1 /************************************************************************** 2 Intel Pro 1000 for ppcboot/das-u-boot 3 Drivers are port from Intel's Linux driver e1000-4.3.15 4 and from Etherboot pro 1000 driver by mrakes at vivato dot net 5 tested on both gig copper and gig fiber boards 6 ***************************************************************************/ 7 /******************************************************************************* 8 9 10 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. 11 12 * SPDX-License-Identifier: GPL-2.0+ 13 14 Contact Information: 15 Linux NICS <linux.nics@intel.com> 16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 17 18 *******************************************************************************/ 19 /* 20 * Copyright (C) Archway Digital Solutions. 21 * 22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> 23 * 2/9/2002 24 * 25 * Copyright (C) Linux Networx. 26 * Massive upgrade to work with the new intel gigabit NICs. 27 * <ebiederman at lnxi dot com> 28 * 29 * Copyright 2011 Freescale Semiconductor, Inc. 30 */ 31 32 #include "e1000.h" 33 34 #define TOUT_LOOP 100000 35 36 #define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v)) 37 #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a) 38 39 #define E1000_DEFAULT_PCI_PBA 0x00000030 40 #define E1000_DEFAULT_PCIE_PBA 0x000a0026 41 42 /* NIC specific static variables go here */ 43 44 /* Intel i210 needs the DMA descriptor rings aligned to 128b */ 45 #define E1000_BUFFER_ALIGN 128 46 47 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN); 48 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN); 49 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN); 50 51 static int tx_tail; 52 static int rx_tail, rx_last; 53 54 static struct pci_device_id e1000_supported[] = { 55 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542}, 56 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER}, 57 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER}, 58 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER}, 59 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER}, 60 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER}, 61 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM}, 62 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM}, 63 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER}, 64 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER}, 65 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER}, 66 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER}, 67 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER}, 68 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER}, 69 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM}, 70 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER}, 71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF}, 72 /* E1000 PCIe card */ 73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER}, 74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER }, 75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES }, 76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER}, 77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER}, 78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER}, 79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE}, 80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL}, 81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD}, 82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER}, 83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER}, 84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES}, 85 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI}, 86 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E}, 87 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT}, 88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L}, 89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L}, 90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3}, 91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT}, 92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT}, 93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT}, 94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT}, 95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED}, 96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED}, 97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER}, 98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER}, 99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS}, 100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES}, 101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS}, 102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX}, 103 104 {} 105 }; 106 107 /* Function forward declarations */ 108 static int e1000_setup_link(struct eth_device *nic); 109 static int e1000_setup_fiber_link(struct eth_device *nic); 110 static int e1000_setup_copper_link(struct eth_device *nic); 111 static int e1000_phy_setup_autoneg(struct e1000_hw *hw); 112 static void e1000_config_collision_dist(struct e1000_hw *hw); 113 static int e1000_config_mac_to_phy(struct e1000_hw *hw); 114 static int e1000_config_fc_after_link_up(struct e1000_hw *hw); 115 static int e1000_check_for_link(struct eth_device *nic); 116 static int e1000_wait_autoneg(struct e1000_hw *hw); 117 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, 118 uint16_t * duplex); 119 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, 120 uint16_t * phy_data); 121 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, 122 uint16_t phy_data); 123 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw); 124 static int e1000_phy_reset(struct e1000_hw *hw); 125 static int e1000_detect_gig_phy(struct e1000_hw *hw); 126 static void e1000_set_media_type(struct e1000_hw *hw); 127 128 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); 129 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); 130 131 #ifndef CONFIG_E1000_NO_NVM 132 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); 133 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, 134 uint16_t words, 135 uint16_t *data); 136 /****************************************************************************** 137 * Raises the EEPROM's clock input. 138 * 139 * hw - Struct containing variables accessed by shared code 140 * eecd - EECD's current value 141 *****************************************************************************/ 142 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) 143 { 144 /* Raise the clock input to the EEPROM (by setting the SK bit), and then 145 * wait 50 microseconds. 146 */ 147 *eecd = *eecd | E1000_EECD_SK; 148 E1000_WRITE_REG(hw, EECD, *eecd); 149 E1000_WRITE_FLUSH(hw); 150 udelay(50); 151 } 152 153 /****************************************************************************** 154 * Lowers the EEPROM's clock input. 155 * 156 * hw - Struct containing variables accessed by shared code 157 * eecd - EECD's current value 158 *****************************************************************************/ 159 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) 160 { 161 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then 162 * wait 50 microseconds. 163 */ 164 *eecd = *eecd & ~E1000_EECD_SK; 165 E1000_WRITE_REG(hw, EECD, *eecd); 166 E1000_WRITE_FLUSH(hw); 167 udelay(50); 168 } 169 170 /****************************************************************************** 171 * Shift data bits out to the EEPROM. 172 * 173 * hw - Struct containing variables accessed by shared code 174 * data - data to send to the EEPROM 175 * count - number of bits to shift out 176 *****************************************************************************/ 177 static void 178 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) 179 { 180 uint32_t eecd; 181 uint32_t mask; 182 183 /* We need to shift "count" bits out to the EEPROM. So, value in the 184 * "data" parameter will be shifted out to the EEPROM one bit at a time. 185 * In order to do this, "data" must be broken down into bits. 186 */ 187 mask = 0x01 << (count - 1); 188 eecd = E1000_READ_REG(hw, EECD); 189 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 190 do { 191 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", 192 * and then raising and then lowering the clock (the SK bit controls 193 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM 194 * by setting "DI" to "0" and then raising and then lowering the clock. 195 */ 196 eecd &= ~E1000_EECD_DI; 197 198 if (data & mask) 199 eecd |= E1000_EECD_DI; 200 201 E1000_WRITE_REG(hw, EECD, eecd); 202 E1000_WRITE_FLUSH(hw); 203 204 udelay(50); 205 206 e1000_raise_ee_clk(hw, &eecd); 207 e1000_lower_ee_clk(hw, &eecd); 208 209 mask = mask >> 1; 210 211 } while (mask); 212 213 /* We leave the "DI" bit set to "0" when we leave this routine. */ 214 eecd &= ~E1000_EECD_DI; 215 E1000_WRITE_REG(hw, EECD, eecd); 216 } 217 218 /****************************************************************************** 219 * Shift data bits in from the EEPROM 220 * 221 * hw - Struct containing variables accessed by shared code 222 *****************************************************************************/ 223 static uint16_t 224 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count) 225 { 226 uint32_t eecd; 227 uint32_t i; 228 uint16_t data; 229 230 /* In order to read a register from the EEPROM, we need to shift 'count' 231 * bits in from the EEPROM. Bits are "shifted in" by raising the clock 232 * input to the EEPROM (setting the SK bit), and then reading the 233 * value of the "DO" bit. During this "shifting in" process the 234 * "DI" bit should always be clear. 235 */ 236 237 eecd = E1000_READ_REG(hw, EECD); 238 239 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 240 data = 0; 241 242 for (i = 0; i < count; i++) { 243 data = data << 1; 244 e1000_raise_ee_clk(hw, &eecd); 245 246 eecd = E1000_READ_REG(hw, EECD); 247 248 eecd &= ~(E1000_EECD_DI); 249 if (eecd & E1000_EECD_DO) 250 data |= 1; 251 252 e1000_lower_ee_clk(hw, &eecd); 253 } 254 255 return data; 256 } 257 258 /****************************************************************************** 259 * Returns EEPROM to a "standby" state 260 * 261 * hw - Struct containing variables accessed by shared code 262 *****************************************************************************/ 263 void e1000_standby_eeprom(struct e1000_hw *hw) 264 { 265 struct e1000_eeprom_info *eeprom = &hw->eeprom; 266 uint32_t eecd; 267 268 eecd = E1000_READ_REG(hw, EECD); 269 270 if (eeprom->type == e1000_eeprom_microwire) { 271 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 272 E1000_WRITE_REG(hw, EECD, eecd); 273 E1000_WRITE_FLUSH(hw); 274 udelay(eeprom->delay_usec); 275 276 /* Clock high */ 277 eecd |= E1000_EECD_SK; 278 E1000_WRITE_REG(hw, EECD, eecd); 279 E1000_WRITE_FLUSH(hw); 280 udelay(eeprom->delay_usec); 281 282 /* Select EEPROM */ 283 eecd |= E1000_EECD_CS; 284 E1000_WRITE_REG(hw, EECD, eecd); 285 E1000_WRITE_FLUSH(hw); 286 udelay(eeprom->delay_usec); 287 288 /* Clock low */ 289 eecd &= ~E1000_EECD_SK; 290 E1000_WRITE_REG(hw, EECD, eecd); 291 E1000_WRITE_FLUSH(hw); 292 udelay(eeprom->delay_usec); 293 } else if (eeprom->type == e1000_eeprom_spi) { 294 /* Toggle CS to flush commands */ 295 eecd |= E1000_EECD_CS; 296 E1000_WRITE_REG(hw, EECD, eecd); 297 E1000_WRITE_FLUSH(hw); 298 udelay(eeprom->delay_usec); 299 eecd &= ~E1000_EECD_CS; 300 E1000_WRITE_REG(hw, EECD, eecd); 301 E1000_WRITE_FLUSH(hw); 302 udelay(eeprom->delay_usec); 303 } 304 } 305 306 /*************************************************************************** 307 * Description: Determines if the onboard NVM is FLASH or EEPROM. 308 * 309 * hw - Struct containing variables accessed by shared code 310 ****************************************************************************/ 311 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) 312 { 313 uint32_t eecd = 0; 314 315 DEBUGFUNC(); 316 317 if (hw->mac_type == e1000_ich8lan) 318 return false; 319 320 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) { 321 eecd = E1000_READ_REG(hw, EECD); 322 323 /* Isolate bits 15 & 16 */ 324 eecd = ((eecd >> 15) & 0x03); 325 326 /* If both bits are set, device is Flash type */ 327 if (eecd == 0x03) 328 return false; 329 } 330 return true; 331 } 332 333 /****************************************************************************** 334 * Prepares EEPROM for access 335 * 336 * hw - Struct containing variables accessed by shared code 337 * 338 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This 339 * function should be called before issuing a command to the EEPROM. 340 *****************************************************************************/ 341 int32_t e1000_acquire_eeprom(struct e1000_hw *hw) 342 { 343 struct e1000_eeprom_info *eeprom = &hw->eeprom; 344 uint32_t eecd, i = 0; 345 346 DEBUGFUNC(); 347 348 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) 349 return -E1000_ERR_SWFW_SYNC; 350 eecd = E1000_READ_REG(hw, EECD); 351 352 if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) { 353 /* Request EEPROM Access */ 354 if (hw->mac_type > e1000_82544) { 355 eecd |= E1000_EECD_REQ; 356 E1000_WRITE_REG(hw, EECD, eecd); 357 eecd = E1000_READ_REG(hw, EECD); 358 while ((!(eecd & E1000_EECD_GNT)) && 359 (i < E1000_EEPROM_GRANT_ATTEMPTS)) { 360 i++; 361 udelay(5); 362 eecd = E1000_READ_REG(hw, EECD); 363 } 364 if (!(eecd & E1000_EECD_GNT)) { 365 eecd &= ~E1000_EECD_REQ; 366 E1000_WRITE_REG(hw, EECD, eecd); 367 DEBUGOUT("Could not acquire EEPROM grant\n"); 368 return -E1000_ERR_EEPROM; 369 } 370 } 371 } 372 373 /* Setup EEPROM for Read/Write */ 374 375 if (eeprom->type == e1000_eeprom_microwire) { 376 /* Clear SK and DI */ 377 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); 378 E1000_WRITE_REG(hw, EECD, eecd); 379 380 /* Set CS */ 381 eecd |= E1000_EECD_CS; 382 E1000_WRITE_REG(hw, EECD, eecd); 383 } else if (eeprom->type == e1000_eeprom_spi) { 384 /* Clear SK and CS */ 385 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 386 E1000_WRITE_REG(hw, EECD, eecd); 387 udelay(1); 388 } 389 390 return E1000_SUCCESS; 391 } 392 393 /****************************************************************************** 394 * Sets up eeprom variables in the hw struct. Must be called after mac_type 395 * is configured. Additionally, if this is ICH8, the flash controller GbE 396 * registers must be mapped, or this will crash. 397 * 398 * hw - Struct containing variables accessed by shared code 399 *****************************************************************************/ 400 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw) 401 { 402 struct e1000_eeprom_info *eeprom = &hw->eeprom; 403 uint32_t eecd; 404 int32_t ret_val = E1000_SUCCESS; 405 uint16_t eeprom_size; 406 407 if (hw->mac_type == e1000_igb) 408 eecd = E1000_READ_REG(hw, I210_EECD); 409 else 410 eecd = E1000_READ_REG(hw, EECD); 411 412 DEBUGFUNC(); 413 414 switch (hw->mac_type) { 415 case e1000_82542_rev2_0: 416 case e1000_82542_rev2_1: 417 case e1000_82543: 418 case e1000_82544: 419 eeprom->type = e1000_eeprom_microwire; 420 eeprom->word_size = 64; 421 eeprom->opcode_bits = 3; 422 eeprom->address_bits = 6; 423 eeprom->delay_usec = 50; 424 eeprom->use_eerd = false; 425 eeprom->use_eewr = false; 426 break; 427 case e1000_82540: 428 case e1000_82545: 429 case e1000_82545_rev_3: 430 case e1000_82546: 431 case e1000_82546_rev_3: 432 eeprom->type = e1000_eeprom_microwire; 433 eeprom->opcode_bits = 3; 434 eeprom->delay_usec = 50; 435 if (eecd & E1000_EECD_SIZE) { 436 eeprom->word_size = 256; 437 eeprom->address_bits = 8; 438 } else { 439 eeprom->word_size = 64; 440 eeprom->address_bits = 6; 441 } 442 eeprom->use_eerd = false; 443 eeprom->use_eewr = false; 444 break; 445 case e1000_82541: 446 case e1000_82541_rev_2: 447 case e1000_82547: 448 case e1000_82547_rev_2: 449 if (eecd & E1000_EECD_TYPE) { 450 eeprom->type = e1000_eeprom_spi; 451 eeprom->opcode_bits = 8; 452 eeprom->delay_usec = 1; 453 if (eecd & E1000_EECD_ADDR_BITS) { 454 eeprom->page_size = 32; 455 eeprom->address_bits = 16; 456 } else { 457 eeprom->page_size = 8; 458 eeprom->address_bits = 8; 459 } 460 } else { 461 eeprom->type = e1000_eeprom_microwire; 462 eeprom->opcode_bits = 3; 463 eeprom->delay_usec = 50; 464 if (eecd & E1000_EECD_ADDR_BITS) { 465 eeprom->word_size = 256; 466 eeprom->address_bits = 8; 467 } else { 468 eeprom->word_size = 64; 469 eeprom->address_bits = 6; 470 } 471 } 472 eeprom->use_eerd = false; 473 eeprom->use_eewr = false; 474 break; 475 case e1000_82571: 476 case e1000_82572: 477 eeprom->type = e1000_eeprom_spi; 478 eeprom->opcode_bits = 8; 479 eeprom->delay_usec = 1; 480 if (eecd & E1000_EECD_ADDR_BITS) { 481 eeprom->page_size = 32; 482 eeprom->address_bits = 16; 483 } else { 484 eeprom->page_size = 8; 485 eeprom->address_bits = 8; 486 } 487 eeprom->use_eerd = false; 488 eeprom->use_eewr = false; 489 break; 490 case e1000_82573: 491 case e1000_82574: 492 eeprom->type = e1000_eeprom_spi; 493 eeprom->opcode_bits = 8; 494 eeprom->delay_usec = 1; 495 if (eecd & E1000_EECD_ADDR_BITS) { 496 eeprom->page_size = 32; 497 eeprom->address_bits = 16; 498 } else { 499 eeprom->page_size = 8; 500 eeprom->address_bits = 8; 501 } 502 if (e1000_is_onboard_nvm_eeprom(hw) == false) { 503 eeprom->use_eerd = true; 504 eeprom->use_eewr = true; 505 506 eeprom->type = e1000_eeprom_flash; 507 eeprom->word_size = 2048; 508 509 /* Ensure that the Autonomous FLASH update bit is cleared due to 510 * Flash update issue on parts which use a FLASH for NVM. */ 511 eecd &= ~E1000_EECD_AUPDEN; 512 E1000_WRITE_REG(hw, EECD, eecd); 513 } 514 break; 515 case e1000_80003es2lan: 516 eeprom->type = e1000_eeprom_spi; 517 eeprom->opcode_bits = 8; 518 eeprom->delay_usec = 1; 519 if (eecd & E1000_EECD_ADDR_BITS) { 520 eeprom->page_size = 32; 521 eeprom->address_bits = 16; 522 } else { 523 eeprom->page_size = 8; 524 eeprom->address_bits = 8; 525 } 526 eeprom->use_eerd = true; 527 eeprom->use_eewr = false; 528 break; 529 case e1000_igb: 530 /* i210 has 4k of iNVM mapped as EEPROM */ 531 eeprom->type = e1000_eeprom_invm; 532 eeprom->opcode_bits = 8; 533 eeprom->delay_usec = 1; 534 eeprom->page_size = 32; 535 eeprom->address_bits = 16; 536 eeprom->use_eerd = true; 537 eeprom->use_eewr = false; 538 break; 539 540 /* ich8lan does not support currently. if needed, please 541 * add corresponding code and functions. 542 */ 543 #if 0 544 case e1000_ich8lan: 545 { 546 int32_t i = 0; 547 548 eeprom->type = e1000_eeprom_ich8; 549 eeprom->use_eerd = false; 550 eeprom->use_eewr = false; 551 eeprom->word_size = E1000_SHADOW_RAM_WORDS; 552 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, 553 ICH_FLASH_GFPREG); 554 /* Zero the shadow RAM structure. But don't load it from NVM 555 * so as to save time for driver init */ 556 if (hw->eeprom_shadow_ram != NULL) { 557 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { 558 hw->eeprom_shadow_ram[i].modified = false; 559 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; 560 } 561 } 562 563 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * 564 ICH_FLASH_SECTOR_SIZE; 565 566 hw->flash_bank_size = ((flash_size >> 16) 567 & ICH_GFPREG_BASE_MASK) + 1; 568 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); 569 570 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; 571 572 hw->flash_bank_size /= 2 * sizeof(uint16_t); 573 break; 574 } 575 #endif 576 default: 577 break; 578 } 579 580 if (eeprom->type == e1000_eeprom_spi || 581 eeprom->type == e1000_eeprom_invm) { 582 /* eeprom_size will be an enum [0..8] that maps 583 * to eeprom sizes 128B to 584 * 32KB (incremented by powers of 2). 585 */ 586 if (hw->mac_type <= e1000_82547_rev_2) { 587 /* Set to default value for initial eeprom read. */ 588 eeprom->word_size = 64; 589 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, 590 &eeprom_size); 591 if (ret_val) 592 return ret_val; 593 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) 594 >> EEPROM_SIZE_SHIFT; 595 /* 256B eeprom size was not supported in earlier 596 * hardware, so we bump eeprom_size up one to 597 * ensure that "1" (which maps to 256B) is never 598 * the result used in the shifting logic below. */ 599 if (eeprom_size) 600 eeprom_size++; 601 } else { 602 eeprom_size = (uint16_t)((eecd & 603 E1000_EECD_SIZE_EX_MASK) >> 604 E1000_EECD_SIZE_EX_SHIFT); 605 } 606 607 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); 608 } 609 return ret_val; 610 } 611 612 /****************************************************************************** 613 * Polls the status bit (bit 1) of the EERD to determine when the read is done. 614 * 615 * hw - Struct containing variables accessed by shared code 616 *****************************************************************************/ 617 static int32_t 618 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) 619 { 620 uint32_t attempts = 100000; 621 uint32_t i, reg = 0; 622 int32_t done = E1000_ERR_EEPROM; 623 624 for (i = 0; i < attempts; i++) { 625 if (eerd == E1000_EEPROM_POLL_READ) { 626 if (hw->mac_type == e1000_igb) 627 reg = E1000_READ_REG(hw, I210_EERD); 628 else 629 reg = E1000_READ_REG(hw, EERD); 630 } else { 631 if (hw->mac_type == e1000_igb) 632 reg = E1000_READ_REG(hw, I210_EEWR); 633 else 634 reg = E1000_READ_REG(hw, EEWR); 635 } 636 637 if (reg & E1000_EEPROM_RW_REG_DONE) { 638 done = E1000_SUCCESS; 639 break; 640 } 641 udelay(5); 642 } 643 644 return done; 645 } 646 647 /****************************************************************************** 648 * Reads a 16 bit word from the EEPROM using the EERD register. 