c20e380085e5)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12  * SPDX-License-Identifier:	GPL-2.0+
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include "e1000.h"
33 
34 #define TOUT_LOOP   100000
35 
36 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
37 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
38 
39 #define E1000_DEFAULT_PCI_PBA	0x00000030
40 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
41 
42 /* NIC specific static variables go here */
43 
44 static char tx_pool[128 + 16];
45 static char rx_pool[128 + 16];
46 static char packet[2096];
47 
48 static struct e1000_tx_desc *tx_base;
49 static struct e1000_rx_desc *rx_base;
50 
51 static int tx_tail;
52 static int rx_tail, rx_last;
53 
54 static struct pci_device_id e1000_supported[] = {
55 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
64 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
65 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
68 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
69 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
72 	/* E1000 PCIe card */
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
89 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
90 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
95 	{}
96 };
97 
98 /* Function forward declarations */
99 static int e1000_setup_link(struct eth_device *nic);
100 static int e1000_setup_fiber_link(struct eth_device *nic);
101 static int e1000_setup_copper_link(struct eth_device *nic);
102 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
103 static void e1000_config_collision_dist(struct e1000_hw *hw);
104 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
105 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
106 static int e1000_check_for_link(struct eth_device *nic);
107 static int e1000_wait_autoneg(struct e1000_hw *hw);
108 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
109 				       uint16_t * duplex);
110 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
111 			      uint16_t * phy_data);
112 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
113 			       uint16_t phy_data);
114 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
115 static int e1000_phy_reset(struct e1000_hw *hw);
116 static int e1000_detect_gig_phy(struct e1000_hw *hw);
117 static void e1000_set_media_type(struct e1000_hw *hw);
118 
119 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
120 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
121 
122 #ifndef CONFIG_E1000_NO_NVM
123 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
124 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
125 		uint16_t words,
126 		uint16_t *data);
127 /******************************************************************************
128  * Raises the EEPROM's clock input.
129  *
130  * hw - Struct containing variables accessed by shared code
131  * eecd - EECD's current value
132  *****************************************************************************/
133 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
134 {
135 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
136 	 * wait 50 microseconds.
137 	 */
138 	*eecd = *eecd | E1000_EECD_SK;
139 	E1000_WRITE_REG(hw, EECD, *eecd);
140 	E1000_WRITE_FLUSH(hw);
141 	udelay(50);
142 }
143 
144 /******************************************************************************
145  * Lowers the EEPROM's clock input.
146  *
147  * hw - Struct containing variables accessed by shared code
148  * eecd - EECD's current value
149  *****************************************************************************/
150 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
151 {
152 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
153 	 * wait 50 microseconds.
154 	 */
155 	*eecd = *eecd & ~E1000_EECD_SK;
156 	E1000_WRITE_REG(hw, EECD, *eecd);
157 	E1000_WRITE_FLUSH(hw);
158 	udelay(50);
159 }
160 
161 /******************************************************************************
162  * Shift data bits out to the EEPROM.
163  *
164  * hw - Struct containing variables accessed by shared code
165  * data - data to send to the EEPROM
166  * count - number of bits to shift out
167  *****************************************************************************/
168 static void
169 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
170 {
171 	uint32_t eecd;
172 	uint32_t mask;
173 
174 	/* We need to shift "count" bits out to the EEPROM. So, value in the
175 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
176 	 * In order to do this, "data" must be broken down into bits.
177 	 */
178 	mask = 0x01 << (count - 1);
179 	eecd = E1000_READ_REG(hw, EECD);
180 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
181 	do {
182 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
183 		 * and then raising and then lowering the clock (the SK bit controls
184 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
185 		 * by setting "DI" to "0" and then raising and then lowering the clock.
186 		 */
187 		eecd &= ~E1000_EECD_DI;
188 
189 		if (data & mask)
190 			eecd |= E1000_EECD_DI;
191 
192 		E1000_WRITE_REG(hw, EECD, eecd);
193 		E1000_WRITE_FLUSH(hw);
194 
195 		udelay(50);
196 
197 		e1000_raise_ee_clk(hw, &eecd);
198 		e1000_lower_ee_clk(hw, &eecd);
199 
200 		mask = mask >> 1;
201 
202 	} while (mask);
203 
204 	/* We leave the "DI" bit set to "0" when we leave this routine. */
205 	eecd &= ~E1000_EECD_DI;
206 	E1000_WRITE_REG(hw, EECD, eecd);
207 }
208 
209 /******************************************************************************
210  * Shift data bits in from the EEPROM
211  *
212  * hw - Struct containing variables accessed by shared code
213  *****************************************************************************/
214 static uint16_t
215 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
216 {
217 	uint32_t eecd;
218 	uint32_t i;
219 	uint16_t data;
220 
221 	/* In order to read a register from the EEPROM, we need to shift 'count'
222 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
223 	 * input to the EEPROM (setting the SK bit), and then reading the
224 	 * value of the "DO" bit.  During this "shifting in" process the
225 	 * "DI" bit should always be clear.
226 	 */
227 
228 	eecd = E1000_READ_REG(hw, EECD);
229 
230 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
231 	data = 0;
232 
233 	for (i = 0; i < count; i++) {
234 		data = data << 1;
235 		e1000_raise_ee_clk(hw, &eecd);
236 
237 		eecd = E1000_READ_REG(hw, EECD);
238 
239 		eecd &= ~(E1000_EECD_DI);
240 		if (eecd & E1000_EECD_DO)
241 			data |= 1;
242 
243 		e1000_lower_ee_clk(hw, &eecd);
244 	}
245 
246 	return data;
247 }
248 
249 /******************************************************************************
250  * Returns EEPROM to a "standby" state
251  *
252  * hw - Struct containing variables accessed by shared code
253  *****************************************************************************/
254 void e1000_standby_eeprom(struct e1000_hw *hw)
255 {
256 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
257 	uint32_t eecd;
258 
259 	eecd = E1000_READ_REG(hw, EECD);
260 
261 	if (eeprom->type == e1000_eeprom_microwire) {
262 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
263 		E1000_WRITE_REG(hw, EECD, eecd);
264 		E1000_WRITE_FLUSH(hw);
265 		udelay(eeprom->delay_usec);
266 
267 		/* Clock high */
268 		eecd |= E1000_EECD_SK;
269 		E1000_WRITE_REG(hw, EECD, eecd);
270 		E1000_WRITE_FLUSH(hw);
271 		udelay(eeprom->delay_usec);
272 
273 		/* Select EEPROM */
274 		eecd |= E1000_EECD_CS;
275 		E1000_WRITE_REG(hw, EECD, eecd);
276 		E1000_WRITE_FLUSH(hw);
277 		udelay(eeprom->delay_usec);
278 
279 		/* Clock low */
280 		eecd &= ~E1000_EECD_SK;
281 		E1000_WRITE_REG(hw, EECD, eecd);
282 		E1000_WRITE_FLUSH(hw);
283 		udelay(eeprom->delay_usec);
284 	} else if (eeprom->type == e1000_eeprom_spi) {
285 		/* Toggle CS to flush commands */
286 		eecd |= E1000_EECD_CS;
287 		E1000_WRITE_REG(hw, EECD, eecd);
288 		E1000_WRITE_FLUSH(hw);
289 		udelay(eeprom->delay_usec);
290 		eecd &= ~E1000_EECD_CS;
291 		E1000_WRITE_REG(hw, EECD, eecd);
292 		E1000_WRITE_FLUSH(hw);
293 		udelay(eeprom->delay_usec);
294 	}
295 }
296 
297 /***************************************************************************
298 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
299 *
300 * hw - Struct containing variables accessed by shared code
301 ****************************************************************************/
302 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
303 {
304 	uint32_t eecd = 0;
305 
306 	DEBUGFUNC();
307 
308 	if (hw->mac_type == e1000_ich8lan)
309 		return false;
310 
311 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
312 		eecd = E1000_READ_REG(hw, EECD);
313 
314 		/* Isolate bits 15 & 16 */
315 		eecd = ((eecd >> 15) & 0x03);
316 
317 		/* If both bits are set, device is Flash type */
318 		if (eecd == 0x03)
319 			return false;
320 	}
321 	return true;
322 }
323 
324 /******************************************************************************
325  * Prepares EEPROM for access
326  *
327  * hw - Struct containing variables accessed by shared code
328  *
329  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
330  * function should be called before issuing a command to the EEPROM.
331  *****************************************************************************/
332 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
333 {
334 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
335 	uint32_t eecd, i = 0;
336 
337 	DEBUGFUNC();
338 
339 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
340 		return -E1000_ERR_SWFW_SYNC;
341 	eecd = E1000_READ_REG(hw, EECD);
342 
343 	if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
344 		/* Request EEPROM Access */
345 		if (hw->mac_type > e1000_82544) {
346 			eecd |= E1000_EECD_REQ;
347 			E1000_WRITE_REG(hw, EECD, eecd);
348 			eecd = E1000_READ_REG(hw, EECD);
349 			while ((!(eecd & E1000_EECD_GNT)) &&
350 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
351 				i++;
352 				udelay(5);
353 				eecd = E1000_READ_REG(hw, EECD);
354 			}
355 			if (!(eecd & E1000_EECD_GNT)) {
356 				eecd &= ~E1000_EECD_REQ;
357 				E1000_WRITE_REG(hw, EECD, eecd);
358 				DEBUGOUT("Could not acquire EEPROM grant\n");
359 				return -E1000_ERR_EEPROM;
360 			}
361 		}
362 	}
363 
364 	/* Setup EEPROM for Read/Write */
365 
366 	if (eeprom->type == e1000_eeprom_microwire) {
367 		/* Clear SK and DI */
368 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
369 		E1000_WRITE_REG(hw, EECD, eecd);
370 
371 		/* Set CS */
372 		eecd |= E1000_EECD_CS;
373 		E1000_WRITE_REG(hw, EECD, eecd);
374 	} else if (eeprom->type == e1000_eeprom_spi) {
375 		/* Clear SK and CS */
376 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
377 		E1000_WRITE_REG(hw, EECD, eecd);
378 		udelay(1);
379 	}
380 
381 	return E1000_SUCCESS;
382 }
383 
384 /******************************************************************************
385  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
386  * is configured.  Additionally, if this is ICH8, the flash controller GbE
387  * registers must be mapped, or this will crash.
388  *
389  * hw - Struct containing variables accessed by shared code
390  *****************************************************************************/
391 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
392 {
393 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
394 	uint32_t eecd = E1000_READ_REG(hw, EECD);
395 	int32_t ret_val = E1000_SUCCESS;
396 	uint16_t eeprom_size;
397 
398 	DEBUGFUNC();
399 
400 	switch (hw->mac_type) {
401 	case e1000_82542_rev2_0:
402 	case e1000_82542_rev2_1:
403 	case e1000_82543:
404 	case e1000_82544:
405 		eeprom->type = e1000_eeprom_microwire;
406 		eeprom->word_size = 64;
407 		eeprom->opcode_bits = 3;
408 		eeprom->address_bits = 6;
409 		eeprom->delay_usec = 50;
410 		eeprom->use_eerd = false;
411 		eeprom->use_eewr = false;
412 	break;
413 	case e1000_82540:
414 	case e1000_82545:
415 	case e1000_82545_rev_3:
416 	case e1000_82546:
417 	case e1000_82546_rev_3:
418 		eeprom->type = e1000_eeprom_microwire;
419 		eeprom->opcode_bits = 3;
420 		eeprom->delay_usec = 50;
421 		if (eecd & E1000_EECD_SIZE) {
422 			eeprom->word_size = 256;
423 			eeprom->address_bits = 8;
424 		} else {
425 			eeprom->word_size = 64;
426 			eeprom->address_bits = 6;
427 		}
428 		eeprom->use_eerd = false;
429 		eeprom->use_eewr = false;
430 		break;
431 	case e1000_82541:
432 	case e1000_82541_rev_2:
433 	case e1000_82547:
434 	case e1000_82547_rev_2:
435 		if (eecd & E1000_EECD_TYPE) {
436 			eeprom->type = e1000_eeprom_spi;
437 			eeprom->opcode_bits = 8;
438 			eeprom->delay_usec = 1;
439 			if (eecd & E1000_EECD_ADDR_BITS) {
440 				eeprom->page_size = 32;
441 				eeprom->address_bits = 16;
442 			} else {
443 				eeprom->page_size = 8;
444 				eeprom->address_bits = 8;
445 			}
446 		} else {
447 			eeprom->type = e1000_eeprom_microwire;
448 			eeprom->opcode_bits = 3;
449 			eeprom->delay_usec = 50;
450 			if (eecd & E1000_EECD_ADDR_BITS) {
451 				eeprom->word_size = 256;
452 				eeprom->address_bits = 8;
453 			} else {
454 				eeprom->word_size = 64;
455 				eeprom->address_bits = 6;
456 			}
457 		}
458 		eeprom->use_eerd = false;
459 		eeprom->use_eewr = false;
460 		break;
461 	case e1000_82571:
462 	case e1000_82572:
463 		eeprom->type = e1000_eeprom_spi;
464 		eeprom->opcode_bits = 8;
465 		eeprom->delay_usec = 1;
466 		if (eecd & E1000_EECD_ADDR_BITS) {
467 			eeprom->page_size = 32;
468 			eeprom->address_bits = 16;
469 		} else {
470 			eeprom->page_size = 8;
471 			eeprom->address_bits = 8;
472 		}
473 		eeprom->use_eerd = false;
474 		eeprom->use_eewr = false;
475 		break;
476 	case e1000_82573:
477 	case e1000_82574:
478 		eeprom->type = e1000_eeprom_spi;
479 		eeprom->opcode_bits = 8;
480 		eeprom->delay_usec = 1;
481 		if (eecd & E1000_EECD_ADDR_BITS) {
482 			eeprom->page_size = 32;
483 			eeprom->address_bits = 16;
484 		} else {
485 			eeprom->page_size = 8;
486 			eeprom->address_bits = 8;
487 		}
488 		eeprom->use_eerd = true;
489 		eeprom->use_eewr = true;
490 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
491 			eeprom->type = e1000_eeprom_flash;
492 			eeprom->word_size = 2048;
493 
494 		/* Ensure that the Autonomous FLASH update bit is cleared due to
495 		 * Flash update issue on parts which use a FLASH for NVM. */
496 			eecd &= ~E1000_EECD_AUPDEN;
497 			E1000_WRITE_REG(hw, EECD, eecd);
498 		}
499 		break;
500 	case e1000_80003es2lan:
501 		eeprom->type = e1000_eeprom_spi;
502 		eeprom->opcode_bits = 8;
503 		eeprom->delay_usec = 1;
504 		if (eecd & E1000_EECD_ADDR_BITS) {
505 			eeprom->page_size = 32;
506 			eeprom->address_bits = 16;
507 		} else {
508 			eeprom->page_size = 8;
509 			eeprom->address_bits = 8;
510 		}
511 		eeprom->use_eerd = true;
512 		eeprom->use_eewr = false;
513 		break;
514 
515 	/* ich8lan does not support currently. if needed, please
516 	 * add corresponding code and functions.
517 	 */
518 #if 0
519 	case e1000_ich8lan:
520 		{
521 		int32_t  i = 0;
522 
523 		eeprom->type = e1000_eeprom_ich8;
524 		eeprom->use_eerd = false;
525 		eeprom->use_eewr = false;
526 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
527 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
528 				ICH_FLASH_GFPREG);
529 		/* Zero the shadow RAM structure. But don't load it from NVM
530 		 * so as to save time for driver init */
531 		if (hw->eeprom_shadow_ram != NULL) {
532 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
533 				hw->eeprom_shadow_ram[i].modified = false;
534 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
535 			}
536 		}
537 
538 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
539 				ICH_FLASH_SECTOR_SIZE;
540 
541 		hw->flash_bank_size = ((flash_size >> 16)
542 				& ICH_GFPREG_BASE_MASK) + 1;
543 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
544 
545 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
546 
547 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
548 		break;
549 		}
550 #endif
551 	default:
552 		break;
553 	}
554 
555 	if (eeprom->type == e1000_eeprom_spi) {
556 		/* eeprom_size will be an enum [0..8] that maps
557 		 * to eeprom sizes 128B to
558 		 * 32KB (incremented by powers of 2).
559 		 */
560 		if (hw->mac_type <= e1000_82547_rev_2) {
561 			/* Set to default value for initial eeprom read. */
562 			eeprom->word_size = 64;
563 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
564 					&eeprom_size);
565 			if (ret_val)
566 				return ret_val;
567 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
568 				>> EEPROM_SIZE_SHIFT;
569 			/* 256B eeprom size was not supported in earlier
570 			 * hardware, so we bump eeprom_size up one to
571 			 * ensure that "1" (which maps to 256B) is never
572 			 * the result used in the shifting logic below. */
573 			if (eeprom_size)
574 				eeprom_size++;
575 		} else {
576 			eeprom_size = (uint16_t)((eecd &
577 				E1000_EECD_SIZE_EX_MASK) >>
578 				E1000_EECD_SIZE_EX_SHIFT);
579 		}
580 
581 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
582 	}
583 	return ret_val;
584 }
585 
586 /******************************************************************************
587  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
588  *
589  * hw - Struct containing variables accessed by shared code
590  *****************************************************************************/
591 static int32_t
592 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
593 {
594 	uint32_t attempts = 100000;
595 	uint32_t i, reg = 0;
596 	int32_t done = E1000_ERR_EEPROM;
597 
598 	for (i = 0; i < attempts; i++) {
599 		if (eerd == E1000_EEPROM_POLL_READ)
600 			reg = E1000_READ_REG(hw, EERD);
601 		else
602 			reg = E1000_READ_REG(hw, EEWR);
603 
604 		if (reg & E1000_EEPROM_RW_REG_DONE) {
605 			done = E1000_SUCCESS;
606 			break;
607 		}
608 		udelay(5);
609 	}
610 
611 	return done;
612 }
613 
614 /******************************************************************************
615  * Reads a 16 bit word from the EEPROM using the EERD register.
616  *
617  * hw - Struct containing variables accessed by shared code
618  * offset - offset of  word in the EEPROM to read
619  * data - word read from the EEPROM
620  * words - number of words to read
621  *****************************************************************************/
622 static int32_t
623 e1000_read_eeprom_eerd(struct e1000_hw *hw,
624 			uint16_t offset,
625 			uint16_t words,
626 			uint16_t *data)
627 {
628 	uint32_t i, eerd = 0;
629 	int32_t error = 0;
630 
631 	for (i = 0; i < words; i++) {
632 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
633 			E1000_EEPROM_RW_REG_START;
634 
635 		E1000_WRITE_REG(hw, EERD, eerd);
636 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
637 
638 		if (error)
639 			break;
640 		data[i] = (E1000_READ_REG(hw, EERD) >>
641 				E1000_EEPROM_RW_REG_DATA);
642 
643 	}
644 
645 	return error;
646 }
647 
648 void e1000_release_eeprom(struct e1000_hw *hw)
649 {
650 	uint32_t eecd;
651 
652 	DEBUGFUNC();
653 
654 	eecd = E1000_READ_REG(hw, EECD);
655 
656 	if (hw->eeprom.type == e1000_eeprom_spi) {
657 		eecd |= E1000_EECD_CS;  /* Pull CS high */
658 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
659 
660 		E1000_WRITE_REG(hw, EECD, eecd);
661 
662 		udelay(hw->eeprom.delay_usec);
663 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
664 		/* cleanup eeprom */
665 
666 		/* CS on Microwire is active-high */
667 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
668 
669 		E1000_WRITE_REG(hw, EECD, eecd);
670 
671 		/* Rising edge of clock */
672 		eecd |= E1000_EECD_SK;
673 		E1000_WRITE_REG(hw, EECD, eecd);
674 		E1000_WRITE_FLUSH(hw);
675 		udelay(hw->eeprom.delay_usec);
676 
677 		/* Falling edge of clock */
678 		eecd &= ~E1000_EECD_SK;
679 		E1000_WRITE_REG(hw, EECD, eecd);
680 		E1000_WRITE_FLUSH(hw);
681 		udelay(hw->eeprom.delay_usec);
682 	}
683 
684 	/* Stop requesting EEPROM access */
685 	if (hw->mac_type > e1000_82544) {
686 		eecd &= ~E1000_EECD_REQ;
687 		E1000_WRITE_REG(hw, EECD, eecd);
688 	}
689 }
690 /******************************************************************************
691  * Reads a 16 bit word from the EEPROM.
692  *
693  * hw - Struct containing variables accessed by shared code
694  *****************************************************************************/
695 static int32_t
696 e1000_spi_eeprom_ready(struct e1000_hw *hw)
697 {
698 	uint16_t retry_count = 0;
699 	uint8_t spi_stat_reg;
700 
701 	DEBUGFUNC();
702 
703 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
704 	 * EEPROM will signal that the command has been completed by clearing
705 	 * bit 0 of the internal status register.  If it's not cleared within
706 	 * 5 milliseconds, then error out.
707 	 */
708 	retry_count = 0;
709 	do {
710 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
711 			hw->eeprom.opcode_bits);
712 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
713 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
714 			break;
715 
716 		udelay(5);
717 		retry_count += 5;
718 
719 		e1000_standby_eeprom(hw);
720 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
721 
722 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
723 	 * only 0-5mSec on 5V devices)
724 	 */
725 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
726 		DEBUGOUT("SPI EEPROM Status error\n");
727 		return -E1000_ERR_EEPROM;
728 	}
729 
730 	return E1000_SUCCESS;
731 }
732 
733 /******************************************************************************
734  * Reads a 16 bit word from the EEPROM.
