xref: /openbmc/u-boot/drivers/net/e1000.c (revision efe2d80c)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12  * SPDX-License-Identifier:	GPL-2.0+
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include <common.h>
33 #include <dm.h>
34 #include <errno.h>
35 #include <memalign.h>
36 #include <pci.h>
37 #include "e1000.h"
38 
39 #define TOUT_LOOP   100000
40 
41 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
42 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
43 
44 #define E1000_DEFAULT_PCI_PBA	0x00000030
45 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
46 
47 /* NIC specific static variables go here */
48 
49 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
50 #define E1000_BUFFER_ALIGN	128
51 
52 /*
53  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
54  * Concurrent receiving on multiple active Ethernet devices will not work.
55  * Normally U-Boot does not support this anyway. To fix it in this driver,
56  * move these buffers and the tx/rx pointers to struct e1000_hw.
57  */
58 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
59 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
60 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
61 
62 static int tx_tail;
63 static int rx_tail, rx_last;
64 #ifdef CONFIG_DM_ETH
65 static int num_cards;	/* Number of E1000 devices seen so far */
66 #endif
67 
68 static struct pci_device_id e1000_supported[] = {
69 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
70 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
71 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
72 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
73 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
74 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
75 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
76 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
77 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
78 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
79 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
80 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
81 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
82 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
83 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
84 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
85 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
86 	/* E1000 PCIe card */
87 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
88 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
89 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
90 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
91 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
92 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
93 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
94 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
95 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
96 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
97 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
98 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
99 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
100 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
101 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
102 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
103 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
104 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
105 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
106 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
107 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
108 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
109 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
110 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
111 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
112 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
113 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
114 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
115 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
116 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
117 
118 	{}
119 };
120 
121 /* Function forward declarations */
122 static int e1000_setup_link(struct e1000_hw *hw);
123 static int e1000_setup_fiber_link(struct e1000_hw *hw);
124 static int e1000_setup_copper_link(struct e1000_hw *hw);
125 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
126 static void e1000_config_collision_dist(struct e1000_hw *hw);
127 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
128 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
129 static int e1000_check_for_link(struct e1000_hw *hw);
130 static int e1000_wait_autoneg(struct e1000_hw *hw);
131 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
132 				       uint16_t * duplex);
133 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
134 			      uint16_t * phy_data);
135 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
136 			       uint16_t phy_data);
137 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
138 static int e1000_phy_reset(struct e1000_hw *hw);
139 static int e1000_detect_gig_phy(struct e1000_hw *hw);
140 static void e1000_set_media_type(struct e1000_hw *hw);
141 
142 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
143 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
144 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
145 
146 #ifndef CONFIG_E1000_NO_NVM
147 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
148 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
149 		uint16_t words,
150 		uint16_t *data);
151 /******************************************************************************
152  * Raises the EEPROM's clock input.
153  *
154  * hw - Struct containing variables accessed by shared code
155  * eecd - EECD's current value
156  *****************************************************************************/
157 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
158 {
159 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
160 	 * wait 50 microseconds.
161 	 */
162 	*eecd = *eecd | E1000_EECD_SK;
163 	E1000_WRITE_REG(hw, EECD, *eecd);
164 	E1000_WRITE_FLUSH(hw);
165 	udelay(50);
166 }
167 
168 /******************************************************************************
169  * Lowers the EEPROM's clock input.
170  *
171  * hw - Struct containing variables accessed by shared code
172  * eecd - EECD's current value
173  *****************************************************************************/
174 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
175 {
176 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
177 	 * wait 50 microseconds.
178 	 */
179 	*eecd = *eecd & ~E1000_EECD_SK;
180 	E1000_WRITE_REG(hw, EECD, *eecd);
181 	E1000_WRITE_FLUSH(hw);
182 	udelay(50);
183 }
184 
185 /******************************************************************************
186  * Shift data bits out to the EEPROM.
187  *
188  * hw - Struct containing variables accessed by shared code
189  * data - data to send to the EEPROM
190  * count - number of bits to shift out
191  *****************************************************************************/
192 static void
193 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
194 {
195 	uint32_t eecd;
196 	uint32_t mask;
197 
198 	/* We need to shift "count" bits out to the EEPROM. So, value in the
199 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
200 	 * In order to do this, "data" must be broken down into bits.
201 	 */
202 	mask = 0x01 << (count - 1);
203 	eecd = E1000_READ_REG(hw, EECD);
204 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
205 	do {
206 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
207 		 * and then raising and then lowering the clock (the SK bit controls
208 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
209 		 * by setting "DI" to "0" and then raising and then lowering the clock.