649 * 650 * hw - Struct containing variables accessed by shared code 651 * offset - offset of word in the EEPROM to read 652 * data - word read from the EEPROM 653 * words - number of words to read 654 *****************************************************************************/ 655 static int32_t 656 e1000_read_eeprom_eerd(struct e1000_hw *hw, 657 uint16_t offset, 658 uint16_t words, 659 uint16_t *data) 660 { 661 uint32_t i, eerd = 0; 662 int32_t error = 0; 663 664 for (i = 0; i < words; i++) { 665 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + 666 E1000_EEPROM_RW_REG_START; 667 668 if (hw->mac_type == e1000_igb) 669 E1000_WRITE_REG(hw, I210_EERD, eerd); 670 else 671 E1000_WRITE_REG(hw, EERD, eerd); 672 673 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); 674 675 if (error) 676 break; 677 678 if (hw->mac_type == e1000_igb) { 679 data[i] = (E1000_READ_REG(hw, I210_EERD) >> 680 E1000_EEPROM_RW_REG_DATA); 681 } else { 682 data[i] = (E1000_READ_REG(hw, EERD) >> 683 E1000_EEPROM_RW_REG_DATA); 684 } 685 686 } 687 688 return error; 689 } 690 691 void e1000_release_eeprom(struct e1000_hw *hw) 692 { 693 uint32_t eecd; 694 695 DEBUGFUNC(); 696 697 eecd = E1000_READ_REG(hw, EECD); 698 699 if (hw->eeprom.type == e1000_eeprom_spi) { 700 eecd |= E1000_EECD_CS; /* Pull CS high */ 701 eecd &= ~E1000_EECD_SK; /* Lower SCK */ 702 703 E1000_WRITE_REG(hw, EECD, eecd); 704 705 udelay(hw->eeprom.delay_usec); 706 } else if (hw->eeprom.type == e1000_eeprom_microwire) { 707 /* cleanup eeprom */ 708 709 /* CS on Microwire is active-high */ 710 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); 711 712 E1000_WRITE_REG(hw, EECD, eecd); 713 714 /* Rising edge of clock */ 715 eecd |= E1000_EECD_SK; 716 E1000_WRITE_REG(hw, EECD, eecd); 717 E1000_WRITE_FLUSH(hw); 718 udelay(hw->eeprom.delay_usec); 719 720 /* Falling edge of clock */ 721 eecd &= ~E1000_EECD_SK; 722 E1000_WRITE_REG(hw, EECD, eecd); 723 E1000_WRITE_FLUSH(hw); 724 udelay(hw->eeprom.delay_usec); 725 } 726 727 /* Stop requesting EEPROM access */ 728 if (hw->mac_type > e1000_82544) { 729 eecd &= ~E1000_EECD_REQ; 730 E1000_WRITE_REG(hw, EECD, eecd); 731 } 732 } 733 /****************************************************************************** 734 * Reads a 16 bit word from the EEPROM. 735 * 736 * hw - Struct containing variables accessed by shared code 737 *****************************************************************************/ 738 static int32_t 739 e1000_spi_eeprom_ready(struct e1000_hw *hw) 740 { 741 uint16_t retry_count = 0; 742 uint8_t spi_stat_reg; 743 744 DEBUGFUNC(); 745 746 /* Read "Status Register" repeatedly until the LSB is cleared. The 747 * EEPROM will signal that the command has been completed by clearing 748 * bit 0 of the internal status register. If it's not cleared within 749 * 5 milliseconds, then error out. 750 */ 751 retry_count = 0; 752 do { 753 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, 754 hw->eeprom.opcode_bits); 755 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); 756 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) 757 break; 758 759 udelay(5); 760 retry_count += 5; 761 762 e1000_standby_eeprom(hw); 763 } while (retry_count < EEPROM_MAX_RETRY_SPI); 764 765 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and 766 * only 0-5mSec on 5V devices) 767 */ 768 if (retry_count >= EEPROM_MAX_RETRY_SPI) { 769 DEBUGOUT("SPI EEPROM Status error\n"); 770 return -E1000_ERR_EEPROM; 771 } 772 773 return E1000_SUCCESS; 774 } 775 776 /****************************************************************************** 777 * Reads a 16 bit word from the EEPROM. 778 * 779 * hw - Struct containing variables accessed by shared code 780 * offset - offset of word in the EEPROM to read 781 * data - word read from the EEPROM 782 *****************************************************************************/ 783 static int32_t 784 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, 785 uint16_t words, uint16_t *data) 786 { 787 struct e1000_eeprom_info *eeprom = &hw->eeprom; 788 uint32_t i = 0; 789 790 DEBUGFUNC(); 791 792 /* If eeprom is not yet detected, do so now */ 793 if (eeprom->word_size == 0) 794 e1000_init_eeprom_params(hw); 795 796 /* A check for invalid values: offset too large, too many words, 797 * and not enough words. 798 */ 799 if ((offset >= eeprom->word_size) || 800 (words > eeprom->word_size - offset) || 801 (words == 0)) { 802 DEBUGOUT("\"words\" parameter out of bounds." 803 "Words = %d, size = %d\n", offset, eeprom->word_size); 804 return -E1000_ERR_EEPROM; 805 } 806 807 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI 808 * directly. In this case, we need to acquire the EEPROM so that 809 * FW or other port software does not interrupt. 810 */ 811 if (e1000_is_onboard_nvm_eeprom(hw) == true && 812 hw->eeprom.use_eerd == false) { 813 814 /* Prepare the EEPROM for bit-bang reading */ 815 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) 816 return -E1000_ERR_EEPROM; 817 } 818 819 /* Eerd register EEPROM access requires no eeprom aquire/release */ 820 if (eeprom->use_eerd == true) 821 return e1000_read_eeprom_eerd(hw, offset, words, data); 822 823 /* ich8lan does not support currently. if needed, please 824 * add corresponding code and functions. 825 */ 826 #if 0 827 /* ICH EEPROM access is done via the ICH flash controller */ 828 if (eeprom->type == e1000_eeprom_ich8) 829 return e1000_read_eeprom_ich8(hw, offset, words, data); 830 #endif 831 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have 832 * acquired the EEPROM at this point, so any returns should relase it */ 833 if (eeprom->type == e1000_eeprom_spi) { 834 uint16_t word_in; 835 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; 836 837 if (e1000_spi_eeprom_ready(hw)) { 838 e1000_release_eeprom(hw); 839 return -E1000_ERR_EEPROM; 840 } 841 842 e1000_standby_eeprom(hw); 843 844 /* Some SPI eeproms use the 8th address bit embedded in 845 * the opcode */ 846 if ((eeprom->address_bits == 8) && (offset >= 128)) 847 read_opcode |= EEPROM_A8_OPCODE_SPI; 848 849 /* Send the READ command (opcode + addr) */ 850 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); 851 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), 852 eeprom->address_bits); 853 854 /* Read the data. The address of the eeprom internally 855 * increments with each byte (spi) being read, saving on the 856 * overhead of eeprom setup and tear-down. The address 857 * counter will roll over if reading beyond the size of 858 * the eeprom, thus allowing the entire memory to be read 859 * starting from any offset. */ 860 for (i = 0; i < words; i++) { 861 word_in = e1000_shift_in_ee_bits(hw, 16); 862 data[i] = (word_in >> 8) | (word_in << 8); 863 } 864 } else if (eeprom->type == e1000_eeprom_microwire) { 865 for (i = 0; i < words; i++) { 866 /* Send the READ command (opcode + addr) */ 867 e1000_shift_out_ee_bits(hw, 868 EEPROM_READ_OPCODE_MICROWIRE, 869 eeprom->opcode_bits); 870 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), 871 eeprom->address_bits); 872 873 /* Read the data. For microwire, each word requires 874 * the overhead of eeprom setup and tear-down. */ 875 data[i] = e1000_shift_in_ee_bits(hw, 16); 876 e1000_standby_eeprom(hw); 877 } 878 } 879 880 /* End this read operation */ 881 e1000_release_eeprom(hw); 882 883 return E1000_SUCCESS; 884 } 885 886 /****************************************************************************** 887 * Verifies that the EEPROM has a valid checksum 888 * 889 * hw - Struct containing variables accessed by shared code 890 * 891 * Reads the first 64 16 bit words of the EEPROM and sums the values read. 892 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is 893 * valid. 894 *****************************************************************************/ 895 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw) 896 { 897 uint16_t i, checksum, checksum_reg, *buf; 898 899 DEBUGFUNC(); 900 901 /* Allocate a temporary buffer */ 902 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1)); 903 if (!buf) { 904 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n"); 905 return -E1000_ERR_EEPROM; 906 } 907 908 /* Read the EEPROM */ 909 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) { 910 E1000_ERR(hw->nic, "Unable to read EEPROM!\n"); 911 return -E1000_ERR_EEPROM; 912 } 913 914 /* Compute the checksum */ 915 checksum = 0; 916 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) 917 checksum += buf[i]; 918 checksum = ((uint16_t)EEPROM_SUM) - checksum; 919 checksum_reg = buf[i]; 920 921 /* Verify it! */ 922 if (checksum == checksum_reg) 923 return 0; 924 925 /* Hrm, verification failed, print an error */ 926 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n"); 927 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n", 928 checksum_reg, checksum); 929 930 return -E1000_ERR_EEPROM; 931 } 932 #endif /* CONFIG_E1000_NO_NVM */ 933 934 /***************************************************************************** 935 * Set PHY to class A mode 936 * Assumes the following operations will follow to enable the new class mode. 937 * 1. Do a PHY soft reset 938 * 2. Restart auto-negotiation or force link. 939 * 940 * hw - Struct containing variables accessed by shared code 941 ****************************************************************************/ 942 static int32_t 943 e1000_set_phy_mode(struct e1000_hw *hw) 944 { 945 #ifndef CONFIG_E1000_NO_NVM 946 int32_t ret_val; 947 uint16_t eeprom_data; 948 949 DEBUGFUNC(); 950 951 if ((hw->mac_type == e1000_82545_rev_3) && 952 (hw->media_type == e1000_media_type_copper)) { 953 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 954 1, &eeprom_data); 955 if (ret_val) 956 return ret_val; 957 958 if ((eeprom_data != EEPROM_RESERVED_WORD) && 959 (eeprom_data & EEPROM_PHY_CLASS_A)) { 960 ret_val = e1000_write_phy_reg(hw, 961 M88E1000_PHY_PAGE_SELECT, 0x000B); 962 if (ret_val) 963 return ret_val; 964 ret_val = e1000_write_phy_reg(hw, 965 M88E1000_PHY_GEN_CONTROL, 0x8104); 966 if (ret_val) 967 return ret_val; 968 969 hw->phy_reset_disable = false; 970 } 971 } 972 #endif 973 return E1000_SUCCESS; 974 } 975 976 #ifndef CONFIG_E1000_NO_NVM 977 /*************************************************************************** 978 * 979 * Obtaining software semaphore bit (SMBI) before resetting PHY. 980 * 981 * hw: Struct containing variables accessed by shared code 982 * 983 * returns: - E1000_ERR_RESET if fail to obtain semaphore. 984 * E1000_SUCCESS at any other case. 985 * 986 ***************************************************************************/ 987 static int32_t 988 e1000_get_software_semaphore(struct e1000_hw *hw) 989 { 990 int32_t timeout = hw->eeprom.word_size + 1; 991 uint32_t swsm; 992 993 DEBUGFUNC(); 994 995 swsm = E1000_READ_REG(hw, SWSM); 996 swsm &= ~E1000_SWSM_SMBI; 997 E1000_WRITE_REG(hw, SWSM, swsm); 998 999 if (hw->mac_type != e1000_80003es2lan) 1000 return E1000_SUCCESS; 1001 1002 while (timeout) { 1003 swsm = E1000_READ_REG(hw, SWSM); 1004 /* If SMBI bit cleared, it is now set and we hold 1005 * the semaphore */ 1006 if (!(swsm & E1000_SWSM_SMBI)) 1007 break; 1008 mdelay(1); 1009 timeout--; 1010 } 1011 1012 if (!timeout) { 1013 DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); 1014 return -E1000_ERR_RESET; 1015 } 1016 1017 return E1000_SUCCESS; 1018 } 1019 #endif 1020 1021 /*************************************************************************** 1022 * This function clears HW semaphore bits. 1023 * 1024 * hw: Struct containing variables accessed by shared code 1025 * 1026 * returns: - None. 1027 * 1028 ***************************************************************************/ 1029 static void 1030 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) 1031 { 1032 #ifndef CONFIG_E1000_NO_NVM 1033 uint32_t swsm; 1034 1035 DEBUGFUNC(); 1036 1037 if (!hw->eeprom_semaphore_present) 1038 return; 1039 1040 swsm = E1000_READ_REG(hw, SWSM); 1041 if (hw->mac_type == e1000_80003es2lan) { 1042 /* Release both semaphores. */ 1043 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 1044 } else 1045 swsm &= ~(E1000_SWSM_SWESMBI); 1046 E1000_WRITE_REG(hw, SWSM, swsm); 1047 #endif 1048 } 1049 1050 /*************************************************************************** 1051 * 1052 * Using the combination of SMBI and SWESMBI semaphore bits when resetting 1053 * adapter or Eeprom access. 1054 * 1055 * hw: Struct containing variables accessed by shared code 1056 * 1057 * returns: - E1000_ERR_EEPROM if fail to access EEPROM. 1058 * E1000_SUCCESS at any other case. 1059 * 1060 ***************************************************************************/ 1061 static int32_t 1062 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) 1063 { 1064 #ifndef CONFIG_E1000_NO_NVM 1065 int32_t timeout; 1066 uint32_t swsm; 1067 1068 DEBUGFUNC(); 1069 1070 if (!hw->eeprom_semaphore_present) 1071 return E1000_SUCCESS; 1072 1073 if (hw->mac_type == e1000_80003es2lan) { 1074 /* Get the SW semaphore. */ 1075 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) 1076 return -E1000_ERR_EEPROM; 1077 } 1078 1079 /* Get the FW semaphore. */ 1080 timeout = hw->eeprom.word_size + 1; 1081 while (timeout) { 1082 swsm = E1000_READ_REG(hw, SWSM); 1083 swsm |= E1000_SWSM_SWESMBI; 1084 E1000_WRITE_REG(hw, SWSM, swsm); 1085 /* if we managed to set the bit we got the semaphore. */ 1086 swsm = E1000_READ_REG(hw, SWSM); 1087 if (swsm & E1000_SWSM_SWESMBI) 1088 break; 1089 1090 udelay(50); 1091 timeout--; 1092 } 1093 1094 if (!timeout) { 1095 /* Release semaphores */ 1096 e1000_put_hw_eeprom_semaphore(hw); 1097 DEBUGOUT("Driver can't access the Eeprom - " 1098 "SWESMBI bit is set.\n"); 1099 return -E1000_ERR_EEPROM; 1100 } 1101 #endif 1102 return E1000_SUCCESS; 1103 } 1104 1105 static int32_t 1106 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) 1107 { 1108 uint32_t swfw_sync = 0; 1109 uint32_t swmask = mask; 1110 uint32_t fwmask = mask << 16; 1111 int32_t timeout = 200; 1112 1113 DEBUGFUNC(); 1114 while (timeout) { 1115 if (e1000_get_hw_eeprom_semaphore(hw)) 1116 return -E1000_ERR_SWFW_SYNC; 1117 1118 if (hw->mac_type == e1000_igb) 1119 swfw_sync = E1000_READ_REG(hw, I210_SW_FW_SYNC); 1120 else 1121 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); 1122 if (!(swfw_sync & (fwmask | swmask))) 1123 break; 1124 1125 /* firmware currently using resource (fwmask) */ 1126 /* or other software thread currently using resource (swmask) */ 1127 e1000_put_hw_eeprom_semaphore(hw); 1128 mdelay(5); 1129 timeout--; 1130 } 1131 1132 if (!timeout) { 1133 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); 1134 return -E1000_ERR_SWFW_SYNC; 1135 } 1136 1137 swfw_sync |= swmask; 1138 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); 1139 1140 e1000_put_hw_eeprom_semaphore(hw); 1141 return E1000_SUCCESS; 1142 } 1143 1144 static bool e1000_is_second_port(struct e1000_hw *hw) 1145 { 1146 switch (hw->mac_type) { 1147 case e1000_80003es2lan: 1148 case e1000_82546: 1149 case e1000_82571: 1150 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) 1151 return true; 1152 /* Fallthrough */ 1153 default: 1154 return false; 1155 } 1156 } 1157 1158 #ifndef CONFIG_E1000_NO_NVM 1159 /****************************************************************************** 1160 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the 1161 * second function of dual function devices 1162 * 1163 * nic - Struct containing variables accessed by shared code 1164 *****************************************************************************/ 1165 static int 1166 e1000_read_mac_addr(struct eth_device *nic) 1167 { 1168 struct e1000_hw *hw = nic->priv; 1169 uint16_t offset; 1170 uint16_t eeprom_data; 1171 uint32_t reg_data = 0; 1172 int i; 1173 1174 DEBUGFUNC(); 1175 1176 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { 1177 offset = i >> 1; 1178 if (hw->mac_type == e1000_igb) { 1179 /* i210 preloads MAC address into RAL/RAH registers */ 1180 if (offset == 0) 1181 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0); 1182 else if (offset == 1) 1183 reg_data >>= 16; 1184 else if (offset == 2) 1185 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1); 1186 eeprom_data = reg_data & 0xffff; 1187 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { 1188 DEBUGOUT("EEPROM Read Error\n"); 1189 return -E1000_ERR_EEPROM; 1190 } 1191 nic->enetaddr[i] = eeprom_data & 0xff; 1192 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; 1193 } 1194 1195 /* Invert the last bit if this is the second device */ 1196 if (e1000_is_second_port(hw)) 1197 nic->enetaddr[5] ^= 1; 1198 1199 #ifdef CONFIG_E1000_FALLBACK_MAC 1200 if (!is_valid_ether_addr(nic->enetaddr)) { 1201 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC; 1202 1203 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE); 1204 } 1205 #endif 1206 return 0; 1207 } 1208 #endif 1209 1210 /****************************************************************************** 1211 * Initializes receive address filters. 1212 * 1213 * hw - Struct containing variables accessed by shared code 1214 * 1215 * Places the MAC address in receive address register 0 and clears the rest 1216 * of the receive addresss registers. Clears the multicast table. Assumes 1217 * the receiver is in reset when the routine is called. 1218 *****************************************************************************/ 1219 static void 1220 e1000_init_rx_addrs(struct eth_device *nic) 1221 { 1222 struct e1000_hw *hw = nic->priv; 1223 uint32_t i; 1224 uint32_t addr_low; 1225 uint32_t addr_high; 1226 1227 DEBUGFUNC(); 1228 1229 /* Setup the receive address. */ 1230 DEBUGOUT("Programming MAC Address into RAR[0]\n"); 1231 addr_low = (nic->enetaddr[0] | 1232 (nic->enetaddr[1] << 8) | 1233 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24)); 1234 1235 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV); 1236 1237 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); 1238 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); 1239 1240 /* Zero out the other 15 receive addresses. */ 1241 DEBUGOUT("Clearing RAR[1-15]\n"); 1242 for (i = 1; i < E1000_RAR_ENTRIES; i++) { 1243 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); 1244 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); 1245 } 1246 } 1247 1248 /****************************************************************************** 1249 * Clears the VLAN filer table 1250 * 1251 * hw - Struct containing variables accessed by shared code 1252 *****************************************************************************/ 1253 static void 1254 e1000_clear_vfta(struct e1000_hw *hw) 1255 { 1256 uint32_t offset; 1257 1258 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) 1259 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); 1260 } 1261 1262 /****************************************************************************** 1263 * Set the mac type member in the hw struct. 1264 * 1265 * hw - Struct containing variables accessed by shared code 1266 *****************************************************************************/ 1267 int32_t 1268 e1000_set_mac_type(struct e1000_hw *hw) 1269 { 1270 DEBUGFUNC(); 1271 1272 switch (hw->device_id) { 1273 case E1000_DEV_ID_82542: 1274 switch (hw->revision_id) { 1275 case E1000_82542_2_0_REV_ID: 1276 hw->mac_type = e1000_82542_rev2_0; 1277 break; 1278 case E1000_82542_2_1_REV_ID: 1279 hw->mac_type = e1000_82542_rev2_1; 1280 break; 1281 default: 1282 /* Invalid 82542 revision ID */ 1283 return -E1000_ERR_MAC_TYPE; 1284 } 1285 break; 1286 case E1000_DEV_ID_82543GC_FIBER: 1287 case E1000_DEV_ID_82543GC_COPPER: 1288 hw->mac_type = e1000_82543; 1289 break; 1290 case E1000_DEV_ID_82544EI_COPPER: 1291 case E1000_DEV_ID_82544EI_FIBER: 1292 case E1000_DEV_ID_82544GC_COPPER: 1293 case E1000_DEV_ID_82544GC_LOM: 1294 hw->mac_type = e1000_82544; 1295 break; 1296 case E1000_DEV_ID_82540EM: 1297 case E1000_DEV_ID_82540EM_LOM: 1298 case E1000_DEV_ID_82540EP: 1299 case E1000_DEV_ID_82540EP_LOM: 1300 case E1000_DEV_ID_82540EP_LP: 1301 hw->mac_type = e1000_82540; 1302 break; 1303 case E1000_DEV_ID_82545EM_COPPER: 1304 case E1000_DEV_ID_82545EM_FIBER: 1305 hw->mac_type = e1000_82545; 1306 break; 1307 case E1000_DEV_ID_82545GM_COPPER: 1308 case E1000_DEV_ID_82545GM_FIBER: 1309 case E1000_DEV_ID_82545GM_SERDES: 1310 hw->mac_type = e1000_82545_rev_3; 1311 break; 1312 case E1000_DEV_ID_82546EB_COPPER: 1313 case E1000_DEV_ID_82546EB_FIBER: 1314 case E1000_DEV_ID_82546EB_QUAD_COPPER: 1315 hw->mac_type = e1000_82546; 1316 break; 1317 case E1000_DEV_ID_82546GB_COPPER: 1318 case E1000_DEV_ID_82546GB_FIBER: 1319 case E1000_DEV_ID_82546GB_SERDES: 1320 case E1000_DEV_ID_82546GB_PCIE: 1321 case E1000_DEV_ID_82546GB_QUAD_COPPER: 1322 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1323 hw->mac_type = e1000_82546_rev_3; 1324 break; 1325 case E1000_DEV_ID_82541EI: 1326 case E1000_DEV_ID_82541EI_MOBILE: 1327 case E1000_DEV_ID_82541ER_LOM: 1328 hw->mac_type = e1000_82541; 1329 break; 1330 case E1000_DEV_ID_82541ER: 1331 case E1000_DEV_ID_82541GI: 1332 case E1000_DEV_ID_82541GI_LF: 1333 case E1000_DEV_ID_82541GI_MOBILE: 1334 hw->mac_type = e1000_82541_rev_2; 1335 break; 1336 case E1000_DEV_ID_82547EI: 1337 case E1000_DEV_ID_82547EI_MOBILE: 1338 hw->mac_type = e1000_82547; 1339 break; 1340 case E1000_DEV_ID_82547GI: 1341 hw->mac_type = e1000_82547_rev_2; 1342 break; 1343 case E1000_DEV_ID_82571EB_COPPER: 1344 case E1000_DEV_ID_82571EB_FIBER: 1345 case E1000_DEV_ID_82571EB_SERDES: 1346 case E1000_DEV_ID_82571EB_SERDES_DUAL: 1347 case E1000_DEV_ID_82571EB_SERDES_QUAD: 1348 case E1000_DEV_ID_82571EB_QUAD_COPPER: 1349 case E1000_DEV_ID_82571PT_QUAD_COPPER: 1350 case E1000_DEV_ID_82571EB_QUAD_FIBER: 1351 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: 1352 hw->mac_type = e1000_82571; 1353 break; 1354 case E1000_DEV_ID_82572EI_COPPER: 1355 case E1000_DEV_ID_82572EI_FIBER: 1356 case E1000_DEV_ID_82572EI_SERDES: 1357 case E1000_DEV_ID_82572EI: 1358 hw->mac_type = e1000_82572; 1359 break; 1360 case E1000_DEV_ID_82573E: 1361 case E1000_DEV_ID_82573E_IAMT: 1362 case E1000_DEV_ID_82573L: 1363 hw->mac_type = e1000_82573; 1364 break; 1365 case E1000_DEV_ID_82574L: 1366 hw->mac_type = e1000_82574; 1367 break; 1368 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 1369 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 1370 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 1371 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 1372 hw->mac_type = e1000_80003es2lan; 1373 break; 1374 case E1000_DEV_ID_ICH8_IGP_M_AMT: 1375 case E1000_DEV_ID_ICH8_IGP_AMT: 1376 case E1000_DEV_ID_ICH8_IGP_C: 1377 case E1000_DEV_ID_ICH8_IFE: 1378 case E1000_DEV_ID_ICH8_IFE_GT: 1379 case E1000_DEV_ID_ICH8_IFE_G: 1380 case E1000_DEV_ID_ICH8_IGP_M: 1381 hw->mac_type = e1000_ich8lan; 1382 break; 1383 case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED: 1384 case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED: 1385 case PCI_DEVICE_ID_INTEL_I210_COPPER: 1386 case PCI_DEVICE_ID_INTEL_I211_COPPER: 1387 case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS: 1388 case PCI_DEVICE_ID_INTEL_I210_SERDES: 1389 case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS: 1390 case PCI_DEVICE_ID_INTEL_I210_1000BASEKX: 1391 hw->mac_type = e1000_igb; 1392 break; 1393 default: 1394 /* Should never have loaded on this device */ 1395 return -E1000_ERR_MAC_TYPE; 1396 } 1397 return E1000_SUCCESS; 1398 } 1399 1400 /****************************************************************************** 1401 * Reset the transmit and receive units; mask and clear all interrupts. 