735  *
736  * hw - Struct containing variables accessed by shared code
737  * offset - offset of  word in the EEPROM to read
738  * data - word read from the EEPROM
739  *****************************************************************************/
740 static int32_t
741 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
742 		uint16_t words, uint16_t *data)
743 {
744 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
745 	uint32_t i = 0;
746 
747 	DEBUGFUNC();
748 
749 	/* If eeprom is not yet detected, do so now */
750 	if (eeprom->word_size == 0)
751 		e1000_init_eeprom_params(hw);
752 
753 	/* A check for invalid values:  offset too large, too many words,
754 	 * and not enough words.
755 	 */
756 	if ((offset >= eeprom->word_size) ||
757 		(words > eeprom->word_size - offset) ||
758 		(words == 0)) {
759 		DEBUGOUT("\"words\" parameter out of bounds."
760 			"Words = %d, size = %d\n", offset, eeprom->word_size);
761 		return -E1000_ERR_EEPROM;
762 	}
763 
764 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
765 	 * directly. In this case, we need to acquire the EEPROM so that
766 	 * FW or other port software does not interrupt.
767 	 */
768 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
769 		hw->eeprom.use_eerd == false) {
770 
771 		/* Prepare the EEPROM for bit-bang reading */
772 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
773 			return -E1000_ERR_EEPROM;
774 	}
775 
776 	/* Eerd register EEPROM access requires no eeprom aquire/release */
777 	if (eeprom->use_eerd == true)
778 		return e1000_read_eeprom_eerd(hw, offset, words, data);
779 
780 	/* ich8lan does not support currently. if needed, please
781 	 * add corresponding code and functions.
782 	 */
783 #if 0
784 	/* ICH EEPROM access is done via the ICH flash controller */
785 	if (eeprom->type == e1000_eeprom_ich8)
786 		return e1000_read_eeprom_ich8(hw, offset, words, data);
787 #endif
788 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
789 	 * acquired the EEPROM at this point, so any returns should relase it */
790 	if (eeprom->type == e1000_eeprom_spi) {
791 		uint16_t word_in;
792 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
793 
794 		if (e1000_spi_eeprom_ready(hw)) {
795 			e1000_release_eeprom(hw);
796 			return -E1000_ERR_EEPROM;
797 		}
798 
799 		e1000_standby_eeprom(hw);
800 
801 		/* Some SPI eeproms use the 8th address bit embedded in
802 		 * the opcode */
803 		if ((eeprom->address_bits == 8) && (offset >= 128))
804 			read_opcode |= EEPROM_A8_OPCODE_SPI;
805 
806 		/* Send the READ command (opcode + addr)  */
807 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
808 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
809 				eeprom->address_bits);
810 
811 		/* Read the data.  The address of the eeprom internally
812 		 * increments with each byte (spi) being read, saving on the
813 		 * overhead of eeprom setup and tear-down.  The address
814 		 * counter will roll over if reading beyond the size of
815 		 * the eeprom, thus allowing the entire memory to be read
816 		 * starting from any offset. */
817 		for (i = 0; i < words; i++) {
818 			word_in = e1000_shift_in_ee_bits(hw, 16);
819 			data[i] = (word_in >> 8) | (word_in << 8);
820 		}
821 	} else if (eeprom->type == e1000_eeprom_microwire) {
822 		for (i = 0; i < words; i++) {
823 			/* Send the READ command (opcode + addr)  */
824 			e1000_shift_out_ee_bits(hw,
825 				EEPROM_READ_OPCODE_MICROWIRE,
826 				eeprom->opcode_bits);
827 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
828 				eeprom->address_bits);
829 
830 			/* Read the data.  For microwire, each word requires
831 			 * the overhead of eeprom setup and tear-down. */
832 			data[i] = e1000_shift_in_ee_bits(hw, 16);
833 			e1000_standby_eeprom(hw);
834 		}
835 	}
836 
837 	/* End this read operation */
838 	e1000_release_eeprom(hw);
839 
840 	return E1000_SUCCESS;
841 }
842 
843 /******************************************************************************
844  * Verifies that the EEPROM has a valid checksum
845  *
846  * hw - Struct containing variables accessed by shared code
847  *
848  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
849  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
850  * valid.
851  *****************************************************************************/
852 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
853 {
854 	uint16_t i, checksum, checksum_reg, *buf;
855 
856 	DEBUGFUNC();
857 
858 	/* Allocate a temporary buffer */
859 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
860 	if (!buf) {
861 		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
862 		return -E1000_ERR_EEPROM;
863 	}
864 
865 	/* Read the EEPROM */
866 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
867 		E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
868 		return -E1000_ERR_EEPROM;
869 	}
870 
871 	/* Compute the checksum */
872 	checksum = 0;
873 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
874 		checksum += buf[i];
875 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
876 	checksum_reg = buf[i];
877 
878 	/* Verify it! */
879 	if (checksum == checksum_reg)
880 		return 0;
881 
882 	/* Hrm, verification failed, print an error */
883 	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
884 	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
885 			checksum_reg, checksum);
886 
887 	return -E1000_ERR_EEPROM;
888 }
889 #endif /* CONFIG_E1000_NO_NVM */
890 
891 /*****************************************************************************
892  * Set PHY to class A mode
893  * Assumes the following operations will follow to enable the new class mode.
894  *  1. Do a PHY soft reset
895  *  2. Restart auto-negotiation or force link.
896  *
897  * hw - Struct containing variables accessed by shared code
898  ****************************************************************************/
899 static int32_t
900 e1000_set_phy_mode(struct e1000_hw *hw)
901 {
902 #ifndef CONFIG_E1000_NO_NVM
903 	int32_t ret_val;
904 	uint16_t eeprom_data;
905 
906 	DEBUGFUNC();
907 
908 	if ((hw->mac_type == e1000_82545_rev_3) &&
909 		(hw->media_type == e1000_media_type_copper)) {
910 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
911 				1, &eeprom_data);
912 		if (ret_val)
913 			return ret_val;
914 
915 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
916 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
917 			ret_val = e1000_write_phy_reg(hw,
918 					M88E1000_PHY_PAGE_SELECT, 0x000B);
919 			if (ret_val)
920 				return ret_val;
921 			ret_val = e1000_write_phy_reg(hw,
922 					M88E1000_PHY_GEN_CONTROL, 0x8104);
923 			if (ret_val)
924 				return ret_val;
925 
926 			hw->phy_reset_disable = false;
927 		}
928 	}
929 #endif
930 	return E1000_SUCCESS;
931 }
932 
933 #ifndef CONFIG_E1000_NO_NVM
934 /***************************************************************************
935  *
936  * Obtaining software semaphore bit (SMBI) before resetting PHY.
937  *
938  * hw: Struct containing variables accessed by shared code
939  *
940  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
941  *            E1000_SUCCESS at any other case.
942  *
943  ***************************************************************************/
944 static int32_t
945 e1000_get_software_semaphore(struct e1000_hw *hw)
946 {
947 	 int32_t timeout = hw->eeprom.word_size + 1;
948 	 uint32_t swsm;
949 
950 	DEBUGFUNC();
951 
952 	if (hw->mac_type != e1000_80003es2lan)
953 		return E1000_SUCCESS;
954 
955 	while (timeout) {
956 		swsm = E1000_READ_REG(hw, SWSM);
957 		/* If SMBI bit cleared, it is now set and we hold
958 		 * the semaphore */
959 		if (!(swsm & E1000_SWSM_SMBI))
960 			break;
961 		mdelay(1);
962 		timeout--;
963 	}
964 
965 	if (!timeout) {
966 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
967 		return -E1000_ERR_RESET;
968 	}
969 
970 	return E1000_SUCCESS;
971 }
972 #endif
973 
974 /***************************************************************************
975  * This function clears HW semaphore bits.
976  *
977  * hw: Struct containing variables accessed by shared code
978  *
979  * returns: - None.
980  *
981  ***************************************************************************/
982 static void
983 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
984 {
985 #ifndef CONFIG_E1000_NO_NVM
986 	 uint32_t swsm;
987 
988 	DEBUGFUNC();
989 
990 	if (!hw->eeprom_semaphore_present)
991 		return;
992 
993 	swsm = E1000_READ_REG(hw, SWSM);
994 	if (hw->mac_type == e1000_80003es2lan) {
995 		/* Release both semaphores. */
996 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
997 	} else
998 		swsm &= ~(E1000_SWSM_SWESMBI);
999 	E1000_WRITE_REG(hw, SWSM, swsm);
1000 #endif
1001 }
1002 
1003 /***************************************************************************
1004  *
1005  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1006  * adapter or Eeprom access.
1007  *
1008  * hw: Struct containing variables accessed by shared code
1009  *
1010  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1011  *            E1000_SUCCESS at any other case.
1012  *
1013  ***************************************************************************/
1014 static int32_t
1015 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1016 {
1017 #ifndef CONFIG_E1000_NO_NVM
1018 	int32_t timeout;
1019 	uint32_t swsm;
1020 
1021 	DEBUGFUNC();
1022 
1023 	if (!hw->eeprom_semaphore_present)
1024 		return E1000_SUCCESS;
1025 
1026 	if (hw->mac_type == e1000_80003es2lan) {
1027 		/* Get the SW semaphore. */
1028 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1029 			return -E1000_ERR_EEPROM;
1030 	}
1031 
1032 	/* Get the FW semaphore. */
1033 	timeout = hw->eeprom.word_size + 1;
1034 	while (timeout) {
1035 		swsm = E1000_READ_REG(hw, SWSM);
1036 		swsm |= E1000_SWSM_SWESMBI;
1037 		E1000_WRITE_REG(hw, SWSM, swsm);
1038 		/* if we managed to set the bit we got the semaphore. */
1039 		swsm = E1000_READ_REG(hw, SWSM);
1040 		if (swsm & E1000_SWSM_SWESMBI)
1041 			break;
1042 
1043 		udelay(50);
1044 		timeout--;
1045 	}
1046 
1047 	if (!timeout) {
1048 		/* Release semaphores */
1049 		e1000_put_hw_eeprom_semaphore(hw);
1050 		DEBUGOUT("Driver can't access the Eeprom - "
1051 				"SWESMBI bit is set.\n");
1052 		return -E1000_ERR_EEPROM;
1053 	}
1054 #endif
1055 	return E1000_SUCCESS;
1056 }
1057 
1058 static int32_t
1059 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1060 {
1061 	uint32_t swfw_sync = 0;
1062 	uint32_t swmask = mask;
1063 	uint32_t fwmask = mask << 16;
1064 	int32_t timeout = 200;
1065 
1066 	DEBUGFUNC();
1067 	while (timeout) {
1068 		if (e1000_get_hw_eeprom_semaphore(hw))
1069 			return -E1000_ERR_SWFW_SYNC;
1070 
1071 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1072 		if (!(swfw_sync & (fwmask | swmask)))
1073 			break;
1074 
1075 		/* firmware currently using resource (fwmask) */
1076 		/* or other software thread currently using resource (swmask) */
1077 		e1000_put_hw_eeprom_semaphore(hw);
1078 		mdelay(5);
1079 		timeout--;
1080 	}
1081 
1082 	if (!timeout) {
1083 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1084 		return -E1000_ERR_SWFW_SYNC;
1085 	}
1086 
1087 	swfw_sync |= swmask;
1088 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1089 
1090 	e1000_put_hw_eeprom_semaphore(hw);
1091 	return E1000_SUCCESS;
1092 }
1093 
1094 static bool e1000_is_second_port(struct e1000_hw *hw)
1095 {
1096 	switch (hw->mac_type) {
1097 	case e1000_80003es2lan:
1098 	case e1000_82546:
1099 	case e1000_82571:
1100 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1101 			return true;
1102 		/* Fallthrough */
1103 	default:
1104 		return false;
1105 	}
1106 }
1107 
1108 #ifndef CONFIG_E1000_NO_NVM
1109 /******************************************************************************
1110  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1111  * second function of dual function devices
1112  *
1113  * nic - Struct containing variables accessed by shared code
1114  *****************************************************************************/
1115 static int
1116 e1000_read_mac_addr(struct eth_device *nic)
1117 {
1118 	struct e1000_hw *hw = nic->priv;
1119 	uint16_t offset;
1120 	uint16_t eeprom_data;
1121 	int i;
1122 
1123 	DEBUGFUNC();
1124 
1125 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1126 		offset = i >> 1;
1127 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1128 			DEBUGOUT("EEPROM Read Error\n");
1129 			return -E1000_ERR_EEPROM;
1130 		}
1131 		nic->enetaddr[i] = eeprom_data & 0xff;
1132 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1133 	}
1134 
1135 	/* Invert the last bit if this is the second device */
1136 	if (e1000_is_second_port(hw))
1137 		nic->enetaddr[5] ^= 1;
1138 
1139 #ifdef CONFIG_E1000_FALLBACK_MAC
1140 	if (!is_valid_ether_addr(nic->enetaddr)) {
1141 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1142 
1143 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1144 	}
1145 #endif
1146 	return 0;
1147 }
1148 #endif
1149 
1150 /******************************************************************************
1151  * Initializes receive address filters.
1152  *
1153  * hw - Struct containing variables accessed by shared code
1154  *
1155  * Places the MAC address in receive address register 0 and clears the rest
1156  * of the receive addresss registers. Clears the multicast table. Assumes
1157  * the receiver is in reset when the routine is called.
1158  *****************************************************************************/
1159 static void
1160 e1000_init_rx_addrs(struct eth_device *nic)
1161 {
1162 	struct e1000_hw *hw = nic->priv;
1163 	uint32_t i;
1164 	uint32_t addr_low;
1165 	uint32_t addr_high;
1166 
1167 	DEBUGFUNC();
1168 
1169 	/* Setup the receive address. */
1170 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1171 	addr_low = (nic->enetaddr[0] |
1172 		    (nic->enetaddr[1] << 8) |
1173 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1174 
1175 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1176 
1177 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1178 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1179 
1180 	/* Zero out the other 15 receive addresses. */
1181 	DEBUGOUT("Clearing RAR[1-15]\n");
1182 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1183 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1184 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1185 	}
1186 }
1187 
1188 /******************************************************************************
1189  * Clears the VLAN filer table
1190  *
1191  * hw - Struct containing variables accessed by shared code
1192  *****************************************************************************/
1193 static void
1194 e1000_clear_vfta(struct e1000_hw *hw)
1195 {
1196 	uint32_t offset;
1197 
1198 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1199 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1200 }
1201 
1202 /******************************************************************************
1203  * Set the mac type member in the hw struct.
1204  *
1205  * hw - Struct containing variables accessed by shared code
1206  *****************************************************************************/
1207 int32_t
1208 e1000_set_mac_type(struct e1000_hw *hw)
1209 {
1210 	DEBUGFUNC();
1211 
1212 	switch (hw->device_id) {
1213 	case E1000_DEV_ID_82542:
1214 		switch (hw->revision_id) {
1215 		case E1000_82542_2_0_REV_ID:
1216 			hw->mac_type = e1000_82542_rev2_0;
1217 			break;
1218 		case E1000_82542_2_1_REV_ID:
1219 			hw->mac_type = e1000_82542_rev2_1;
1220 			break;
1221 		default:
1222 			/* Invalid 82542 revision ID */
1223 			return -E1000_ERR_MAC_TYPE;
1224 		}
1225 		break;
1226 	case E1000_DEV_ID_82543GC_FIBER:
1227 	case E1000_DEV_ID_82543GC_COPPER:
1228 		hw->mac_type = e1000_82543;
1229 		break;
1230 	case E1000_DEV_ID_82544EI_COPPER:
1231 	case E1000_DEV_ID_82544EI_FIBER:
1232 	case E1000_DEV_ID_82544GC_COPPER:
1233 	case E1000_DEV_ID_82544GC_LOM:
1234 		hw->mac_type = e1000_82544;
1235 		break;
1236 	case E1000_DEV_ID_82540EM:
1237 	case E1000_DEV_ID_82540EM_LOM:
1238 	case E1000_DEV_ID_82540EP:
1239 	case E1000_DEV_ID_82540EP_LOM:
1240 	case E1000_DEV_ID_82540EP_LP:
1241 		hw->mac_type = e1000_82540;
1242 		break;
1243 	case E1000_DEV_ID_82545EM_COPPER:
1244 	case E1000_DEV_ID_82545EM_FIBER:
1245 		hw->mac_type = e1000_82545;
1246 		break;
1247 	case E1000_DEV_ID_82545GM_COPPER:
1248 	case E1000_DEV_ID_82545GM_FIBER:
1249 	case E1000_DEV_ID_82545GM_SERDES:
1250 		hw->mac_type = e1000_82545_rev_3;
1251 		break;
1252 	case E1000_DEV_ID_82546EB_COPPER:
1253 	case E1000_DEV_ID_82546EB_FIBER:
1254 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1255 		hw->mac_type = e1000_82546;
1256 		break;
1257 	case E1000_DEV_ID_82546GB_COPPER:
1258 	case E1000_DEV_ID_82546GB_FIBER:
1259 	case E1000_DEV_ID_82546GB_SERDES:
1260 	case E1000_DEV_ID_82546GB_PCIE:
1261 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1262 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1263 		hw->mac_type = e1000_82546_rev_3;
1264 		break;
1265 	case E1000_DEV_ID_82541EI:
1266 	case E1000_DEV_ID_82541EI_MOBILE:
1267 	case E1000_DEV_ID_82541ER_LOM:
1268 		hw->mac_type = e1000_82541;
1269 		break;
1270 	case E1000_DEV_ID_82541ER:
1271 	case E1000_DEV_ID_82541GI:
1272 	case E1000_DEV_ID_82541GI_LF:
1273 	case E1000_DEV_ID_82541GI_MOBILE:
1274 		hw->mac_type = e1000_82541_rev_2;
1275 		break;
1276 	case E1000_DEV_ID_82547EI:
1277 	case E1000_DEV_ID_82547EI_MOBILE:
1278 		hw->mac_type = e1000_82547;
1279 		break;
1280 	case E1000_DEV_ID_82547GI:
1281 		hw->mac_type = e1000_82547_rev_2;
1282 		break;
1283 	case E1000_DEV_ID_82571EB_COPPER:
1284 	case E1000_DEV_ID_82571EB_FIBER:
1285 	case E1000_DEV_ID_82571EB_SERDES:
1286 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1287 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1288 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1289 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1290 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1291 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1292 		hw->mac_type = e1000_82571;
1293 		break;
1294 	case E1000_DEV_ID_82572EI_COPPER:
1295 	case E1000_DEV_ID_82572EI_FIBER:
1296 	case E1000_DEV_ID_82572EI_SERDES:
1297 	case E1000_DEV_ID_82572EI:
1298 		hw->mac_type = e1000_82572;
1299 		break;
1300 	case E1000_DEV_ID_82573E:
1301 	case E1000_DEV_ID_82573E_IAMT:
1302 	case E1000_DEV_ID_82573L:
1303 		hw->mac_type = e1000_82573;
1304 		break;
1305 	case E1000_DEV_ID_82574L:
1306 		hw->mac_type = e1000_82574;
1307 		break;
1308 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1309 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1310 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1311 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1312 		hw->mac_type = e1000_80003es2lan;
1313 		break;
1314 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1315 	case E1000_DEV_ID_ICH8_IGP_AMT:
1316 	case E1000_DEV_ID_ICH8_IGP_C:
1317 	case E1000_DEV_ID_ICH8_IFE:
1318 	case E1000_DEV_ID_ICH8_IFE_GT:
1319 	case E1000_DEV_ID_ICH8_IFE_G:
1320 	case E1000_DEV_ID_ICH8_IGP_M:
1321 		hw->mac_type = e1000_ich8lan;
1322 		break;
1323 	default:
1324 		/* Should never have loaded on this device */
1325 		return -E1000_ERR_MAC_TYPE;
1326 	}
1327 	return E1000_SUCCESS;
1328 }
1329 
1330 /******************************************************************************
1331  * Reset the transmit and receive units; mask and clear all interrupts.
1332  *
1333  * hw - Struct containing variables accessed by shared code
1334  *****************************************************************************/
1335 void
1336 e1000_reset_hw(struct e1000_hw *hw)
1337 {
1338 	uint32_t ctrl;
1339 	uint32_t ctrl_ext;
1340 	uint32_t manc;
1341 	uint32_t pba = 0;
1342 
1343 	DEBUGFUNC();
1344 
1345 	/* get the correct pba value for both PCI and PCIe*/
1346 	if (hw->mac_type <  e1000_82571)
1347 		pba = E1000_DEFAULT_PCI_PBA;
1348 	else
1349 		pba = E1000_DEFAULT_PCIE_PBA;
1350 
1351 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1352 	if (hw->mac_type == e1000_82542_rev2_0) {
1353 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1354 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1355 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1356 	}
1357 
1358 	/* Clear interrupt mask to stop board from generating interrupts */
1359 	DEBUGOUT("Masking off all interrupts\n");
1360 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1361 
1362 	/* Disable the Transmit and Receive units.  Then delay to allow
1363 	 * any pending transactions to complete before we hit the MAC with
1364 	 * the global reset.