210 		 */
211 		eecd &= ~E1000_EECD_DI;
212 
213 		if (data & mask)
214 			eecd |= E1000_EECD_DI;
215 
216 		E1000_WRITE_REG(hw, EECD, eecd);
217 		E1000_WRITE_FLUSH(hw);
218 
219 		udelay(50);
220 
221 		e1000_raise_ee_clk(hw, &eecd);
222 		e1000_lower_ee_clk(hw, &eecd);
223 
224 		mask = mask >> 1;
225 
226 	} while (mask);
227 
228 	/* We leave the "DI" bit set to "0" when we leave this routine. */
229 	eecd &= ~E1000_EECD_DI;
230 	E1000_WRITE_REG(hw, EECD, eecd);
231 }
232 
233 /******************************************************************************
234  * Shift data bits in from the EEPROM
235  *
236  * hw - Struct containing variables accessed by shared code
237  *****************************************************************************/
238 static uint16_t
239 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
240 {
241 	uint32_t eecd;
242 	uint32_t i;
243 	uint16_t data;
244 
245 	/* In order to read a register from the EEPROM, we need to shift 'count'
246 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
247 	 * input to the EEPROM (setting the SK bit), and then reading the
248 	 * value of the "DO" bit.  During this "shifting in" process the
249 	 * "DI" bit should always be clear.
250 	 */
251 
252 	eecd = E1000_READ_REG(hw, EECD);
253 
254 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
255 	data = 0;
256 
257 	for (i = 0; i < count; i++) {
258 		data = data << 1;
259 		e1000_raise_ee_clk(hw, &eecd);
260 
261 		eecd = E1000_READ_REG(hw, EECD);
262 
263 		eecd &= ~(E1000_EECD_DI);
264 		if (eecd & E1000_EECD_DO)
265 			data |= 1;
266 
267 		e1000_lower_ee_clk(hw, &eecd);
268 	}
269 
270 	return data;
271 }
272 
273 /******************************************************************************
274  * Returns EEPROM to a "standby" state
275  *
276  * hw - Struct containing variables accessed by shared code
277  *****************************************************************************/
278 void e1000_standby_eeprom(struct e1000_hw *hw)
279 {
280 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
281 	uint32_t eecd;
282 
283 	eecd = E1000_READ_REG(hw, EECD);
284 
285 	if (eeprom->type == e1000_eeprom_microwire) {
286 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
287 		E1000_WRITE_REG(hw, EECD, eecd);
288 		E1000_WRITE_FLUSH(hw);
289 		udelay(eeprom->delay_usec);
290 
291 		/* Clock high */
292 		eecd |= E1000_EECD_SK;
293 		E1000_WRITE_REG(hw, EECD, eecd);
294 		E1000_WRITE_FLUSH(hw);
295 		udelay(eeprom->delay_usec);
296 
297 		/* Select EEPROM */
298 		eecd |= E1000_EECD_CS;
299 		E1000_WRITE_REG(hw, EECD, eecd);
300 		E1000_WRITE_FLUSH(hw);
301 		udelay(eeprom->delay_usec);
302 
303 		/* Clock low */
304 		eecd &= ~E1000_EECD_SK;
305 		E1000_WRITE_REG(hw, EECD, eecd);
306 		E1000_WRITE_FLUSH(hw);
307 		udelay(eeprom->delay_usec);
308 	} else if (eeprom->type == e1000_eeprom_spi) {
309 		/* Toggle CS to flush commands */
310 		eecd |= E1000_EECD_CS;
311 		E1000_WRITE_REG(hw, EECD, eecd);
312 		E1000_WRITE_FLUSH(hw);
313 		udelay(eeprom->delay_usec);
314 		eecd &= ~E1000_EECD_CS;
315 		E1000_WRITE_REG(hw, EECD, eecd);
316 		E1000_WRITE_FLUSH(hw);
317 		udelay(eeprom->delay_usec);
318 	}
319 }
320 
321 /***************************************************************************
322 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
323 *
324 * hw - Struct containing variables accessed by shared code
325 ****************************************************************************/
326 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
327 {
328 	uint32_t eecd = 0;
329 
330 	DEBUGFUNC();
331 
332 	if (hw->mac_type == e1000_ich8lan)
333 		return false;
334 
335 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
336 		eecd = E1000_READ_REG(hw, EECD);
337 
338 		/* Isolate bits 15 & 16 */
339 		eecd = ((eecd >> 15) & 0x03);
340 
341 		/* If both bits are set, device is Flash type */
342 		if (eecd == 0x03)
343 			return false;
344 	}
345 	return true;
346 }
347 
348 /******************************************************************************
349  * Prepares EEPROM for access
350  *
351  * hw - Struct containing variables accessed by shared code
352  *
353  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
354  * function should be called before issuing a command to the EEPROM.