1402 * 1403 * hw - Struct containing variables accessed by shared code 1404 *****************************************************************************/ 1405 void 1406 e1000_reset_hw(struct e1000_hw *hw) 1407 { 1408 uint32_t ctrl; 1409 uint32_t ctrl_ext; 1410 uint32_t manc; 1411 uint32_t pba = 0; 1412 uint32_t reg; 1413 1414 DEBUGFUNC(); 1415 1416 /* get the correct pba value for both PCI and PCIe*/ 1417 if (hw->mac_type < e1000_82571) 1418 pba = E1000_DEFAULT_PCI_PBA; 1419 else 1420 pba = E1000_DEFAULT_PCIE_PBA; 1421 1422 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ 1423 if (hw->mac_type == e1000_82542_rev2_0) { 1424 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); 1425 pci_write_config_word(hw->pdev, PCI_COMMAND, 1426 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); 1427 } 1428 1429 /* Clear interrupt mask to stop board from generating interrupts */ 1430 DEBUGOUT("Masking off all interrupts\n"); 1431 if (hw->mac_type == e1000_igb) 1432 E1000_WRITE_REG(hw, I210_IAM, 0); 1433 E1000_WRITE_REG(hw, IMC, 0xffffffff); 1434 1435 /* Disable the Transmit and Receive units. Then delay to allow 1436 * any pending transactions to complete before we hit the MAC with 1437 * the global reset. 1438 */ 1439 E1000_WRITE_REG(hw, RCTL, 0); 1440 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); 1441 E1000_WRITE_FLUSH(hw); 1442 1443 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ 1444 hw->tbi_compatibility_on = false; 1445 1446 /* Delay to allow any outstanding PCI transactions to complete before 1447 * resetting the device 1448 */ 1449 mdelay(10); 1450 1451 /* Issue a global reset to the MAC. This will reset the chip's 1452 * transmit, receive, DMA, and link units. It will not effect 1453 * the current PCI configuration. The global reset bit is self- 1454 * clearing, and should clear within a microsecond. 1455 */ 1456 DEBUGOUT("Issuing a global reset to MAC\n"); 1457 ctrl = E1000_READ_REG(hw, CTRL); 1458 1459 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); 1460 1461 /* Force a reload from the EEPROM if necessary */ 1462 if (hw->mac_type == e1000_igb) { 1463 mdelay(20); 1464 reg = E1000_READ_REG(hw, STATUS); 1465 if (reg & E1000_STATUS_PF_RST_DONE) 1466 DEBUGOUT("PF OK\n"); 1467 reg = E1000_READ_REG(hw, I210_EECD); 1468 if (reg & E1000_EECD_AUTO_RD) 1469 DEBUGOUT("EEC OK\n"); 1470 } else if (hw->mac_type < e1000_82540) { 1471 /* Wait for reset to complete */ 1472 udelay(10); 1473 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); 1474 ctrl_ext |= E1000_CTRL_EXT_EE_RST; 1475 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); 1476 E1000_WRITE_FLUSH(hw); 1477 /* Wait for EEPROM reload */ 1478 mdelay(2); 1479 } else { 1480 /* Wait for EEPROM reload (it happens automatically) */ 1481 mdelay(4); 1482 /* Dissable HW ARPs on ASF enabled adapters */ 1483 manc = E1000_READ_REG(hw, MANC); 1484 manc &= ~(E1000_MANC_ARP_EN); 1485 E1000_WRITE_REG(hw, MANC, manc); 1486 } 1487 1488 /* Clear interrupt mask to stop board from generating interrupts */ 1489 DEBUGOUT("Masking off all interrupts\n"); 1490 if (hw->mac_type == e1000_igb) 1491 E1000_WRITE_REG(hw, I210_IAM, 0); 1492 E1000_WRITE_REG(hw, IMC, 0xffffffff); 1493 1494 /* Clear any pending interrupt events. */ 1495 E1000_READ_REG(hw, ICR); 1496 1497 /* If MWI was previously enabled, reenable it. */ 1498 if (hw->mac_type == e1000_82542_rev2_0) { 1499 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); 1500 } 1501 if (hw->mac_type != e1000_igb) 1502 E1000_WRITE_REG(hw, PBA, pba); 1503 } 1504 1505 /****************************************************************************** 1506 * 1507 * Initialize a number of hardware-dependent bits 1508 * 1509 * hw: Struct containing variables accessed by shared code 1510 * 1511 * This function contains hardware limitation workarounds for PCI-E adapters 1512 * 1513 *****************************************************************************/ 1514 static void 1515 e1000_initialize_hardware_bits(struct e1000_hw *hw) 1516 { 1517 if ((hw->mac_type >= e1000_82571) && 1518 (!hw->initialize_hw_bits_disable)) { 1519 /* Settings common to all PCI-express silicon */ 1520 uint32_t reg_ctrl, reg_ctrl_ext; 1521 uint32_t reg_tarc0, reg_tarc1; 1522 uint32_t reg_tctl; 1523 uint32_t reg_txdctl, reg_txdctl1; 1524 1525 /* link autonegotiation/sync workarounds */ 1526 reg_tarc0 = E1000_READ_REG(hw, TARC0); 1527 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); 1528 1529 /* Enable not-done TX descriptor counting */ 1530 reg_txdctl = E1000_READ_REG(hw, TXDCTL); 1531 reg_txdctl |= E1000_TXDCTL_COUNT_DESC; 1532 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); 1533 1534 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); 1535 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; 1536 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); 1537 1538 /* IGB is cool */ 1539 if (hw->mac_type == e1000_igb) 1540 return; 1541 1542 switch (hw->mac_type) { 1543 case e1000_82571: 1544 case e1000_82572: 1545 /* Clear PHY TX compatible mode bits */ 1546 reg_tarc1 = E1000_READ_REG(hw, TARC1); 1547 reg_tarc1 &= ~((1 << 30)|(1 << 29)); 1548 1549 /* link autonegotiation/sync workarounds */ 1550 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); 1551 1552 /* TX ring control fixes */ 1553 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); 1554 1555 /* Multiple read bit is reversed polarity */ 1556 reg_tctl = E1000_READ_REG(hw, TCTL); 1557 if (reg_tctl & E1000_TCTL_MULR) 1558 reg_tarc1 &= ~(1 << 28); 1559 else 1560 reg_tarc1 |= (1 << 28); 1561 1562 E1000_WRITE_REG(hw, TARC1, reg_tarc1); 1563 break; 1564 case e1000_82573: 1565 case e1000_82574: 1566 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); 1567 reg_ctrl_ext &= ~(1 << 23); 1568 reg_ctrl_ext |= (1 << 22); 1569 1570 /* TX byte count fix */ 1571 reg_ctrl = E1000_READ_REG(hw, CTRL); 1572 reg_ctrl &= ~(1 << 29); 1573 1574 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); 1575 E1000_WRITE_REG(hw, CTRL, reg_ctrl); 1576 break; 1577 case e1000_80003es2lan: 1578 /* improve small packet performace for fiber/serdes */ 1579 if ((hw->media_type == e1000_media_type_fiber) 1580 || (hw->media_type == 1581 e1000_media_type_internal_serdes)) { 1582 reg_tarc0 &= ~(1 << 20); 1583 } 1584 1585 /* Multiple read bit is reversed polarity */ 1586 reg_tctl = E1000_READ_REG(hw, TCTL); 1587 reg_tarc1 = E1000_READ_REG(hw, TARC1); 1588 if (reg_tctl & E1000_TCTL_MULR) 1589 reg_tarc1 &= ~(1 << 28); 1590 else 1591 reg_tarc1 |= (1 << 28); 1592 1593 E1000_WRITE_REG(hw, TARC1, reg_tarc1); 1594 break; 1595 case e1000_ich8lan: 1596 /* Reduce concurrent DMA requests to 3 from 4 */ 1597 if ((hw->revision_id < 3) || 1598 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && 1599 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) 1600 reg_tarc0 |= ((1 << 29)|(1 << 28)); 1601 1602 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); 1603 reg_ctrl_ext |= (1 << 22); 1604 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); 1605 1606 /* workaround TX hang with TSO=on */ 1607 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); 1608 1609 /* Multiple read bit is reversed polarity */ 1610 reg_tctl = E1000_READ_REG(hw, TCTL); 1611 reg_tarc1 = E1000_READ_REG(hw, TARC1); 1612 if (reg_tctl & E1000_TCTL_MULR) 1613 reg_tarc1 &= ~(1 << 28); 1614 else 1615 reg_tarc1 |= (1 << 28); 1616 1617 /* workaround TX hang with TSO=on */ 1618 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); 1619 1620 E1000_WRITE_REG(hw, TARC1, reg_tarc1); 1621 break; 1622 default: 1623 break; 1624 } 1625 1626 E1000_WRITE_REG(hw, TARC0, reg_tarc0); 1627 } 1628 } 1629 1630 /****************************************************************************** 1631 * Performs basic configuration of the adapter. 1632 * 1633 * hw - Struct containing variables accessed by shared code 1634 * 1635 * Assumes that the controller has previously been reset and is in a 1636 * post-reset uninitialized state. Initializes the receive address registers, 1637 * multicast table, and VLAN filter table. Calls routines to setup link 1638 * configuration and flow control settings. Clears all on-chip counters. Leaves 1639 * the transmit and receive units disabled and uninitialized. 1640 *****************************************************************************/ 1641 static int 1642 e1000_init_hw(struct eth_device *nic) 1643 { 1644 struct e1000_hw *hw = nic->priv; 1645 uint32_t ctrl; 1646 uint32_t i; 1647 int32_t ret_val; 1648 uint16_t pcix_cmd_word; 1649 uint16_t pcix_stat_hi_word; 1650 uint16_t cmd_mmrbc; 1651 uint16_t stat_mmrbc; 1652 uint32_t mta_size; 1653 uint32_t reg_data; 1654 uint32_t ctrl_ext; 1655 DEBUGFUNC(); 1656 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ 1657 if ((hw->mac_type == e1000_ich8lan) && 1658 ((hw->revision_id < 3) || 1659 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && 1660 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { 1661 reg_data = E1000_READ_REG(hw, STATUS); 1662 reg_data &= ~0x80000000; 1663 E1000_WRITE_REG(hw, STATUS, reg_data); 1664 } 1665 /* Do not need initialize Identification LED */ 1666 1667 /* Set the media type and TBI compatibility */ 1668 e1000_set_media_type(hw); 1669 1670 /* Must be called after e1000_set_media_type 1671 * because media_type is used */ 1672 e1000_initialize_hardware_bits(hw); 1673 1674 /* Disabling VLAN filtering. */ 1675 DEBUGOUT("Initializing the IEEE VLAN\n"); 1676 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ 1677 if (hw->mac_type != e1000_ich8lan) { 1678 if (hw->mac_type < e1000_82545_rev_3) 1679 E1000_WRITE_REG(hw, VET, 0); 1680 e1000_clear_vfta(hw); 1681 } 1682 1683 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ 1684 if (hw->mac_type == e1000_82542_rev2_0) { 1685 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); 1686 pci_write_config_word(hw->pdev, PCI_COMMAND, 1687 hw-> 1688 pci_cmd_word & ~PCI_COMMAND_INVALIDATE); 1689 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); 1690 E1000_WRITE_FLUSH(hw); 1691 mdelay(5); 1692 } 1693 1694 /* Setup the receive address. This involves initializing all of the Receive 1695 * Address Registers (RARs 0 - 15). 1696 */ 1697 e1000_init_rx_addrs(nic); 1698 1699 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ 1700 if (hw->mac_type == e1000_82542_rev2_0) { 1701 E1000_WRITE_REG(hw, RCTL, 0); 1702 E1000_WRITE_FLUSH(hw); 1703 mdelay(1); 1704 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); 1705 } 1706 1707 /* Zero out the Multicast HASH table */ 1708 DEBUGOUT("Zeroing the MTA\n"); 1709 mta_size = E1000_MC_TBL_SIZE; 1710 if (hw->mac_type == e1000_ich8lan) 1711 mta_size = E1000_MC_TBL_SIZE_ICH8LAN; 1712 for (i = 0; i < mta_size; i++) { 1713 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); 1714 /* use write flush to prevent Memory Write Block (MWB) from 1715 * occuring when accessing our register space */ 1716 E1000_WRITE_FLUSH(hw); 1717 } 1718 #if 0 1719 /* Set the PCI priority bit correctly in the CTRL register. This 1720 * determines if the adapter gives priority to receives, or if it 1721 * gives equal priority to transmits and receives. Valid only on 1722 * 82542 and 82543 silicon. 1723 */ 1724 if (hw->dma_fairness && hw->mac_type <= e1000_82543) { 1725 ctrl = E1000_READ_REG(hw, CTRL); 1726 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); 1727 } 1728 #endif 1729 switch (hw->mac_type) { 1730 case e1000_82545_rev_3: 1731 case e1000_82546_rev_3: 1732 case e1000_igb: 1733 break; 1734 default: 1735 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ 1736 if (hw->bus_type == e1000_bus_type_pcix) { 1737 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, 1738 &pcix_cmd_word); 1739 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, 1740 &pcix_stat_hi_word); 1741 cmd_mmrbc = 1742 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> 1743 PCIX_COMMAND_MMRBC_SHIFT; 1744 stat_mmrbc = 1745 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> 1746 PCIX_STATUS_HI_MMRBC_SHIFT; 1747 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) 1748 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; 1749 if (cmd_mmrbc > stat_mmrbc) { 1750 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; 1751 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; 1752 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, 1753 pcix_cmd_word); 1754 } 1755 } 1756 break; 1757 } 1758 1759 /* More time needed for PHY to initialize */ 1760 if (hw->mac_type == e1000_ich8lan) 1761 mdelay(15); 1762 if (hw->mac_type == e1000_igb) 1763 mdelay(15); 1764 1765 /* Call a subroutine to configure the link and setup flow control. */ 1766 ret_val = e1000_setup_link(nic); 1767 1768 /* Set the transmit descriptor write-back policy */ 1769 if (hw->mac_type > e1000_82544) { 1770 ctrl = E1000_READ_REG(hw, TXDCTL); 1771 ctrl = 1772 (ctrl & ~E1000_TXDCTL_WTHRESH) | 1773 E1000_TXDCTL_FULL_TX_DESC_WB; 1774 E1000_WRITE_REG(hw, TXDCTL, ctrl); 1775 } 1776 1777 /* Set the receive descriptor write back policy */ 1778 if (hw->mac_type >= e1000_82571) { 1779 ctrl = E1000_READ_REG(hw, RXDCTL); 1780 ctrl = 1781 (ctrl & ~E1000_RXDCTL_WTHRESH) | 1782 E1000_RXDCTL_FULL_RX_DESC_WB; 1783 E1000_WRITE_REG(hw, RXDCTL, ctrl); 1784 } 1785 1786 switch (hw->mac_type) { 1787 default: 1788 break; 1789 case e1000_80003es2lan: 1790 /* Enable retransmit on late collisions */ 1791 reg_data = E1000_READ_REG(hw, TCTL); 1792 reg_data |= E1000_TCTL_RTLC; 1793 E1000_WRITE_REG(hw, TCTL, reg_data); 1794 1795 /* Configure Gigabit Carry Extend Padding */ 1796 reg_data = E1000_READ_REG(hw, TCTL_EXT); 1797 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; 1798 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; 1799 E1000_WRITE_REG(hw, TCTL_EXT, reg_data); 1800 1801 /* Configure Transmit Inter-Packet Gap */ 1802 reg_data = E1000_READ_REG(hw, TIPG); 1803 reg_data &= ~E1000_TIPG_IPGT_MASK; 1804 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; 1805 E1000_WRITE_REG(hw, TIPG, reg_data); 1806 1807 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); 1808 reg_data &= ~0x00100000; 1809 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); 1810 /* Fall through */ 1811 case e1000_82571: 1812 case e1000_82572: 1813 case e1000_ich8lan: 1814 ctrl = E1000_READ_REG(hw, TXDCTL1); 1815 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) 1816 | E1000_TXDCTL_FULL_TX_DESC_WB; 1817 E1000_WRITE_REG(hw, TXDCTL1, ctrl); 1818 break; 1819 case e1000_82573: 1820 case e1000_82574: 1821 reg_data = E1000_READ_REG(hw, GCR); 1822 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; 1823 E1000_WRITE_REG(hw, GCR, reg_data); 1824 case e1000_igb: 1825 break; 1826 } 1827 1828 #if 0 1829 /* Clear all of the statistics registers (clear on read). It is 1830 * important that we do this after we have tried to establish link 1831 * because the symbol error count will increment wildly if there 1832 * is no link. 1833 */ 1834 e1000_clear_hw_cntrs(hw); 1835 1836 /* ICH8 No-snoop bits are opposite polarity. 1837 * Set to snoop by default after reset. */ 1838 if (hw->mac_type == e1000_ich8lan) 1839 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); 1840 #endif 1841 1842 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || 1843 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { 1844 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); 1845 /* Relaxed ordering must be disabled to avoid a parity 1846 * error crash in a PCI slot. */ 1847 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 1848 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); 1849 } 1850 1851 return ret_val; 1852 } 1853 1854 /****************************************************************************** 1855 * Configures flow control and link settings. 1856 * 1857 * hw - Struct containing variables accessed by shared code 1858 * 1859 * Determines which flow control settings to use. Calls the apropriate media- 1860 * specific link configuration function. Configures the flow control settings. 1861 * Assuming the adapter has a valid link partner, a valid link should be 1862 * established. Assumes the hardware has previously been reset and the 1863 * transmitter and receiver are not enabled. 1864 *****************************************************************************/ 1865 static int 1866 e1000_setup_link(struct eth_device *nic) 1867 { 1868 struct e1000_hw *hw = nic->priv; 1869 int32_t ret_val; 1870 #ifndef CONFIG_E1000_NO_NVM 1871 uint32_t ctrl_ext; 1872 uint16_t eeprom_data; 1873 #endif 1874 1875 DEBUGFUNC(); 1876 1877 /* In the case of the phy reset being blocked, we already have a link. 1878 * We do not have to set it up again. */ 1879 if (e1000_check_phy_reset_block(hw)) 1880 return E1000_SUCCESS; 1881 1882 #ifndef CONFIG_E1000_NO_NVM 1883 /* Read and store word 0x0F of the EEPROM. This word contains bits 1884 * that determine the hardware's default PAUSE (flow control) mode, 1885 * a bit that determines whether the HW defaults to enabling or 1886 * disabling auto-negotiation, and the direction of the 1887 * SW defined pins. If there is no SW over-ride of the flow 1888 * control setting, then the variable hw->fc will 1889 * be initialized based on a value in the EEPROM. 1890 */ 1891 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, 1892 &eeprom_data) < 0) { 1893 DEBUGOUT("EEPROM Read Error\n"); 1894 return -E1000_ERR_EEPROM; 1895 } 1896 #endif 1897 if (hw->fc == e1000_fc_default) { 1898 switch (hw->mac_type) { 1899 case e1000_ich8lan: 1900 case e1000_82573: 1901 case e1000_82574: 1902 case e1000_igb: 1903 hw->fc = e1000_fc_full; 1904 break; 1905 default: 1906 #ifndef CONFIG_E1000_NO_NVM 1907 ret_val = e1000_read_eeprom(hw, 1908 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1909 if (ret_val) { 1910 DEBUGOUT("EEPROM Read Error\n"); 1911 return -E1000_ERR_EEPROM; 1912 } 1913 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) 1914 hw->fc = e1000_fc_none; 1915 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 1916 EEPROM_WORD0F_ASM_DIR) 1917 hw->fc = e1000_fc_tx_pause; 1918 else 1919 #endif 1920 hw->fc = e1000_fc_full; 1921 break; 1922 } 1923 } 1924 1925 /* We want to save off the original Flow Control configuration just 1926 * in case we get disconnected and then reconnected into a different 1927 * hub or switch with different Flow Control capabilities. 1928 */ 1929 if (hw->mac_type == e1000_82542_rev2_0) 1930 hw->fc &= (~e1000_fc_tx_pause); 1931 1932 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) 1933 hw->fc &= (~e1000_fc_rx_pause); 1934 1935 hw->original_fc = hw->fc; 1936 1937 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); 1938 1939 #ifndef CONFIG_E1000_NO_NVM 1940 /* Take the 4 bits from EEPROM word 0x0F that determine the initial 1941 * polarity value for the SW controlled pins, and setup the 1942 * Extended Device Control reg with that info. 1943 * This is needed because one of the SW controlled pins is used for 1944 * signal detection. So this should be done before e1000_setup_pcs_link() 1945 * or e1000_phy_setup() is called. 1946 */ 1947 if (hw->mac_type == e1000_82543) { 1948 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << 1949 SWDPIO__EXT_SHIFT); 1950 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); 1951 } 1952 #endif 1953 1954 /* Call the necessary subroutine to configure the link. */ 1955 ret_val = (hw->media_type == e1000_media_type_fiber) ? 1956 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic); 1957 if (ret_val < 0) { 1958 return ret_val; 1959 } 1960 1961 /* Initialize the flow control address, type, and PAUSE timer 1962 * registers to their default values. This is done even if flow 1963 * control is disabled, because it does not hurt anything to 1964 * initialize these registers. 1965 */ 1966 DEBUGOUT("Initializing the Flow Control address, type" 1967 "and timer regs\n"); 1968 1969 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ 1970 if (hw->mac_type != e1000_ich8lan) { 1971 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); 1972 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); 1973 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); 1974 } 1975 1976 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); 1977 1978 /* Set the flow control receive threshold registers. Normally, 1979 * these registers will be set to a default threshold that may be 1980 * adjusted later by the driver's runtime code. However, if the 1981 * ability to transmit pause frames in not enabled, then these 1982 * registers will be set to 0. 1983 */ 1984 if (!(hw->fc & e1000_fc_tx_pause)) { 1985 E1000_WRITE_REG(hw, FCRTL, 0); 1986 E1000_WRITE_REG(hw, FCRTH, 0); 1987 } else { 1988 /* We need to set up the Receive Threshold high and low water marks 1989 * as well as (optionally) enabling the transmission of XON frames. 1990 */ 1991 if (hw->fc_send_xon) { 1992 E1000_WRITE_REG(hw, FCRTL, 1993 (hw->fc_low_water | E1000_FCRTL_XONE)); 1994 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); 1995 } else { 1996 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); 1997 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); 1998 } 1999 } 2000 return ret_val; 2001 } 2002 2003 /****************************************************************************** 2004 * Sets up link for a fiber based adapter 2005 * 2006 * hw - Struct containing variables accessed by shared code 2007 * 2008 * Manipulates Physical Coding Sublayer functions in order to configure 2009 * link. Assumes the hardware has been previously reset and the transmitter 2010 * and receiver are not enabled. 2011 *****************************************************************************/ 2012 static int 2013 e1000_setup_fiber_link(struct eth_device *nic) 2014 { 2015 struct e1000_hw *hw = nic->priv; 2016 uint32_t ctrl; 2017 uint32_t status; 2018 uint32_t txcw = 0; 2019 uint32_t i; 2020 uint32_t signal; 2021 int32_t ret_val; 2022 2023 DEBUGFUNC(); 2024 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be 2025 * set when the optics detect a signal. On older adapters, it will be 2026 * cleared when there is a signal 2027 */ 2028 ctrl = E1000_READ_REG(hw, CTRL); 2029 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) 2030 signal = E1000_CTRL_SWDPIN1; 2031 else 2032 signal = 0; 2033 2034 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal, 2035 ctrl); 2036 /* Take the link out of reset */ 2037 ctrl &= ~(E1000_CTRL_LRST); 2038 2039 e1000_config_collision_dist(hw); 2040 2041 /* Check for a software override of the flow control settings, and setup 2042 * the device accordingly. If auto-negotiation is enabled, then software 2043 * will have to set the "PAUSE" bits to the correct value in the Tranmsit 2044 * Config Word Register (TXCW) and re-start auto-negotiation. However, if 2045 * auto-negotiation is disabled, then software will have to manually 2046 * configure the two flow control enable bits in the CTRL register. 