1365 	 */
1366 	E1000_WRITE_REG(hw, RCTL, 0);
1367 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1368 	E1000_WRITE_FLUSH(hw);
1369 
1370 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1371 	hw->tbi_compatibility_on = false;
1372 
1373 	/* Delay to allow any outstanding PCI transactions to complete before
1374 	 * resetting the device
1375 	 */
1376 	mdelay(10);
1377 
1378 	/* Issue a global reset to the MAC.  This will reset the chip's
1379 	 * transmit, receive, DMA, and link units.  It will not effect
1380 	 * the current PCI configuration.  The global reset bit is self-
1381 	 * clearing, and should clear within a microsecond.
1382 	 */
1383 	DEBUGOUT("Issuing a global reset to MAC\n");
1384 	ctrl = E1000_READ_REG(hw, CTRL);
1385 
1386 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1387 
1388 	/* Force a reload from the EEPROM if necessary */
1389 	if (hw->mac_type < e1000_82540) {
1390 		/* Wait for reset to complete */
1391 		udelay(10);
1392 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1393 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1394 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1395 		E1000_WRITE_FLUSH(hw);
1396 		/* Wait for EEPROM reload */
1397 		mdelay(2);
1398 	} else {
1399 		/* Wait for EEPROM reload (it happens automatically) */
1400 		mdelay(4);
1401 		/* Dissable HW ARPs on ASF enabled adapters */
1402 		manc = E1000_READ_REG(hw, MANC);
1403 		manc &= ~(E1000_MANC_ARP_EN);
1404 		E1000_WRITE_REG(hw, MANC, manc);
1405 	}
1406 
1407 	/* Clear interrupt mask to stop board from generating interrupts */
1408 	DEBUGOUT("Masking off all interrupts\n");
1409 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1410 
1411 	/* Clear any pending interrupt events. */
1412 	E1000_READ_REG(hw, ICR);
1413 
1414 	/* If MWI was previously enabled, reenable it. */
1415 	if (hw->mac_type == e1000_82542_rev2_0) {
1416 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1417 	}
1418 	E1000_WRITE_REG(hw, PBA, pba);
1419 }
1420 
1421 /******************************************************************************
1422  *
1423  * Initialize a number of hardware-dependent bits
1424  *
1425  * hw: Struct containing variables accessed by shared code
1426  *
1427  * This function contains hardware limitation workarounds for PCI-E adapters
1428  *
1429  *****************************************************************************/
1430 static void
1431 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1432 {
1433 	if ((hw->mac_type >= e1000_82571) &&
1434 			(!hw->initialize_hw_bits_disable)) {
1435 		/* Settings common to all PCI-express silicon */
1436 		uint32_t reg_ctrl, reg_ctrl_ext;
1437 		uint32_t reg_tarc0, reg_tarc1;
1438 		uint32_t reg_tctl;
1439 		uint32_t reg_txdctl, reg_txdctl1;
1440 
1441 		/* link autonegotiation/sync workarounds */
1442 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1443 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1444 
1445 		/* Enable not-done TX descriptor counting */
1446 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1447 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1448 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1449 
1450 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1451 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1452 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1453 
1454 		switch (hw->mac_type) {
1455 		case e1000_82571:
1456 		case e1000_82572:
1457 			/* Clear PHY TX compatible mode bits */
1458 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1459 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1460 
1461 			/* link autonegotiation/sync workarounds */
1462 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1463 
1464 			/* TX ring control fixes */
1465 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1466 
1467 			/* Multiple read bit is reversed polarity */
1468 			reg_tctl = E1000_READ_REG(hw, TCTL);
1469 			if (reg_tctl & E1000_TCTL_MULR)
1470 				reg_tarc1 &= ~(1 << 28);
1471 			else
1472 				reg_tarc1 |= (1 << 28);
1473 
1474 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1475 			break;
1476 		case e1000_82573:
1477 		case e1000_82574:
1478 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1479 			reg_ctrl_ext &= ~(1 << 23);
1480 			reg_ctrl_ext |= (1 << 22);
1481 
1482 			/* TX byte count fix */
1483 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1484 			reg_ctrl &= ~(1 << 29);
1485 
1486 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1487 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1488 			break;
1489 		case e1000_80003es2lan:
1490 	/* improve small packet performace for fiber/serdes */
1491 			if ((hw->media_type == e1000_media_type_fiber)
1492 			|| (hw->media_type ==
1493 				e1000_media_type_internal_serdes)) {
1494 				reg_tarc0 &= ~(1 << 20);
1495 			}
1496 
1497 		/* Multiple read bit is reversed polarity */
1498 			reg_tctl = E1000_READ_REG(hw, TCTL);
1499 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1500 			if (reg_tctl & E1000_TCTL_MULR)
1501 				reg_tarc1 &= ~(1 << 28);
1502 			else
1503 				reg_tarc1 |= (1 << 28);
1504 
1505 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1506 			break;
1507 		case e1000_ich8lan:
1508 			/* Reduce concurrent DMA requests to 3 from 4 */
1509 			if ((hw->revision_id < 3) ||
1510 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1511 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1512 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1513 
1514 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1515 			reg_ctrl_ext |= (1 << 22);
1516 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1517 
1518 			/* workaround TX hang with TSO=on */
1519 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1520 
1521 			/* Multiple read bit is reversed polarity */
1522 			reg_tctl = E1000_READ_REG(hw, TCTL);
1523 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1524 			if (reg_tctl & E1000_TCTL_MULR)
1525 				reg_tarc1 &= ~(1 << 28);
1526 			else
1527 				reg_tarc1 |= (1 << 28);
1528 
1529 			/* workaround TX hang with TSO=on */
1530 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1531 
1532 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1533 			break;
1534 		default:
1535 			break;
1536 		}
1537 
1538 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1539 	}
1540 }
1541 
1542 /******************************************************************************
1543  * Performs basic configuration of the adapter.
1544  *
1545  * hw - Struct containing variables accessed by shared code
1546  *
1547  * Assumes that the controller has previously been reset and is in a
1548  * post-reset uninitialized state. Initializes the receive address registers,
1549  * multicast table, and VLAN filter table. Calls routines to setup link
1550  * configuration and flow control settings. Clears all on-chip counters. Leaves
1551  * the transmit and receive units disabled and uninitialized.
1552  *****************************************************************************/
1553 static int
1554 e1000_init_hw(struct eth_device *nic)
1555 {
1556 	struct e1000_hw *hw = nic->priv;
1557 	uint32_t ctrl;
1558 	uint32_t i;
1559 	int32_t ret_val;
1560 	uint16_t pcix_cmd_word;
1561 	uint16_t pcix_stat_hi_word;
1562 	uint16_t cmd_mmrbc;
1563 	uint16_t stat_mmrbc;
1564 	uint32_t mta_size;
1565 	uint32_t reg_data;
1566 	uint32_t ctrl_ext;
1567 	DEBUGFUNC();
1568 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1569 	if ((hw->mac_type == e1000_ich8lan) &&
1570 		((hw->revision_id < 3) ||
1571 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1572 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1573 			reg_data = E1000_READ_REG(hw, STATUS);
1574 			reg_data &= ~0x80000000;
1575 			E1000_WRITE_REG(hw, STATUS, reg_data);
1576 	}
1577 	/* Do not need initialize Identification LED */
1578 
1579 	/* Set the media type and TBI compatibility */
1580 	e1000_set_media_type(hw);
1581 
1582 	/* Must be called after e1000_set_media_type
1583 	 * because media_type is used */
1584 	e1000_initialize_hardware_bits(hw);
1585 
1586 	/* Disabling VLAN filtering. */
1587 	DEBUGOUT("Initializing the IEEE VLAN\n");
1588 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1589 	if (hw->mac_type != e1000_ich8lan) {
1590 		if (hw->mac_type < e1000_82545_rev_3)
1591 			E1000_WRITE_REG(hw, VET, 0);
1592 		e1000_clear_vfta(hw);
1593 	}
1594 
1595 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1596 	if (hw->mac_type == e1000_82542_rev2_0) {
1597 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1598 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1599 				      hw->
1600 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1601 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1602 		E1000_WRITE_FLUSH(hw);
1603 		mdelay(5);
1604 	}
1605 
1606 	/* Setup the receive address. This involves initializing all of the Receive
1607 	 * Address Registers (RARs 0 - 15).
1608 	 */
1609 	e1000_init_rx_addrs(nic);
1610 
1611 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1612 	if (hw->mac_type == e1000_82542_rev2_0) {
1613 		E1000_WRITE_REG(hw, RCTL, 0);
1614 		E1000_WRITE_FLUSH(hw);
1615 		mdelay(1);
1616 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1617 	}
1618 
1619 	/* Zero out the Multicast HASH table */
1620 	DEBUGOUT("Zeroing the MTA\n");
1621 	mta_size = E1000_MC_TBL_SIZE;
1622 	if (hw->mac_type == e1000_ich8lan)
1623 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1624 	for (i = 0; i < mta_size; i++) {
1625 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1626 		/* use write flush to prevent Memory Write Block (MWB) from
1627 		 * occuring when accessing our register space */
1628 		E1000_WRITE_FLUSH(hw);
1629 	}
1630 #if 0
1631 	/* Set the PCI priority bit correctly in the CTRL register.  This
1632 	 * determines if the adapter gives priority to receives, or if it
1633 	 * gives equal priority to transmits and receives.  Valid only on
1634 	 * 82542 and 82543 silicon.
1635 	 */
1636 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1637 		ctrl = E1000_READ_REG(hw, CTRL);
1638 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1639 	}
1640 #endif
1641 	switch (hw->mac_type) {
1642 	case e1000_82545_rev_3:
1643 	case e1000_82546_rev_3:
1644 		break;
1645 	default:
1646 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1647 	if (hw->bus_type == e1000_bus_type_pcix) {
1648 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1649 				     &pcix_cmd_word);
1650 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1651 				     &pcix_stat_hi_word);
1652 		cmd_mmrbc =
1653 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1654 		    PCIX_COMMAND_MMRBC_SHIFT;
1655 		stat_mmrbc =
1656 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1657 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1658 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1659 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1660 		if (cmd_mmrbc > stat_mmrbc) {
1661 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1662 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1663 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1664 					      pcix_cmd_word);
1665 		}
1666 	}
1667 		break;
1668 	}
1669 
1670 	/* More time needed for PHY to initialize */
1671 	if (hw->mac_type == e1000_ich8lan)
1672 		mdelay(15);
1673 
1674 	/* Call a subroutine to configure the link and setup flow control. */
1675 	ret_val = e1000_setup_link(nic);
1676 
1677 	/* Set the transmit descriptor write-back policy */
1678 	if (hw->mac_type > e1000_82544) {
1679 		ctrl = E1000_READ_REG(hw, TXDCTL);
1680 		ctrl =
1681 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1682 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1683 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1684 	}
1685 
1686 	/* Set the receive descriptor write back policy */
1687 
1688 	if (hw->mac_type >= e1000_82571) {
1689 		ctrl = E1000_READ_REG(hw, RXDCTL);
1690 		ctrl =
1691 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1692 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1693 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1694 	}
1695 
1696 	switch (hw->mac_type) {
1697 	default:
1698 		break;
1699 	case e1000_80003es2lan:
1700 		/* Enable retransmit on late collisions */
1701 		reg_data = E1000_READ_REG(hw, TCTL);
1702 		reg_data |= E1000_TCTL_RTLC;
1703 		E1000_WRITE_REG(hw, TCTL, reg_data);
1704 
1705 		/* Configure Gigabit Carry Extend Padding */
1706 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1707 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1708 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1709 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1710 
1711 		/* Configure Transmit Inter-Packet Gap */
1712 		reg_data = E1000_READ_REG(hw, TIPG);
1713 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1714 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1715 		E1000_WRITE_REG(hw, TIPG, reg_data);
1716 
1717 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1718 		reg_data &= ~0x00100000;
1719 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1720 		/* Fall through */
1721 	case e1000_82571:
1722 	case e1000_82572:
1723 	case e1000_ich8lan:
1724 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1725 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1726 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1727 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1728 		break;
1729 	case e1000_82573:
1730 	case e1000_82574:
1731 		reg_data = E1000_READ_REG(hw, GCR);
1732 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1733 		E1000_WRITE_REG(hw, GCR, reg_data);
1734 	}
1735 
1736 #if 0
1737 	/* Clear all of the statistics registers (clear on read).  It is
1738 	 * important that we do this after we have tried to establish link
1739 	 * because the symbol error count will increment wildly if there
1740 	 * is no link.
1741 	 */
1742 	e1000_clear_hw_cntrs(hw);
1743 
1744 	/* ICH8 No-snoop bits are opposite polarity.
1745 	 * Set to snoop by default after reset. */
1746 	if (hw->mac_type == e1000_ich8lan)
1747 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1748 #endif
1749 
1750 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1751 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1752 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1753 		/* Relaxed ordering must be disabled to avoid a parity
1754 		 * error crash in a PCI slot. */
1755 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1756 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1757 	}
1758 
1759 	return ret_val;
1760 }
1761 
1762 /******************************************************************************
1763  * Configures flow control and link settings.
1764  *
1765  * hw - Struct containing variables accessed by shared code
1766  *
1767  * Determines which flow control settings to use. Calls the apropriate media-
1768  * specific link configuration function. Configures the flow control settings.
1769  * Assuming the adapter has a valid link partner, a valid link should be
1770  * established. Assumes the hardware has previously been reset and the
1771  * transmitter and receiver are not enabled.
1772  *****************************************************************************/
1773 static int
1774 e1000_setup_link(struct eth_device *nic)
1775 {
1776 	struct e1000_hw *hw = nic->priv;
1777 	int32_t ret_val;
1778 #ifndef CONFIG_E1000_NO_NVM
1779 	uint32_t ctrl_ext;
1780 	uint16_t eeprom_data;
1781 #endif
1782 
1783 	DEBUGFUNC();
1784 
1785 	/* In the case of the phy reset being blocked, we already have a link.
1786 	 * We do not have to set it up again. */
1787 	if (e1000_check_phy_reset_block(hw))
1788 		return E1000_SUCCESS;
1789 
1790 #ifndef CONFIG_E1000_NO_NVM
1791 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1792 	 * that determine the hardware's default PAUSE (flow control) mode,
1793 	 * a bit that determines whether the HW defaults to enabling or
1794 	 * disabling auto-negotiation, and the direction of the
1795 	 * SW defined pins. If there is no SW over-ride of the flow
1796 	 * control setting, then the variable hw->fc will
1797 	 * be initialized based on a value in the EEPROM.
1798 	 */
1799 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1800 				&eeprom_data) < 0) {
1801 		DEBUGOUT("EEPROM Read Error\n");
1802 		return -E1000_ERR_EEPROM;
1803 	}
1804 #endif
1805 	if (hw->fc == e1000_fc_default) {
1806 		switch (hw->mac_type) {
1807 		case e1000_ich8lan:
1808 		case e1000_82573:
1809 		case e1000_82574:
1810 			hw->fc = e1000_fc_full;
1811 			break;
1812 		default:
1813 #ifndef CONFIG_E1000_NO_NVM
1814 			ret_val = e1000_read_eeprom(hw,
1815 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1816 			if (ret_val) {
1817 				DEBUGOUT("EEPROM Read Error\n");
1818 				return -E1000_ERR_EEPROM;
1819 			}
1820 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1821 				hw->fc = e1000_fc_none;
1822 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1823 				    EEPROM_WORD0F_ASM_DIR)
1824 				hw->fc = e1000_fc_tx_pause;
1825 			else
1826 #endif
1827 				hw->fc = e1000_fc_full;
1828 			break;
1829 		}
1830 	}
1831 
1832 	/* We want to save off the original Flow Control configuration just
1833 	 * in case we get disconnected and then reconnected into a different
1834 	 * hub or switch with different Flow Control capabilities.
1835 	 */
1836 	if (hw->mac_type == e1000_82542_rev2_0)
1837 		hw->fc &= (~e1000_fc_tx_pause);
1838 
1839 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1840 		hw->fc &= (~e1000_fc_rx_pause);
1841 
1842 	hw->original_fc = hw->fc;
1843 
1844 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1845 
1846 #ifndef CONFIG_E1000_NO_NVM
1847 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1848 	 * polarity value for the SW controlled pins, and setup the
1849 	 * Extended Device Control reg with that info.
1850 	 * This is needed because one of the SW controlled pins is used for
1851 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1852 	 * or e1000_phy_setup() is called.
1853 	 */
1854 	if (hw->mac_type == e1000_82543) {
1855 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1856 			    SWDPIO__EXT_SHIFT);
1857 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1858 	}
1859 #endif
1860 
1861 	/* Call the necessary subroutine to configure the link. */
1862 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1863 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1864 	if (ret_val < 0) {
1865 		return ret_val;
1866 	}
1867 
1868 	/* Initialize the flow control address, type, and PAUSE timer
1869 	 * registers to their default values.  This is done even if flow
1870 	 * control is disabled, because it does not hurt anything to
1871 	 * initialize these registers.
1872 	 */
1873 	DEBUGOUT("Initializing the Flow Control address, type"
1874 			"and timer regs\n");
1875 
1876 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1877 	if (hw->mac_type != e1000_ich8lan) {
1878 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1879 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1880 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1881 	}
1882 
1883 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1884 
1885 	/* Set the flow control receive threshold registers.  Normally,
1886 	 * these registers will be set to a default threshold that may be
1887 	 * adjusted later by the driver's runtime code.  However, if the
1888 	 * ability to transmit pause frames in not enabled, then these
1889 	 * registers will be set to 0.
1890 	 */
1891 	if (!(hw->fc & e1000_fc_tx_pause)) {
1892 		E1000_WRITE_REG(hw, FCRTL, 0);
1893 		E1000_WRITE_REG(hw, FCRTH, 0);
1894 	} else {
1895 		/* We need to set up the Receive Threshold high and low water marks
1896 		 * as well as (optionally) enabling the transmission of XON frames.
1897 		 */
1898 		if (hw->fc_send_xon) {
1899 			E1000_WRITE_REG(hw, FCRTL,
1900 					(hw->fc_low_water | E1000_FCRTL_XONE));
1901 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1902 		} else {
1903 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1904 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1905 		}
1906 	}
1907 	return ret_val;
1908 }
1909 
1910 /******************************************************************************
1911  * Sets up link for a fiber based adapter
1912  *
1913  * hw - Struct containing variables accessed by shared code
1914  *
1915  * Manipulates Physical Coding Sublayer functions in order to configure
1916  * link. Assumes the hardware has been previously reset and the transmitter
1917  * and receiver are not enabled.
1918  *****************************************************************************/
1919 static int
1920 e1000_setup_fiber_link(struct eth_device *nic)
1921 {
1922 	struct e1000_hw *hw = nic->priv;
1923 	uint32_t ctrl;
1924 	uint32_t status;
1925 	uint32_t txcw = 0;
1926 	uint32_t i;
1927 	uint32_t signal;
1928 	int32_t ret_val;
1929 
1930 	DEBUGFUNC();
1931 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1932 	 * set when the optics detect a signal. On older adapters, it will be
1933 	 * cleared when there is a signal
1934 	 */
1935 	ctrl = E1000_READ_REG(hw, CTRL);
1936 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1937 		signal = E1000_CTRL_SWDPIN1;
1938 	else
1939 		signal = 0;
1940 
1941 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1942 	       ctrl);
1943 	/* Take the link out of reset */
1944 	ctrl &= ~(E1000_CTRL_LRST);
1945 
1946 	e1000_config_collision_dist(hw);
1947 
1948 	/* Check for a software override of the flow control settings, and setup
1949 	 * the device accordingly.  If auto-negotiation is enabled, then software
1950 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1951 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1952 	 * auto-negotiation is disabled, then software will have to manually
1953 	 * configure the two flow control enable bits in the CTRL register.
1954 	 *
1955 	 * The possible values of the "fc" parameter are:
1956 	 *	0:  Flow control is completely disabled
1957 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
1958 	 *	    not send pause frames).
1959 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
1960 	 *	    not support receiving pause frames).
1961 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1962 	 */
1963 	switch (hw->fc) {
1964 	case e1000_fc_none:
1965 		/* Flow control is completely disabled by a software over-ride. */
1966 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1967 		break;
1968 	case e1000_fc_rx_pause:
1969 		/* RX Flow control is enabled and TX Flow control is disabled by a
1970 		 * software over-ride. Since there really isn't a way to advertise
1971 		 * that we are capable of RX Pause ONLY, we will advertise that we
1972 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
1973 		 *  disable the adapter's ability to send PAUSE frames.
1974 		 */
1975 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1976 		break;
1977 	case e1000_fc_tx_pause:
1978 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
1979 		 * software over-ride.
1980 		 */
1981 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1982 		break;
1983 	case e1000_fc_full:
1984 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
1985 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1986 		break;
1987 	default:
1988 		DEBUGOUT("Flow control param set incorrectly\n");
1989 		return -E1000_ERR_CONFIG;
1990 		break;
1991 	}
1992 
1993 	/* Since auto-negotiation is enabled, take the link out of reset (the link
1994 	 * will be in reset, because we previously reset the chip). This will
1995 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
1996 	 * link-up status bit will be set and the flow control enable bits (RFCE
1997 	 * and TFCE) will be set according to their negotiated value.