355  *****************************************************************************/
356 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
357 {
358 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
359 	uint32_t eecd, i = 0;
360 
361 	DEBUGFUNC();
362 
363 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
364 		return -E1000_ERR_SWFW_SYNC;
365 	eecd = E1000_READ_REG(hw, EECD);
366 
367 	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
368 		/* Request EEPROM Access */
369 		if (hw->mac_type > e1000_82544) {
370 			eecd |= E1000_EECD_REQ;
371 			E1000_WRITE_REG(hw, EECD, eecd);
372 			eecd = E1000_READ_REG(hw, EECD);
373 			while ((!(eecd & E1000_EECD_GNT)) &&
374 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
375 				i++;
376 				udelay(5);
377 				eecd = E1000_READ_REG(hw, EECD);
378 			}
379 			if (!(eecd & E1000_EECD_GNT)) {
380 				eecd &= ~E1000_EECD_REQ;
381 				E1000_WRITE_REG(hw, EECD, eecd);
382 				DEBUGOUT("Could not acquire EEPROM grant\n");
383 				return -E1000_ERR_EEPROM;
384 			}
385 		}
386 	}
387 
388 	/* Setup EEPROM for Read/Write */
389 
390 	if (eeprom->type == e1000_eeprom_microwire) {
391 		/* Clear SK and DI */
392 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
393 		E1000_WRITE_REG(hw, EECD, eecd);
394 
395 		/* Set CS */
396 		eecd |= E1000_EECD_CS;
397 		E1000_WRITE_REG(hw, EECD, eecd);
398 	} else if (eeprom->type == e1000_eeprom_spi) {
399 		/* Clear SK and CS */
400 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
401 		E1000_WRITE_REG(hw, EECD, eecd);
402 		udelay(1);
403 	}
404 
405 	return E1000_SUCCESS;
406 }
407 
408 /******************************************************************************
409  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
410  * is configured.  Additionally, if this is ICH8, the flash controller GbE
411  * registers must be mapped, or this will crash.
412  *
413  * hw - Struct containing variables accessed by shared code
414  *****************************************************************************/
415 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
416 {
417 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
418 	uint32_t eecd;
419 	int32_t ret_val = E1000_SUCCESS;
420 	uint16_t eeprom_size;
421 
422 	if (hw->mac_type == e1000_igb)
423 		eecd = E1000_READ_REG(hw, I210_EECD);
424 	else
425 		eecd = E1000_READ_REG(hw, EECD);
426 
427 	DEBUGFUNC();
428 
429 	switch (hw->mac_type) {
430 	case e1000_82542_rev2_0:
431 	case e1000_82542_rev2_1:
432 	case e1000_82543:
433 	case e1000_82544:
434 		eeprom->type = e1000_eeprom_microwire;
435 		eeprom->word_size = 64;
436 		eeprom->opcode_bits = 3;
437 		eeprom->address_bits = 6;
438 		eeprom->delay_usec = 50;
439 		eeprom->use_eerd = false;
440 		eeprom->use_eewr = false;
441 	break;
442 	case e1000_82540:
443 	case e1000_82545:
444 	case e1000_82545_rev_3:
445 	case e1000_82546:
446 	case e1000_82546_rev_3:
447 		eeprom->type = e1000_eeprom_microwire;
448 		eeprom->opcode_bits = 3;
449 		eeprom->delay_usec = 50;
450 		if (eecd & E1000_EECD_SIZE) {
451 			eeprom->word_size = 256;
452 			eeprom->address_bits = 8;
453 		} else {
454 			eeprom->word_size = 64;
455 			eeprom->address_bits = 6;
456 		}
457 		eeprom->use_eerd = false;
458 		eeprom->use_eewr = false;
459 		break;
460 	case e1000_82541:
461 	case e1000_82541_rev_2:
462 	case e1000_82547:
463 	case e1000_82547_rev_2:
464 		if (eecd & E1000_EECD_TYPE) {
465 			eeprom->type = e1000_eeprom_spi;
466 			eeprom->opcode_bits = 8;
467 			eeprom->delay_usec = 1;
468 			if (eecd & E1000_EECD_ADDR_BITS) {
469 				eeprom->page_size = 32;
470 				eeprom->address_bits = 16;
471 			} else {
472 				eeprom->page_size = 8;
473 				eeprom->address_bits = 8;
474 			}
475 		} else {