2047 * 2048 * The possible values of the "fc" parameter are: 2049 * 0: Flow control is completely disabled 2050 * 1: Rx flow control is enabled (we can receive pause frames, but 2051 * not send pause frames). 2052 * 2: Tx flow control is enabled (we can send pause frames but we do 2053 * not support receiving pause frames). 2054 * 3: Both Rx and TX flow control (symmetric) are enabled. 2055 */ 2056 switch (hw->fc) { 2057 case e1000_fc_none: 2058 /* Flow control is completely disabled by a software over-ride. */ 2059 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); 2060 break; 2061 case e1000_fc_rx_pause: 2062 /* RX Flow control is enabled and TX Flow control is disabled by a 2063 * software over-ride. Since there really isn't a way to advertise 2064 * that we are capable of RX Pause ONLY, we will advertise that we 2065 * support both symmetric and asymmetric RX PAUSE. Later, we will 2066 * disable the adapter's ability to send PAUSE frames. 2067 */ 2068 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 2069 break; 2070 case e1000_fc_tx_pause: 2071 /* TX Flow control is enabled, and RX Flow control is disabled, by a 2072 * software over-ride. 2073 */ 2074 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); 2075 break; 2076 case e1000_fc_full: 2077 /* Flow control (both RX and TX) is enabled by a software over-ride. */ 2078 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 2079 break; 2080 default: 2081 DEBUGOUT("Flow control param set incorrectly\n"); 2082 return -E1000_ERR_CONFIG; 2083 break; 2084 } 2085 2086 /* Since auto-negotiation is enabled, take the link out of reset (the link 2087 * will be in reset, because we previously reset the chip). This will 2088 * restart auto-negotiation. If auto-neogtiation is successful then the 2089 * link-up status bit will be set and the flow control enable bits (RFCE 2090 * and TFCE) will be set according to their negotiated value. 2091 */ 2092 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); 2093 2094 E1000_WRITE_REG(hw, TXCW, txcw); 2095 E1000_WRITE_REG(hw, CTRL, ctrl); 2096 E1000_WRITE_FLUSH(hw); 2097 2098 hw->txcw = txcw; 2099 mdelay(1); 2100 2101 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" 2102 * indication in the Device Status Register. Time-out if a link isn't 2103 * seen in 500 milliseconds seconds (Auto-negotiation should complete in 2104 * less than 500 milliseconds even if the other end is doing it in SW). 2105 */ 2106 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { 2107 DEBUGOUT("Looking for Link\n"); 2108 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { 2109 mdelay(10); 2110 status = E1000_READ_REG(hw, STATUS); 2111 if (status & E1000_STATUS_LU) 2112 break; 2113 } 2114 if (i == (LINK_UP_TIMEOUT / 10)) { 2115 /* AutoNeg failed to achieve a link, so we'll call 2116 * e1000_check_for_link. This routine will force the link up if we 2117 * detect a signal. This will allow us to communicate with 2118 * non-autonegotiating link partners. 2119 */ 2120 DEBUGOUT("Never got a valid link from auto-neg!!!\n"); 2121 hw->autoneg_failed = 1; 2122 ret_val = e1000_check_for_link(nic); 2123 if (ret_val < 0) { 2124 DEBUGOUT("Error while checking for link\n"); 2125 return ret_val; 2126 } 2127 hw->autoneg_failed = 0; 2128 } else { 2129 hw->autoneg_failed = 0; 2130 DEBUGOUT("Valid Link Found\n"); 2131 } 2132 } else { 2133 DEBUGOUT("No Signal Detected\n"); 2134 return -E1000_ERR_NOLINK; 2135 } 2136 return 0; 2137 } 2138 2139 /****************************************************************************** 2140 * Make sure we have a valid PHY and change PHY mode before link setup. 2141 * 2142 * hw - Struct containing variables accessed by shared code 2143 ******************************************************************************/ 2144 static int32_t 2145 e1000_copper_link_preconfig(struct e1000_hw *hw) 2146 { 2147 uint32_t ctrl; 2148 int32_t ret_val; 2149 uint16_t phy_data; 2150 2151 DEBUGFUNC(); 2152 2153 ctrl = E1000_READ_REG(hw, CTRL); 2154 /* With 82543, we need to force speed and duplex on the MAC equal to what 2155 * the PHY speed and duplex configuration is. In addition, we need to 2156 * perform a hardware reset on the PHY to take it out of reset. 2157 */ 2158 if (hw->mac_type > e1000_82543) { 2159 ctrl |= E1000_CTRL_SLU; 2160 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 2161 E1000_WRITE_REG(hw, CTRL, ctrl); 2162 } else { 2163 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX 2164 | E1000_CTRL_SLU); 2165 E1000_WRITE_REG(hw, CTRL, ctrl); 2166 ret_val = e1000_phy_hw_reset(hw); 2167 if (ret_val) 2168 return ret_val; 2169 } 2170 2171 /* Make sure we have a valid PHY */ 2172 ret_val = e1000_detect_gig_phy(hw); 2173 if (ret_val) { 2174 DEBUGOUT("Error, did not detect valid phy.\n"); 2175 return ret_val; 2176 } 2177 DEBUGOUT("Phy ID = %x \n", hw->phy_id); 2178 2179 /* Set PHY to class A mode (if necessary) */ 2180 ret_val = e1000_set_phy_mode(hw); 2181 if (ret_val) 2182 return ret_val; 2183 if ((hw->mac_type == e1000_82545_rev_3) || 2184 (hw->mac_type == e1000_82546_rev_3)) { 2185 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 2186 &phy_data); 2187 phy_data |= 0x00000008; 2188 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 2189 phy_data); 2190 } 2191 2192 if (hw->mac_type <= e1000_82543 || 2193 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || 2194 hw->mac_type == e1000_82541_rev_2 2195 || hw->mac_type == e1000_82547_rev_2) 2196 hw->phy_reset_disable = false; 2197 2198 return E1000_SUCCESS; 2199 } 2200 2201 /***************************************************************************** 2202 * 2203 * This function sets the lplu state according to the active flag. When 2204 * activating lplu this function also disables smart speed and vise versa. 2205 * lplu will not be activated unless the device autonegotiation advertisment 2206 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. 2207 * hw: Struct containing variables accessed by shared code 2208 * active - true to enable lplu false to disable lplu. 2209 * 2210 * returns: - E1000_ERR_PHY if fail to read/write the PHY 2211 * E1000_SUCCESS at any other case. 2212 * 2213 ****************************************************************************/ 2214 2215 static int32_t 2216 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 2217 { 2218 uint32_t phy_ctrl = 0; 2219 int32_t ret_val; 2220 uint16_t phy_data; 2221 DEBUGFUNC(); 2222 2223 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 2224 && hw->phy_type != e1000_phy_igp_3) 2225 return E1000_SUCCESS; 2226 2227 /* During driver activity LPLU should not be used or it will attain link 2228 * from the lowest speeds starting from 10Mbps. The capability is used 2229 * for Dx transitions and states */ 2230 if (hw->mac_type == e1000_82541_rev_2 2231 || hw->mac_type == e1000_82547_rev_2) { 2232 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, 2233 &phy_data); 2234 if (ret_val) 2235 return ret_val; 2236 } else if (hw->mac_type == e1000_ich8lan) { 2237 /* MAC writes into PHY register based on the state transition 2238 * and start auto-negotiation. SW driver can overwrite the 2239 * settings in CSR PHY power control E1000_PHY_CTRL register. */ 2240 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); 2241 } else { 2242 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, 2243 &phy_data); 2244 if (ret_val) 2245 return ret_val; 2246 } 2247 2248 if (!active) { 2249 if (hw->mac_type == e1000_82541_rev_2 || 2250 hw->mac_type == e1000_82547_rev_2) { 2251 phy_data &= ~IGP01E1000_GMII_FLEX_SPD; 2252 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, 2253 phy_data); 2254 if (ret_val) 2255 return ret_val; 2256 } else { 2257 if (hw->mac_type == e1000_ich8lan) { 2258 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 2259 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); 2260 } else { 2261 phy_data &= ~IGP02E1000_PM_D3_LPLU; 2262 ret_val = e1000_write_phy_reg(hw, 2263 IGP02E1000_PHY_POWER_MGMT, phy_data); 2264 if (ret_val) 2265 return ret_val; 2266 } 2267 } 2268 2269 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during 2270 * Dx states where the power conservation is most important. During 2271 * driver activity we should enable SmartSpeed, so performance is 2272 * maintained. */ 2273 if (hw->smart_speed == e1000_smart_speed_on) { 2274 ret_val = e1000_read_phy_reg(hw, 2275 IGP01E1000_PHY_PORT_CONFIG, &phy_data); 2276 if (ret_val) 2277 return ret_val; 2278 2279 phy_data |= IGP01E1000_PSCFR_SMART_SPEED; 2280 ret_val = e1000_write_phy_reg(hw, 2281 IGP01E1000_PHY_PORT_CONFIG, phy_data); 2282 if (ret_val) 2283 return ret_val; 2284 } else if (hw->smart_speed == e1000_smart_speed_off) { 2285 ret_val = e1000_read_phy_reg(hw, 2286 IGP01E1000_PHY_PORT_CONFIG, &phy_data); 2287 if (ret_val) 2288 return ret_val; 2289 2290 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2291 ret_val = e1000_write_phy_reg(hw, 2292 IGP01E1000_PHY_PORT_CONFIG, phy_data); 2293 if (ret_val) 2294 return ret_val; 2295 } 2296 2297 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) 2298 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) || 2299 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { 2300 2301 if (hw->mac_type == e1000_82541_rev_2 || 2302 hw->mac_type == e1000_82547_rev_2) { 2303 phy_data |= IGP01E1000_GMII_FLEX_SPD; 2304 ret_val = e1000_write_phy_reg(hw, 2305 IGP01E1000_GMII_FIFO, phy_data); 2306 if (ret_val) 2307 return ret_val; 2308 } else { 2309 if (hw->mac_type == e1000_ich8lan) { 2310 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 2311 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); 2312 } else { 2313 phy_data |= IGP02E1000_PM_D3_LPLU; 2314 ret_val = e1000_write_phy_reg(hw, 2315 IGP02E1000_PHY_POWER_MGMT, phy_data); 2316 if (ret_val) 2317 return ret_val; 2318 } 2319 } 2320 2321 /* When LPLU is enabled we should disable SmartSpeed */ 2322 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 2323 &phy_data); 2324 if (ret_val) 2325 return ret_val; 2326 2327 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2328 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 2329 phy_data); 2330 if (ret_val) 2331 return ret_val; 2332 } 2333 return E1000_SUCCESS; 2334 } 2335 2336 /***************************************************************************** 2337 * 2338 * This function sets the lplu d0 state according to the active flag. When 2339 * activating lplu this function also disables smart speed and vise versa. 2340 * lplu will not be activated unless the device autonegotiation advertisment 2341 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. 2342 * hw: Struct containing variables accessed by shared code 2343 * active - true to enable lplu false to disable lplu. 2344 * 2345 * returns: - E1000_ERR_PHY if fail to read/write the PHY 2346 * E1000_SUCCESS at any other case. 2347 * 2348 ****************************************************************************/ 2349 2350 static int32_t 2351 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 2352 { 2353 uint32_t phy_ctrl = 0; 2354 int32_t ret_val; 2355 uint16_t phy_data; 2356 DEBUGFUNC(); 2357 2358 if (hw->mac_type <= e1000_82547_rev_2) 2359 return E1000_SUCCESS; 2360 2361 if (hw->mac_type == e1000_ich8lan) { 2362 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); 2363 } else if (hw->mac_type == e1000_igb) { 2364 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL); 2365 } else { 2366 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, 2367 &phy_data); 2368 if (ret_val) 2369 return ret_val; 2370 } 2371 2372 if (!active) { 2373 if (hw->mac_type == e1000_ich8lan) { 2374 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 2375 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); 2376 } else if (hw->mac_type == e1000_igb) { 2377 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 2378 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl); 2379 } else { 2380 phy_data &= ~IGP02E1000_PM_D0_LPLU; 2381 ret_val = e1000_write_phy_reg(hw, 2382 IGP02E1000_PHY_POWER_MGMT, phy_data); 2383 if (ret_val) 2384 return ret_val; 2385 } 2386 2387 if (hw->mac_type == e1000_igb) 2388 return E1000_SUCCESS; 2389 2390 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during 2391 * Dx states where the power conservation is most important. During 2392 * driver activity we should enable SmartSpeed, so performance is 2393 * maintained. */ 2394 if (hw->smart_speed == e1000_smart_speed_on) { 2395 ret_val = e1000_read_phy_reg(hw, 2396 IGP01E1000_PHY_PORT_CONFIG, &phy_data); 2397 if (ret_val) 2398 return ret_val; 2399 2400 phy_data |= IGP01E1000_PSCFR_SMART_SPEED; 2401 ret_val = e1000_write_phy_reg(hw, 2402 IGP01E1000_PHY_PORT_CONFIG, phy_data); 2403 if (ret_val) 2404 return ret_val; 2405 } else if (hw->smart_speed == e1000_smart_speed_off) { 2406 ret_val = e1000_read_phy_reg(hw, 2407 IGP01E1000_PHY_PORT_CONFIG, &phy_data); 2408 if (ret_val) 2409 return ret_val; 2410 2411 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2412 ret_val = e1000_write_phy_reg(hw, 2413 IGP01E1000_PHY_PORT_CONFIG, phy_data); 2414 if (ret_val) 2415 return ret_val; 2416 } 2417 2418 2419 } else { 2420 2421 if (hw->mac_type == e1000_ich8lan) { 2422 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 2423 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); 2424 } else if (hw->mac_type == e1000_igb) { 2425 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 2426 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl); 2427 } else { 2428 phy_data |= IGP02E1000_PM_D0_LPLU; 2429 ret_val = e1000_write_phy_reg(hw, 2430 IGP02E1000_PHY_POWER_MGMT, phy_data); 2431 if (ret_val) 2432 return ret_val; 2433 } 2434 2435 if (hw->mac_type == e1000_igb) 2436 return E1000_SUCCESS; 2437 2438 /* When LPLU is enabled we should disable SmartSpeed */ 2439 ret_val = e1000_read_phy_reg(hw, 2440 IGP01E1000_PHY_PORT_CONFIG, &phy_data); 2441 if (ret_val) 2442 return ret_val; 2443 2444 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2445 ret_val = e1000_write_phy_reg(hw, 2446 IGP01E1000_PHY_PORT_CONFIG, phy_data); 2447 if (ret_val) 2448 return ret_val; 2449 2450 } 2451 return E1000_SUCCESS; 2452 } 2453 2454 /******************************************************************** 2455 * Copper link setup for e1000_phy_igp series. 2456 * 2457 * hw - Struct containing variables accessed by shared code 2458 *********************************************************************/ 2459 static int32_t 2460 e1000_copper_link_igp_setup(struct e1000_hw *hw) 2461 { 2462 uint32_t led_ctrl; 2463 int32_t ret_val; 2464 uint16_t phy_data; 2465 2466 DEBUGFUNC(); 2467 2468 if (hw->phy_reset_disable) 2469 return E1000_SUCCESS; 2470 2471 ret_val = e1000_phy_reset(hw); 2472 if (ret_val) { 2473 DEBUGOUT("Error Resetting the PHY\n"); 2474 return ret_val; 2475 } 2476 2477 /* Wait 15ms for MAC to configure PHY from eeprom settings */ 2478 mdelay(15); 2479 if (hw->mac_type != e1000_ich8lan) { 2480 /* Configure activity LED after PHY reset */ 2481 led_ctrl = E1000_READ_REG(hw, LEDCTL); 2482 led_ctrl &= IGP_ACTIVITY_LED_MASK; 2483 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); 2484 E1000_WRITE_REG(hw, LEDCTL, led_ctrl); 2485 } 2486 2487 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ 2488 if (hw->phy_type == e1000_phy_igp) { 2489 /* disable lplu d3 during driver init */ 2490 ret_val = e1000_set_d3_lplu_state(hw, false); 2491 if (ret_val) { 2492 DEBUGOUT("Error Disabling LPLU D3\n"); 2493 return ret_val; 2494 } 2495 } 2496 2497 /* disable lplu d0 during driver init */ 2498 ret_val = e1000_set_d0_lplu_state(hw, false); 2499 if (ret_val) { 2500 DEBUGOUT("Error Disabling LPLU D0\n"); 2501 return ret_val; 2502 } 2503 /* Configure mdi-mdix settings */ 2504 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 2505 if (ret_val) 2506 return ret_val; 2507 2508 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { 2509 hw->dsp_config_state = e1000_dsp_config_disabled; 2510 /* Force MDI for earlier revs of the IGP PHY */ 2511 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX 2512 | IGP01E1000_PSCR_FORCE_MDI_MDIX); 2513 hw->mdix = 1; 2514 2515 } else { 2516 hw->dsp_config_state = e1000_dsp_config_enabled; 2517 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 2518 2519 switch (hw->mdix) { 2520 case 1: 2521 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 2522 break; 2523 case 2: 2524 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 2525 break; 2526 case 0: 2527 default: 2528 phy_data |= IGP01E1000_PSCR_AUTO_MDIX; 2529 break; 2530 } 2531 } 2532 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 2533 if (ret_val) 2534 return ret_val; 2535 2536 /* set auto-master slave resolution settings */ 2537 if (hw->autoneg) { 2538 e1000_ms_type phy_ms_setting = hw->master_slave; 2539 2540 if (hw->ffe_config_state == e1000_ffe_config_active) 2541 hw->ffe_config_state = e1000_ffe_config_enabled; 2542 2543 if (hw->dsp_config_state == e1000_dsp_config_activated) 2544 hw->dsp_config_state = e1000_dsp_config_enabled; 2545 2546 /* when autonegotiation advertisment is only 1000Mbps then we 2547 * should disable SmartSpeed and enable Auto MasterSlave 2548 * resolution as hardware default. */ 2549 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { 2550 /* Disable SmartSpeed */ 2551 ret_val = e1000_read_phy_reg(hw, 2552 IGP01E1000_PHY_PORT_CONFIG, &phy_data); 2553 if (ret_val) 2554 return ret_val; 2555 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2556 ret_val = e1000_write_phy_reg(hw, 2557 IGP01E1000_PHY_PORT_CONFIG, phy_data); 2558 if (ret_val) 2559 return ret_val; 2560 /* Set auto Master/Slave resolution process */ 2561 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, 2562 &phy_data); 2563 if (ret_val) 2564 return ret_val; 2565 phy_data &= ~CR_1000T_MS_ENABLE; 2566 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, 2567 phy_data); 2568 if (ret_val) 2569 return ret_val; 2570 } 2571 2572 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); 2573 if (ret_val) 2574 return ret_val; 2575 2576 /* load defaults for future use */ 2577 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? 2578 ((phy_data & CR_1000T_MS_VALUE) ? 2579 e1000_ms_force_master : 2580 e1000_ms_force_slave) : 2581 e1000_ms_auto; 2582 2583 switch (phy_ms_setting) { 2584 case e1000_ms_force_master: 2585 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 2586 break; 2587 case e1000_ms_force_slave: 2588 phy_data |= CR_1000T_MS_ENABLE; 2589 phy_data &= ~(CR_1000T_MS_VALUE); 2590 break; 2591 case e1000_ms_auto: 2592 phy_data &= ~CR_1000T_MS_ENABLE; 2593 default: 2594 break; 2595 } 2596 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); 2597 if (ret_val) 2598 return ret_val; 2599 } 2600 2601 return E1000_SUCCESS; 2602 } 2603 2604 /***************************************************************************** 2605 * This function checks the mode of the firmware. 2606 * 2607 * returns - true when the mode is IAMT or false. 2608 ****************************************************************************/ 2609 bool 2610 e1000_check_mng_mode(struct e1000_hw *hw) 2611 { 2612 uint32_t fwsm; 2613 DEBUGFUNC(); 2614 2615 fwsm = E1000_READ_REG(hw, FWSM); 2616 2617 if (hw->mac_type == e1000_ich8lan) { 2618 if ((fwsm & E1000_FWSM_MODE_MASK) == 2619 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) 2620 return true; 2621 } else if ((fwsm & E1000_FWSM_MODE_MASK) == 2622 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) 2623 return true; 2624 2625 return false; 2626 } 2627 2628 static int32_t 2629 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data) 2630 { 2631 uint16_t swfw = E1000_SWFW_PHY0_SM; 2632 uint32_t reg_val; 2633 DEBUGFUNC(); 2634 2635 if (e1000_is_second_port(hw)) 2636 swfw = E1000_SWFW_PHY1_SM; 2637 2638 if (e1000_swfw_sync_acquire(hw, swfw)) 2639 return -E1000_ERR_SWFW_SYNC; 2640 2641 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) 2642 & E1000_KUMCTRLSTA_OFFSET) | data; 2643 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); 2644 udelay(2); 2645 2646 return E1000_SUCCESS; 2647 } 2648 2649 static int32_t 2650 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data) 2651 { 2652 uint16_t swfw = E1000_SWFW_PHY0_SM; 2653 uint32_t reg_val; 2654 DEBUGFUNC(); 2655 2656 if (e1000_is_second_port(hw)) 2657 swfw = E1000_SWFW_PHY1_SM; 2658 2659 if (e1000_swfw_sync_acquire(hw, swfw)) { 2660 debug("%s[%i]\n", __func__, __LINE__); 2661 return -E1000_ERR_SWFW_SYNC; 2662 } 2663 2664 /* Write register address */ 2665 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & 2666 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN; 2667 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); 2668 udelay(2); 2669 2670 /* Read the data returned */ 2671 reg_val = E1000_READ_REG(hw, KUMCTRLSTA); 2672 *data = (uint16_t)reg_val; 2673 2674 return E1000_SUCCESS; 2675 } 2676 2677 /******************************************************************** 2678 * Copper link setup for e1000_phy_gg82563 series. 