1998 	 */
1999 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2000 
2001 	E1000_WRITE_REG(hw, TXCW, txcw);
2002 	E1000_WRITE_REG(hw, CTRL, ctrl);
2003 	E1000_WRITE_FLUSH(hw);
2004 
2005 	hw->txcw = txcw;
2006 	mdelay(1);
2007 
2008 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2009 	 * indication in the Device Status Register.  Time-out if a link isn't
2010 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2011 	 * less than 500 milliseconds even if the other end is doing it in SW).
2012 	 */
2013 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2014 		DEBUGOUT("Looking for Link\n");
2015 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2016 			mdelay(10);
2017 			status = E1000_READ_REG(hw, STATUS);
2018 			if (status & E1000_STATUS_LU)
2019 				break;
2020 		}
2021 		if (i == (LINK_UP_TIMEOUT / 10)) {
2022 			/* AutoNeg failed to achieve a link, so we'll call
2023 			 * e1000_check_for_link. This routine will force the link up if we
2024 			 * detect a signal. This will allow us to communicate with
2025 			 * non-autonegotiating link partners.
2026 			 */
2027 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2028 			hw->autoneg_failed = 1;
2029 			ret_val = e1000_check_for_link(nic);
2030 			if (ret_val < 0) {
2031 				DEBUGOUT("Error while checking for link\n");
2032 				return ret_val;
2033 			}
2034 			hw->autoneg_failed = 0;
2035 		} else {
2036 			hw->autoneg_failed = 0;
2037 			DEBUGOUT("Valid Link Found\n");
2038 		}
2039 	} else {
2040 		DEBUGOUT("No Signal Detected\n");
2041 		return -E1000_ERR_NOLINK;
2042 	}
2043 	return 0;
2044 }
2045 
2046 /******************************************************************************
2047 * Make sure we have a valid PHY and change PHY mode before link setup.
2048 *
2049 * hw - Struct containing variables accessed by shared code
2050 ******************************************************************************/
2051 static int32_t
2052 e1000_copper_link_preconfig(struct e1000_hw *hw)
2053 {
2054 	uint32_t ctrl;
2055 	int32_t ret_val;
2056 	uint16_t phy_data;
2057 
2058 	DEBUGFUNC();
2059 
2060 	ctrl = E1000_READ_REG(hw, CTRL);
2061 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2062 	 * the PHY speed and duplex configuration is. In addition, we need to
2063 	 * perform a hardware reset on the PHY to take it out of reset.
2064 	 */
2065 	if (hw->mac_type > e1000_82543) {
2066 		ctrl |= E1000_CTRL_SLU;
2067 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2068 		E1000_WRITE_REG(hw, CTRL, ctrl);
2069 	} else {
2070 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2071 				| E1000_CTRL_SLU);
2072 		E1000_WRITE_REG(hw, CTRL, ctrl);
2073 		ret_val = e1000_phy_hw_reset(hw);
2074 		if (ret_val)
2075 			return ret_val;
2076 	}
2077 
2078 	/* Make sure we have a valid PHY */
2079 	ret_val = e1000_detect_gig_phy(hw);
2080 	if (ret_val) {
2081 		DEBUGOUT("Error, did not detect valid phy.\n");
2082 		return ret_val;
2083 	}
2084 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2085 
2086 	/* Set PHY to class A mode (if necessary) */
2087 	ret_val = e1000_set_phy_mode(hw);
2088 	if (ret_val)
2089 		return ret_val;
2090 	if ((hw->mac_type == e1000_82545_rev_3) ||
2091 		(hw->mac_type == e1000_82546_rev_3)) {
2092 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2093 				&phy_data);
2094 		phy_data |= 0x00000008;
2095 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2096 				phy_data);
2097 	}
2098 
2099 	if (hw->mac_type <= e1000_82543 ||
2100 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2101 		hw->mac_type == e1000_82541_rev_2
2102 		|| hw->mac_type == e1000_82547_rev_2)
2103 			hw->phy_reset_disable = false;
2104 
2105 	return E1000_SUCCESS;
2106 }
2107 
2108 /*****************************************************************************
2109  *
2110  * This function sets the lplu state according to the active flag.  When
2111  * activating lplu this function also disables smart speed and vise versa.
2112  * lplu will not be activated unless the device autonegotiation advertisment
2113  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2114  * hw: Struct containing variables accessed by shared code
2115  * active - true to enable lplu false to disable lplu.
2116  *
2117  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2118  *            E1000_SUCCESS at any other case.
2119  *
2120  ****************************************************************************/
2121 
2122 static int32_t
2123 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2124 {
2125 	uint32_t phy_ctrl = 0;
2126 	int32_t ret_val;
2127 	uint16_t phy_data;
2128 	DEBUGFUNC();
2129 
2130 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2131 	    && hw->phy_type != e1000_phy_igp_3)
2132 		return E1000_SUCCESS;
2133 
2134 	/* During driver activity LPLU should not be used or it will attain link
2135 	 * from the lowest speeds starting from 10Mbps. The capability is used
2136 	 * for Dx transitions and states */
2137 	if (hw->mac_type == e1000_82541_rev_2
2138 			|| hw->mac_type == e1000_82547_rev_2) {
2139 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2140 				&phy_data);
2141 		if (ret_val)
2142 			return ret_val;
2143 	} else if (hw->mac_type == e1000_ich8lan) {
2144 		/* MAC writes into PHY register based on the state transition
2145 		 * and start auto-negotiation. SW driver can overwrite the
2146 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2147 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2148 	} else {
2149 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2150 				&phy_data);
2151 		if (ret_val)
2152 			return ret_val;
2153 	}
2154 
2155 	if (!active) {
2156 		if (hw->mac_type == e1000_82541_rev_2 ||
2157 			hw->mac_type == e1000_82547_rev_2) {
2158 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2159 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2160 					phy_data);
2161 			if (ret_val)
2162 				return ret_val;
2163 		} else {
2164 			if (hw->mac_type == e1000_ich8lan) {
2165 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2166 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2167 			} else {
2168 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2169 				ret_val = e1000_write_phy_reg(hw,
2170 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2171 				if (ret_val)
2172 					return ret_val;
2173 			}
2174 		}
2175 
2176 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2177 	 * Dx states where the power conservation is most important.  During
2178 	 * driver activity we should enable SmartSpeed, so performance is
2179 	 * maintained. */
2180 		if (hw->smart_speed == e1000_smart_speed_on) {
2181 			ret_val = e1000_read_phy_reg(hw,
2182 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2183 			if (ret_val)
2184 				return ret_val;
2185 
2186 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2187 			ret_val = e1000_write_phy_reg(hw,
2188 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2189 			if (ret_val)
2190 				return ret_val;
2191 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2192 			ret_val = e1000_read_phy_reg(hw,
2193 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2194 			if (ret_val)
2195 				return ret_val;
2196 
2197 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2198 			ret_val = e1000_write_phy_reg(hw,
2199 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2200 			if (ret_val)
2201 				return ret_val;
2202 		}
2203 
2204 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2205 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2206 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2207 
2208 		if (hw->mac_type == e1000_82541_rev_2 ||
2209 		    hw->mac_type == e1000_82547_rev_2) {
2210 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2211 			ret_val = e1000_write_phy_reg(hw,
2212 					IGP01E1000_GMII_FIFO, phy_data);
2213 			if (ret_val)
2214 				return ret_val;
2215 		} else {
2216 			if (hw->mac_type == e1000_ich8lan) {
2217 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2218 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2219 			} else {
2220 				phy_data |= IGP02E1000_PM_D3_LPLU;
2221 				ret_val = e1000_write_phy_reg(hw,
2222 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2223 				if (ret_val)
2224 					return ret_val;
2225 			}
2226 		}
2227 
2228 		/* When LPLU is enabled we should disable SmartSpeed */
2229 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2230 				&phy_data);
2231 		if (ret_val)
2232 			return ret_val;
2233 
2234 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2235 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2236 				phy_data);
2237 		if (ret_val)
2238 			return ret_val;
2239 	}
2240 	return E1000_SUCCESS;
2241 }
2242 
2243 /*****************************************************************************
2244  *
2245  * This function sets the lplu d0 state according to the active flag.  When
2246  * activating lplu this function also disables smart speed and vise versa.
2247  * lplu will not be activated unless the device autonegotiation advertisment
2248  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2249  * hw: Struct containing variables accessed by shared code
2250  * active - true to enable lplu false to disable lplu.
2251  *
2252  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2253  *            E1000_SUCCESS at any other case.
2254  *
2255  ****************************************************************************/
2256 
2257 static int32_t
2258 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2259 {
2260 	uint32_t phy_ctrl = 0;
2261 	int32_t ret_val;
2262 	uint16_t phy_data;
2263 	DEBUGFUNC();
2264 
2265 	if (hw->mac_type <= e1000_82547_rev_2)
2266 		return E1000_SUCCESS;
2267 
2268 	if (hw->mac_type == e1000_ich8lan) {
2269 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2270 	} else {
2271 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2272 				&phy_data);
2273 		if (ret_val)
2274 			return ret_val;
2275 	}
2276 
2277 	if (!active) {
2278 		if (hw->mac_type == e1000_ich8lan) {
2279 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2280 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2281 		} else {
2282 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2283 			ret_val = e1000_write_phy_reg(hw,
2284 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2285 			if (ret_val)
2286 				return ret_val;
2287 		}
2288 
2289 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2290 	 * Dx states where the power conservation is most important.  During
2291 	 * driver activity we should enable SmartSpeed, so performance is
2292 	 * maintained. */
2293 		if (hw->smart_speed == e1000_smart_speed_on) {
2294 			ret_val = e1000_read_phy_reg(hw,
2295 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2296 			if (ret_val)
2297 				return ret_val;
2298 
2299 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2300 			ret_val = e1000_write_phy_reg(hw,
2301 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2302 			if (ret_val)
2303 				return ret_val;
2304 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2305 			ret_val = e1000_read_phy_reg(hw,
2306 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2307 			if (ret_val)
2308 				return ret_val;
2309 
2310 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2311 			ret_val = e1000_write_phy_reg(hw,
2312 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2313 			if (ret_val)
2314 				return ret_val;
2315 		}
2316 
2317 
2318 	} else {
2319 
2320 		if (hw->mac_type == e1000_ich8lan) {
2321 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2322 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2323 		} else {
2324 			phy_data |= IGP02E1000_PM_D0_LPLU;
2325 			ret_val = e1000_write_phy_reg(hw,
2326 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2327 			if (ret_val)
2328 				return ret_val;
2329 		}
2330 
2331 		/* When LPLU is enabled we should disable SmartSpeed */
2332 		ret_val = e1000_read_phy_reg(hw,
2333 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2334 		if (ret_val)
2335 			return ret_val;
2336 
2337 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2338 		ret_val = e1000_write_phy_reg(hw,
2339 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2340 		if (ret_val)
2341 			return ret_val;
2342 
2343 	}
2344 	return E1000_SUCCESS;
2345 }
2346 
2347 /********************************************************************
2348 * Copper link setup for e1000_phy_igp series.
2349 *
2350 * hw - Struct containing variables accessed by shared code
2351 *********************************************************************/
2352 static int32_t
2353 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2354 {
2355 	uint32_t led_ctrl;
2356 	int32_t ret_val;
2357 	uint16_t phy_data;
2358 
2359 	DEBUGFUNC();
2360 
2361 	if (hw->phy_reset_disable)
2362 		return E1000_SUCCESS;
2363 
2364 	ret_val = e1000_phy_reset(hw);
2365 	if (ret_val) {
2366 		DEBUGOUT("Error Resetting the PHY\n");
2367 		return ret_val;
2368 	}
2369 
2370 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2371 	mdelay(15);
2372 	if (hw->mac_type != e1000_ich8lan) {
2373 		/* Configure activity LED after PHY reset */
2374 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2375 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2376 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2377 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2378 	}
2379 
2380 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2381 	if (hw->phy_type == e1000_phy_igp) {
2382 		/* disable lplu d3 during driver init */
2383 		ret_val = e1000_set_d3_lplu_state(hw, false);
2384 		if (ret_val) {
2385 			DEBUGOUT("Error Disabling LPLU D3\n");
2386 			return ret_val;
2387 		}
2388 	}
2389 
2390 	/* disable lplu d0 during driver init */
2391 	ret_val = e1000_set_d0_lplu_state(hw, false);
2392 	if (ret_val) {
2393 		DEBUGOUT("Error Disabling LPLU D0\n");
2394 		return ret_val;
2395 	}
2396 	/* Configure mdi-mdix settings */
2397 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2398 	if (ret_val)
2399 		return ret_val;
2400 
2401 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2402 		hw->dsp_config_state = e1000_dsp_config_disabled;
2403 		/* Force MDI for earlier revs of the IGP PHY */
2404 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2405 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2406 		hw->mdix = 1;
2407 
2408 	} else {
2409 		hw->dsp_config_state = e1000_dsp_config_enabled;
2410 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2411 
2412 		switch (hw->mdix) {
2413 		case 1:
2414 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2415 			break;
2416 		case 2:
2417 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2418 			break;
2419 		case 0:
2420 		default:
2421 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2422 			break;
2423 		}
2424 	}
2425 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2426 	if (ret_val)
2427 		return ret_val;
2428 
2429 	/* set auto-master slave resolution settings */
2430 	if (hw->autoneg) {
2431 		e1000_ms_type phy_ms_setting = hw->master_slave;
2432 
2433 		if (hw->ffe_config_state == e1000_ffe_config_active)
2434 			hw->ffe_config_state = e1000_ffe_config_enabled;
2435 
2436 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2437 			hw->dsp_config_state = e1000_dsp_config_enabled;
2438 
2439 		/* when autonegotiation advertisment is only 1000Mbps then we
2440 		  * should disable SmartSpeed and enable Auto MasterSlave
2441 		  * resolution as hardware default. */
2442 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2443 			/* Disable SmartSpeed */
2444 			ret_val = e1000_read_phy_reg(hw,
2445 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2446 			if (ret_val)
2447 				return ret_val;
2448 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2449 			ret_val = e1000_write_phy_reg(hw,
2450 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2451 			if (ret_val)
2452 				return ret_val;
2453 			/* Set auto Master/Slave resolution process */
2454 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2455 					&phy_data);
2456 			if (ret_val)
2457 				return ret_val;
2458 			phy_data &= ~CR_1000T_MS_ENABLE;
2459 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2460 					phy_data);
2461 			if (ret_val)
2462 				return ret_val;
2463 		}
2464 
2465 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2466 		if (ret_val)
2467 			return ret_val;
2468 
2469 		/* load defaults for future use */
2470 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2471 				((phy_data & CR_1000T_MS_VALUE) ?
2472 				e1000_ms_force_master :
2473 				e1000_ms_force_slave) :
2474 				e1000_ms_auto;
2475 
2476 		switch (phy_ms_setting) {
2477 		case e1000_ms_force_master:
2478 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2479 			break;
2480 		case e1000_ms_force_slave:
2481 			phy_data |= CR_1000T_MS_ENABLE;
2482 			phy_data &= ~(CR_1000T_MS_VALUE);
2483 			break;
2484 		case e1000_ms_auto:
2485 			phy_data &= ~CR_1000T_MS_ENABLE;
2486 		default:
2487 			break;
2488 		}
2489 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2490 		if (ret_val)
2491 			return ret_val;
2492 	}
2493 
2494 	return E1000_SUCCESS;
2495 }
2496 
2497 /*****************************************************************************
2498  * This function checks the mode of the firmware.
2499  *
2500  * returns  - true when the mode is IAMT or false.
2501  ****************************************************************************/
2502 bool
2503 e1000_check_mng_mode(struct e1000_hw *hw)
2504 {
2505 	uint32_t fwsm;
2506 	DEBUGFUNC();
2507 
2508 	fwsm = E1000_READ_REG(hw, FWSM);
2509 
2510 	if (hw->mac_type == e1000_ich8lan) {
2511 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2512 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2513 			return true;
2514 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2515 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2516 			return true;
2517 
2518 	return false;
2519 }
2520 
2521 static int32_t
2522 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2523 {
2524 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2525 	uint32_t reg_val;
2526 	DEBUGFUNC();
2527 
2528 	if (e1000_is_second_port(hw))
2529 		swfw = E1000_SWFW_PHY1_SM;
2530 
2531 	if (e1000_swfw_sync_acquire(hw, swfw))
2532 		return -E1000_ERR_SWFW_SYNC;
2533 
2534 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2535 			& E1000_KUMCTRLSTA_OFFSET) | data;
2536 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2537 	udelay(2);
2538 
2539 	return E1000_SUCCESS;
2540 }
2541 
2542 static int32_t
2543 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2544 {
2545 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2546 	uint32_t reg_val;
2547 	DEBUGFUNC();
2548 
2549 	if (e1000_is_second_port(hw))
2550 		swfw = E1000_SWFW_PHY1_SM;
2551 
2552 	if (e1000_swfw_sync_acquire(hw, swfw))
2553 		return -E1000_ERR_SWFW_SYNC;
2554 
2555 	/* Write register address */
2556 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2557 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2558 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2559 	udelay(2);
2560 
2561 	/* Read the data returned */
2562 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2563 	*data = (uint16_t)reg_val;
2564 
2565 	return E1000_SUCCESS;
2566 }
2567 
2568 /********************************************************************
2569 * Copper link setup for e1000_phy_gg82563 series.
2570 *
2571 * hw - Struct containing variables accessed by shared code
2572 *********************************************************************/
2573 static int32_t
2574 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2575 {
2576 	int32_t ret_val;
2577 	uint16_t phy_data;
2578 	uint32_t reg_data;
2579 
2580 	DEBUGFUNC();
2581 
2582 	if (!hw->phy_reset_disable) {
2583 		/* Enable CRS on TX for half-duplex operation. */
2584 		ret_val = e1000_read_phy_reg(hw,
2585 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2586 		if (ret_val)
2587 			return ret_val;
2588 
2589 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2590 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2591 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2592 
2593 		ret_val = e1000_write_phy_reg(hw,
2594 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2595 		if (ret_val)
2596 			return ret_val;
2597 
2598 		/* Options:
2599 		 *   MDI/MDI-X = 0 (default)
2600 		 *   0 - Auto for all speeds
2601 		 *   1 - MDI mode
2602 		 *   2 - MDI-X mode
2603 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2604 		 */
2605 		ret_val = e1000_read_phy_reg(hw,
2606 				GG82563_PHY_SPEC_CTRL, &phy_data);
2607 		if (ret_val)
2608 			return ret_val;
2609 
2610 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2611 
2612 		switch (hw->mdix) {
2613 		case 1:
2614 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2615 			break;
2616 		case 2:
2617 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2618 			break;
2619 		case 0:
2620 		default:
2621 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2622 			break;
2623 		}
2624 
2625 		/* Options:
2626 		 *   disable_polarity_correction = 0 (default)
2627 		 *       Automatic Correction for Reversed Cable Polarity
2628 		 *   0 - Disabled
2629 		 *   1 - Enabled
2630 		 */
2631 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2632 		ret_val = e1000_write_phy_reg(hw,
2633 				GG82563_PHY_SPEC_CTRL, phy_data);
2634 
2635 		if (ret_val)
2636 			return ret_val;
2637 
2638 		/* SW Reset the PHY so all changes take effect */
2639 		ret_val = e1000_phy_reset(hw);
2640 		if (ret_val) {
2641 			DEBUGOUT("Error Resetting the PHY\n");
2642 			return ret_val;
2643 		}
2644 	} /* phy_reset_disable */
2645 
2646 	if (hw->mac_type == e1000_80003es2lan) {
2647 		/* Bypass RX and TX FIFO's */
2648 		ret_val = e1000_write_kmrn_reg(hw,
2649 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2650 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2651 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2652 		if (ret_val)
2653 			return ret_val;
2654 
2655 		ret_val = e1000_read_phy_reg(hw,
2656 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2657 		if (ret_val)
2658 			return ret_val;
2659 
2660 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2661 		ret_val = e1000_write_phy_reg(hw,
2662 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2663 
2664 		if (ret_val)
2665 			return ret_val;
2666 
2667 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2668 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2669 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2670 
2671 		ret_val = e1000_read_phy_reg(hw,
2672 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2673 		if (ret_val)
2674 			return ret_val;
2675 
2676 	/* Do not init these registers when the HW is in IAMT mode, since the
2677 	 * firmware will have already initialized them.  We only initialize
2678 	 * them if the HW is not in IAMT mode.
2679 	 */
2680 		if (e1000_check_mng_mode(hw) == false) {
2681 			/* Enable Electrical Idle on the PHY */
2682 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2683 			ret_val = e1000_write_phy_reg(hw,
2684 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2685 			if (ret_val)
2686 				return ret_val;
2687 
2688 			ret_val = e1000_read_phy_reg(hw,
2689 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2690 			if (ret_val)
2691 				return ret_val;
2692 
2693 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2694 			ret_val = e1000_write_phy_reg(hw,
2695 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2696 
2697 			if (ret_val)
2698 				return ret_val;
2699 		}
2700 
2701 		/* Workaround: Disable padding in Kumeran interface in the MAC
2702 		 * and in the PHY to avoid CRC errors.
2703 		 */
2704 		ret_val = e1000_read_phy_reg(hw,
2705 				GG82563_PHY_INBAND_CTRL, &phy_data);
2706 		if (ret_val)
2707 			return ret_val;
2708 		phy_data |= GG82563_ICR_DIS_PADDING;
2709 		ret_val = e1000_write_phy_reg(hw,
2710 				GG82563_PHY_INBAND_CTRL, phy_data);
2711 		if (ret_val)
2712 			return ret_val;
2713 	}
2714 	return E1000_SUCCESS;
2715 }
2716 
2717 /********************************************************************
2718 * Copper link setup for e1000_phy_m88 series.