2679 * 2680 * hw - Struct containing variables accessed by shared code 2681 *********************************************************************/ 2682 static int32_t 2683 e1000_copper_link_ggp_setup(struct e1000_hw *hw) 2684 { 2685 int32_t ret_val; 2686 uint16_t phy_data; 2687 uint32_t reg_data; 2688 2689 DEBUGFUNC(); 2690 2691 if (!hw->phy_reset_disable) { 2692 /* Enable CRS on TX for half-duplex operation. */ 2693 ret_val = e1000_read_phy_reg(hw, 2694 GG82563_PHY_MAC_SPEC_CTRL, &phy_data); 2695 if (ret_val) 2696 return ret_val; 2697 2698 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; 2699 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ 2700 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; 2701 2702 ret_val = e1000_write_phy_reg(hw, 2703 GG82563_PHY_MAC_SPEC_CTRL, phy_data); 2704 if (ret_val) 2705 return ret_val; 2706 2707 /* Options: 2708 * MDI/MDI-X = 0 (default) 2709 * 0 - Auto for all speeds 2710 * 1 - MDI mode 2711 * 2 - MDI-X mode 2712 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 2713 */ 2714 ret_val = e1000_read_phy_reg(hw, 2715 GG82563_PHY_SPEC_CTRL, &phy_data); 2716 if (ret_val) 2717 return ret_val; 2718 2719 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; 2720 2721 switch (hw->mdix) { 2722 case 1: 2723 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; 2724 break; 2725 case 2: 2726 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; 2727 break; 2728 case 0: 2729 default: 2730 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; 2731 break; 2732 } 2733 2734 /* Options: 2735 * disable_polarity_correction = 0 (default) 2736 * Automatic Correction for Reversed Cable Polarity 2737 * 0 - Disabled 2738 * 1 - Enabled 2739 */ 2740 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; 2741 ret_val = e1000_write_phy_reg(hw, 2742 GG82563_PHY_SPEC_CTRL, phy_data); 2743 2744 if (ret_val) 2745 return ret_val; 2746 2747 /* SW Reset the PHY so all changes take effect */ 2748 ret_val = e1000_phy_reset(hw); 2749 if (ret_val) { 2750 DEBUGOUT("Error Resetting the PHY\n"); 2751 return ret_val; 2752 } 2753 } /* phy_reset_disable */ 2754 2755 if (hw->mac_type == e1000_80003es2lan) { 2756 /* Bypass RX and TX FIFO's */ 2757 ret_val = e1000_write_kmrn_reg(hw, 2758 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, 2759 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 2760 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); 2761 if (ret_val) 2762 return ret_val; 2763 2764 ret_val = e1000_read_phy_reg(hw, 2765 GG82563_PHY_SPEC_CTRL_2, &phy_data); 2766 if (ret_val) 2767 return ret_val; 2768 2769 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; 2770 ret_val = e1000_write_phy_reg(hw, 2771 GG82563_PHY_SPEC_CTRL_2, phy_data); 2772 2773 if (ret_val) 2774 return ret_val; 2775 2776 reg_data = E1000_READ_REG(hw, CTRL_EXT); 2777 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); 2778 E1000_WRITE_REG(hw, CTRL_EXT, reg_data); 2779 2780 ret_val = e1000_read_phy_reg(hw, 2781 GG82563_PHY_PWR_MGMT_CTRL, &phy_data); 2782 if (ret_val) 2783 return ret_val; 2784 2785 /* Do not init these registers when the HW is in IAMT mode, since the 2786 * firmware will have already initialized them. We only initialize 2787 * them if the HW is not in IAMT mode. 2788 */ 2789 if (e1000_check_mng_mode(hw) == false) { 2790 /* Enable Electrical Idle on the PHY */ 2791 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; 2792 ret_val = e1000_write_phy_reg(hw, 2793 GG82563_PHY_PWR_MGMT_CTRL, phy_data); 2794 if (ret_val) 2795 return ret_val; 2796 2797 ret_val = e1000_read_phy_reg(hw, 2798 GG82563_PHY_KMRN_MODE_CTRL, &phy_data); 2799 if (ret_val) 2800 return ret_val; 2801 2802 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; 2803 ret_val = e1000_write_phy_reg(hw, 2804 GG82563_PHY_KMRN_MODE_CTRL, phy_data); 2805 2806 if (ret_val) 2807 return ret_val; 2808 } 2809 2810 /* Workaround: Disable padding in Kumeran interface in the MAC 2811 * and in the PHY to avoid CRC errors. 2812 */ 2813 ret_val = e1000_read_phy_reg(hw, 2814 GG82563_PHY_INBAND_CTRL, &phy_data); 2815 if (ret_val) 2816 return ret_val; 2817 phy_data |= GG82563_ICR_DIS_PADDING; 2818 ret_val = e1000_write_phy_reg(hw, 2819 GG82563_PHY_INBAND_CTRL, phy_data); 2820 if (ret_val) 2821 return ret_val; 2822 } 2823 return E1000_SUCCESS; 2824 } 2825 2826 /******************************************************************** 2827 * Copper link setup for e1000_phy_m88 series. 2828 * 2829 * hw - Struct containing variables accessed by shared code 2830 *********************************************************************/ 2831 static int32_t 2832 e1000_copper_link_mgp_setup(struct e1000_hw *hw) 2833 { 2834 int32_t ret_val; 2835 uint16_t phy_data; 2836 2837 DEBUGFUNC(); 2838 2839 if (hw->phy_reset_disable) 2840 return E1000_SUCCESS; 2841 2842 /* Enable CRS on TX. This must be set for half-duplex operation. */ 2843 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 2844 if (ret_val) 2845 return ret_val; 2846 2847 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 2848 2849 /* Options: 2850 * MDI/MDI-X = 0 (default) 2851 * 0 - Auto for all speeds 2852 * 1 - MDI mode 2853 * 2 - MDI-X mode 2854 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 2855 */ 2856 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 2857 2858 switch (hw->mdix) { 2859 case 1: 2860 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 2861 break; 2862 case 2: 2863 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 2864 break; 2865 case 3: 2866 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 2867 break; 2868 case 0: 2869 default: 2870 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 2871 break; 2872 } 2873 2874 /* Options: 2875 * disable_polarity_correction = 0 (default) 2876 * Automatic Correction for Reversed Cable Polarity 2877 * 0 - Disabled 2878 * 1 - Enabled 2879 */ 2880 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 2881 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 2882 if (ret_val) 2883 return ret_val; 2884 2885 if (hw->phy_revision < M88E1011_I_REV_4) { 2886 /* Force TX_CLK in the Extended PHY Specific Control Register 2887 * to 25MHz clock. 2888 */ 2889 ret_val = e1000_read_phy_reg(hw, 2890 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 2891 if (ret_val) 2892 return ret_val; 2893 2894 phy_data |= M88E1000_EPSCR_TX_CLK_25; 2895 2896 if ((hw->phy_revision == E1000_REVISION_2) && 2897 (hw->phy_id == M88E1111_I_PHY_ID)) { 2898 /* Vidalia Phy, set the downshift counter to 5x */ 2899 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); 2900 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 2901 ret_val = e1000_write_phy_reg(hw, 2902 M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 2903 if (ret_val) 2904 return ret_val; 2905 } else { 2906 /* Configure Master and Slave downshift values */ 2907 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 2908 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 2909 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 2910 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 2911 ret_val = e1000_write_phy_reg(hw, 2912 M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 2913 if (ret_val) 2914 return ret_val; 2915 } 2916 } 2917 2918 /* SW Reset the PHY so all changes take effect */ 2919 ret_val = e1000_phy_reset(hw); 2920 if (ret_val) { 2921 DEBUGOUT("Error Resetting the PHY\n"); 2922 return ret_val; 2923 } 2924 2925 return E1000_SUCCESS; 2926 } 2927 2928 /******************************************************************** 2929 * Setup auto-negotiation and flow control advertisements, 2930 * and then perform auto-negotiation. 2931 * 2932 * hw - Struct containing variables accessed by shared code 2933 *********************************************************************/ 2934 static int32_t 2935 e1000_copper_link_autoneg(struct e1000_hw *hw) 2936 { 2937 int32_t ret_val; 2938 uint16_t phy_data; 2939 2940 DEBUGFUNC(); 2941 2942 /* Perform some bounds checking on the hw->autoneg_advertised 2943 * parameter. If this variable is zero, then set it to the default. 2944 */ 2945 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; 2946 2947 /* If autoneg_advertised is zero, we assume it was not defaulted 2948 * by the calling code so we set to advertise full capability. 2949 */ 2950 if (hw->autoneg_advertised == 0) 2951 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; 2952 2953 /* IFE phy only supports 10/100 */ 2954 if (hw->phy_type == e1000_phy_ife) 2955 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; 2956 2957 DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); 2958 ret_val = e1000_phy_setup_autoneg(hw); 2959 if (ret_val) { 2960 DEBUGOUT("Error Setting up Auto-Negotiation\n"); 2961 return ret_val; 2962 } 2963 DEBUGOUT("Restarting Auto-Neg\n"); 2964 2965 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 2966 * the Auto Neg Restart bit in the PHY control register. 2967 */ 2968 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); 2969 if (ret_val) 2970 return ret_val; 2971 2972 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 2973 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); 2974 if (ret_val) 2975 return ret_val; 2976 2977 /* Does the user want to wait for Auto-Neg to complete here, or 2978 * check at a later time (for example, callback routine). 2979 */ 2980 /* If we do not wait for autonegtation to complete I 2981 * do not see a valid link status. 2982 * wait_autoneg_complete = 1 . 2983 */ 2984 if (hw->wait_autoneg_complete) { 2985 ret_val = e1000_wait_autoneg(hw); 2986 if (ret_val) { 2987 DEBUGOUT("Error while waiting for autoneg" 2988 "to complete\n"); 2989 return ret_val; 2990 } 2991 } 2992 2993 hw->get_link_status = true; 2994 2995 return E1000_SUCCESS; 2996 } 2997 2998 /****************************************************************************** 2999 * Config the MAC and the PHY after link is up. 3000 * 1) Set up the MAC to the current PHY speed/duplex 3001 * if we are on 82543. If we 3002 * are on newer silicon, we only need to configure 3003 * collision distance in the Transmit Control Register. 3004 * 2) Set up flow control on the MAC to that established with 3005 * the link partner. 3006 * 3) Config DSP to improve Gigabit link quality for some PHY revisions. 3007 * 3008 * hw - Struct containing variables accessed by shared code 3009 ******************************************************************************/ 3010 static int32_t 3011 e1000_copper_link_postconfig(struct e1000_hw *hw) 3012 { 3013 int32_t ret_val; 3014 DEBUGFUNC(); 3015 3016 if (hw->mac_type >= e1000_82544) { 3017 e1000_config_collision_dist(hw); 3018 } else { 3019 ret_val = e1000_config_mac_to_phy(hw); 3020 if (ret_val) { 3021 DEBUGOUT("Error configuring MAC to PHY settings\n"); 3022 return ret_val; 3023 } 3024 } 3025 ret_val = e1000_config_fc_after_link_up(hw); 3026 if (ret_val) { 3027 DEBUGOUT("Error Configuring Flow Control\n"); 3028 return ret_val; 3029 } 3030 return E1000_SUCCESS; 3031 } 3032 3033 /****************************************************************************** 3034 * Detects which PHY is present and setup the speed and duplex 3035 * 3036 * hw - Struct containing variables accessed by shared code 3037 ******************************************************************************/ 3038 static int 3039 e1000_setup_copper_link(struct eth_device *nic) 3040 { 3041 struct e1000_hw *hw = nic->priv; 3042 int32_t ret_val; 3043 uint16_t i; 3044 uint16_t phy_data; 3045 uint16_t reg_data; 3046 3047 DEBUGFUNC(); 3048 3049 switch (hw->mac_type) { 3050 case e1000_80003es2lan: 3051 case e1000_ich8lan: 3052 /* Set the mac to wait the maximum time between each 3053 * iteration and increase the max iterations when 3054 * polling the phy; this fixes erroneous timeouts at 10Mbps. */ 3055 ret_val = e1000_write_kmrn_reg(hw, 3056 GG82563_REG(0x34, 4), 0xFFFF); 3057 if (ret_val) 3058 return ret_val; 3059 ret_val = e1000_read_kmrn_reg(hw, 3060 GG82563_REG(0x34, 9), ®_data); 3061 if (ret_val) 3062 return ret_val; 3063 reg_data |= 0x3F; 3064 ret_val = e1000_write_kmrn_reg(hw, 3065 GG82563_REG(0x34, 9), reg_data); 3066 if (ret_val) 3067 return ret_val; 3068 default: 3069 break; 3070 } 3071 3072 /* Check if it is a valid PHY and set PHY mode if necessary. */ 3073 ret_val = e1000_copper_link_preconfig(hw); 3074 if (ret_val) 3075 return ret_val; 3076 switch (hw->mac_type) { 3077 case e1000_80003es2lan: 3078 /* Kumeran registers are written-only */ 3079 reg_data = 3080 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; 3081 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; 3082 ret_val = e1000_write_kmrn_reg(hw, 3083 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data); 3084 if (ret_val) 3085 return ret_val; 3086 break; 3087 default: 3088 break; 3089 } 3090 3091 if (hw->phy_type == e1000_phy_igp || 3092 hw->phy_type == e1000_phy_igp_3 || 3093 hw->phy_type == e1000_phy_igp_2) { 3094 ret_val = e1000_copper_link_igp_setup(hw); 3095 if (ret_val) 3096 return ret_val; 3097 } else if (hw->phy_type == e1000_phy_m88 || 3098 hw->phy_type == e1000_phy_igb) { 3099 ret_val = e1000_copper_link_mgp_setup(hw); 3100 if (ret_val) 3101 return ret_val; 3102 } else if (hw->phy_type == e1000_phy_gg82563) { 3103 ret_val = e1000_copper_link_ggp_setup(hw); 3104 if (ret_val) 3105 return ret_val; 3106 } 3107 3108 /* always auto */ 3109 /* Setup autoneg and flow control advertisement 3110 * and perform autonegotiation */ 3111 ret_val = e1000_copper_link_autoneg(hw); 3112 if (ret_val) 3113 return ret_val; 3114 3115 /* Check link status. Wait up to 100 microseconds for link to become 3116 * valid. 3117 */ 3118 for (i = 0; i < 10; i++) { 3119 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 3120 if (ret_val) 3121 return ret_val; 3122 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 3123 if (ret_val) 3124 return ret_val; 3125 3126 if (phy_data & MII_SR_LINK_STATUS) { 3127 /* Config the MAC and PHY after link is up */ 3128 ret_val = e1000_copper_link_postconfig(hw); 3129 if (ret_val) 3130 return ret_val; 3131 3132 DEBUGOUT("Valid link established!!!\n"); 3133 return E1000_SUCCESS; 3134 } 3135 udelay(10); 3136 } 3137 3138 DEBUGOUT("Unable to establish link!!!\n"); 3139 return E1000_SUCCESS; 3140 } 3141 3142 /****************************************************************************** 3143 * Configures PHY autoneg and flow control advertisement settings 3144 * 3145 * hw - Struct containing variables accessed by shared code 3146 ******************************************************************************/ 3147 int32_t 3148 e1000_phy_setup_autoneg(struct e1000_hw *hw) 3149 { 3150 int32_t ret_val; 3151 uint16_t mii_autoneg_adv_reg; 3152 uint16_t mii_1000t_ctrl_reg; 3153 3154 DEBUGFUNC(); 3155 3156 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 3157 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 3158 if (ret_val) 3159 return ret_val; 3160 3161 if (hw->phy_type != e1000_phy_ife) { 3162 /* Read the MII 1000Base-T Control Register (Address 9). */ 3163 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, 3164 &mii_1000t_ctrl_reg); 3165 if (ret_val) 3166 return ret_val; 3167 } else 3168 mii_1000t_ctrl_reg = 0; 3169 3170 /* Need to parse both autoneg_advertised and fc and set up 3171 * the appropriate PHY registers. First we will parse for 3172 * autoneg_advertised software override. Since we can advertise 3173 * a plethora of combinations, we need to check each bit 3174 * individually. 3175 */ 3176 3177 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 3178 * Advertisement Register (Address 4) and the 1000 mb speed bits in 3179 * the 1000Base-T Control Register (Address 9). 3180 */ 3181 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; 3182 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; 3183 3184 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); 3185 3186 /* Do we want to advertise 10 Mb Half Duplex? */ 3187 if (hw->autoneg_advertised & ADVERTISE_10_HALF) { 3188 DEBUGOUT("Advertise 10mb Half duplex\n"); 3189 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 3190 } 3191 3192 /* Do we want to advertise 10 Mb Full Duplex? */ 3193 if (hw->autoneg_advertised & ADVERTISE_10_FULL) { 3194 DEBUGOUT("Advertise 10mb Full duplex\n"); 3195 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 3196 } 3197 3198 /* Do we want to advertise 100 Mb Half Duplex? */ 3199 if (hw->autoneg_advertised & ADVERTISE_100_HALF) { 3200 DEBUGOUT("Advertise 100mb Half duplex\n"); 3201 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 3202 } 3203 3204 /* Do we want to advertise 100 Mb Full Duplex? */ 3205 if (hw->autoneg_advertised & ADVERTISE_100_FULL) { 3206 DEBUGOUT("Advertise 100mb Full duplex\n"); 3207 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 3208 } 3209 3210 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 3211 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { 3212 DEBUGOUT 3213 ("Advertise 1000mb Half duplex requested, request denied!\n"); 3214 } 3215 3216 /* Do we want to advertise 1000 Mb Full Duplex? */ 3217 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { 3218 DEBUGOUT("Advertise 1000mb Full duplex\n"); 3219 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 3220 } 3221 3222 /* Check for a software override of the flow control settings, and 3223 * setup the PHY advertisement registers accordingly. If 3224 * auto-negotiation is enabled, then software will have to set the 3225 * "PAUSE" bits to the correct value in the Auto-Negotiation 3226 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. 3227 * 3228 * The possible values of the "fc" parameter are: 3229 * 0: Flow control is completely disabled 3230 * 1: Rx flow control is enabled (we can receive pause frames 3231 * but not send pause frames). 3232 * 2: Tx flow control is enabled (we can send pause frames 3233 * but we do not support receiving pause frames). 3234 * 3: Both Rx and TX flow control (symmetric) are enabled. 3235 * other: No software override. The flow control configuration 3236 * in the EEPROM is used. 3237 */ 3238 switch (hw->fc) { 3239 case e1000_fc_none: /* 0 */ 3240 /* Flow control (RX & TX) is completely disabled by a 3241 * software over-ride. 3242 */ 3243 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 3244 break; 3245 case e1000_fc_rx_pause: /* 1 */ 3246 /* RX Flow control is enabled, and TX Flow control is 3247 * disabled, by a software over-ride. 3248 */ 3249 /* Since there really isn't a way to advertise that we are 3250 * capable of RX Pause ONLY, we will advertise that we 3251 * support both symmetric and asymmetric RX PAUSE. Later 3252 * (in e1000_config_fc_after_link_up) we will disable the 3253 *hw's ability to send PAUSE frames. 3254 */ 3255 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 3256 break; 3257 case e1000_fc_tx_pause: /* 2 */ 3258 /* TX Flow control is enabled, and RX Flow control is 3259 * disabled, by a software over-ride. 3260 */ 3261 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 3262 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 3263 break; 3264 case e1000_fc_full: /* 3 */ 3265 /* Flow control (both RX and TX) is enabled by a software 3266 * over-ride. 3267 */ 3268 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 3269 break; 3270 default: 3271 DEBUGOUT("Flow control param set incorrectly\n"); 3272 return -E1000_ERR_CONFIG; 3273 } 3274 3275 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 3276 if (ret_val) 3277 return ret_val; 3278 3279 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 3280 3281 if (hw->phy_type != e1000_phy_ife) { 3282 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, 3283 mii_1000t_ctrl_reg); 3284 if (ret_val) 3285 return ret_val; 3286 } 3287 3288 return E1000_SUCCESS; 3289 } 3290 3291 /****************************************************************************** 3292 * Sets the collision distance in the Transmit Control register 3293 * 3294 * hw - Struct containing variables accessed by shared code 3295 * 3296 * Link should have been established previously. Reads the speed and duplex 3297 * information from the Device Status register. 3298 ******************************************************************************/ 3299 static void 3300 e1000_config_collision_dist(struct e1000_hw *hw) 3301 { 3302 uint32_t tctl, coll_dist; 3303 3304 DEBUGFUNC(); 3305 3306 if (hw->mac_type < e1000_82543) 3307 coll_dist = E1000_COLLISION_DISTANCE_82542; 3308 else 3309 coll_dist = E1000_COLLISION_DISTANCE; 3310 3311 tctl = E1000_READ_REG(hw, TCTL); 3312 3313 tctl &= ~E1000_TCTL_COLD; 3314 tctl |= coll_dist << E1000_COLD_SHIFT; 3315 3316 E1000_WRITE_REG(hw, TCTL, tctl); 3317 E1000_WRITE_FLUSH(hw); 3318 } 3319 3320 /****************************************************************************** 3321 * Sets MAC speed and duplex settings to reflect the those in the PHY 3322 * 3323 * hw - Struct containing variables accessed by shared code 3324 * mii_reg - data to write to the MII control register 3325 * 3326 * The contents of the PHY register containing the needed information need to 3327 * be passed in. 3328 ******************************************************************************/ 3329 static int 3330 e1000_config_mac_to_phy(struct e1000_hw *hw) 3331 { 3332 uint32_t ctrl; 3333 uint16_t phy_data; 3334 3335 DEBUGFUNC(); 3336 3337 /* Read the Device Control Register and set the bits to Force Speed 3338 * and Duplex. 3339 */ 3340 ctrl = E1000_READ_REG(hw, CTRL); 3341 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 3342 ctrl &= ~(E1000_CTRL_ILOS); 3343 ctrl |= (E1000_CTRL_SPD_SEL); 3344 3345 /* Set up duplex in the Device Control and Transmit Control 3346 * registers depending on negotiated values. 3347 */ 3348 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { 3349 DEBUGOUT("PHY Read Error\n"); 3350 return -E1000_ERR_PHY; 3351 } 3352 if (phy_data & M88E1000_PSSR_DPLX) 3353 ctrl |= E1000_CTRL_FD; 3354 else 3355 ctrl &= ~E1000_CTRL_FD; 3356 3357 e1000_config_collision_dist(hw); 3358 3359 /* Set up speed in the Device Control register depending on 3360 * negotiated values. 3361 */ 3362 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) 3363 ctrl |= E1000_CTRL_SPD_1000; 3364 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) 3365 ctrl |= E1000_CTRL_SPD_100; 3366 /* Write the configured values back to the Device Control Reg. */ 3367 E1000_WRITE_REG(hw, CTRL, ctrl); 3368 return 0; 3369 } 3370 3371 /****************************************************************************** 3372 * Forces the MAC's flow control settings. 3373 * 3374 * hw - Struct containing variables accessed by shared code 3375 * 3376 * Sets the TFCE and RFCE bits in the device control register to reflect 3377 * the adapter settings. TFCE and RFCE need to be explicitly set by 3378 * software when a Copper PHY is used because autonegotiation is managed 3379 * by the PHY rather than the MAC. Software must also configure these 3380 * bits when link is forced on a fiber connection. 3381 *****************************************************************************/ 3382 static int 3383 e1000_force_mac_fc(struct e1000_hw *hw) 3384 { 3385 uint32_t ctrl; 3386 3387 DEBUGFUNC(); 3388 3389 /* Get the current configuration of the Device Control Register */ 3390 ctrl = E1000_READ_REG(hw, CTRL); 3391 3392 /* Because we didn't get link via the internal auto-negotiation 3393 * mechanism (we either forced link or we got link via PHY 3394 * auto-neg), we have to manually enable/disable transmit an 3395 * receive flow control. 3396 * 3397 * The "Case" statement below enables/disable flow control 3398 * according to the "hw->fc" parameter. 3399 * 3400 * The possible values of the "fc" parameter are: 3401 * 0: Flow control is completely disabled 3402 * 1: Rx flow control is enabled (we can receive pause 3403 * frames but not send pause frames). 3404 * 2: Tx flow control is enabled (we can send pause frames 3405 * frames but we do not receive pause frames). 