2719 *
2720 * hw - Struct containing variables accessed by shared code
2721 *********************************************************************/
2722 static int32_t
2723 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2724 {
2725 	int32_t ret_val;
2726 	uint16_t phy_data;
2727 
2728 	DEBUGFUNC();
2729 
2730 	if (hw->phy_reset_disable)
2731 		return E1000_SUCCESS;
2732 
2733 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2734 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2735 	if (ret_val)
2736 		return ret_val;
2737 
2738 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2739 
2740 	/* Options:
2741 	 *   MDI/MDI-X = 0 (default)
2742 	 *   0 - Auto for all speeds
2743 	 *   1 - MDI mode
2744 	 *   2 - MDI-X mode
2745 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2746 	 */
2747 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2748 
2749 	switch (hw->mdix) {
2750 	case 1:
2751 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2752 		break;
2753 	case 2:
2754 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2755 		break;
2756 	case 3:
2757 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2758 		break;
2759 	case 0:
2760 	default:
2761 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2762 		break;
2763 	}
2764 
2765 	/* Options:
2766 	 *   disable_polarity_correction = 0 (default)
2767 	 *       Automatic Correction for Reversed Cable Polarity
2768 	 *   0 - Disabled
2769 	 *   1 - Enabled
2770 	 */
2771 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2772 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2773 	if (ret_val)
2774 		return ret_val;
2775 
2776 	if (hw->phy_revision < M88E1011_I_REV_4) {
2777 		/* Force TX_CLK in the Extended PHY Specific Control Register
2778 		 * to 25MHz clock.
2779 		 */
2780 		ret_val = e1000_read_phy_reg(hw,
2781 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2782 		if (ret_val)
2783 			return ret_val;
2784 
2785 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2786 
2787 		if ((hw->phy_revision == E1000_REVISION_2) &&
2788 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2789 			/* Vidalia Phy, set the downshift counter to 5x */
2790 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2791 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2792 			ret_val = e1000_write_phy_reg(hw,
2793 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2794 			if (ret_val)
2795 				return ret_val;
2796 		} else {
2797 			/* Configure Master and Slave downshift values */
2798 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2799 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2800 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2801 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2802 			ret_val = e1000_write_phy_reg(hw,
2803 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2804 			if (ret_val)
2805 				return ret_val;
2806 		}
2807 	}
2808 
2809 	/* SW Reset the PHY so all changes take effect */
2810 	ret_val = e1000_phy_reset(hw);
2811 	if (ret_val) {
2812 		DEBUGOUT("Error Resetting the PHY\n");
2813 		return ret_val;
2814 	}
2815 
2816 	return E1000_SUCCESS;
2817 }
2818 
2819 /********************************************************************
2820 * Setup auto-negotiation and flow control advertisements,
2821 * and then perform auto-negotiation.
2822 *
2823 * hw - Struct containing variables accessed by shared code
2824 *********************************************************************/
2825 static int32_t
2826 e1000_copper_link_autoneg(struct e1000_hw *hw)
2827 {
2828 	int32_t ret_val;
2829 	uint16_t phy_data;
2830 
2831 	DEBUGFUNC();
2832 
2833 	/* Perform some bounds checking on the hw->autoneg_advertised
2834 	 * parameter.  If this variable is zero, then set it to the default.
2835 	 */
2836 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2837 
2838 	/* If autoneg_advertised is zero, we assume it was not defaulted
2839 	 * by the calling code so we set to advertise full capability.
2840 	 */
2841 	if (hw->autoneg_advertised == 0)
2842 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2843 
2844 	/* IFE phy only supports 10/100 */
2845 	if (hw->phy_type == e1000_phy_ife)
2846 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2847 
2848 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2849 	ret_val = e1000_phy_setup_autoneg(hw);
2850 	if (ret_val) {
2851 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2852 		return ret_val;
2853 	}
2854 	DEBUGOUT("Restarting Auto-Neg\n");
2855 
2856 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2857 	 * the Auto Neg Restart bit in the PHY control register.
2858 	 */
2859 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2860 	if (ret_val)
2861 		return ret_val;
2862 
2863 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2864 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2865 	if (ret_val)
2866 		return ret_val;
2867 
2868 	/* Does the user want to wait for Auto-Neg to complete here, or
2869 	 * check at a later time (for example, callback routine).
2870 	 */
2871 	/* If we do not wait for autonegtation to complete I
2872 	 * do not see a valid link status.
2873 	 * wait_autoneg_complete = 1 .
2874 	 */
2875 	if (hw->wait_autoneg_complete) {
2876 		ret_val = e1000_wait_autoneg(hw);
2877 		if (ret_val) {
2878 			DEBUGOUT("Error while waiting for autoneg"
2879 					"to complete\n");
2880 			return ret_val;
2881 		}
2882 	}
2883 
2884 	hw->get_link_status = true;
2885 
2886 	return E1000_SUCCESS;
2887 }
2888 
2889 /******************************************************************************
2890 * Config the MAC and the PHY after link is up.
2891 *   1) Set up the MAC to the current PHY speed/duplex
2892 *      if we are on 82543.  If we
2893 *      are on newer silicon, we only need to configure
2894 *      collision distance in the Transmit Control Register.
2895 *   2) Set up flow control on the MAC to that established with
2896 *      the link partner.
2897 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2898 *
2899 * hw - Struct containing variables accessed by shared code
2900 ******************************************************************************/
2901 static int32_t
2902 e1000_copper_link_postconfig(struct e1000_hw *hw)
2903 {
2904 	int32_t ret_val;
2905 	DEBUGFUNC();
2906 
2907 	if (hw->mac_type >= e1000_82544) {
2908 		e1000_config_collision_dist(hw);
2909 	} else {
2910 		ret_val = e1000_config_mac_to_phy(hw);
2911 		if (ret_val) {
2912 			DEBUGOUT("Error configuring MAC to PHY settings\n");
2913 			return ret_val;
2914 		}
2915 	}
2916 	ret_val = e1000_config_fc_after_link_up(hw);
2917 	if (ret_val) {
2918 		DEBUGOUT("Error Configuring Flow Control\n");
2919 		return ret_val;
2920 	}
2921 	return E1000_SUCCESS;
2922 }
2923 
2924 /******************************************************************************
2925 * Detects which PHY is present and setup the speed and duplex
2926 *
2927 * hw - Struct containing variables accessed by shared code
2928 ******************************************************************************/
2929 static int
2930 e1000_setup_copper_link(struct eth_device *nic)
2931 {
2932 	struct e1000_hw *hw = nic->priv;
2933 	int32_t ret_val;
2934 	uint16_t i;
2935 	uint16_t phy_data;
2936 	uint16_t reg_data;
2937 
2938 	DEBUGFUNC();
2939 
2940 	switch (hw->mac_type) {
2941 	case e1000_80003es2lan:
2942 	case e1000_ich8lan:
2943 		/* Set the mac to wait the maximum time between each
2944 		 * iteration and increase the max iterations when
2945 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2946 		ret_val = e1000_write_kmrn_reg(hw,
2947 				GG82563_REG(0x34, 4), 0xFFFF);
2948 		if (ret_val)
2949 			return ret_val;
2950 		ret_val = e1000_read_kmrn_reg(hw,
2951 				GG82563_REG(0x34, 9), &reg_data);
2952 		if (ret_val)
2953 			return ret_val;
2954 		reg_data |= 0x3F;
2955 		ret_val = e1000_write_kmrn_reg(hw,
2956 				GG82563_REG(0x34, 9), reg_data);
2957 		if (ret_val)
2958 			return ret_val;
2959 	default:
2960 		break;
2961 	}
2962 
2963 	/* Check if it is a valid PHY and set PHY mode if necessary. */
2964 	ret_val = e1000_copper_link_preconfig(hw);
2965 	if (ret_val)
2966 		return ret_val;
2967 	switch (hw->mac_type) {
2968 	case e1000_80003es2lan:
2969 		/* Kumeran registers are written-only */
2970 		reg_data =
2971 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2972 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2973 		ret_val = e1000_write_kmrn_reg(hw,
2974 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2975 		if (ret_val)
2976 			return ret_val;
2977 		break;
2978 	default:
2979 		break;
2980 	}
2981 
2982 	if (hw->phy_type == e1000_phy_igp ||
2983 		hw->phy_type == e1000_phy_igp_3 ||
2984 		hw->phy_type == e1000_phy_igp_2) {
2985 		ret_val = e1000_copper_link_igp_setup(hw);
2986 		if (ret_val)
2987 			return ret_val;
2988 	} else if (hw->phy_type == e1000_phy_m88) {
2989 		ret_val = e1000_copper_link_mgp_setup(hw);
2990 		if (ret_val)
2991 			return ret_val;
2992 	} else if (hw->phy_type == e1000_phy_gg82563) {
2993 		ret_val = e1000_copper_link_ggp_setup(hw);
2994 		if (ret_val)
2995 			return ret_val;
2996 	}
2997 
2998 	/* always auto */
2999 	/* Setup autoneg and flow control advertisement
3000 	  * and perform autonegotiation */
3001 	ret_val = e1000_copper_link_autoneg(hw);
3002 	if (ret_val)
3003 		return ret_val;
3004 
3005 	/* Check link status. Wait up to 100 microseconds for link to become
3006 	 * valid.
3007 	 */
3008 	for (i = 0; i < 10; i++) {
3009 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3010 		if (ret_val)
3011 			return ret_val;
3012 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3013 		if (ret_val)
3014 			return ret_val;
3015 
3016 		if (phy_data & MII_SR_LINK_STATUS) {
3017 			/* Config the MAC and PHY after link is up */
3018 			ret_val = e1000_copper_link_postconfig(hw);
3019 			if (ret_val)
3020 				return ret_val;
3021 
3022 			DEBUGOUT("Valid link established!!!\n");
3023 			return E1000_SUCCESS;
3024 		}
3025 		udelay(10);
3026 	}
3027 
3028 	DEBUGOUT("Unable to establish link!!!\n");
3029 	return E1000_SUCCESS;
3030 }
3031 
3032 /******************************************************************************
3033 * Configures PHY autoneg and flow control advertisement settings
3034 *
3035 * hw - Struct containing variables accessed by shared code
3036 ******************************************************************************/
3037 int32_t
3038 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3039 {
3040 	int32_t ret_val;
3041 	uint16_t mii_autoneg_adv_reg;
3042 	uint16_t mii_1000t_ctrl_reg;
3043 
3044 	DEBUGFUNC();
3045 
3046 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3047 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3048 	if (ret_val)
3049 		return ret_val;
3050 
3051 	if (hw->phy_type != e1000_phy_ife) {
3052 		/* Read the MII 1000Base-T Control Register (Address 9). */
3053 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3054 				&mii_1000t_ctrl_reg);
3055 		if (ret_val)
3056 			return ret_val;
3057 	} else
3058 		mii_1000t_ctrl_reg = 0;
3059 
3060 	/* Need to parse both autoneg_advertised and fc and set up
3061 	 * the appropriate PHY registers.  First we will parse for
3062 	 * autoneg_advertised software override.  Since we can advertise
3063 	 * a plethora of combinations, we need to check each bit
3064 	 * individually.
3065 	 */
3066 
3067 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3068 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3069 	 * the  1000Base-T Control Register (Address 9).
3070 	 */
3071 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3072 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3073 
3074 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3075 
3076 	/* Do we want to advertise 10 Mb Half Duplex? */
3077 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3078 		DEBUGOUT("Advertise 10mb Half duplex\n");
3079 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3080 	}
3081 
3082 	/* Do we want to advertise 10 Mb Full Duplex? */
3083 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3084 		DEBUGOUT("Advertise 10mb Full duplex\n");
3085 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3086 	}
3087 
3088 	/* Do we want to advertise 100 Mb Half Duplex? */
3089 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3090 		DEBUGOUT("Advertise 100mb Half duplex\n");
3091 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3092 	}
3093 
3094 	/* Do we want to advertise 100 Mb Full Duplex? */
3095 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3096 		DEBUGOUT("Advertise 100mb Full duplex\n");
3097 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3098 	}
3099 
3100 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3101 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3102 		DEBUGOUT
3103 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3104 	}
3105 
3106 	/* Do we want to advertise 1000 Mb Full Duplex? */
3107 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3108 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3109 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3110 	}
3111 
3112 	/* Check for a software override of the flow control settings, and
3113 	 * setup the PHY advertisement registers accordingly.  If
3114 	 * auto-negotiation is enabled, then software will have to set the
3115 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3116 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3117 	 *
3118 	 * The possible values of the "fc" parameter are:
3119 	 *	0:  Flow control is completely disabled
3120 	 *	1:  Rx flow control is enabled (we can receive pause frames
3121 	 *	    but not send pause frames).
3122 	 *	2:  Tx flow control is enabled (we can send pause frames
3123 	 *	    but we do not support receiving pause frames).
3124 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3125 	 *  other:  No software override.  The flow control configuration
3126 	 *	    in the EEPROM is used.
3127 	 */
3128 	switch (hw->fc) {
3129 	case e1000_fc_none:	/* 0 */
3130 		/* Flow control (RX & TX) is completely disabled by a
3131 		 * software over-ride.
3132 		 */
3133 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3134 		break;
3135 	case e1000_fc_rx_pause:	/* 1 */
3136 		/* RX Flow control is enabled, and TX Flow control is
3137 		 * disabled, by a software over-ride.
3138 		 */
3139 		/* Since there really isn't a way to advertise that we are
3140 		 * capable of RX Pause ONLY, we will advertise that we
3141 		 * support both symmetric and asymmetric RX PAUSE.  Later
3142 		 * (in e1000_config_fc_after_link_up) we will disable the
3143 		 *hw's ability to send PAUSE frames.
3144 		 */
3145 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3146 		break;
3147 	case e1000_fc_tx_pause:	/* 2 */
3148 		/* TX Flow control is enabled, and RX Flow control is
3149 		 * disabled, by a software over-ride.
3150 		 */
3151 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3152 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3153 		break;
3154 	case e1000_fc_full:	/* 3 */
3155 		/* Flow control (both RX and TX) is enabled by a software
3156 		 * over-ride.
3157 		 */
3158 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3159 		break;
3160 	default:
3161 		DEBUGOUT("Flow control param set incorrectly\n");
3162 		return -E1000_ERR_CONFIG;
3163 	}
3164 
3165 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3166 	if (ret_val)
3167 		return ret_val;
3168 
3169 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3170 
3171 	if (hw->phy_type != e1000_phy_ife) {
3172 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3173 				mii_1000t_ctrl_reg);
3174 		if (ret_val)
3175 			return ret_val;
3176 	}
3177 
3178 	return E1000_SUCCESS;
3179 }
3180 
3181 /******************************************************************************
3182 * Sets the collision distance in the Transmit Control register
3183 *
3184 * hw - Struct containing variables accessed by shared code
3185 *
3186 * Link should have been established previously. Reads the speed and duplex
3187 * information from the Device Status register.
3188 ******************************************************************************/
3189 static void
3190 e1000_config_collision_dist(struct e1000_hw *hw)
3191 {
3192 	uint32_t tctl, coll_dist;
3193 
3194 	DEBUGFUNC();
3195 
3196 	if (hw->mac_type < e1000_82543)
3197 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3198 	else
3199 		coll_dist = E1000_COLLISION_DISTANCE;
3200 
3201 	tctl = E1000_READ_REG(hw, TCTL);
3202 
3203 	tctl &= ~E1000_TCTL_COLD;
3204 	tctl |= coll_dist << E1000_COLD_SHIFT;
3205 
3206 	E1000_WRITE_REG(hw, TCTL, tctl);
3207 	E1000_WRITE_FLUSH(hw);
3208 }
3209 
3210 /******************************************************************************
3211 * Sets MAC speed and duplex settings to reflect the those in the PHY
3212 *
3213 * hw - Struct containing variables accessed by shared code
3214 * mii_reg - data to write to the MII control register
3215 *
3216 * The contents of the PHY register containing the needed information need to
3217 * be passed in.
3218 ******************************************************************************/
3219 static int
3220 e1000_config_mac_to_phy(struct e1000_hw *hw)
3221 {
3222 	uint32_t ctrl;
3223 	uint16_t phy_data;
3224 
3225 	DEBUGFUNC();
3226 
3227 	/* Read the Device Control Register and set the bits to Force Speed
3228 	 * and Duplex.
3229 	 */
3230 	ctrl = E1000_READ_REG(hw, CTRL);
3231 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3232 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3233 
3234 	/* Set up duplex in the Device Control and Transmit Control
3235 	 * registers depending on negotiated values.
3236 	 */
3237 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3238 		DEBUGOUT("PHY Read Error\n");
3239 		return -E1000_ERR_PHY;
3240 	}
3241 	if (phy_data & M88E1000_PSSR_DPLX)
3242 		ctrl |= E1000_CTRL_FD;
3243 	else
3244 		ctrl &= ~E1000_CTRL_FD;
3245 
3246 	e1000_config_collision_dist(hw);
3247 
3248 	/* Set up speed in the Device Control register depending on
3249 	 * negotiated values.
3250 	 */
3251 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3252 		ctrl |= E1000_CTRL_SPD_1000;
3253 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3254 		ctrl |= E1000_CTRL_SPD_100;
3255 	/* Write the configured values back to the Device Control Reg. */
3256 	E1000_WRITE_REG(hw, CTRL, ctrl);
3257 	return 0;
3258 }
3259 
3260 /******************************************************************************
3261  * Forces the MAC's flow control settings.
3262  *
3263  * hw - Struct containing variables accessed by shared code
3264  *
3265  * Sets the TFCE and RFCE bits in the device control register to reflect
3266  * the adapter settings. TFCE and RFCE need to be explicitly set by
3267  * software when a Copper PHY is used because autonegotiation is managed
3268  * by the PHY rather than the MAC. Software must also configure these
3269  * bits when link is forced on a fiber connection.
3270  *****************************************************************************/
3271 static int
3272 e1000_force_mac_fc(struct e1000_hw *hw)
3273 {
3274 	uint32_t ctrl;
3275 
3276 	DEBUGFUNC();
3277 
3278 	/* Get the current configuration of the Device Control Register */
3279 	ctrl = E1000_READ_REG(hw, CTRL);
3280 
3281 	/* Because we didn't get link via the internal auto-negotiation
3282 	 * mechanism (we either forced link or we got link via PHY
3283 	 * auto-neg), we have to manually enable/disable transmit an
3284 	 * receive flow control.
3285 	 *
3286 	 * The "Case" statement below enables/disable flow control
3287 	 * according to the "hw->fc" parameter.
3288 	 *
3289 	 * The possible values of the "fc" parameter are:
3290 	 *	0:  Flow control is completely disabled
3291 	 *	1:  Rx flow control is enabled (we can receive pause
3292 	 *	    frames but not send pause frames).
3293 	 *	2:  Tx flow control is enabled (we can send pause frames
3294 	 *	    frames but we do not receive pause frames).
3295 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3296 	 *  other:  No other values should be possible at this point.
3297 	 */
3298 
3299 	switch (hw->fc) {
3300 	case e1000_fc_none:
3301 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3302 		break;
3303 	case e1000_fc_rx_pause:
3304 		ctrl &= (~E1000_CTRL_TFCE);
3305 		ctrl |= E1000_CTRL_RFCE;
3306 		break;
3307 	case e1000_fc_tx_pause:
3308 		ctrl &= (~E1000_CTRL_RFCE);
3309 		ctrl |= E1000_CTRL_TFCE;
3310 		break;
3311 	case e1000_fc_full:
3312 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3313 		break;
3314 	default:
3315 		DEBUGOUT("Flow control param set incorrectly\n");
3316 		return -E1000_ERR_CONFIG;
3317 	}
3318 
3319 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3320 	if (hw->mac_type == e1000_82542_rev2_0)
3321 		ctrl &= (~E1000_CTRL_TFCE);
3322 
3323 	E1000_WRITE_REG(hw, CTRL, ctrl);
3324 	return 0;
3325 }
3326 
3327 /******************************************************************************
3328  * Configures flow control settings after link is established
3329  *
3330  * hw - Struct containing variables accessed by shared code
3331  *
3332  * Should be called immediately after a valid link has been established.
3333  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3334  * and autonegotiation is enabled, the MAC flow control settings will be set
3335  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3336  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3337  *****************************************************************************/
3338 static int32_t
3339 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3340 {
3341 	int32_t ret_val;
3342 	uint16_t mii_status_reg;
3343 	uint16_t mii_nway_adv_reg;
3344 	uint16_t mii_nway_lp_ability_reg;
3345 	uint16_t speed;
3346 	uint16_t duplex;
3347 
3348 	DEBUGFUNC();
3349 
3350 	/* Check for the case where we have fiber media and auto-neg failed
3351 	 * so we had to force link.  In this case, we need to force the
3352 	 * configuration of the MAC to match the "fc" parameter.