3406 * 3: Both Rx and TX flow control (symmetric) is enabled. 3407 * other: No other values should be possible at this point. 3408 */ 3409 3410 switch (hw->fc) { 3411 case e1000_fc_none: 3412 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 3413 break; 3414 case e1000_fc_rx_pause: 3415 ctrl &= (~E1000_CTRL_TFCE); 3416 ctrl |= E1000_CTRL_RFCE; 3417 break; 3418 case e1000_fc_tx_pause: 3419 ctrl &= (~E1000_CTRL_RFCE); 3420 ctrl |= E1000_CTRL_TFCE; 3421 break; 3422 case e1000_fc_full: 3423 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 3424 break; 3425 default: 3426 DEBUGOUT("Flow control param set incorrectly\n"); 3427 return -E1000_ERR_CONFIG; 3428 } 3429 3430 /* Disable TX Flow Control for 82542 (rev 2.0) */ 3431 if (hw->mac_type == e1000_82542_rev2_0) 3432 ctrl &= (~E1000_CTRL_TFCE); 3433 3434 E1000_WRITE_REG(hw, CTRL, ctrl); 3435 return 0; 3436 } 3437 3438 /****************************************************************************** 3439 * Configures flow control settings after link is established 3440 * 3441 * hw - Struct containing variables accessed by shared code 3442 * 3443 * Should be called immediately after a valid link has been established. 3444 * Forces MAC flow control settings if link was forced. When in MII/GMII mode 3445 * and autonegotiation is enabled, the MAC flow control settings will be set 3446 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE 3447 * and RFCE bits will be automaticaly set to the negotiated flow control mode. 3448 *****************************************************************************/ 3449 static int32_t 3450 e1000_config_fc_after_link_up(struct e1000_hw *hw) 3451 { 3452 int32_t ret_val; 3453 uint16_t mii_status_reg; 3454 uint16_t mii_nway_adv_reg; 3455 uint16_t mii_nway_lp_ability_reg; 3456 uint16_t speed; 3457 uint16_t duplex; 3458 3459 DEBUGFUNC(); 3460 3461 /* Check for the case where we have fiber media and auto-neg failed 3462 * so we had to force link. In this case, we need to force the 3463 * configuration of the MAC to match the "fc" parameter. 3464 */ 3465 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) 3466 || ((hw->media_type == e1000_media_type_internal_serdes) 3467 && (hw->autoneg_failed)) 3468 || ((hw->media_type == e1000_media_type_copper) 3469 && (!hw->autoneg))) { 3470 ret_val = e1000_force_mac_fc(hw); 3471 if (ret_val < 0) { 3472 DEBUGOUT("Error forcing flow control settings\n"); 3473 return ret_val; 3474 } 3475 } 3476 3477 /* Check for the case where we have copper media and auto-neg is 3478 * enabled. In this case, we need to check and see if Auto-Neg 3479 * has completed, and if so, how the PHY and link partner has 3480 * flow control configured. 3481 */ 3482 if (hw->media_type == e1000_media_type_copper) { 3483 /* Read the MII Status Register and check to see if AutoNeg 3484 * has completed. We read this twice because this reg has 3485 * some "sticky" (latched) bits. 3486 */ 3487 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { 3488 DEBUGOUT("PHY Read Error \n"); 3489 return -E1000_ERR_PHY; 3490 } 3491 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { 3492 DEBUGOUT("PHY Read Error \n"); 3493 return -E1000_ERR_PHY; 3494 } 3495 3496 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { 3497 /* The AutoNeg process has completed, so we now need to 3498 * read both the Auto Negotiation Advertisement Register 3499 * (Address 4) and the Auto_Negotiation Base Page Ability 3500 * Register (Address 5) to determine how flow control was 3501 * negotiated. 3502 */ 3503 if (e1000_read_phy_reg 3504 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { 3505 DEBUGOUT("PHY Read Error\n"); 3506 return -E1000_ERR_PHY; 3507 } 3508 if (e1000_read_phy_reg 3509 (hw, PHY_LP_ABILITY, 3510 &mii_nway_lp_ability_reg) < 0) { 3511 DEBUGOUT("PHY Read Error\n"); 3512 return -E1000_ERR_PHY; 3513 } 3514 3515 /* Two bits in the Auto Negotiation Advertisement Register 3516 * (Address 4) and two bits in the Auto Negotiation Base 3517 * Page Ability Register (Address 5) determine flow control 3518 * for both the PHY and the link partner. The following 3519 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 3520 * 1999, describes these PAUSE resolution bits and how flow 3521 * control is determined based upon these settings. 3522 * NOTE: DC = Don't Care 3523 * 3524 * LOCAL DEVICE | LINK PARTNER 3525 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 3526 *-------|---------|-------|---------|-------------------- 3527 * 0 | 0 | DC | DC | e1000_fc_none 3528 * 0 | 1 | 0 | DC | e1000_fc_none 3529 * 0 | 1 | 1 | 0 | e1000_fc_none 3530 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 3531 * 1 | 0 | 0 | DC | e1000_fc_none 3532 * 1 | DC | 1 | DC | e1000_fc_full 3533 * 1 | 1 | 0 | 0 | e1000_fc_none 3534 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 3535 * 3536 */ 3537 /* Are both PAUSE bits set to 1? If so, this implies 3538 * Symmetric Flow Control is enabled at both ends. The 3539 * ASM_DIR bits are irrelevant per the spec. 3540 * 3541 * For Symmetric Flow Control: 3542 * 3543 * LOCAL DEVICE | LINK PARTNER 3544 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 3545 *-------|---------|-------|---------|-------------------- 3546 * 1 | DC | 1 | DC | e1000_fc_full 3547 * 3548 */ 3549 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 3550 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { 3551 /* Now we need to check if the user selected RX ONLY 3552 * of pause frames. In this case, we had to advertise 3553 * FULL flow control because we could not advertise RX 3554 * ONLY. Hence, we must now check to see if we need to 3555 * turn OFF the TRANSMISSION of PAUSE frames. 3556 */ 3557 if (hw->original_fc == e1000_fc_full) { 3558 hw->fc = e1000_fc_full; 3559 DEBUGOUT("Flow Control = FULL.\r\n"); 3560 } else { 3561 hw->fc = e1000_fc_rx_pause; 3562 DEBUGOUT 3563 ("Flow Control = RX PAUSE frames only.\r\n"); 3564 } 3565 } 3566 /* For receiving PAUSE frames ONLY. 3567 * 3568 * LOCAL DEVICE | LINK PARTNER 3569 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 3570 *-------|---------|-------|---------|-------------------- 3571 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 3572 * 3573 */ 3574 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && 3575 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 3576 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 3577 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) 3578 { 3579 hw->fc = e1000_fc_tx_pause; 3580 DEBUGOUT 3581 ("Flow Control = TX PAUSE frames only.\r\n"); 3582 } 3583 /* For transmitting PAUSE frames ONLY. 3584 * 3585 * LOCAL DEVICE | LINK PARTNER 3586 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 3587 *-------|---------|-------|---------|-------------------- 3588 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 3589 * 3590 */ 3591 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 3592 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 3593 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 3594 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) 3595 { 3596 hw->fc = e1000_fc_rx_pause; 3597 DEBUGOUT 3598 ("Flow Control = RX PAUSE frames only.\r\n"); 3599 } 3600 /* Per the IEEE spec, at this point flow control should be 3601 * disabled. However, we want to consider that we could 3602 * be connected to a legacy switch that doesn't advertise 3603 * desired flow control, but can be forced on the link 3604 * partner. So if we advertised no flow control, that is 3605 * what we will resolve to. If we advertised some kind of 3606 * receive capability (Rx Pause Only or Full Flow Control) 3607 * and the link partner advertised none, we will configure 3608 * ourselves to enable Rx Flow Control only. We can do 3609 * this safely for two reasons: If the link partner really 3610 * didn't want flow control enabled, and we enable Rx, no 3611 * harm done since we won't be receiving any PAUSE frames 3612 * anyway. If the intent on the link partner was to have 3613 * flow control enabled, then by us enabling RX only, we 3614 * can at least receive pause frames and process them. 3615 * This is a good idea because in most cases, since we are 3616 * predominantly a server NIC, more times than not we will 3617 * be asked to delay transmission of packets than asking 3618 * our link partner to pause transmission of frames. 3619 */ 3620 else if (hw->original_fc == e1000_fc_none || 3621 hw->original_fc == e1000_fc_tx_pause) { 3622 hw->fc = e1000_fc_none; 3623 DEBUGOUT("Flow Control = NONE.\r\n"); 3624 } else { 3625 hw->fc = e1000_fc_rx_pause; 3626 DEBUGOUT 3627 ("Flow Control = RX PAUSE frames only.\r\n"); 3628 } 3629 3630 /* Now we need to do one last check... If we auto- 3631 * negotiated to HALF DUPLEX, flow control should not be 3632 * enabled per IEEE 802.3 spec. 3633 */ 3634 e1000_get_speed_and_duplex(hw, &speed, &duplex); 3635 3636 if (duplex == HALF_DUPLEX) 3637 hw->fc = e1000_fc_none; 3638 3639 /* Now we call a subroutine to actually force the MAC 3640 * controller to use the correct flow control settings. 3641 */ 3642 ret_val = e1000_force_mac_fc(hw); 3643 if (ret_val < 0) { 3644 DEBUGOUT 3645 ("Error forcing flow control settings\n"); 3646 return ret_val; 3647 } 3648 } else { 3649 DEBUGOUT 3650 ("Copper PHY and Auto Neg has not completed.\r\n"); 3651 } 3652 } 3653 return E1000_SUCCESS; 3654 } 3655 3656 /****************************************************************************** 3657 * Checks to see if the link status of the hardware has changed. 3658 * 3659 * hw - Struct containing variables accessed by shared code 3660 * 3661 * Called by any function that needs to check the link status of the adapter. 3662 *****************************************************************************/ 3663 static int 3664 e1000_check_for_link(struct eth_device *nic) 3665 { 3666 struct e1000_hw *hw = nic->priv; 3667 uint32_t rxcw; 3668 uint32_t ctrl; 3669 uint32_t status; 3670 uint32_t rctl; 3671 uint32_t signal; 3672 int32_t ret_val; 3673 uint16_t phy_data; 3674 uint16_t lp_capability; 3675 3676 DEBUGFUNC(); 3677 3678 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be 3679 * set when the optics detect a signal. On older adapters, it will be 3680 * cleared when there is a signal 3681 */ 3682 ctrl = E1000_READ_REG(hw, CTRL); 3683 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) 3684 signal = E1000_CTRL_SWDPIN1; 3685 else 3686 signal = 0; 3687 3688 status = E1000_READ_REG(hw, STATUS); 3689 rxcw = E1000_READ_REG(hw, RXCW); 3690 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); 3691 3692 /* If we have a copper PHY then we only want to go out to the PHY 3693 * registers to see if Auto-Neg has completed and/or if our link 3694 * status has changed. The get_link_status flag will be set if we 3695 * receive a Link Status Change interrupt or we have Rx Sequence 3696 * Errors. 3697 */ 3698 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { 3699 /* First we want to see if the MII Status Register reports 3700 * link. If so, then we want to get the current speed/duplex 3701 * of the PHY. 3702 * Read the register twice since the link bit is sticky. 3703 */ 3704 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { 3705 DEBUGOUT("PHY Read Error\n"); 3706 return -E1000_ERR_PHY; 3707 } 3708 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { 3709 DEBUGOUT("PHY Read Error\n"); 3710 return -E1000_ERR_PHY; 3711 } 3712 3713 if (phy_data & MII_SR_LINK_STATUS) { 3714 hw->get_link_status = false; 3715 } else { 3716 /* No link detected */ 3717 return -E1000_ERR_NOLINK; 3718 } 3719 3720 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we 3721 * have Si on board that is 82544 or newer, Auto 3722 * Speed Detection takes care of MAC speed/duplex 3723 * configuration. So we only need to configure Collision 3724 * Distance in the MAC. Otherwise, we need to force 3725 * speed/duplex on the MAC to the current PHY speed/duplex 3726 * settings. 3727 */ 3728 if (hw->mac_type >= e1000_82544) 3729 e1000_config_collision_dist(hw); 3730 else { 3731 ret_val = e1000_config_mac_to_phy(hw); 3732 if (ret_val < 0) { 3733 DEBUGOUT 3734 ("Error configuring MAC to PHY settings\n"); 3735 return ret_val; 3736 } 3737 } 3738 3739 /* Configure Flow Control now that Auto-Neg has completed. First, we 3740 * need to restore the desired flow control settings because we may 3741 * have had to re-autoneg with a different link partner. 3742 */ 3743 ret_val = e1000_config_fc_after_link_up(hw); 3744 if (ret_val < 0) { 3745 DEBUGOUT("Error configuring flow control\n"); 3746 return ret_val; 3747 } 3748 3749 /* At this point we know that we are on copper and we have 3750 * auto-negotiated link. These are conditions for checking the link 3751 * parter capability register. We use the link partner capability to 3752 * determine if TBI Compatibility needs to be turned on or off. If 3753 * the link partner advertises any speed in addition to Gigabit, then 3754 * we assume that they are GMII-based, and TBI compatibility is not 3755 * needed. If no other speeds are advertised, we assume the link 3756 * partner is TBI-based, and we turn on TBI Compatibility. 3757 */ 3758 if (hw->tbi_compatibility_en) { 3759 if (e1000_read_phy_reg 3760 (hw, PHY_LP_ABILITY, &lp_capability) < 0) { 3761 DEBUGOUT("PHY Read Error\n"); 3762 return -E1000_ERR_PHY; 3763 } 3764 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | 3765 NWAY_LPAR_10T_FD_CAPS | 3766 NWAY_LPAR_100TX_HD_CAPS | 3767 NWAY_LPAR_100TX_FD_CAPS | 3768 NWAY_LPAR_100T4_CAPS)) { 3769 /* If our link partner advertises anything in addition to 3770 * gigabit, we do not need to enable TBI compatibility. 3771 */ 3772 if (hw->tbi_compatibility_on) { 3773 /* If we previously were in the mode, turn it off. */ 3774 rctl = E1000_READ_REG(hw, RCTL); 3775 rctl &= ~E1000_RCTL_SBP; 3776 E1000_WRITE_REG(hw, RCTL, rctl); 3777 hw->tbi_compatibility_on = false; 3778 } 3779 } else { 3780 /* If TBI compatibility is was previously off, turn it on. For 3781 * compatibility with a TBI link partner, we will store bad 3782 * packets. Some frames have an additional byte on the end and 3783 * will look like CRC errors to to the hardware. 3784 */ 3785 if (!hw->tbi_compatibility_on) { 3786 hw->tbi_compatibility_on = true; 3787 rctl = E1000_READ_REG(hw, RCTL); 3788 rctl |= E1000_RCTL_SBP; 3789 E1000_WRITE_REG(hw, RCTL, rctl); 3790 } 3791 } 3792 } 3793 } 3794 /* If we don't have link (auto-negotiation failed or link partner cannot 3795 * auto-negotiate), the cable is plugged in (we have signal), and our 3796 * link partner is not trying to auto-negotiate with us (we are receiving 3797 * idles or data), we need to force link up. We also need to give 3798 * auto-negotiation time to complete, in case the cable was just plugged 3799 * in. The autoneg_failed flag does this. 3800 */ 3801 else if ((hw->media_type == e1000_media_type_fiber) && 3802 (!(status & E1000_STATUS_LU)) && 3803 ((ctrl & E1000_CTRL_SWDPIN1) == signal) && 3804 (!(rxcw & E1000_RXCW_C))) { 3805 if (hw->autoneg_failed == 0) { 3806 hw->autoneg_failed = 1; 3807 return 0; 3808 } 3809 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); 3810 3811 /* Disable auto-negotiation in the TXCW register */ 3812 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); 3813 3814 /* Force link-up and also force full-duplex. */ 3815 ctrl = E1000_READ_REG(hw, CTRL); 3816 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 3817 E1000_WRITE_REG(hw, CTRL, ctrl); 3818 3819 /* Configure Flow Control after forcing link up. */ 3820 ret_val = e1000_config_fc_after_link_up(hw); 3821 if (ret_val < 0) { 3822 DEBUGOUT("Error configuring flow control\n"); 3823 return ret_val; 3824 } 3825 } 3826 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable 3827 * auto-negotiation in the TXCW register and disable forced link in the 3828 * Device Control register in an attempt to auto-negotiate with our link 3829 * partner. 3830 */ 3831 else if ((hw->media_type == e1000_media_type_fiber) && 3832 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 3833 DEBUGOUT 3834 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); 3835 E1000_WRITE_REG(hw, TXCW, hw->txcw); 3836 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); 3837 } 3838 return 0; 3839 } 3840 3841 /****************************************************************************** 3842 * Configure the MAC-to-PHY interface for 10/100Mbps 3843 * 3844 * hw - Struct containing variables accessed by shared code 3845 ******************************************************************************/ 3846 static int32_t 3847 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) 3848 { 3849 int32_t ret_val = E1000_SUCCESS; 3850 uint32_t tipg; 3851 uint16_t reg_data; 3852 3853 DEBUGFUNC(); 3854 3855 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; 3856 ret_val = e1000_write_kmrn_reg(hw, 3857 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); 3858 if (ret_val) 3859 return ret_val; 3860 3861 /* Configure Transmit Inter-Packet Gap */ 3862 tipg = E1000_READ_REG(hw, TIPG); 3863 tipg &= ~E1000_TIPG_IPGT_MASK; 3864 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; 3865 E1000_WRITE_REG(hw, TIPG, tipg); 3866 3867 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); 3868 3869 if (ret_val) 3870 return ret_val; 3871 3872 if (duplex == HALF_DUPLEX) 3873 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; 3874 else 3875 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; 3876 3877 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); 3878 3879 return ret_val; 3880 } 3881 3882 static int32_t 3883 e1000_configure_kmrn_for_1000(struct e1000_hw *hw) 3884 { 3885 int32_t ret_val = E1000_SUCCESS; 3886 uint16_t reg_data; 3887 uint32_t tipg; 3888 3889 DEBUGFUNC(); 3890 3891 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; 3892 ret_val = e1000_write_kmrn_reg(hw, 3893 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); 3894 if (ret_val) 3895 return ret_val; 3896 3897 /* Configure Transmit Inter-Packet Gap */ 3898 tipg = E1000_READ_REG(hw, TIPG); 3899 tipg &= ~E1000_TIPG_IPGT_MASK; 3900 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; 3901 E1000_WRITE_REG(hw, TIPG, tipg); 3902 3903 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); 3904 3905 if (ret_val) 3906 return ret_val; 3907 3908 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; 3909 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); 3910 3911 return ret_val; 3912 } 3913 3914 /****************************************************************************** 3915 * Detects the current speed and duplex settings of the hardware. 3916 * 3917 * hw - Struct containing variables accessed by shared code 3918 * speed - Speed of the connection 3919 * duplex - Duplex setting of the connection 3920 *****************************************************************************/ 3921 static int 3922 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, 3923 uint16_t *duplex) 3924 { 3925 uint32_t status; 3926 int32_t ret_val; 3927 uint16_t phy_data; 3928 3929 DEBUGFUNC(); 3930 3931 if (hw->mac_type >= e1000_82543) { 3932 status = E1000_READ_REG(hw, STATUS); 3933 if (status & E1000_STATUS_SPEED_1000) { 3934 *speed = SPEED_1000; 3935 DEBUGOUT("1000 Mbs, "); 3936 } else if (status & E1000_STATUS_SPEED_100) { 3937 *speed = SPEED_100; 3938 DEBUGOUT("100 Mbs, "); 3939 } else { 3940 *speed = SPEED_10; 3941 DEBUGOUT("10 Mbs, "); 3942 } 3943 3944 if (status & E1000_STATUS_FD) { 3945 *duplex = FULL_DUPLEX; 3946 DEBUGOUT("Full Duplex\r\n"); 3947 } else { 3948 *duplex = HALF_DUPLEX; 3949 DEBUGOUT(" Half Duplex\r\n"); 3950 } 3951 } else { 3952 DEBUGOUT("1000 Mbs, Full Duplex\r\n"); 3953 *speed = SPEED_1000; 3954 *duplex = FULL_DUPLEX; 3955 } 3956 3957 /* IGP01 PHY may advertise full duplex operation after speed downgrade 3958 * even if it is operating at half duplex. Here we set the duplex 3959 * settings to match the duplex in the link partner's capabilities. 3960 */ 3961 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { 3962 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); 3963 if (ret_val) 3964 return ret_val; 3965 3966 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) 3967 *duplex = HALF_DUPLEX; 3968 else { 3969 ret_val = e1000_read_phy_reg(hw, 3970 PHY_LP_ABILITY, &phy_data); 3971 if (ret_val) 3972 return ret_val; 3973 if ((*speed == SPEED_100 && 3974 !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) 3975 || (*speed == SPEED_10 3976 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) 3977 *duplex = HALF_DUPLEX; 3978 } 3979 } 3980 3981 if ((hw->mac_type == e1000_80003es2lan) && 3982 (hw->media_type == e1000_media_type_copper)) { 3983 if (*speed == SPEED_1000) 3984 ret_val = e1000_configure_kmrn_for_1000(hw); 3985 else 3986 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); 3987 if (ret_val) 3988 return ret_val; 3989 } 3990 return E1000_SUCCESS; 3991 } 3992 3993 /****************************************************************************** 3994 * Blocks until autoneg completes or times out (~4.5 seconds) 3995 * 3996 * hw - Struct containing variables accessed by shared code 3997 ******************************************************************************/ 3998 static int 3999 e1000_wait_autoneg(struct e1000_hw *hw) 4000 { 4001 uint16_t i; 4002 uint16_t phy_data; 4003 4004 DEBUGFUNC(); 4005 DEBUGOUT("Waiting for Auto-Neg to complete.\n"); 4006 4007 /* We will wait for autoneg to complete or 4.5 seconds to expire. */ 4008 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { 4009 /* Read the MII Status Register and wait for Auto-Neg 4010 * Complete bit to be set. 4011 */ 4012 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { 4013 DEBUGOUT("PHY Read Error\n"); 4014 return -E1000_ERR_PHY; 4015 } 4016 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { 4017 DEBUGOUT("PHY Read Error\n"); 4018 return -E1000_ERR_PHY; 4019 } 4020 if (phy_data & MII_SR_AUTONEG_COMPLETE) { 4021 DEBUGOUT("Auto-Neg complete.\n"); 4022 return 0; 4023 } 4024 mdelay(100); 4025 } 4026 DEBUGOUT("Auto-Neg timedout.\n"); 4027 return -E1000_ERR_TIMEOUT; 4028 } 4029 4030 /****************************************************************************** 4031 * Raises the Management Data Clock 4032 * 4033 * hw - Struct containing variables accessed by shared code 4034 * ctrl - Device control register's current value 4035 ******************************************************************************/ 4036 static void 4037 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) 4038 { 4039 /* Raise the clock input to the Management Data Clock (by setting the MDC 4040 * bit), and then delay 2 microseconds. 