3353 	 */
3354 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3355 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3356 		&& (hw->autoneg_failed))
3357 		|| ((hw->media_type == e1000_media_type_copper)
3358 		&& (!hw->autoneg))) {
3359 		ret_val = e1000_force_mac_fc(hw);
3360 		if (ret_val < 0) {
3361 			DEBUGOUT("Error forcing flow control settings\n");
3362 			return ret_val;
3363 		}
3364 	}
3365 
3366 	/* Check for the case where we have copper media and auto-neg is
3367 	 * enabled.  In this case, we need to check and see if Auto-Neg
3368 	 * has completed, and if so, how the PHY and link partner has
3369 	 * flow control configured.
3370 	 */
3371 	if (hw->media_type == e1000_media_type_copper) {
3372 		/* Read the MII Status Register and check to see if AutoNeg
3373 		 * has completed.  We read this twice because this reg has
3374 		 * some "sticky" (latched) bits.
3375 		 */
3376 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3377 			DEBUGOUT("PHY Read Error \n");
3378 			return -E1000_ERR_PHY;
3379 		}
3380 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3381 			DEBUGOUT("PHY Read Error \n");
3382 			return -E1000_ERR_PHY;
3383 		}
3384 
3385 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3386 			/* The AutoNeg process has completed, so we now need to
3387 			 * read both the Auto Negotiation Advertisement Register
3388 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3389 			 * Register (Address 5) to determine how flow control was
3390 			 * negotiated.
3391 			 */
3392 			if (e1000_read_phy_reg
3393 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3394 				DEBUGOUT("PHY Read Error\n");
3395 				return -E1000_ERR_PHY;
3396 			}
3397 			if (e1000_read_phy_reg
3398 			    (hw, PHY_LP_ABILITY,
3399 			     &mii_nway_lp_ability_reg) < 0) {
3400 				DEBUGOUT("PHY Read Error\n");
3401 				return -E1000_ERR_PHY;
3402 			}
3403 
3404 			/* Two bits in the Auto Negotiation Advertisement Register
3405 			 * (Address 4) and two bits in the Auto Negotiation Base
3406 			 * Page Ability Register (Address 5) determine flow control
3407 			 * for both the PHY and the link partner.  The following
3408 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3409 			 * 1999, describes these PAUSE resolution bits and how flow
3410 			 * control is determined based upon these settings.
3411 			 * NOTE:  DC = Don't Care
3412 			 *
3413 			 *   LOCAL DEVICE  |   LINK PARTNER
3414 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3415 			 *-------|---------|-------|---------|--------------------
3416 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3417 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3418 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3419 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3420 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3421 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3422 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3423 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3424 			 *
3425 			 */
3426 			/* Are both PAUSE bits set to 1?  If so, this implies
3427 			 * Symmetric Flow Control is enabled at both ends.  The
3428 			 * ASM_DIR bits are irrelevant per the spec.
3429 			 *
3430 			 * For Symmetric Flow Control:
3431 			 *
3432 			 *   LOCAL DEVICE  |   LINK PARTNER
3433 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3434 			 *-------|---------|-------|---------|--------------------
3435 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3436 			 *
3437 			 */
3438 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3439 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3440 				/* Now we need to check if the user selected RX ONLY
3441 				 * of pause frames.  In this case, we had to advertise
3442 				 * FULL flow control because we could not advertise RX
3443 				 * ONLY. Hence, we must now check to see if we need to
3444 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3445 				 */
3446 				if (hw->original_fc == e1000_fc_full) {
3447 					hw->fc = e1000_fc_full;
3448 					DEBUGOUT("Flow Control = FULL.\r\n");
3449 				} else {
3450 					hw->fc = e1000_fc_rx_pause;
3451 					DEBUGOUT
3452 					    ("Flow Control = RX PAUSE frames only.\r\n");
3453 				}
3454 			}
3455 			/* For receiving PAUSE frames ONLY.
3456 			 *
3457 			 *   LOCAL DEVICE  |   LINK PARTNER
3458 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3459 			 *-------|---------|-------|---------|--------------------
3460 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3461 			 *
3462 			 */
3463 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3464 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3465 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3466 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3467 			{
3468 				hw->fc = e1000_fc_tx_pause;
3469 				DEBUGOUT
3470 				    ("Flow Control = TX PAUSE frames only.\r\n");
3471 			}
3472 			/* For transmitting PAUSE frames ONLY.
3473 			 *
3474 			 *   LOCAL DEVICE  |   LINK PARTNER
3475 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3476 			 *-------|---------|-------|---------|--------------------
3477 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3478 			 *
3479 			 */
3480 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3481 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3482 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3483 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3484 			{
3485 				hw->fc = e1000_fc_rx_pause;
3486 				DEBUGOUT
3487 				    ("Flow Control = RX PAUSE frames only.\r\n");
3488 			}
3489 			/* Per the IEEE spec, at this point flow control should be
3490 			 * disabled.  However, we want to consider that we could
3491 			 * be connected to a legacy switch that doesn't advertise
3492 			 * desired flow control, but can be forced on the link
3493 			 * partner.  So if we advertised no flow control, that is
3494 			 * what we will resolve to.  If we advertised some kind of
3495 			 * receive capability (Rx Pause Only or Full Flow Control)
3496 			 * and the link partner advertised none, we will configure
3497 			 * ourselves to enable Rx Flow Control only.  We can do
3498 			 * this safely for two reasons:  If the link partner really
3499 			 * didn't want flow control enabled, and we enable Rx, no
3500 			 * harm done since we won't be receiving any PAUSE frames
3501 			 * anyway.  If the intent on the link partner was to have
3502 			 * flow control enabled, then by us enabling RX only, we
3503 			 * can at least receive pause frames and process them.
3504 			 * This is a good idea because in most cases, since we are
3505 			 * predominantly a server NIC, more times than not we will
3506 			 * be asked to delay transmission of packets than asking
3507 			 * our link partner to pause transmission of frames.
3508 			 */
3509 			else if (hw->original_fc == e1000_fc_none ||
3510 				 hw->original_fc == e1000_fc_tx_pause) {
3511 				hw->fc = e1000_fc_none;
3512 				DEBUGOUT("Flow Control = NONE.\r\n");
3513 			} else {
3514 				hw->fc = e1000_fc_rx_pause;
3515 				DEBUGOUT
3516 				    ("Flow Control = RX PAUSE frames only.\r\n");
3517 			}
3518 
3519 			/* Now we need to do one last check...	If we auto-
3520 			 * negotiated to HALF DUPLEX, flow control should not be
3521 			 * enabled per IEEE 802.3 spec.
3522 			 */
3523 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3524 
3525 			if (duplex == HALF_DUPLEX)
3526 				hw->fc = e1000_fc_none;
3527 
3528 			/* Now we call a subroutine to actually force the MAC
3529 			 * controller to use the correct flow control settings.
3530 			 */
3531 			ret_val = e1000_force_mac_fc(hw);
3532 			if (ret_val < 0) {
3533 				DEBUGOUT
3534 				    ("Error forcing flow control settings\n");
3535 				return ret_val;
3536 			}
3537 		} else {
3538 			DEBUGOUT
3539 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3540 		}
3541 	}
3542 	return E1000_SUCCESS;
3543 }
3544 
3545 /******************************************************************************
3546  * Checks to see if the link status of the hardware has changed.
3547  *
3548  * hw - Struct containing variables accessed by shared code
3549  *
3550  * Called by any function that needs to check the link status of the adapter.
3551  *****************************************************************************/
3552 static int
3553 e1000_check_for_link(struct eth_device *nic)
3554 {
3555 	struct e1000_hw *hw = nic->priv;
3556 	uint32_t rxcw;
3557 	uint32_t ctrl;
3558 	uint32_t status;
3559 	uint32_t rctl;
3560 	uint32_t signal;
3561 	int32_t ret_val;
3562 	uint16_t phy_data;
3563 	uint16_t lp_capability;
3564 
3565 	DEBUGFUNC();
3566 
3567 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3568 	 * set when the optics detect a signal. On older adapters, it will be
3569 	 * cleared when there is a signal
3570 	 */
3571 	ctrl = E1000_READ_REG(hw, CTRL);
3572 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3573 		signal = E1000_CTRL_SWDPIN1;
3574 	else
3575 		signal = 0;
3576 
3577 	status = E1000_READ_REG(hw, STATUS);
3578 	rxcw = E1000_READ_REG(hw, RXCW);
3579 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3580 
3581 	/* If we have a copper PHY then we only want to go out to the PHY
3582 	 * registers to see if Auto-Neg has completed and/or if our link
3583 	 * status has changed.	The get_link_status flag will be set if we
3584 	 * receive a Link Status Change interrupt or we have Rx Sequence
3585 	 * Errors.
3586 	 */
3587 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3588 		/* First we want to see if the MII Status Register reports
3589 		 * link.  If so, then we want to get the current speed/duplex
3590 		 * of the PHY.
3591 		 * Read the register twice since the link bit is sticky.
3592 		 */
3593 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3594 			DEBUGOUT("PHY Read Error\n");
3595 			return -E1000_ERR_PHY;
3596 		}
3597 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3598 			DEBUGOUT("PHY Read Error\n");
3599 			return -E1000_ERR_PHY;
3600 		}
3601 
3602 		if (phy_data & MII_SR_LINK_STATUS) {
3603 			hw->get_link_status = false;
3604 		} else {
3605 			/* No link detected */
3606 			return -E1000_ERR_NOLINK;
3607 		}
3608 
3609 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3610 		 * have Si on board that is 82544 or newer, Auto
3611 		 * Speed Detection takes care of MAC speed/duplex
3612 		 * configuration.  So we only need to configure Collision
3613 		 * Distance in the MAC.  Otherwise, we need to force
3614 		 * speed/duplex on the MAC to the current PHY speed/duplex
3615 		 * settings.
3616 		 */
3617 		if (hw->mac_type >= e1000_82544)
3618 			e1000_config_collision_dist(hw);
3619 		else {
3620 			ret_val = e1000_config_mac_to_phy(hw);
3621 			if (ret_val < 0) {
3622 				DEBUGOUT
3623 				    ("Error configuring MAC to PHY settings\n");
3624 				return ret_val;
3625 			}
3626 		}
3627 
3628 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3629 		 * need to restore the desired flow control settings because we may
3630 		 * have had to re-autoneg with a different link partner.
3631 		 */
3632 		ret_val = e1000_config_fc_after_link_up(hw);
3633 		if (ret_val < 0) {
3634 			DEBUGOUT("Error configuring flow control\n");
3635 			return ret_val;
3636 		}
3637 
3638 		/* At this point we know that we are on copper and we have
3639 		 * auto-negotiated link.  These are conditions for checking the link
3640 		 * parter capability register.	We use the link partner capability to
3641 		 * determine if TBI Compatibility needs to be turned on or off.  If
3642 		 * the link partner advertises any speed in addition to Gigabit, then
3643 		 * we assume that they are GMII-based, and TBI compatibility is not
3644 		 * needed. If no other speeds are advertised, we assume the link
3645 		 * partner is TBI-based, and we turn on TBI Compatibility.
3646 		 */
3647 		if (hw->tbi_compatibility_en) {
3648 			if (e1000_read_phy_reg
3649 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3650 				DEBUGOUT("PHY Read Error\n");
3651 				return -E1000_ERR_PHY;
3652 			}
3653 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3654 					     NWAY_LPAR_10T_FD_CAPS |
3655 					     NWAY_LPAR_100TX_HD_CAPS |
3656 					     NWAY_LPAR_100TX_FD_CAPS |
3657 					     NWAY_LPAR_100T4_CAPS)) {
3658 				/* If our link partner advertises anything in addition to
3659 				 * gigabit, we do not need to enable TBI compatibility.
3660 				 */
3661 				if (hw->tbi_compatibility_on) {
3662 					/* If we previously were in the mode, turn it off. */
3663 					rctl = E1000_READ_REG(hw, RCTL);
3664 					rctl &= ~E1000_RCTL_SBP;
3665 					E1000_WRITE_REG(hw, RCTL, rctl);
3666 					hw->tbi_compatibility_on = false;
3667 				}
3668 			} else {
3669 				/* If TBI compatibility is was previously off, turn it on. For
3670 				 * compatibility with a TBI link partner, we will store bad
3671 				 * packets. Some frames have an additional byte on the end and
3672 				 * will look like CRC errors to to the hardware.
3673 				 */
3674 				if (!hw->tbi_compatibility_on) {
3675 					hw->tbi_compatibility_on = true;
3676 					rctl = E1000_READ_REG(hw, RCTL);
3677 					rctl |= E1000_RCTL_SBP;
3678 					E1000_WRITE_REG(hw, RCTL, rctl);
3679 				}
3680 			}
3681 		}
3682 	}
3683 	/* If we don't have link (auto-negotiation failed or link partner cannot
3684 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3685 	 * link partner is not trying to auto-negotiate with us (we are receiving
3686 	 * idles or data), we need to force link up. We also need to give
3687 	 * auto-negotiation time to complete, in case the cable was just plugged
3688 	 * in. The autoneg_failed flag does this.
3689 	 */
3690 	else if ((hw->media_type == e1000_media_type_fiber) &&
3691 		 (!(status & E1000_STATUS_LU)) &&
3692 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3693 		 (!(rxcw & E1000_RXCW_C))) {
3694 		if (hw->autoneg_failed == 0) {
3695 			hw->autoneg_failed = 1;
3696 			return 0;
3697 		}
3698 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3699 
3700 		/* Disable auto-negotiation in the TXCW register */
3701 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3702 
3703 		/* Force link-up and also force full-duplex. */
3704 		ctrl = E1000_READ_REG(hw, CTRL);
3705 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3706 		E1000_WRITE_REG(hw, CTRL, ctrl);
3707 
3708 		/* Configure Flow Control after forcing link up. */
3709 		ret_val = e1000_config_fc_after_link_up(hw);
3710 		if (ret_val < 0) {
3711 			DEBUGOUT("Error configuring flow control\n");
3712 			return ret_val;
3713 		}
3714 	}
3715 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3716 	 * auto-negotiation in the TXCW register and disable forced link in the
3717 	 * Device Control register in an attempt to auto-negotiate with our link
3718 	 * partner.
3719 	 */
3720 	else if ((hw->media_type == e1000_media_type_fiber) &&
3721 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3722 		DEBUGOUT
3723 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3724 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3725 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3726 	}
3727 	return 0;
3728 }
3729 
3730 /******************************************************************************
3731 * Configure the MAC-to-PHY interface for 10/100Mbps
3732 *
3733 * hw - Struct containing variables accessed by shared code
3734 ******************************************************************************/
3735 static int32_t
3736 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3737 {
3738 	int32_t ret_val = E1000_SUCCESS;
3739 	uint32_t tipg;
3740 	uint16_t reg_data;
3741 
3742 	DEBUGFUNC();
3743 
3744 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3745 	ret_val = e1000_write_kmrn_reg(hw,
3746 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3747 	if (ret_val)
3748 		return ret_val;
3749 
3750 	/* Configure Transmit Inter-Packet Gap */
3751 	tipg = E1000_READ_REG(hw, TIPG);
3752 	tipg &= ~E1000_TIPG_IPGT_MASK;
3753 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3754 	E1000_WRITE_REG(hw, TIPG, tipg);
3755 
3756 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3757 
3758 	if (ret_val)
3759 		return ret_val;
3760 
3761 	if (duplex == HALF_DUPLEX)
3762 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3763 	else
3764 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3765 
3766 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3767 
3768 	return ret_val;
3769 }
3770 
3771 static int32_t
3772 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3773 {
3774 	int32_t ret_val = E1000_SUCCESS;
3775 	uint16_t reg_data;
3776 	uint32_t tipg;
3777 
3778 	DEBUGFUNC();
3779 
3780 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3781 	ret_val = e1000_write_kmrn_reg(hw,
3782 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3783 	if (ret_val)
3784 		return ret_val;
3785 
3786 	/* Configure Transmit Inter-Packet Gap */
3787 	tipg = E1000_READ_REG(hw, TIPG);
3788 	tipg &= ~E1000_TIPG_IPGT_MASK;
3789 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3790 	E1000_WRITE_REG(hw, TIPG, tipg);
3791 
3792 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3793 
3794 	if (ret_val)
3795 		return ret_val;
3796 
3797 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3798 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3799 
3800 	return ret_val;
3801 }
3802 
3803 /******************************************************************************
3804  * Detects the current speed and duplex settings of the hardware.
3805  *
3806  * hw - Struct containing variables accessed by shared code
3807  * speed - Speed of the connection
3808  * duplex - Duplex setting of the connection
3809  *****************************************************************************/
3810 static int
3811 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3812 		uint16_t *duplex)
3813 {
3814 	uint32_t status;
3815 	int32_t ret_val;
3816 	uint16_t phy_data;
3817 
3818 	DEBUGFUNC();
3819 
3820 	if (hw->mac_type >= e1000_82543) {
3821 		status = E1000_READ_REG(hw, STATUS);
3822 		if (status & E1000_STATUS_SPEED_1000) {
3823 			*speed = SPEED_1000;
3824 			DEBUGOUT("1000 Mbs, ");
3825 		} else if (status & E1000_STATUS_SPEED_100) {
3826 			*speed = SPEED_100;
3827 			DEBUGOUT("100 Mbs, ");
3828 		} else {
3829 			*speed = SPEED_10;
3830 			DEBUGOUT("10 Mbs, ");
3831 		}
3832 
3833 		if (status & E1000_STATUS_FD) {
3834 			*duplex = FULL_DUPLEX;
3835 			DEBUGOUT("Full Duplex\r\n");
3836 		} else {
3837 			*duplex = HALF_DUPLEX;
3838 			DEBUGOUT(" Half Duplex\r\n");
3839 		}
3840 	} else {
3841 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3842 		*speed = SPEED_1000;
3843 		*duplex = FULL_DUPLEX;
3844 	}
3845 
3846 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3847 	 * even if it is operating at half duplex.  Here we set the duplex
3848 	 * settings to match the duplex in the link partner's capabilities.
3849 	 */
3850 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3851 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3852 		if (ret_val)
3853 			return ret_val;
3854 
3855 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3856 			*duplex = HALF_DUPLEX;
3857 		else {
3858 			ret_val = e1000_read_phy_reg(hw,
3859 					PHY_LP_ABILITY, &phy_data);
3860 			if (ret_val)
3861 				return ret_val;
3862 			if ((*speed == SPEED_100 &&
3863 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3864 				|| (*speed == SPEED_10
3865 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3866 				*duplex = HALF_DUPLEX;
3867 		}
3868 	}
3869 
3870 	if ((hw->mac_type == e1000_80003es2lan) &&
3871 		(hw->media_type == e1000_media_type_copper)) {
3872 		if (*speed == SPEED_1000)
3873 			ret_val = e1000_configure_kmrn_for_1000(hw);
3874 		else
3875 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3876 		if (ret_val)
3877 			return ret_val;
3878 	}
3879 	return E1000_SUCCESS;
3880 }
3881 
3882 /******************************************************************************
3883 * Blocks until autoneg completes or times out (~4.5 seconds)
3884 *
3885 * hw - Struct containing variables accessed by shared code
3886 ******************************************************************************/
3887 static int
3888 e1000_wait_autoneg(struct e1000_hw *hw)
3889 {
3890 	uint16_t i;
3891 	uint16_t phy_data;
3892 
3893 	DEBUGFUNC();
3894 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3895 
3896 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
3897 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3898 		/* Read the MII Status Register and wait for Auto-Neg
3899 		 * Complete bit to be set.
3900 		 */
3901 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3902 			DEBUGOUT("PHY Read Error\n");
3903 			return -E1000_ERR_PHY;
3904 		}
3905 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3906 			DEBUGOUT("PHY Read Error\n");
3907 			return -E1000_ERR_PHY;
3908 		}
3909 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3910 			DEBUGOUT("Auto-Neg complete.\n");
3911 			return 0;
3912 		}
3913 		mdelay(100);
3914 	}
3915 	DEBUGOUT("Auto-Neg timedout.\n");
3916 	return -E1000_ERR_TIMEOUT;
3917 }
3918 
3919 /******************************************************************************
3920 * Raises the Management Data Clock
3921 *
3922 * hw - Struct containing variables accessed by shared code
3923 * ctrl - Device control register's current value
3924 ******************************************************************************/
3925 static void
3926 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3927 {
3928 	/* Raise the clock input to the Management Data Clock (by setting the MDC
3929 	 * bit), and then delay 2 microseconds.
3930 	 */
3931 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3932 	E1000_WRITE_FLUSH(hw);
3933 	udelay(2);
3934 }
3935 
3936 /******************************************************************************
3937 * Lowers the Management Data Clock
3938 *
3939 * hw - Struct containing variables accessed by shared code
3940 * ctrl - Device control register's current value
3941 ******************************************************************************/
3942 static void
3943 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3944 {
3945 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
3946 	 * bit), and then delay 2 microseconds.
3947 	 */
3948 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3949 	E1000_WRITE_FLUSH(hw);
3950 	udelay(2);
3951 }
3952 
3953 /******************************************************************************
3954 * Shifts data bits out to the PHY
3955 *
3956 * hw - Struct containing variables accessed by shared code
3957 * data - Data to send out to the PHY
3958 * count - Number of bits to shift out
3959 *
3960 * Bits are shifted out in MSB to LSB order.
3961 ******************************************************************************/
3962 static void
3963 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3964 {
3965 	uint32_t ctrl;
3966 	uint32_t mask;
3967 
3968 	/* We need to shift "count" number of bits out to the PHY. So, the value
3969 	 * in the "data" parameter will be shifted out to the PHY one bit at a
3970 	 * time. In order to do this, "data" must be broken down into bits.
3971 	 */
3972 	mask = 0x01;
3973 	mask <<= (count - 1);
3974 
3975 	ctrl = E1000_READ_REG(hw, CTRL);
3976 
3977 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3978 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3979 
3980 	while (mask) {
3981 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3982 		 * then raising and lowering the Management Data Clock. A "0" is
3983 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
3984 		 * raising and lowering the clock.
3985 		 */
3986 		if (data & mask)
3987 			ctrl |= E1000_CTRL_MDIO;
3988 		else
3989 			ctrl &= ~E1000_CTRL_MDIO;
3990 
3991 		E1000_WRITE_REG(hw, CTRL, ctrl);
3992 		E1000_WRITE_FLUSH(hw);
3993 
3994 		udelay(2);
3995 
3996 		e1000_raise_mdi_clk(hw, &ctrl);
3997 		e1000_lower_mdi_clk(hw, &ctrl);
3998 
3999 		mask = mask >> 1;
4000 	}
4001 }
4002 
4003 /******************************************************************************
4004 * Shifts data bits in from the PHY
4005 *
4006 * hw - Struct containing variables accessed by shared code
4007 *
4008 * Bits are shifted in in MSB to LSB order.
4009 ******************************************************************************/
4010 static uint16_t
4011 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4012 {
4013 	uint32_t ctrl;
4014 	uint16_t data = 0;
4015 	uint8_t i;
4016 
4017 	/* In order to read a register from the PHY, we need to shift in a total
4018 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4019 	 * to avoid contention on the MDIO pin when a read operation is performed.
4020 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4021 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4022 	 * and then reading the value of the MDIO bit.
4023 	 */
4024 	ctrl = E1000_READ_REG(hw, CTRL);
4025 
4026 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4027 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4028 	ctrl &= ~E1000_CTRL_MDIO;
4029 
4030 	E1000_WRITE_REG(hw, CTRL, ctrl);
4031 	E1000_WRITE_FLUSH(hw);
4032 
4033 	/* Raise and Lower the clock before reading in the data. This accounts for
4034 	 * the turnaround bits. The first clock occurred when we clocked out the
4035 	 * last bit of the Register Address.
4036 	 */
4037 	e1000_raise_mdi_clk(hw, &ctrl);
4038 	e1000_lower_mdi_clk(hw, &ctrl);
4039 
4040 	for (data = 0, i = 0; i < 16; i++) {
4041 		data = data << 1;
4042 		e1000_raise_mdi_clk(hw, &ctrl);
4043 		ctrl = E1000_READ_REG(hw, CTRL);
4044 		/* Check to see if we shifted in a "1". */
4045 		if (ctrl & E1000_CTRL_MDIO)
4046 			data |= 1;
4047 		e1000_lower_mdi_clk(hw, &ctrl);
4048 	}
4049 
4050 	e1000_raise_mdi_clk(hw, &ctrl);
4051 	e1000_lower_mdi_clk(hw, &ctrl);
4052 
4053 	return data;
4054 }
4055 
4056 /*****************************************************************************
4057 * Reads the value from a PHY register
4058 *
4059 * hw - Struct containing variables accessed by shared code
4060 * reg_addr - address of the PHY register to read
4061 ******************************************************************************/
4062 static int
4063 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4064 {
4065 	uint32_t i;
4066 	uint32_t mdic = 0;
4067 	const uint32_t phy_addr = 1;
4068 
4069 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4070 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4071 		return -E1000_ERR_PARAM;
4072 	}
4073 
4074 	if (hw->mac_type > e1000_82543) {
4075 		/* Set up Op-code, Phy Address, and register address in the MDI
4076 		 * Control register.  The MAC will take care of interfacing with the
4077 		 * PHY to retrieve the desired data.
4078 		 */
4079 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4080 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4081 			(E1000_MDIC_OP_READ));
4082 
4083 		E1000_WRITE_REG(hw, MDIC, mdic);
4084 
4085 		/* Poll the ready bit to see if the MDI read completed */
4086 		for (i = 0; i < 64; i++) {
4087 			udelay(10);
4088 			mdic = E1000_READ_REG(hw, MDIC);
4089 			if (mdic & E1000_MDIC_READY)
4090 				break;
4091 		}
4092 		if (!(mdic & E1000_MDIC_READY)) {
4093 			DEBUGOUT("MDI Read did not complete\n");
4094 			return -E1000_ERR_PHY;
4095 		}
4096 		if (mdic & E1000_MDIC_ERROR) {
4097 			DEBUGOUT("MDI Error\n");
4098 			return -E1000_ERR_PHY;
4099 		}
4100 		*phy_data = (uint16_t) mdic;
4101 	} else {
4102 		/* We must first send a preamble through the MDIO pin to signal the
4103 		 * beginning of an MII instruction.  This is done by sending 32
4104 		 * consecutive "1" bits.
4105 		 */
4106 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4107 
4108 		/* Now combine the next few fields that are required for a read
4109 		 * operation.  We use this method instead of calling the
4110 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4111 		 * a MII read instruction consists of a shift out of 14 bits and is
4112 		 * defined as follows:
4113 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4114 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4115 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4116 		 * READ operation is performed.  These two bits are thrown away
4117 		 * followed by a shift in of 16 bits which contains the desired data.
4118 		 */
4119 		mdic = ((reg_addr) | (phy_addr << 5) |
4120 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4121 
4122 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4123 
4124 		/* Now that we've shifted out the read command to the MII, we need to
4125 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4126 		 * register address.
4127 		 */
4128 		*phy_data = e1000_shift_in_mdi_bits(hw);
4129 	}
4130 	return 0;
4131 }
4132 
4133 /******************************************************************************
4134 * Writes a value to a PHY register
4135 *
4136 * hw - Struct containing variables accessed by shared code
4137 * reg_addr - address of the PHY register to write
4138 * data - data to write to the PHY
4139 ******************************************************************************/
4140 static int
4141 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4142 {
4143 	uint32_t i;
4144 	uint32_t mdic = 0;
4145 	const uint32_t phy_addr = 1;
4146 
4147 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4148 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4149 		return -E1000_ERR_PARAM;
4150 	}
4151 
4152 	if (hw->mac_type > e1000_82543) {
4153 		/* Set up Op-code, Phy Address, register address, and data intended
4154 		 * for the PHY register in the MDI Control register.  The MAC will take
4155 		 * care of interfacing with the PHY to send the desired data.
4156 		 */
4157 		mdic = (((uint32_t) phy_data) |
4158 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4159 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4160 			(E1000_MDIC_OP_WRITE));
4161 
4162 		E1000_WRITE_REG(hw, MDIC, mdic);
4163 
4164 		/* Poll the ready bit to see if the MDI read completed */
4165 		for (i = 0; i < 64; i++) {
4166 			udelay(10);
4167 			mdic = E1000_READ_REG(hw, MDIC);
4168 			if (mdic & E1000_MDIC_READY)
4169 				break;
4170 		}
4171 		if (!(mdic & E1000_MDIC_READY)) {
4172 			DEBUGOUT("MDI Write did not complete\n");
4173 			return -E1000_ERR_PHY;
4174 		}
4175 	} else {
4176 		/* We'll need to use the SW defined pins to shift the write command
4177 		 * out to the PHY. We first send a preamble to the PHY to signal the
4178 		 * beginning of the MII instruction.  This is done by sending 32
4179 		 * consecutive "1" bits.
4180 		 */
4181 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4182 
4183 		/* Now combine the remaining required fields that will indicate a
4184 		 * write operation. We use this method instead of calling the
4185 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4186 		 * format of a MII write instruction is as follows:
4187 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4188 		 */
4189 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4190 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4191 		mdic <<= 16;
4192 		mdic |= (uint32_t) phy_data;
4193 
4194 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4195 	}
4196 	return 0;
4197 }
4198 
4199 /******************************************************************************
4200  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4201  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4202  * the caller to figure out how to deal with it.
4203  *
4204  * hw - Struct containing variables accessed by shared code
4205  *
4206  * returns: - E1000_BLK_PHY_RESET
4207  *            E1000_SUCCESS
4208  *
4209  *****************************************************************************/
4210 int32_t
4211 e1000_check_phy_reset_block(struct e1000_hw *hw)
4212 {
4213 	uint32_t manc = 0;
4214 	uint32_t fwsm = 0;
4215 
4216 	if (hw->mac_type == e1000_ich8lan) {
4217 		fwsm = E1000_READ_REG(hw, FWSM);
4218 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4219 						: E1000_BLK_PHY_RESET;
4220 	}
4221 
4222 	if (hw->mac_type > e1000_82547_rev_2)
4223 		manc = E1000_READ_REG(hw, MANC);
4224 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4225 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4226 }
4227 
4228 /***************************************************************************
4229  * Checks if the PHY configuration is done
4230  *
4231  * hw: Struct containing variables accessed by shared code
4232  *
4233  * returns: - E1000_ERR_RESET if fail to reset MAC
4234  *            E1000_SUCCESS at any other case.
4235  *
4236  ***************************************************************************/
4237 static int32_t
4238 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4239 {
4240 	int32_t timeout = PHY_CFG_TIMEOUT;
4241 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4242 
4243 	DEBUGFUNC();
4244 
4245 	switch (hw->mac_type) {
4246 	default:
4247 		mdelay(10);
4248 		break;
4249 
4250 	case e1000_80003es2lan:
4251 		/* Separate *_CFG_DONE_* bit for each port */
4252 		if (e1000_is_second_port(hw))
4253 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4254 		/* Fall Through */
4255 
4256 	case e1000_82571:
4257 	case e1000_82572:
4258 		while (timeout) {
4259 			if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4260 				break;
4261 			else
4262 				mdelay(1);
4263 			timeout--;
4264 		}
4265 		if (!timeout) {
4266 			DEBUGOUT("MNG configuration cycle has not "
4267 					"completed.\n");
4268 			return -E1000_ERR_RESET;
4269 		}
4270 		break;
4271 	}
4272 
4273 	return E1000_SUCCESS;
4274 }
4275 
4276 /******************************************************************************
4277 * Returns the PHY to the power-on reset state
4278 *
4279 * hw - Struct containing variables accessed by shared code
4280 ******************************************************************************/
4281 int32_t
4282 e1000_phy_hw_reset(struct e1000_hw *hw)
4283 {
4284 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4285 	uint32_t ctrl, ctrl_ext;
4286 	uint32_t led_ctrl;
4287 	int32_t ret_val;
4288 
4289 	DEBUGFUNC();
4290 
4291 	/* In the case of the phy reset being blocked, it's not an error, we
4292 	 * simply return success without performing the reset. */
4293 	ret_val = e1000_check_phy_reset_block(hw);
4294 	if (ret_val)
4295 		return E1000_SUCCESS;
4296 
4297 	DEBUGOUT("Resetting Phy...\n");
4298 
4299 	if (hw->mac_type > e1000_82543) {
4300 		if (e1000_is_second_port(hw))
4301 			swfw = E1000_SWFW_PHY1_SM;
4302 
4303 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4304 			DEBUGOUT("Unable to acquire swfw sync\n");
4305 			return -E1000_ERR_SWFW_SYNC;
4306 		}
4307 
4308 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4309 		 * bit. Then, take it out of reset.
4310 		 */
4311 		ctrl = E1000_READ_REG(hw, CTRL);
4312 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4313 		E1000_WRITE_FLUSH(hw);
4314 
4315 		if (hw->mac_type < e1000_82571)
4316 			udelay(10);
4317 		else
4318 			udelay(100);
4319 
4320 		E1000_WRITE_REG(hw, CTRL, ctrl);
4321 		E1000_WRITE_FLUSH(hw);
4322 
4323 		if (hw->mac_type >= e1000_82571)
4324 			mdelay(10);
4325 
4326 	} else {
4327 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4328 		 * bit to put the PHY into reset. Then, take it out of reset.
4329 		 */
4330 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4331 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4332 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4333 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4334 		E1000_WRITE_FLUSH(hw);
4335 		mdelay(10);
4336 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4337 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4338 		E1000_WRITE_FLUSH(hw);
4339 	}
4340 	udelay(150);
4341 
4342 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4343 		/* Configure activity LED after PHY reset */
4344 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4345 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4346 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4347 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4348 	}
4349 
4350 	/* Wait for FW to finish PHY configuration. */
4351 	ret_val = e1000_get_phy_cfg_done(hw);
4352 	if (ret_val != E1000_SUCCESS)
4353 		return ret_val;
4354 
4355 	return ret_val;
4356 }
4357 
4358 /******************************************************************************
4359  * IGP phy init script - initializes the GbE PHY
4360  *
4361  * hw - Struct containing variables accessed by shared code
4362  *****************************************************************************/
4363 static void
4364 e1000_phy_init_script(struct e1000_hw *hw)
4365 {
4366 	uint32_t ret_val;
4367 	uint16_t phy_saved_data;
4368 	DEBUGFUNC();
4369 
4370 	if (hw->phy_init_script) {
4371 		mdelay(20);
4372 
4373 		/* Save off the current value of register 0x2F5B to be
4374 		 * restored at the end of this routine. */
4375 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4376 
4377 		/* Disabled the PHY transmitter */
4378 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4379 
4380 		mdelay(20);
4381 
4382 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4383 
4384 		mdelay(5);
4385 
4386 		switch (hw->mac_type) {
4387 		case e1000_82541:
4388 		case e1000_82547:
4389 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4390 
4391 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4392 
4393 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4394 
4395 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4396 
4397 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4398 
4399 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4400 
4401 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4402 
4403 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4404 
4405 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4406 			break;
4407 
4408 		case e1000_82541_rev_2:
4409 		case e1000_82547_rev_2:
4410 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4411 			break;
4412 		default:
4413 			break;
4414 		}
4415 
4416 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4417 
4418 		mdelay(20);
4419 
4420 		/* Now enable the transmitter */
4421 		if (!ret_val)
4422 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4423 
4424 		if (hw->mac_type == e1000_82547) {
4425 			uint16_t fused, fine, coarse;
4426 
4427 			/* Move to analog registers page */
4428 			e1000_read_phy_reg(hw,
4429 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4430 
4431 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4432 				e1000_read_phy_reg(hw,
4433 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4434 
4435 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4436 				coarse = fused
4437 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4438 
4439 				if (coarse >
4440 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4441 					coarse -=
4442 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4443 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4444 				} else if (coarse
4445 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4446 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4447 
4448 				fused = (fused
4449 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4450 					(fine
4451 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4452 					(coarse
4453 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4454 
4455 				e1000_write_phy_reg(hw,
4456 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4457 				e1000_write_phy_reg(hw,
4458 					IGP01E1000_ANALOG_FUSE_BYPASS,
4459 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4460 			}
4461 		}
4462 	}
4463 }
4464 
4465 /******************************************************************************
4466 * Resets the PHY
4467 *
4468 * hw - Struct containing variables accessed by shared code
4469 *
4470 * Sets bit 15 of the MII Control register
4471 ******************************************************************************/
4472 int32_t
4473 e1000_phy_reset(struct e1000_hw *hw)
4474 {
4475 	int32_t ret_val;
4476 	uint16_t phy_data;
4477 
4478 	DEBUGFUNC();
4479 
4480 	/* In the case of the phy reset being blocked, it's not an error, we
4481 	 * simply return success without performing the reset. */
4482 	ret_val = e1000_check_phy_reset_block(hw);
4483 	if (ret_val)
4484 		return E1000_SUCCESS;
4485 
4486 	switch (hw->phy_type) {
4487 	case e1000_phy_igp:
4488 	case e1000_phy_igp_2:
4489 	case e1000_phy_igp_3:
4490 	case e1000_phy_ife:
4491 		ret_val = e1000_phy_hw_reset(hw);
4492 		if (ret_val)
4493 			return ret_val;
4494 		break;
4495 	default:
4496 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4497 		if (ret_val)
4498 			return ret_val;
4499 
4500 		phy_data |= MII_CR_RESET;
4501 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4502 		if (ret_val)
4503 			return ret_val;
4504 
4505 		udelay(1);
4506 		break;
4507 	}
4508 
4509 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4510 		e1000_phy_init_script(hw);
4511 
4512 	return E1000_SUCCESS;
4513 }
4514 
4515 static int e1000_set_phy_type (struct e1000_hw *hw)
4516 {
4517 	DEBUGFUNC ();
4518 
4519 	if (hw->mac_type == e1000_undefined)
4520 		return -E1000_ERR_PHY_TYPE;
4521 
4522 	switch (hw->phy_id) {
4523 	case M88E1000_E_PHY_ID:
4524 	case M88E1000_I_PHY_ID:
4525 	case M88E1011_I_PHY_ID:
4526 	case M88E1111_I_PHY_ID:
4527 		hw->phy_type = e1000_phy_m88;
4528 		break;
4529 	case IGP01E1000_I_PHY_ID:
4530 		if (hw->mac_type == e1000_82541 ||
4531 			hw->mac_type == e1000_82541_rev_2 ||
4532 			hw->mac_type == e1000_82547 ||
4533 			hw->mac_type == e1000_82547_rev_2) {
4534 			hw->phy_type = e1000_phy_igp;
4535 			hw->phy_type = e1000_phy_igp;
4536 			break;
4537 		}
4538 	case IGP03E1000_E_PHY_ID:
4539 		hw->phy_type = e1000_phy_igp_3;
4540 		break;
4541 	case IFE_E_PHY_ID:
4542 	case IFE_PLUS_E_PHY_ID:
4543 	case IFE_C_E_PHY_ID:
4544 		hw->phy_type = e1000_phy_ife;
4545 		break;
4546 	case GG82563_E_PHY_ID:
4547 		if (hw->mac_type == e1000_80003es2lan) {
4548 			hw->phy_type = e1000_phy_gg82563;
4549 			break;
4550 		}
4551 	case BME1000_E_PHY_ID:
4552 		hw->phy_type = e1000_phy_bm;
4553 		break;
4554 		/* Fall Through */
4555 	default:
4556 		/* Should never have loaded on this device */
4557 		hw->phy_type = e1000_phy_undefined;
4558 		return -E1000_ERR_PHY_TYPE;
4559 	}
4560 
4561 	return E1000_SUCCESS;
4562 }
4563 
4564 /******************************************************************************
4565 * Probes the expected PHY address for known PHY IDs
4566 *
4567 * hw - Struct containing variables accessed by shared code
4568 ******************************************************************************/
4569 static int32_t
4570 e1000_detect_gig_phy(struct e1000_hw *hw)
4571 {
4572 	int32_t phy_init_status, ret_val;
4573 	uint16_t phy_id_high, phy_id_low;
4574 	bool match = false;
4575 
4576 	DEBUGFUNC();
4577 
4578 	/* The 82571 firmware may still be configuring the PHY.  In this
4579 	 * case, we cannot access the PHY until the configuration is done.  So
4580 	 * we explicitly set the PHY values. */
4581 	if (hw->mac_type == e1000_82571 ||
4582 		hw->mac_type == e1000_82572) {
4583 		hw->phy_id = IGP01E1000_I_PHY_ID;
4584 		hw->phy_type = e1000_phy_igp_2;
4585 		return E1000_SUCCESS;
4586 	}
4587 
4588 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4589 	 * work- around that forces PHY page 0 to be set or the reads fail.
4590 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4591 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4592 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4593 	 * the routines below will figure this out as well. */
4594 	if (hw->mac_type == e1000_80003es2lan)
4595 		hw->phy_type = e1000_phy_gg82563;
4596 
4597 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4598 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4599 	if (ret_val)
4600 		return ret_val;
4601 
4602 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4603 	udelay(20);
4604 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4605 	if (ret_val)
4606 		return ret_val;
4607 
4608 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4609 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4610 
4611 	switch (hw->mac_type) {
4612 	case e1000_82543:
4613 		if (hw->phy_id == M88E1000_E_PHY_ID)
4614 			match = true;
4615 		break;
4616 	case e1000_82544:
4617 		if (hw->phy_id == M88E1000_I_PHY_ID)
4618 			match = true;
4619 		break;
4620 	case e1000_82540:
4621 	case e1000_82545:
4622 	case e1000_82545_rev_3:
4623 	case e1000_82546:
4624 	case e1000_82546_rev_3:
4625 		if (hw->phy_id == M88E1011_I_PHY_ID)
4626 			match = true;
4627 		break;
4628 	case e1000_82541:
4629 	case e1000_82541_rev_2:
4630 	case e1000_82547:
4631 	case e1000_82547_rev_2:
4632 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4633 			match = true;
4634 
4635 		break;
4636 	case e1000_82573:
4637 		if (hw->phy_id == M88E1111_I_PHY_ID)
4638 			match = true;
4639 		break;
4640 	case e1000_82574:
4641 		if (hw->phy_id == BME1000_E_PHY_ID)
4642 			match = true;
4643 		break;
4644 	case e1000_80003es2lan:
4645 		if (hw->phy_id == GG82563_E_PHY_ID)
4646 			match = true;
4647 		break;
4648 	case e1000_ich8lan:
4649 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4650 			match = true;
4651 		if (hw->phy_id == IFE_E_PHY_ID)
4652 			match = true;
4653 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4654 			match = true;
4655 		if (hw->phy_id == IFE_C_E_PHY_ID)
4656 			match = true;
4657 		break;
4658 	default:
4659 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4660 		return -E1000_ERR_CONFIG;
4661 	}
4662 
4663 	phy_init_status = e1000_set_phy_type(hw);
4664 
4665 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4666 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4667 		return 0;
4668 	}
4669 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4670 	return -E1000_ERR_PHY;
4671 }
4672 
4673 /*****************************************************************************
4674  * Set media type and TBI compatibility.