4041 */ 4042 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); 4043 E1000_WRITE_FLUSH(hw); 4044 udelay(2); 4045 } 4046 4047 /****************************************************************************** 4048 * Lowers the Management Data Clock 4049 * 4050 * hw - Struct containing variables accessed by shared code 4051 * ctrl - Device control register's current value 4052 ******************************************************************************/ 4053 static void 4054 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) 4055 { 4056 /* Lower the clock input to the Management Data Clock (by clearing the MDC 4057 * bit), and then delay 2 microseconds. 4058 */ 4059 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); 4060 E1000_WRITE_FLUSH(hw); 4061 udelay(2); 4062 } 4063 4064 /****************************************************************************** 4065 * Shifts data bits out to the PHY 4066 * 4067 * hw - Struct containing variables accessed by shared code 4068 * data - Data to send out to the PHY 4069 * count - Number of bits to shift out 4070 * 4071 * Bits are shifted out in MSB to LSB order. 4072 ******************************************************************************/ 4073 static void 4074 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) 4075 { 4076 uint32_t ctrl; 4077 uint32_t mask; 4078 4079 /* We need to shift "count" number of bits out to the PHY. So, the value 4080 * in the "data" parameter will be shifted out to the PHY one bit at a 4081 * time. In order to do this, "data" must be broken down into bits. 4082 */ 4083 mask = 0x01; 4084 mask <<= (count - 1); 4085 4086 ctrl = E1000_READ_REG(hw, CTRL); 4087 4088 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ 4089 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); 4090 4091 while (mask) { 4092 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and 4093 * then raising and lowering the Management Data Clock. A "0" is 4094 * shifted out to the PHY by setting the MDIO bit to "0" and then 4095 * raising and lowering the clock. 4096 */ 4097 if (data & mask) 4098 ctrl |= E1000_CTRL_MDIO; 4099 else 4100 ctrl &= ~E1000_CTRL_MDIO; 4101 4102 E1000_WRITE_REG(hw, CTRL, ctrl); 4103 E1000_WRITE_FLUSH(hw); 4104 4105 udelay(2); 4106 4107 e1000_raise_mdi_clk(hw, &ctrl); 4108 e1000_lower_mdi_clk(hw, &ctrl); 4109 4110 mask = mask >> 1; 4111 } 4112 } 4113 4114 /****************************************************************************** 4115 * Shifts data bits in from the PHY 4116 * 4117 * hw - Struct containing variables accessed by shared code 4118 * 4119 * Bits are shifted in in MSB to LSB order. 4120 ******************************************************************************/ 4121 static uint16_t 4122 e1000_shift_in_mdi_bits(struct e1000_hw *hw) 4123 { 4124 uint32_t ctrl; 4125 uint16_t data = 0; 4126 uint8_t i; 4127 4128 /* In order to read a register from the PHY, we need to shift in a total 4129 * of 18 bits from the PHY. The first two bit (turnaround) times are used 4130 * to avoid contention on the MDIO pin when a read operation is performed. 4131 * These two bits are ignored by us and thrown away. Bits are "shifted in" 4132 * by raising the input to the Management Data Clock (setting the MDC bit), 4133 * and then reading the value of the MDIO bit. 4134 */ 4135 ctrl = E1000_READ_REG(hw, CTRL); 4136 4137 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ 4138 ctrl &= ~E1000_CTRL_MDIO_DIR; 4139 ctrl &= ~E1000_CTRL_MDIO; 4140 4141 E1000_WRITE_REG(hw, CTRL, ctrl); 4142 E1000_WRITE_FLUSH(hw); 4143 4144 /* Raise and Lower the clock before reading in the data. This accounts for 4145 * the turnaround bits. The first clock occurred when we clocked out the 4146 * last bit of the Register Address. 4147 */ 4148 e1000_raise_mdi_clk(hw, &ctrl); 4149 e1000_lower_mdi_clk(hw, &ctrl); 4150 4151 for (data = 0, i = 0; i < 16; i++) { 4152 data = data << 1; 4153 e1000_raise_mdi_clk(hw, &ctrl); 4154 ctrl = E1000_READ_REG(hw, CTRL); 4155 /* Check to see if we shifted in a "1". */ 4156 if (ctrl & E1000_CTRL_MDIO) 4157 data |= 1; 4158 e1000_lower_mdi_clk(hw, &ctrl); 4159 } 4160 4161 e1000_raise_mdi_clk(hw, &ctrl); 4162 e1000_lower_mdi_clk(hw, &ctrl); 4163 4164 return data; 4165 } 4166 4167 /***************************************************************************** 4168 * Reads the value from a PHY register 4169 * 4170 * hw - Struct containing variables accessed by shared code 4171 * reg_addr - address of the PHY register to read 4172 ******************************************************************************/ 4173 static int 4174 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) 4175 { 4176 uint32_t i; 4177 uint32_t mdic = 0; 4178 const uint32_t phy_addr = 1; 4179 4180 if (reg_addr > MAX_PHY_REG_ADDRESS) { 4181 DEBUGOUT("PHY Address %d is out of range\n", reg_addr); 4182 return -E1000_ERR_PARAM; 4183 } 4184 4185 if (hw->mac_type > e1000_82543) { 4186 /* Set up Op-code, Phy Address, and register address in the MDI 4187 * Control register. The MAC will take care of interfacing with the 4188 * PHY to retrieve the desired data. 4189 */ 4190 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | 4191 (phy_addr << E1000_MDIC_PHY_SHIFT) | 4192 (E1000_MDIC_OP_READ)); 4193 4194 E1000_WRITE_REG(hw, MDIC, mdic); 4195 4196 /* Poll the ready bit to see if the MDI read completed */ 4197 for (i = 0; i < 64; i++) { 4198 udelay(10); 4199 mdic = E1000_READ_REG(hw, MDIC); 4200 if (mdic & E1000_MDIC_READY) 4201 break; 4202 } 4203 if (!(mdic & E1000_MDIC_READY)) { 4204 DEBUGOUT("MDI Read did not complete\n"); 4205 return -E1000_ERR_PHY; 4206 } 4207 if (mdic & E1000_MDIC_ERROR) { 4208 DEBUGOUT("MDI Error\n"); 4209 return -E1000_ERR_PHY; 4210 } 4211 *phy_data = (uint16_t) mdic; 4212 } else { 4213 /* We must first send a preamble through the MDIO pin to signal the 4214 * beginning of an MII instruction. This is done by sending 32 4215 * consecutive "1" bits. 4216 */ 4217 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); 4218 4219 /* Now combine the next few fields that are required for a read 4220 * operation. We use this method instead of calling the 4221 * e1000_shift_out_mdi_bits routine five different times. The format of 4222 * a MII read instruction consists of a shift out of 14 bits and is 4223 * defined as follows: 4224 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> 4225 * followed by a shift in of 18 bits. This first two bits shifted in 4226 * are TurnAround bits used to avoid contention on the MDIO pin when a 4227 * READ operation is performed. These two bits are thrown away 4228 * followed by a shift in of 16 bits which contains the desired data. 4229 */ 4230 mdic = ((reg_addr) | (phy_addr << 5) | 4231 (PHY_OP_READ << 10) | (PHY_SOF << 12)); 4232 4233 e1000_shift_out_mdi_bits(hw, mdic, 14); 4234 4235 /* Now that we've shifted out the read command to the MII, we need to 4236 * "shift in" the 16-bit value (18 total bits) of the requested PHY 4237 * register address. 4238 */ 4239 *phy_data = e1000_shift_in_mdi_bits(hw); 4240 } 4241 return 0; 4242 } 4243 4244 /****************************************************************************** 4245 * Writes a value to a PHY register 4246 * 4247 * hw - Struct containing variables accessed by shared code 4248 * reg_addr - address of the PHY register to write 4249 * data - data to write to the PHY 4250 ******************************************************************************/ 4251 static int 4252 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) 4253 { 4254 uint32_t i; 4255 uint32_t mdic = 0; 4256 const uint32_t phy_addr = 1; 4257 4258 if (reg_addr > MAX_PHY_REG_ADDRESS) { 4259 DEBUGOUT("PHY Address %d is out of range\n", reg_addr); 4260 return -E1000_ERR_PARAM; 4261 } 4262 4263 if (hw->mac_type > e1000_82543) { 4264 /* Set up Op-code, Phy Address, register address, and data intended 4265 * for the PHY register in the MDI Control register. The MAC will take 4266 * care of interfacing with the PHY to send the desired data. 4267 */ 4268 mdic = (((uint32_t) phy_data) | 4269 (reg_addr << E1000_MDIC_REG_SHIFT) | 4270 (phy_addr << E1000_MDIC_PHY_SHIFT) | 4271 (E1000_MDIC_OP_WRITE)); 4272 4273 E1000_WRITE_REG(hw, MDIC, mdic); 4274 4275 /* Poll the ready bit to see if the MDI read completed */ 4276 for (i = 0; i < 64; i++) { 4277 udelay(10); 4278 mdic = E1000_READ_REG(hw, MDIC); 4279 if (mdic & E1000_MDIC_READY) 4280 break; 4281 } 4282 if (!(mdic & E1000_MDIC_READY)) { 4283 DEBUGOUT("MDI Write did not complete\n"); 4284 return -E1000_ERR_PHY; 4285 } 4286 } else { 4287 /* We'll need to use the SW defined pins to shift the write command 4288 * out to the PHY. We first send a preamble to the PHY to signal the 4289 * beginning of the MII instruction. This is done by sending 32 4290 * consecutive "1" bits. 4291 */ 4292 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); 4293 4294 /* Now combine the remaining required fields that will indicate a 4295 * write operation. We use this method instead of calling the 4296 * e1000_shift_out_mdi_bits routine for each field in the command. The 4297 * format of a MII write instruction is as follows: 4298 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. 4299 */ 4300 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | 4301 (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); 4302 mdic <<= 16; 4303 mdic |= (uint32_t) phy_data; 4304 4305 e1000_shift_out_mdi_bits(hw, mdic, 32); 4306 } 4307 return 0; 4308 } 4309 4310 /****************************************************************************** 4311 * Checks if PHY reset is blocked due to SOL/IDER session, for example. 4312 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to 4313 * the caller to figure out how to deal with it. 4314 * 4315 * hw - Struct containing variables accessed by shared code 4316 * 4317 * returns: - E1000_BLK_PHY_RESET 4318 * E1000_SUCCESS 4319 * 4320 *****************************************************************************/ 4321 int32_t 4322 e1000_check_phy_reset_block(struct e1000_hw *hw) 4323 { 4324 uint32_t manc = 0; 4325 uint32_t fwsm = 0; 4326 4327 if (hw->mac_type == e1000_ich8lan) { 4328 fwsm = E1000_READ_REG(hw, FWSM); 4329 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS 4330 : E1000_BLK_PHY_RESET; 4331 } 4332 4333 if (hw->mac_type > e1000_82547_rev_2) 4334 manc = E1000_READ_REG(hw, MANC); 4335 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? 4336 E1000_BLK_PHY_RESET : E1000_SUCCESS; 4337 } 4338 4339 /*************************************************************************** 4340 * Checks if the PHY configuration is done 4341 * 4342 * hw: Struct containing variables accessed by shared code 4343 * 4344 * returns: - E1000_ERR_RESET if fail to reset MAC 4345 * E1000_SUCCESS at any other case. 4346 * 4347 ***************************************************************************/ 4348 static int32_t 4349 e1000_get_phy_cfg_done(struct e1000_hw *hw) 4350 { 4351 int32_t timeout = PHY_CFG_TIMEOUT; 4352 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; 4353 4354 DEBUGFUNC(); 4355 4356 switch (hw->mac_type) { 4357 default: 4358 mdelay(10); 4359 break; 4360 4361 case e1000_80003es2lan: 4362 /* Separate *_CFG_DONE_* bit for each port */ 4363 if (e1000_is_second_port(hw)) 4364 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; 4365 /* Fall Through */ 4366 4367 case e1000_82571: 4368 case e1000_82572: 4369 case e1000_igb: 4370 while (timeout) { 4371 if (hw->mac_type == e1000_igb) { 4372 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask) 4373 break; 4374 } else { 4375 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) 4376 break; 4377 } 4378 mdelay(1); 4379 timeout--; 4380 } 4381 if (!timeout) { 4382 DEBUGOUT("MNG configuration cycle has not " 4383 "completed.\n"); 4384 return -E1000_ERR_RESET; 4385 } 4386 break; 4387 } 4388 4389 return E1000_SUCCESS; 4390 } 4391 4392 /****************************************************************************** 4393 * Returns the PHY to the power-on reset state 4394 * 4395 * hw - Struct containing variables accessed by shared code 4396 ******************************************************************************/ 4397 int32_t 4398 e1000_phy_hw_reset(struct e1000_hw *hw) 4399 { 4400 uint16_t swfw = E1000_SWFW_PHY0_SM; 4401 uint32_t ctrl, ctrl_ext; 4402 uint32_t led_ctrl; 4403 int32_t ret_val; 4404 4405 DEBUGFUNC(); 4406 4407 /* In the case of the phy reset being blocked, it's not an error, we 4408 * simply return success without performing the reset. */ 4409 ret_val = e1000_check_phy_reset_block(hw); 4410 if (ret_val) 4411 return E1000_SUCCESS; 4412 4413 DEBUGOUT("Resetting Phy...\n"); 4414 4415 if (hw->mac_type > e1000_82543) { 4416 if (e1000_is_second_port(hw)) 4417 swfw = E1000_SWFW_PHY1_SM; 4418 4419 if (e1000_swfw_sync_acquire(hw, swfw)) { 4420 DEBUGOUT("Unable to acquire swfw sync\n"); 4421 return -E1000_ERR_SWFW_SYNC; 4422 } 4423 4424 /* Read the device control register and assert the E1000_CTRL_PHY_RST 4425 * bit. Then, take it out of reset. 4426 */ 4427 ctrl = E1000_READ_REG(hw, CTRL); 4428 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); 4429 E1000_WRITE_FLUSH(hw); 4430 4431 if (hw->mac_type < e1000_82571) 4432 udelay(10); 4433 else 4434 udelay(100); 4435 4436 E1000_WRITE_REG(hw, CTRL, ctrl); 4437 E1000_WRITE_FLUSH(hw); 4438 4439 if (hw->mac_type >= e1000_82571) 4440 mdelay(10); 4441 } else { 4442 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR 4443 * bit to put the PHY into reset. Then, take it out of reset. 4444 */ 4445 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); 4446 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; 4447 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; 4448 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); 4449 E1000_WRITE_FLUSH(hw); 4450 mdelay(10); 4451 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; 4452 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); 4453 E1000_WRITE_FLUSH(hw); 4454 } 4455 udelay(150); 4456 4457 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { 4458 /* Configure activity LED after PHY reset */ 4459 led_ctrl = E1000_READ_REG(hw, LEDCTL); 4460 led_ctrl &= IGP_ACTIVITY_LED_MASK; 4461 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); 4462 E1000_WRITE_REG(hw, LEDCTL, led_ctrl); 4463 } 4464 4465 /* Wait for FW to finish PHY configuration. */ 4466 ret_val = e1000_get_phy_cfg_done(hw); 4467 if (ret_val != E1000_SUCCESS) 4468 return ret_val; 4469 4470 return ret_val; 4471 } 4472 4473 /****************************************************************************** 4474 * IGP phy init script - initializes the GbE PHY 4475 * 4476 * hw - Struct containing variables accessed by shared code 4477 *****************************************************************************/ 4478 static void 4479 e1000_phy_init_script(struct e1000_hw *hw) 4480 { 4481 uint32_t ret_val; 4482 uint16_t phy_saved_data; 4483 DEBUGFUNC(); 4484 4485 if (hw->phy_init_script) { 4486 mdelay(20); 4487 4488 /* Save off the current value of register 0x2F5B to be 4489 * restored at the end of this routine. */ 4490 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); 4491 4492 /* Disabled the PHY transmitter */ 4493 e1000_write_phy_reg(hw, 0x2F5B, 0x0003); 4494 4495 mdelay(20); 4496 4497 e1000_write_phy_reg(hw, 0x0000, 0x0140); 4498 4499 mdelay(5); 4500 4501 switch (hw->mac_type) { 4502 case e1000_82541: 4503 case e1000_82547: 4504 e1000_write_phy_reg(hw, 0x1F95, 0x0001); 4505 4506 e1000_write_phy_reg(hw, 0x1F71, 0xBD21); 4507 4508 e1000_write_phy_reg(hw, 0x1F79, 0x0018); 4509 4510 e1000_write_phy_reg(hw, 0x1F30, 0x1600); 4511 4512 e1000_write_phy_reg(hw, 0x1F31, 0x0014); 4513 4514 e1000_write_phy_reg(hw, 0x1F32, 0x161C); 4515 4516 e1000_write_phy_reg(hw, 0x1F94, 0x0003); 4517 4518 e1000_write_phy_reg(hw, 0x1F96, 0x003F); 4519 4520 e1000_write_phy_reg(hw, 0x2010, 0x0008); 4521 break; 4522 4523 case e1000_82541_rev_2: 4524 case e1000_82547_rev_2: 4525 e1000_write_phy_reg(hw, 0x1F73, 0x0099); 4526 break; 4527 default: 4528 break; 4529 } 4530 4531 e1000_write_phy_reg(hw, 0x0000, 0x3300); 4532 4533 mdelay(20); 4534 4535 /* Now enable the transmitter */ 4536 if (!ret_val) 4537 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); 4538 4539 if (hw->mac_type == e1000_82547) { 4540 uint16_t fused, fine, coarse; 4541 4542 /* Move to analog registers page */ 4543 e1000_read_phy_reg(hw, 4544 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); 4545 4546 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { 4547 e1000_read_phy_reg(hw, 4548 IGP01E1000_ANALOG_FUSE_STATUS, &fused); 4549 4550 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; 4551 coarse = fused 4552 & IGP01E1000_ANALOG_FUSE_COARSE_MASK; 4553 4554 if (coarse > 4555 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { 4556 coarse -= 4557 IGP01E1000_ANALOG_FUSE_COARSE_10; 4558 fine -= IGP01E1000_ANALOG_FUSE_FINE_1; 4559 } else if (coarse 4560 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) 4561 fine -= IGP01E1000_ANALOG_FUSE_FINE_10; 4562 4563 fused = (fused 4564 & IGP01E1000_ANALOG_FUSE_POLY_MASK) | 4565 (fine 4566 & IGP01E1000_ANALOG_FUSE_FINE_MASK) | 4567 (coarse 4568 & IGP01E1000_ANALOG_FUSE_COARSE_MASK); 4569 4570 e1000_write_phy_reg(hw, 4571 IGP01E1000_ANALOG_FUSE_CONTROL, fused); 4572 e1000_write_phy_reg(hw, 4573 IGP01E1000_ANALOG_FUSE_BYPASS, 4574 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); 4575 } 4576 } 4577 } 4578 } 4579 4580 /****************************************************************************** 4581 * Resets the PHY 4582 * 4583 * hw - Struct containing variables accessed by shared code 4584 * 4585 * Sets bit 15 of the MII Control register 4586 ******************************************************************************/ 4587 int32_t 4588 e1000_phy_reset(struct e1000_hw *hw) 4589 { 4590 int32_t ret_val; 4591 uint16_t phy_data; 4592 4593 DEBUGFUNC(); 4594 4595 /* In the case of the phy reset being blocked, it's not an error, we 4596 * simply return success without performing the reset. */ 4597 ret_val = e1000_check_phy_reset_block(hw); 4598 if (ret_val) 4599 return E1000_SUCCESS; 4600 4601 switch (hw->phy_type) { 4602 case e1000_phy_igp: 4603 case e1000_phy_igp_2: 4604 case e1000_phy_igp_3: 4605 case e1000_phy_ife: 4606 case e1000_phy_igb: 4607 ret_val = e1000_phy_hw_reset(hw); 4608 if (ret_val) 4609 return ret_val; 4610 break; 4611 default: 4612 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); 4613 if (ret_val) 4614 return ret_val; 4615 4616 phy_data |= MII_CR_RESET; 4617 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); 4618 if (ret_val) 4619 return ret_val; 4620 4621 udelay(1); 4622 break; 4623 } 4624 4625 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) 4626 e1000_phy_init_script(hw); 4627 4628 return E1000_SUCCESS; 4629 } 4630 4631 static int e1000_set_phy_type (struct e1000_hw *hw) 4632 { 4633 DEBUGFUNC (); 4634 4635 if (hw->mac_type == e1000_undefined) 4636 return -E1000_ERR_PHY_TYPE; 4637 4638 switch (hw->phy_id) { 4639 case M88E1000_E_PHY_ID: 4640 case M88E1000_I_PHY_ID: 4641 case M88E1011_I_PHY_ID: 4642 case M88E1111_I_PHY_ID: 4643 hw->phy_type = e1000_phy_m88; 4644 break; 4645 case IGP01E1000_I_PHY_ID: 4646 if (hw->mac_type == e1000_82541 || 4647 hw->mac_type == e1000_82541_rev_2 || 4648 hw->mac_type == e1000_82547 || 4649 hw->mac_type == e1000_82547_rev_2) { 4650 hw->phy_type = e1000_phy_igp; 4651 break; 4652 } 4653 case IGP03E1000_E_PHY_ID: 4654 hw->phy_type = e1000_phy_igp_3; 4655 break; 4656 case IFE_E_PHY_ID: 4657 case IFE_PLUS_E_PHY_ID: 4658 case IFE_C_E_PHY_ID: 4659 hw->phy_type = e1000_phy_ife; 4660 break; 4661 case GG82563_E_PHY_ID: 4662 if (hw->mac_type == e1000_80003es2lan) { 4663 hw->phy_type = e1000_phy_gg82563; 4664 break; 4665 } 4666 case BME1000_E_PHY_ID: 4667 hw->phy_type = e1000_phy_bm; 4668 break; 4669 case I210_I_PHY_ID: 4670 hw->phy_type = e1000_phy_igb; 4671 break; 4672 /* Fall Through */ 4673 default: 4674 /* Should never have loaded on this device */ 4675 hw->phy_type = e1000_phy_undefined; 4676 return -E1000_ERR_PHY_TYPE; 4677 } 4678 4679 return E1000_SUCCESS; 4680 } 4681 4682 /****************************************************************************** 4683 * Probes the expected PHY address for known PHY IDs 4684 * 4685 * hw - Struct containing variables accessed by shared code 4686 ******************************************************************************/ 4687 static int32_t 4688 e1000_detect_gig_phy(struct e1000_hw *hw) 4689 { 4690 int32_t phy_init_status, ret_val; 4691 uint16_t phy_id_high, phy_id_low; 4692 bool match = false; 4693 4694 DEBUGFUNC(); 4695 4696 /* The 82571 firmware may still be configuring the PHY. In this 4697 * case, we cannot access the PHY until the configuration is done. So 4698 * we explicitly set the PHY values. */ 4699 if (hw->mac_type == e1000_82571 || 4700 hw->mac_type == e1000_82572) { 4701 hw->phy_id = IGP01E1000_I_PHY_ID; 4702 hw->phy_type = e1000_phy_igp_2; 4703 return E1000_SUCCESS; 4704 } 4705 4706 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a 4707 * work- around that forces PHY page 0 to be set or the reads fail. 4708 * The rest of the code in this routine uses e1000_read_phy_reg to 4709 * read the PHY ID. So for ESB-2 we need to have this set so our 4710 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563, 4711 * the routines below will figure this out as well. */ 4712 if (hw->mac_type == e1000_80003es2lan) 4713 hw->phy_type = e1000_phy_gg82563; 4714 4715 /* Read the PHY ID Registers to identify which PHY is onboard. */ 4716 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); 4717 if (ret_val) 4718 return ret_val; 4719 4720 hw->phy_id = (uint32_t) (phy_id_high << 16); 4721 udelay(20); 4722 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); 4723 if (ret_val) 4724 return ret_val; 4725 4726 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); 4727 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; 4728 4729 switch (hw->mac_type) { 4730 case e1000_82543: 4731 if (hw->phy_id == M88E1000_E_PHY_ID) 4732 match = true; 4733 break; 4734 case e1000_82544: 4735 if (hw->phy_id == M88E1000_I_PHY_ID) 4736 match = true; 4737 break; 4738 case e1000_82540: 4739 case e1000_82545: 4740 case e1000_82545_rev_3: 4741 case e1000_82546: 4742 case e1000_82546_rev_3: 4743 if (hw->phy_id == M88E1011_I_PHY_ID) 4744 match = true; 4745 break; 4746 case e1000_82541: 4747 case e1000_82541_rev_2: 4748 case e1000_82547: 4749 case e1000_82547_rev_2: 4750 if(hw->phy_id == IGP01E1000_I_PHY_ID) 4751 match = true; 4752 4753 break; 4754 case e1000_82573: 4755 if (hw->phy_id == M88E1111_I_PHY_ID) 4756 match = true; 4757 break; 4758 case e1000_82574: 4759 if (hw->phy_id == BME1000_E_PHY_ID) 4760 match = true; 4761 break; 4762 case e1000_80003es2lan: 4763 if (hw->phy_id == GG82563_E_PHY_ID) 4764 match = true; 4765 break; 4766 case e1000_ich8lan: 4767 if (hw->phy_id == IGP03E1000_E_PHY_ID) 4768 match = true; 4769 if (hw->phy_id == IFE_E_PHY_ID) 4770 match = true; 4771 if (hw->phy_id == IFE_PLUS_E_PHY_ID) 4772 match = true; 4773 if (hw->phy_id == IFE_C_E_PHY_ID) 4774 match = true; 4775 break; 4776 case e1000_igb: 4777 if (hw->phy_id == I210_I_PHY_ID) 4778 match = true; 4779 break; 4780 default: 4781 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); 4782 return -E1000_ERR_CONFIG; 4783 } 4784 4785 phy_init_status = e1000_set_phy_type(hw); 4786 4787 if ((match) && (phy_init_status == E1000_SUCCESS)) { 4788 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); 4789 return 0; 4790 } 4791 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); 4792 return -E1000_ERR_PHY; 4793 } 4794 4795 /***************************************************************************** 4796 * Set media type and TBI compatibility. 