4675  *
4676  * hw - Struct containing variables accessed by shared code
4677  * **************************************************************************/
4678 void
4679 e1000_set_media_type(struct e1000_hw *hw)
4680 {
4681 	uint32_t status;
4682 
4683 	DEBUGFUNC();
4684 
4685 	if (hw->mac_type != e1000_82543) {
4686 		/* tbi_compatibility is only valid on 82543 */
4687 		hw->tbi_compatibility_en = false;
4688 	}
4689 
4690 	switch (hw->device_id) {
4691 	case E1000_DEV_ID_82545GM_SERDES:
4692 	case E1000_DEV_ID_82546GB_SERDES:
4693 	case E1000_DEV_ID_82571EB_SERDES:
4694 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4695 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4696 	case E1000_DEV_ID_82572EI_SERDES:
4697 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4698 		hw->media_type = e1000_media_type_internal_serdes;
4699 		break;
4700 	default:
4701 		switch (hw->mac_type) {
4702 		case e1000_82542_rev2_0:
4703 		case e1000_82542_rev2_1:
4704 			hw->media_type = e1000_media_type_fiber;
4705 			break;
4706 		case e1000_ich8lan:
4707 		case e1000_82573:
4708 		case e1000_82574:
4709 			/* The STATUS_TBIMODE bit is reserved or reused
4710 			 * for the this device.
4711 			 */
4712 			hw->media_type = e1000_media_type_copper;
4713 			break;
4714 		default:
4715 			status = E1000_READ_REG(hw, STATUS);
4716 			if (status & E1000_STATUS_TBIMODE) {
4717 				hw->media_type = e1000_media_type_fiber;
4718 				/* tbi_compatibility not valid on fiber */
4719 				hw->tbi_compatibility_en = false;
4720 			} else {
4721 				hw->media_type = e1000_media_type_copper;
4722 			}
4723 			break;
4724 		}
4725 	}
4726 }
4727 
4728 /**
4729  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4730  *
4731  * e1000_sw_init initializes the Adapter private data structure.
4732  * Fields are initialized based on PCI device information and
4733  * OS network device settings (MTU size).
4734  **/
4735 
4736 static int
4737 e1000_sw_init(struct eth_device *nic)
4738 {
4739 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
4740 	int result;
4741 
4742 	/* PCI config space info */
4743 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4744 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4745 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4746 			     &hw->subsystem_vendor_id);
4747 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4748 
4749 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4750 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4751 
4752 	/* identify the MAC */
4753 	result = e1000_set_mac_type(hw);
4754 	if (result) {
4755 		E1000_ERR(hw->nic, "Unknown MAC Type\n");
4756 		return result;
4757 	}
4758 
4759 	switch (hw->mac_type) {
4760 	default:
4761 		break;
4762 	case e1000_82541:
4763 	case e1000_82547:
4764 	case e1000_82541_rev_2:
4765 	case e1000_82547_rev_2:
4766 		hw->phy_init_script = 1;
4767 		break;
4768 	}
4769 
4770 	/* flow control settings */
4771 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4772 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4773 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4774 	hw->fc_send_xon = 1;
4775 
4776 	/* Media type - copper or fiber */
4777 	e1000_set_media_type(hw);
4778 
4779 	if (hw->mac_type >= e1000_82543) {
4780 		uint32_t status = E1000_READ_REG(hw, STATUS);
4781 
4782 		if (status & E1000_STATUS_TBIMODE) {
4783 			DEBUGOUT("fiber interface\n");
4784 			hw->media_type = e1000_media_type_fiber;
4785 		} else {
4786 			DEBUGOUT("copper interface\n");
4787 			hw->media_type = e1000_media_type_copper;
4788 		}
4789 	} else {
4790 		hw->media_type = e1000_media_type_fiber;
4791 	}
4792 
4793 	hw->tbi_compatibility_en = true;
4794 	hw->wait_autoneg_complete = true;
4795 	if (hw->mac_type < e1000_82543)
4796 		hw->report_tx_early = 0;
4797 	else
4798 		hw->report_tx_early = 1;
4799 
4800 	return E1000_SUCCESS;
4801 }
4802 
4803 void
4804 fill_rx(struct e1000_hw *hw)
4805 {
4806 	struct e1000_rx_desc *rd;
4807 
4808 	rx_last = rx_tail;
4809 	rd = rx_base + rx_tail;
4810 	rx_tail = (rx_tail + 1) % 8;
4811 	memset(rd, 0, 16);
4812 	rd->buffer_addr = cpu_to_le64((u32) & packet);
4813 	E1000_WRITE_REG(hw, RDT, rx_tail);
4814 }
4815 
4816 /**
4817  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4818  * @adapter: board private structure
4819  *
4820  * Configure the Tx unit of the MAC after a reset.
4821  **/
4822 
4823 static void
4824 e1000_configure_tx(struct e1000_hw *hw)
4825 {
4826 	unsigned long ptr;
4827 	unsigned long tctl;
4828 	unsigned long tipg, tarc;
4829 	uint32_t ipgr1, ipgr2;
4830 
4831 	ptr = (u32) tx_pool;
4832 	if (ptr & 0xf)
4833 		ptr = (ptr + 0x10) & (~0xf);
4834 
4835 	tx_base = (typeof(tx_base)) ptr;
4836 
4837 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4838 	E1000_WRITE_REG(hw, TDBAH, 0);
4839 
4840 	E1000_WRITE_REG(hw, TDLEN, 128);
4841 
4842 	/* Setup the HW Tx Head and Tail descriptor pointers */
4843 	E1000_WRITE_REG(hw, TDH, 0);
4844 	E1000_WRITE_REG(hw, TDT, 0);
4845 	tx_tail = 0;
4846 
4847 	/* Set the default values for the Tx Inter Packet Gap timer */
4848 	if (hw->mac_type <= e1000_82547_rev_2 &&
4849 	    (hw->media_type == e1000_media_type_fiber ||
4850 	     hw->media_type == e1000_media_type_internal_serdes))
4851 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4852 	else
4853 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4854 
4855 	/* Set the default values for the Tx Inter Packet Gap timer */
4856 	switch (hw->mac_type) {
4857 	case e1000_82542_rev2_0:
4858 	case e1000_82542_rev2_1:
4859 		tipg = DEFAULT_82542_TIPG_IPGT;
4860 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4861 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4862 		break;
4863 	case e1000_80003es2lan:
4864 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4865 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4866 		break;
4867 	default:
4868 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4869 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4870 		break;
4871 	}
4872 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4873 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4874 	E1000_WRITE_REG(hw, TIPG, tipg);
4875 	/* Program the Transmit Control Register */
4876 	tctl = E1000_READ_REG(hw, TCTL);
4877 	tctl &= ~E1000_TCTL_CT;
4878 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4879 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4880 
4881 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4882 		tarc = E1000_READ_REG(hw, TARC0);
4883 		/* set the speed mode bit, we'll clear it if we're not at
4884 		 * gigabit link later */
4885 		/* git bit can be set to 1*/
4886 	} else if (hw->mac_type == e1000_80003es2lan) {
4887 		tarc = E1000_READ_REG(hw, TARC0);
4888 		tarc |= 1;
4889 		E1000_WRITE_REG(hw, TARC0, tarc);
4890 		tarc = E1000_READ_REG(hw, TARC1);
4891 		tarc |= 1;
4892 		E1000_WRITE_REG(hw, TARC1, tarc);
4893 	}
4894 
4895 
4896 	e1000_config_collision_dist(hw);
4897 	/* Setup Transmit Descriptor Settings for eop descriptor */
4898 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4899 
4900 	/* Need to set up RS bit */
4901 	if (hw->mac_type < e1000_82543)
4902 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
4903 	else
4904 		hw->txd_cmd |= E1000_TXD_CMD_RS;
4905 	E1000_WRITE_REG(hw, TCTL, tctl);
4906 }
4907 
4908 /**
4909  * e1000_setup_rctl - configure the receive control register
4910  * @adapter: Board private structure
4911  **/
4912 static void
4913 e1000_setup_rctl(struct e1000_hw *hw)
4914 {
4915 	uint32_t rctl;
4916 
4917 	rctl = E1000_READ_REG(hw, RCTL);
4918 
4919 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4920 
4921 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4922 		| E1000_RCTL_RDMTS_HALF;	/* |
4923 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4924 
4925 	if (hw->tbi_compatibility_on == 1)
4926 		rctl |= E1000_RCTL_SBP;
4927 	else
4928 		rctl &= ~E1000_RCTL_SBP;
4929 
4930 	rctl &= ~(E1000_RCTL_SZ_4096);
4931 		rctl |= E1000_RCTL_SZ_2048;
4932 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4933 	E1000_WRITE_REG(hw, RCTL, rctl);
4934 }
4935 
4936 /**
4937  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4938  * @adapter: board private structure
4939  *
4940  * Configure the Rx unit of the MAC after a reset.
4941  **/
4942 static void
4943 e1000_configure_rx(struct e1000_hw *hw)
4944 {
4945 	unsigned long ptr;
4946 	unsigned long rctl, ctrl_ext;
4947 	rx_tail = 0;
4948 	/* make sure receives are disabled while setting up the descriptors */
4949 	rctl = E1000_READ_REG(hw, RCTL);
4950 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4951 	if (hw->mac_type >= e1000_82540) {
4952 		/* Set the interrupt throttling rate.  Value is calculated
4953 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4954 #define MAX_INTS_PER_SEC	8000
4955 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
4956 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4957 	}
4958 
4959 	if (hw->mac_type >= e1000_82571) {
4960 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4961 		/* Reset delay timers after every interrupt */
4962 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4963 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4964 		E1000_WRITE_FLUSH(hw);
4965 	}
4966 	/* Setup the Base and Length of the Rx Descriptor Ring */
4967 	ptr = (u32) rx_pool;
4968 	if (ptr & 0xf)
4969 		ptr = (ptr + 0x10) & (~0xf);
4970 	rx_base = (typeof(rx_base)) ptr;
4971 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4972 	E1000_WRITE_REG(hw, RDBAH, 0);
4973 
4974 	E1000_WRITE_REG(hw, RDLEN, 128);
4975 
4976 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
4977 	E1000_WRITE_REG(hw, RDH, 0);
4978 	E1000_WRITE_REG(hw, RDT, 0);
4979 	/* Enable Receives */
4980 
4981 	E1000_WRITE_REG(hw, RCTL, rctl);
4982 	fill_rx(hw);
4983 }
4984 
4985 /**************************************************************************
4986 POLL - Wait for a frame
4987 ***************************************************************************/
4988 static int
4989 e1000_poll(struct eth_device *nic)
4990 {
4991 	struct e1000_hw *hw = nic->priv;
4992 	struct e1000_rx_desc *rd;
4993 	/* return true if there's an ethernet packet ready to read */
4994 	rd = rx_base + rx_last;
4995 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4996 		return 0;
4997 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
4998 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
4999 	fill_rx(hw);
5000 	return 1;
5001 }
5002 
5003 /**************************************************************************
5004 TRANSMIT - Transmit a frame
5005 ***************************************************************************/
5006 static int e1000_transmit(struct eth_device *nic, void *packet, int length)
5007 {
5008 	void *nv_packet = (void *)packet;
5009 	struct e1000_hw *hw = nic->priv;
5010 	struct e1000_tx_desc *txp;
5011 	int i = 0;
5012 
5013 	txp = tx_base + tx_tail;
5014 	tx_tail = (tx_tail + 1) % 8;
5015 
5016 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5017 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5018 	txp->upper.data = 0;
5019 	E1000_WRITE_REG(hw, TDT, tx_tail);
5020 
5021 	E1000_WRITE_FLUSH(hw);
5022 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5023 		if (i++ > TOUT_LOOP) {
5024 			DEBUGOUT("e1000: tx timeout\n");
5025 			return 0;
5026 		}
5027 		udelay(10);	/* give the nic a chance to write to the register */
5028 	}
5029 	return 1;
5030 }
5031 
5032 /*reset function*/
5033 static inline int
5034 e1000_reset(struct eth_device *nic)
5035 {
5036 	struct e1000_hw *hw = nic->priv;
5037 
5038 	e1000_reset_hw(hw);
5039 	if (hw->mac_type >= e1000_82544) {
5040 		E1000_WRITE_REG(hw, WUC, 0);
5041 	}
5042 	return e1000_init_hw(nic);
5043 }
5044 
5045 /**************************************************************************
5046 DISABLE - Turn off ethernet interface
5047 ***************************************************************************/
5048 static void
5049 e1000_disable(struct eth_device *nic)
5050 {
5051 	struct e1000_hw *hw = nic->priv;
5052 
5053 	/* Turn off the ethernet interface */
5054 	E1000_WRITE_REG(hw, RCTL, 0);
5055 	E1000_WRITE_REG(hw, TCTL, 0);
5056 
5057 	/* Clear the transmit ring */
5058 	E1000_WRITE_REG(hw, TDH, 0);
5059 	E1000_WRITE_REG(hw, TDT, 0);
5060 
5061 	/* Clear the receive ring */
5062 	E1000_WRITE_REG(hw, RDH, 0);
5063 	E1000_WRITE_REG(hw, RDT, 0);
5064 
5065 	/* put the card in its initial state */
5066 #if 0
5067 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5068 #endif
5069 	mdelay(10);
5070 
5071 }
5072 
5073 /**************************************************************************
5074 INIT - set up ethernet interface(s)
5075 ***************************************************************************/
5076 static int
5077 e1000_init(struct eth_device *nic, bd_t * bis)
5078 {
5079 	struct e1000_hw *hw = nic->priv;
5080 	int ret_val = 0;
5081 
5082 	ret_val = e1000_reset(nic);
5083 	if (ret_val < 0) {
5084 		if ((ret_val == -E1000_ERR_NOLINK) ||
5085 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5086 			E1000_ERR(hw->nic, "Valid Link not detected\n");
5087 		} else {
5088 			E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5089 		}
5090 		return 0;
5091 	}
5092 	e1000_configure_tx(hw);
5093 	e1000_setup_rctl(hw);
5094 	e1000_configure_rx(hw);
5095 	return 1;
5096 }
5097 
5098 /******************************************************************************
5099  * Gets the current PCI bus type of hardware
5100  *
5101  * hw - Struct containing variables accessed by shared code
5102  *****************************************************************************/
5103 void e1000_get_bus_type(struct e1000_hw *hw)
5104 {
5105 	uint32_t status;
5106 
5107 	switch (hw->mac_type) {
5108 	case e1000_82542_rev2_0:
5109 	case e1000_82542_rev2_1:
5110 		hw->bus_type = e1000_bus_type_pci;
5111 		break;
5112 	case e1000_82571:
5113 	case e1000_82572:
5114 	case e1000_82573:
5115 	case e1000_82574:
5116 	case e1000_80003es2lan:
5117 		hw->bus_type = e1000_bus_type_pci_express;
5118 		break;
5119 	case e1000_ich8lan:
5120 		hw->bus_type = e1000_bus_type_pci_express;
5121 		break;
5122 	default:
5123 		status = E1000_READ_REG(hw, STATUS);
5124 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5125 				e1000_bus_type_pcix : e1000_bus_type_pci;
5126 		break;
5127 	}
5128 }
5129 
5130 /* A list of all registered e1000 devices */
5131 static LIST_HEAD(e1000_hw_list);
5132 
5133 /**************************************************************************
5134 PROBE - Look for an adapter, this routine's visible to the outside
5135 You should omit the last argument struct pci_device * for a non-PCI NIC
5136 ***************************************************************************/
5137 int
5138 e1000_initialize(bd_t * bis)
5139 {
5140 	unsigned int i;
5141 	pci_dev_t devno;
5142 
5143 	DEBUGFUNC();
5144 
5145 	/* Find and probe all the matching PCI devices */
5146 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5147 		u32 val;
5148 
5149 		/*
5150 		 * These will never get freed due to errors, this allows us to
5151 		 * perform SPI EEPROM programming from U-boot, for example.
5152 		 */
5153 		struct eth_device *nic = malloc(sizeof(*nic));
5154 		struct e1000_hw *hw = malloc(sizeof(*hw));
5155 		if (!nic || !hw) {
5156 			printf("e1000#%u: Out of Memory!\n", i);
5157 			free(nic);
5158 			free(hw);
5159 			continue;
5160 		}
5161 
5162 		/* Make sure all of the fields are initially zeroed */
5163 		memset(nic, 0, sizeof(*nic));
5164 		memset(hw, 0, sizeof(*hw));
5165 
5166 		/* Assign the passed-in values */
5167 		hw->cardnum = i;
5168 		hw->pdev = devno;
5169 		hw->nic = nic;
5170 		nic->priv = hw;
5171 
5172 		/* Generate a card name */
5173 		sprintf(nic->name, "e1000#%u", hw->cardnum);
5174 
5175 		/* Print a debug message with the IO base address */
5176 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5177 		E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5178 
5179 		/* Try to enable I/O accesses and bus-mastering */
5180 		val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5181 		pci_write_config_dword(devno, PCI_COMMAND, val);
5182 
5183 		/* Make sure it worked */
5184 		pci_read_config_dword(devno, PCI_COMMAND, &val);
5185 		if (!(val & PCI_COMMAND_MEMORY)) {
5186 			E1000_ERR(nic, "Can't enable I/O memory\n");
5187 			continue;
5188 		}
5189 		if (!(val & PCI_COMMAND_MASTER)) {
5190 			E1000_ERR(nic, "Can't enable bus-mastering\n");
5191 			continue;
5192 		}
5193 
5194 		/* Are these variables needed? */
5195 		hw->fc = e1000_fc_default;
5196 		hw->original_fc = e1000_fc_default;
5197 		hw->autoneg_failed = 0;
5198 		hw->autoneg = 1;
5199 		hw->get_link_status = true;
5200 		hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5201 							PCI_REGION_MEM);
5202 		hw->mac_type = e1000_undefined;
5203 
5204 		/* MAC and Phy settings */
5205 		if (e1000_sw_init(nic) < 0) {
5206 			E1000_ERR(nic, "Software init failed\n");
5207 			continue;
5208 		}
5209 		if (e1000_check_phy_reset_block(hw))
5210 			E1000_ERR(nic, "PHY Reset is blocked!\n");
5211 
5212 		/* Basic init was OK, reset the hardware and allow SPI access */
5213 		e1000_reset_hw(hw);
5214 		list_add_tail(&hw->list_node, &e1000_hw_list);
5215 
5216 #ifndef CONFIG_E1000_NO_NVM
5217 		/* Validate the EEPROM and get chipset information */
5218 #if !defined(CONFIG_MVBC_1G)
5219 		if (e1000_init_eeprom_params(hw)) {
5220 			E1000_ERR(nic, "EEPROM is invalid!\n");
5221 			continue;
5222 		}
5223 		if (e1000_validate_eeprom_checksum(hw))
5224 			continue;
5225 #endif
5226 		e1000_read_mac_addr(nic);
5227 #endif
5228 		e1000_get_bus_type(hw);
5229 
5230 #ifndef CONFIG_E1000_NO_NVM
5231 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5232 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5233 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5234 #else
5235 		memset(nic->enetaddr, 0, 6);
5236 		printf("e1000: no NVM\n");
5237 #endif
5238 
5239 		/* Set up the function pointers and register the device */
5240 		nic->init = e1000_init;
5241 		nic->recv = e1000_poll;
5242 		nic->send = e1000_transmit;
5243 		nic->halt = e1000_disable;
5244 		eth_register(nic);
5245 	}
5246 
5247 	return i;
5248 }
5249 
5250 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5251 {
5252 	struct e1000_hw *hw;
5253 
5254 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5255 		if (hw->cardnum == cardnum)
5256 			return hw;
5257 
5258 	return NULL;
5259 }
5260 
5261 #ifdef CONFIG_CMD_E1000
5262 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5263 		int argc, char * const argv[])
5264 {
5265 	struct e1000_hw *hw;
5266 
5267 	if (argc < 3) {
5268 		cmd_usage(cmdtp);
5269 		return 1;
5270 	}
5271 
5272 	/* Make sure we can find the requested e1000 card */
5273 	hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5274 	if (!hw) {
5275 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5276 		return 1;
5277 	}
5278 
5279 	if (!strcmp(argv[2], "print-mac-address")) {
5280 		unsigned char *mac = hw->nic->enetaddr;
5281 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5282 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5283 		return 0;
5284 	}
5285 
5286 #ifdef CONFIG_E1000_SPI
5287 	/* Handle the "SPI" subcommand */
5288 	if (!strcmp(argv[2], "spi"))
5289 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5290 #endif
5291 
5292 	cmd_usage(cmdtp);
5293 	return 1;
5294 }
5295 
5296 U_BOOT_CMD(
5297 	e1000, 7, 0, do_e1000,
5298 	"Intel e1000 controller management",
5299 	/*  */"<card#> print-mac-address\n"
5300 #ifdef CONFIG_E1000_SPI
5301 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5302 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5303 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5304 	"e1000 <card#> spi checksum [update]\n"
5305 #endif
5306 	"       - Manage the Intel E1000 PCI device"
5307 );
5308 #endif /* not CONFIG_CMD_E1000 */
5309