4797 * 4798 * hw - Struct containing variables accessed by shared code 4799 * **************************************************************************/ 4800 void 4801 e1000_set_media_type(struct e1000_hw *hw) 4802 { 4803 uint32_t status; 4804 4805 DEBUGFUNC(); 4806 4807 if (hw->mac_type != e1000_82543) { 4808 /* tbi_compatibility is only valid on 82543 */ 4809 hw->tbi_compatibility_en = false; 4810 } 4811 4812 switch (hw->device_id) { 4813 case E1000_DEV_ID_82545GM_SERDES: 4814 case E1000_DEV_ID_82546GB_SERDES: 4815 case E1000_DEV_ID_82571EB_SERDES: 4816 case E1000_DEV_ID_82571EB_SERDES_DUAL: 4817 case E1000_DEV_ID_82571EB_SERDES_QUAD: 4818 case E1000_DEV_ID_82572EI_SERDES: 4819 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 4820 hw->media_type = e1000_media_type_internal_serdes; 4821 break; 4822 default: 4823 switch (hw->mac_type) { 4824 case e1000_82542_rev2_0: 4825 case e1000_82542_rev2_1: 4826 hw->media_type = e1000_media_type_fiber; 4827 break; 4828 case e1000_ich8lan: 4829 case e1000_82573: 4830 case e1000_82574: 4831 case e1000_igb: 4832 /* The STATUS_TBIMODE bit is reserved or reused 4833 * for the this device. 4834 */ 4835 hw->media_type = e1000_media_type_copper; 4836 break; 4837 default: 4838 status = E1000_READ_REG(hw, STATUS); 4839 if (status & E1000_STATUS_TBIMODE) { 4840 hw->media_type = e1000_media_type_fiber; 4841 /* tbi_compatibility not valid on fiber */ 4842 hw->tbi_compatibility_en = false; 4843 } else { 4844 hw->media_type = e1000_media_type_copper; 4845 } 4846 break; 4847 } 4848 } 4849 } 4850 4851 /** 4852 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 4853 * 4854 * e1000_sw_init initializes the Adapter private data structure. 4855 * Fields are initialized based on PCI device information and 4856 * OS network device settings (MTU size). 4857 **/ 4858 4859 static int 4860 e1000_sw_init(struct eth_device *nic) 4861 { 4862 struct e1000_hw *hw = (typeof(hw)) nic->priv; 4863 int result; 4864 4865 /* PCI config space info */ 4866 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); 4867 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); 4868 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, 4869 &hw->subsystem_vendor_id); 4870 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); 4871 4872 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); 4873 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); 4874 4875 /* identify the MAC */ 4876 result = e1000_set_mac_type(hw); 4877 if (result) { 4878 E1000_ERR(hw->nic, "Unknown MAC Type\n"); 4879 return result; 4880 } 4881 4882 switch (hw->mac_type) { 4883 default: 4884 break; 4885 case e1000_82541: 4886 case e1000_82547: 4887 case e1000_82541_rev_2: 4888 case e1000_82547_rev_2: 4889 hw->phy_init_script = 1; 4890 break; 4891 } 4892 4893 /* flow control settings */ 4894 hw->fc_high_water = E1000_FC_HIGH_THRESH; 4895 hw->fc_low_water = E1000_FC_LOW_THRESH; 4896 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 4897 hw->fc_send_xon = 1; 4898 4899 /* Media type - copper or fiber */ 4900 hw->tbi_compatibility_en = true; 4901 e1000_set_media_type(hw); 4902 4903 if (hw->mac_type >= e1000_82543) { 4904 uint32_t status = E1000_READ_REG(hw, STATUS); 4905 4906 if (status & E1000_STATUS_TBIMODE) { 4907 DEBUGOUT("fiber interface\n"); 4908 hw->media_type = e1000_media_type_fiber; 4909 } else { 4910 DEBUGOUT("copper interface\n"); 4911 hw->media_type = e1000_media_type_copper; 4912 } 4913 } else { 4914 hw->media_type = e1000_media_type_fiber; 4915 } 4916 4917 hw->wait_autoneg_complete = true; 4918 if (hw->mac_type < e1000_82543) 4919 hw->report_tx_early = 0; 4920 else 4921 hw->report_tx_early = 1; 4922 4923 return E1000_SUCCESS; 4924 } 4925 4926 void 4927 fill_rx(struct e1000_hw *hw) 4928 { 4929 struct e1000_rx_desc *rd; 4930 unsigned long flush_start, flush_end; 4931 4932 rx_last = rx_tail; 4933 rd = rx_base + rx_tail; 4934 rx_tail = (rx_tail + 1) % 8; 4935 memset(rd, 0, 16); 4936 rd->buffer_addr = cpu_to_le64((unsigned long)packet); 4937 4938 /* 4939 * Make sure there are no stale data in WB over this area, which 4940 * might get written into the memory while the e1000 also writes 4941 * into the same memory area. 4942 */ 4943 invalidate_dcache_range((unsigned long)packet, 4944 (unsigned long)packet + 4096); 4945 /* Dump the DMA descriptor into RAM. */ 4946 flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1); 4947 flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN); 4948 flush_dcache_range(flush_start, flush_end); 4949 4950 E1000_WRITE_REG(hw, RDT, rx_tail); 4951 } 4952 4953 /** 4954 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 4955 * @adapter: board private structure 4956 * 4957 * Configure the Tx unit of the MAC after a reset. 4958 **/ 4959 4960 static void 4961 e1000_configure_tx(struct e1000_hw *hw) 4962 { 4963 unsigned long tctl; 4964 unsigned long tipg, tarc; 4965 uint32_t ipgr1, ipgr2; 4966 4967 E1000_WRITE_REG(hw, TDBAL, (unsigned long)tx_base); 4968 E1000_WRITE_REG(hw, TDBAH, 0); 4969 4970 E1000_WRITE_REG(hw, TDLEN, 128); 4971 4972 /* Setup the HW Tx Head and Tail descriptor pointers */ 4973 E1000_WRITE_REG(hw, TDH, 0); 4974 E1000_WRITE_REG(hw, TDT, 0); 4975 tx_tail = 0; 4976 4977 /* Set the default values for the Tx Inter Packet Gap timer */ 4978 if (hw->mac_type <= e1000_82547_rev_2 && 4979 (hw->media_type == e1000_media_type_fiber || 4980 hw->media_type == e1000_media_type_internal_serdes)) 4981 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 4982 else 4983 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 4984 4985 /* Set the default values for the Tx Inter Packet Gap timer */ 4986 switch (hw->mac_type) { 4987 case e1000_82542_rev2_0: 4988 case e1000_82542_rev2_1: 4989 tipg = DEFAULT_82542_TIPG_IPGT; 4990 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 4991 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 4992 break; 4993 case e1000_80003es2lan: 4994 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 4995 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; 4996 break; 4997 default: 4998 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 4999 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 5000 break; 5001 } 5002 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 5003 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 5004 E1000_WRITE_REG(hw, TIPG, tipg); 5005 /* Program the Transmit Control Register */ 5006 tctl = E1000_READ_REG(hw, TCTL); 5007 tctl &= ~E1000_TCTL_CT; 5008 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | 5009 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 5010 5011 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { 5012 tarc = E1000_READ_REG(hw, TARC0); 5013 /* set the speed mode bit, we'll clear it if we're not at 5014 * gigabit link later */ 5015 /* git bit can be set to 1*/ 5016 } else if (hw->mac_type == e1000_80003es2lan) { 5017 tarc = E1000_READ_REG(hw, TARC0); 5018 tarc |= 1; 5019 E1000_WRITE_REG(hw, TARC0, tarc); 5020 tarc = E1000_READ_REG(hw, TARC1); 5021 tarc |= 1; 5022 E1000_WRITE_REG(hw, TARC1, tarc); 5023 } 5024 5025 5026 e1000_config_collision_dist(hw); 5027 /* Setup Transmit Descriptor Settings for eop descriptor */ 5028 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 5029 5030 /* Need to set up RS bit */ 5031 if (hw->mac_type < e1000_82543) 5032 hw->txd_cmd |= E1000_TXD_CMD_RPS; 5033 else 5034 hw->txd_cmd |= E1000_TXD_CMD_RS; 5035 5036 5037 if (hw->mac_type == e1000_igb) { 5038 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10); 5039 5040 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL); 5041 reg_txdctl |= 1 << 25; 5042 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); 5043 mdelay(20); 5044 } 5045 5046 5047 5048 E1000_WRITE_REG(hw, TCTL, tctl); 5049 5050 5051 } 5052 5053 /** 5054 * e1000_setup_rctl - configure the receive control register 5055 * @adapter: Board private structure 5056 **/ 5057 static void 5058 e1000_setup_rctl(struct e1000_hw *hw) 5059 { 5060 uint32_t rctl; 5061 5062 rctl = E1000_READ_REG(hw, RCTL); 5063 5064 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 5065 5066 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO 5067 | E1000_RCTL_RDMTS_HALF; /* | 5068 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ 5069 5070 if (hw->tbi_compatibility_on == 1) 5071 rctl |= E1000_RCTL_SBP; 5072 else 5073 rctl &= ~E1000_RCTL_SBP; 5074 5075 rctl &= ~(E1000_RCTL_SZ_4096); 5076 rctl |= E1000_RCTL_SZ_2048; 5077 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); 5078 E1000_WRITE_REG(hw, RCTL, rctl); 5079 } 5080 5081 /** 5082 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 5083 * @adapter: board private structure 5084 * 5085 * Configure the Rx unit of the MAC after a reset. 5086 **/ 5087 static void 5088 e1000_configure_rx(struct e1000_hw *hw) 5089 { 5090 unsigned long rctl, ctrl_ext; 5091 rx_tail = 0; 5092 /* make sure receives are disabled while setting up the descriptors */ 5093 rctl = E1000_READ_REG(hw, RCTL); 5094 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); 5095 if (hw->mac_type >= e1000_82540) { 5096 /* Set the interrupt throttling rate. Value is calculated 5097 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ 5098 #define MAX_INTS_PER_SEC 8000 5099 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) 5100 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); 5101 } 5102 5103 if (hw->mac_type >= e1000_82571) { 5104 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); 5105 /* Reset delay timers after every interrupt */ 5106 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; 5107 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); 5108 E1000_WRITE_FLUSH(hw); 5109 } 5110 /* Setup the Base and Length of the Rx Descriptor Ring */ 5111 E1000_WRITE_REG(hw, RDBAL, (unsigned long)rx_base); 5112 E1000_WRITE_REG(hw, RDBAH, 0); 5113 5114 E1000_WRITE_REG(hw, RDLEN, 128); 5115 5116 /* Setup the HW Rx Head and Tail Descriptor Pointers */ 5117 E1000_WRITE_REG(hw, RDH, 0); 5118 E1000_WRITE_REG(hw, RDT, 0); 5119 /* Enable Receives */ 5120 5121 if (hw->mac_type == e1000_igb) { 5122 5123 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL); 5124 reg_rxdctl |= 1 << 25; 5125 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl); 5126 mdelay(20); 5127 } 5128 5129 E1000_WRITE_REG(hw, RCTL, rctl); 5130 5131 fill_rx(hw); 5132 } 5133 5134 /************************************************************************** 5135 POLL - Wait for a frame 5136 ***************************************************************************/ 5137 static int 5138 e1000_poll(struct eth_device *nic) 5139 { 5140 struct e1000_hw *hw = nic->priv; 5141 struct e1000_rx_desc *rd; 5142 unsigned long inval_start, inval_end; 5143 uint32_t len; 5144 5145 /* return true if there's an ethernet packet ready to read */ 5146 rd = rx_base + rx_last; 5147 5148 /* Re-load the descriptor from RAM. */ 5149 inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1); 5150 inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN); 5151 invalidate_dcache_range(inval_start, inval_end); 5152 5153 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) 5154 return 0; 5155 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */ 5156 /* Packet received, make sure the data are re-loaded from RAM. */ 5157 len = le32_to_cpu(rd->length); 5158 invalidate_dcache_range((unsigned long)packet, 5159 (unsigned long)packet + 5160 roundup(len, ARCH_DMA_MINALIGN)); 5161 NetReceive((uchar *)packet, len); 5162 fill_rx(hw); 5163 return 1; 5164 } 5165 5166 /************************************************************************** 5167 TRANSMIT - Transmit a frame 5168 ***************************************************************************/ 5169 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length) 5170 { 5171 void *nv_packet = (void *)txpacket; 5172 struct e1000_hw *hw = nic->priv; 5173 struct e1000_tx_desc *txp; 5174 int i = 0; 5175 unsigned long flush_start, flush_end; 5176 5177 txp = tx_base + tx_tail; 5178 tx_tail = (tx_tail + 1) % 8; 5179 5180 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet)); 5181 txp->lower.data = cpu_to_le32(hw->txd_cmd | length); 5182 txp->upper.data = 0; 5183 5184 /* Dump the packet into RAM so e1000 can pick them. */ 5185 flush_dcache_range((unsigned long)nv_packet, 5186 (unsigned long)nv_packet + 5187 roundup(length, ARCH_DMA_MINALIGN)); 5188 /* Dump the descriptor into RAM as well. */ 5189 flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1); 5190 flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN); 5191 flush_dcache_range(flush_start, flush_end); 5192 5193 E1000_WRITE_REG(hw, TDT, tx_tail); 5194 5195 E1000_WRITE_FLUSH(hw); 5196 while (1) { 5197 invalidate_dcache_range(flush_start, flush_end); 5198 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD) 5199 break; 5200 if (i++ > TOUT_LOOP) { 5201 DEBUGOUT("e1000: tx timeout\n"); 5202 return 0; 5203 } 5204 udelay(10); /* give the nic a chance to write to the register */ 5205 } 5206 return 1; 5207 } 5208 5209 /*reset function*/ 5210 static inline int 5211 e1000_reset(struct eth_device *nic) 5212 { 5213 struct e1000_hw *hw = nic->priv; 5214 5215 e1000_reset_hw(hw); 5216 if (hw->mac_type >= e1000_82544) { 5217 E1000_WRITE_REG(hw, WUC, 0); 5218 } 5219 return e1000_init_hw(nic); 5220 } 5221 5222 /************************************************************************** 5223 DISABLE - Turn off ethernet interface 5224 ***************************************************************************/ 5225 static void 5226 e1000_disable(struct eth_device *nic) 5227 { 5228 struct e1000_hw *hw = nic->priv; 5229 5230 /* Turn off the ethernet interface */ 5231 E1000_WRITE_REG(hw, RCTL, 0); 5232 E1000_WRITE_REG(hw, TCTL, 0); 5233 5234 /* Clear the transmit ring */ 5235 E1000_WRITE_REG(hw, TDH, 0); 5236 E1000_WRITE_REG(hw, TDT, 0); 5237 5238 /* Clear the receive ring */ 5239 E1000_WRITE_REG(hw, RDH, 0); 5240 E1000_WRITE_REG(hw, RDT, 0); 5241 5242 /* put the card in its initial state */ 5243 #if 0 5244 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST); 5245 #endif 5246 mdelay(10); 5247 5248 } 5249 5250 /************************************************************************** 5251 INIT - set up ethernet interface(s) 5252 ***************************************************************************/ 5253 static int 5254 e1000_init(struct eth_device *nic, bd_t * bis) 5255 { 5256 struct e1000_hw *hw = nic->priv; 5257 int ret_val = 0; 5258 5259 ret_val = e1000_reset(nic); 5260 if (ret_val < 0) { 5261 if ((ret_val == -E1000_ERR_NOLINK) || 5262 (ret_val == -E1000_ERR_TIMEOUT)) { 5263 E1000_ERR(hw->nic, "Valid Link not detected\n"); 5264 } else { 5265 E1000_ERR(hw->nic, "Hardware Initialization Failed\n"); 5266 } 5267 return 0; 5268 } 5269 e1000_configure_tx(hw); 5270 e1000_setup_rctl(hw); 5271 e1000_configure_rx(hw); 5272 return 1; 5273 } 5274 5275 /****************************************************************************** 5276 * Gets the current PCI bus type of hardware 5277 * 5278 * hw - Struct containing variables accessed by shared code 5279 *****************************************************************************/ 5280 void e1000_get_bus_type(struct e1000_hw *hw) 5281 { 5282 uint32_t status; 5283 5284 switch (hw->mac_type) { 5285 case e1000_82542_rev2_0: 5286 case e1000_82542_rev2_1: 5287 hw->bus_type = e1000_bus_type_pci; 5288 break; 5289 case e1000_82571: 5290 case e1000_82572: 5291 case e1000_82573: 5292 case e1000_82574: 5293 case e1000_80003es2lan: 5294 case e1000_ich8lan: 5295 case e1000_igb: 5296 hw->bus_type = e1000_bus_type_pci_express; 5297 break; 5298 default: 5299 status = E1000_READ_REG(hw, STATUS); 5300 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? 5301 e1000_bus_type_pcix : e1000_bus_type_pci; 5302 break; 5303 } 5304 } 5305 5306 /* A list of all registered e1000 devices */ 5307 static LIST_HEAD(e1000_hw_list); 5308 5309 /************************************************************************** 5310 PROBE - Look for an adapter, this routine's visible to the outside 5311 You should omit the last argument struct pci_device * for a non-PCI NIC 5312 ***************************************************************************/ 5313 int 5314 e1000_initialize(bd_t * bis) 5315 { 5316 unsigned int i; 5317 pci_dev_t devno; 5318 5319 DEBUGFUNC(); 5320 5321 /* Find and probe all the matching PCI devices */ 5322 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) { 5323 u32 val; 5324 5325 /* 5326 * These will never get freed due to errors, this allows us to 5327 * perform SPI EEPROM programming from U-boot, for example. 5328 */ 5329 struct eth_device *nic = malloc(sizeof(*nic)); 5330 struct e1000_hw *hw = malloc(sizeof(*hw)); 5331 if (!nic || !hw) { 5332 printf("e1000#%u: Out of Memory!\n", i); 5333 free(nic); 5334 free(hw); 5335 continue; 5336 } 5337 5338 /* Make sure all of the fields are initially zeroed */ 5339 memset(nic, 0, sizeof(*nic)); 5340 memset(hw, 0, sizeof(*hw)); 5341 5342 /* Assign the passed-in values */ 5343 hw->cardnum = i; 5344 hw->pdev = devno; 5345 hw->nic = nic; 5346 nic->priv = hw; 5347 5348 /* Generate a card name */ 5349 sprintf(nic->name, "e1000#%u", hw->cardnum); 5350 5351 /* Print a debug message with the IO base address */ 5352 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val); 5353 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0); 5354 5355 /* Try to enable I/O accesses and bus-mastering */ 5356 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER; 5357 pci_write_config_dword(devno, PCI_COMMAND, val); 5358 5359 /* Make sure it worked */ 5360 pci_read_config_dword(devno, PCI_COMMAND, &val); 5361 if (!(val & PCI_COMMAND_MEMORY)) { 5362 E1000_ERR(nic, "Can't enable I/O memory\n"); 5363 continue; 5364 } 5365 if (!(val & PCI_COMMAND_MASTER)) { 5366 E1000_ERR(nic, "Can't enable bus-mastering\n"); 5367 continue; 5368 } 5369 5370 /* Are these variables needed? */ 5371 hw->fc = e1000_fc_default; 5372 hw->original_fc = e1000_fc_default; 5373 hw->autoneg_failed = 0; 5374 hw->autoneg = 1; 5375 hw->get_link_status = true; 5376 #ifndef CONFIG_E1000_NO_NVM 5377 hw->eeprom_semaphore_present = true; 5378 #endif 5379 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0, 5380 PCI_REGION_MEM); 5381 hw->mac_type = e1000_undefined; 5382 5383 /* MAC and Phy settings */ 5384 if (e1000_sw_init(nic) < 0) { 5385 E1000_ERR(nic, "Software init failed\n"); 5386 continue; 5387 } 5388 if (e1000_check_phy_reset_block(hw)) 5389 E1000_ERR(nic, "PHY Reset is blocked!\n"); 5390 5391 /* Basic init was OK, reset the hardware and allow SPI access */ 5392 e1000_reset_hw(hw); 5393 list_add_tail(&hw->list_node, &e1000_hw_list); 5394 5395 #ifndef CONFIG_E1000_NO_NVM 5396 /* Validate the EEPROM and get chipset information */ 5397 #if !defined(CONFIG_MVBC_1G) 5398 if (e1000_init_eeprom_params(hw)) { 5399 E1000_ERR(nic, "EEPROM is invalid!\n"); 5400 continue; 5401 } 5402 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) && 5403 e1000_validate_eeprom_checksum(hw)) 5404 continue; 5405 #endif 5406 e1000_read_mac_addr(nic); 5407 #endif 5408 e1000_get_bus_type(hw); 5409 5410 #ifndef CONFIG_E1000_NO_NVM 5411 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ", 5412 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2], 5413 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]); 5414 #else 5415 memset(nic->enetaddr, 0, 6); 5416 printf("e1000: no NVM\n"); 5417 #endif 5418 5419 /* Set up the function pointers and register the device */ 5420 nic->init = e1000_init; 5421 nic->recv = e1000_poll; 5422 nic->send = e1000_transmit; 5423 nic->halt = e1000_disable; 5424 eth_register(nic); 5425 } 5426 5427 return i; 5428 } 5429 5430 struct e1000_hw *e1000_find_card(unsigned int cardnum) 5431 { 5432 struct e1000_hw *hw; 5433 5434 list_for_each_entry(hw, &e1000_hw_list, list_node) 5435 if (hw->cardnum == cardnum) 5436 return hw; 5437 5438 return NULL; 5439 } 5440 5441 #ifdef CONFIG_CMD_E1000 5442 static int do_e1000(cmd_tbl_t *cmdtp, int flag, 5443 int argc, char * const argv[]) 5444 { 5445 struct e1000_hw *hw; 5446 5447 if (argc < 3) { 5448 cmd_usage(cmdtp); 5449 return 1; 5450 } 5451 5452 /* Make sure we can find the requested e1000 card */ 5453 hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10)); 5454 if (!hw) { 5455 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]); 5456 return 1; 5457 } 5458 5459 if (!strcmp(argv[2], "print-mac-address")) { 5460 unsigned char *mac = hw->nic->enetaddr; 5461 printf("%02x:%02x:%02x:%02x:%02x:%02x\n", 5462 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); 5463 return 0; 5464 } 5465 5466 #ifdef CONFIG_E1000_SPI 5467 /* Handle the "SPI" subcommand */ 5468 if (!strcmp(argv[2], "spi")) 5469 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3); 5470 #endif 5471 5472 cmd_usage(cmdtp); 5473 return 1; 5474 } 5475 5476 U_BOOT_CMD( 5477 e1000, 7, 0, do_e1000, 5478 "Intel e1000 controller management", 5479 /* */"<card#> print-mac-address\n" 5480 #ifdef CONFIG_E1000_SPI 5481 "e1000 <card#> spi show [<offset> [<length>]]\n" 5482 "e1000 <card#> spi dump <addr> <offset> <length>\n" 5483 "e1000 <card#> spi program <addr> <offset> <length>\n" 5484 "e1000 <card#> spi checksum [update]\n" 5485 #endif 5486 " - Manage the Intel E1000 PCI device" 5487 ); 5488 #endif /* not CONFIG_CMD_E1000 */ 5489