476 			eeprom->type = e1000_eeprom_microwire;
477 			eeprom->opcode_bits = 3;
478 			eeprom->delay_usec = 50;
479 			if (eecd & E1000_EECD_ADDR_BITS) {
480 				eeprom->word_size = 256;
481 				eeprom->address_bits = 8;
482 			} else {
483 				eeprom->word_size = 64;
484 				eeprom->address_bits = 6;
485 			}
486 		}
487 		eeprom->use_eerd = false;
488 		eeprom->use_eewr = false;
489 		break;
490 	case e1000_82571:
491 	case e1000_82572:
492 		eeprom->type = e1000_eeprom_spi;
493 		eeprom->opcode_bits = 8;
494 		eeprom->delay_usec = 1;
495 		if (eecd & E1000_EECD_ADDR_BITS) {
496 			eeprom->page_size = 32;
497 			eeprom->address_bits = 16;
498 		} else {
499 			eeprom->page_size = 8;
500 			eeprom->address_bits = 8;
501 		}
502 		eeprom->use_eerd = false;
503 		eeprom->use_eewr = false;
504 		break;
505 	case e1000_82573:
506 	case e1000_82574:
507 		eeprom->type = e1000_eeprom_spi;
508 		eeprom->opcode_bits = 8;
509 		eeprom->delay_usec = 1;
510 		if (eecd & E1000_EECD_ADDR_BITS) {
511 			eeprom->page_size = 32;
512 			eeprom->address_bits = 16;
513 		} else {
514 			eeprom->page_size = 8;
515 			eeprom->address_bits = 8;
516 		}
517 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
518 			eeprom->use_eerd = true;
519 			eeprom->use_eewr = true;
520 
521 			eeprom->type = e1000_eeprom_flash;
522 			eeprom->word_size = 2048;
523 
524 		/* Ensure that the Autonomous FLASH update bit is cleared due to
525 		 * Flash update issue on parts which use a FLASH for NVM. */
526 			eecd &= ~E1000_EECD_AUPDEN;
527 			E1000_WRITE_REG(hw, EECD, eecd);
528 		}
529 		break;
530 	case e1000_80003es2lan:
531 		eeprom->type = e1000_eeprom_spi;
532 		eeprom->opcode_bits = 8;
533 		eeprom->delay_usec = 1;
534 		if (eecd & E1000_EECD_ADDR_BITS) {
535 			eeprom->page_size = 32;
536 			eeprom->address_bits = 16;
537 		} else {
538 			eeprom->page_size = 8;
539 			eeprom->address_bits = 8;
540 		}
541 		eeprom->use_eerd = true;
542 		eeprom->use_eewr = false;
543 		break;
544 	case e1000_igb:
545 		/* i210 has 4k of iNVM mapped as EEPROM */
546 		eeprom->type = e1000_eeprom_invm;
547 		eeprom->opcode_bits = 8;
548 		eeprom->delay_usec = 1;
549 		eeprom->page_size = 32;
550 		eeprom->address_bits = 16;
551 		eeprom->use_eerd = true;
552 		eeprom->use_eewr = false;
553 		break;
554 
555 	/* ich8lan does not support currently. if needed, please
556 	 * add corresponding code and functions.
557 	 */
558 #if 0
559 	case e1000_ich8lan:
560 		{
561 		int32_t  i = 0;
562 
563 		eeprom->type = e1000_eeprom_ich8;
564 		eeprom->use_eerd = false;
565 		eeprom->use_eewr = false;
566 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
567 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
568 				ICH_FLASH_GFPREG);
569 		/* Zero the shadow RAM structure. But don't load it from NVM
570 		 * so as to save time for driver init */
571 		if (hw->eeprom_shadow_ram != NULL) {
572 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
573 				hw->eeprom_shadow_ram[i].modified = false;
574 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
575 			}
576 		}
577 
578 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
579 				ICH_FLASH_SECTOR_SIZE;
580 
581 		hw->flash_bank_size = ((flash_size >> 16)
582 				& ICH_GFPREG_BASE_MASK) + 1;
583 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
584 
585 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
586 
587 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
588 		break;
589 		}
590 #endif
591 	default:
592 		break;
593 	}
594 
595 	if (eeprom->type == e1000_eeprom_spi ||
596 	    eeprom->type == e1000_eeprom_invm) {
597 		/* eeprom_size will be an enum [0..8] that maps
598 		 * to eeprom sizes 128B to
599 		 * 32KB (incremented by powers of 2).
600 		 */
601 		if (hw->mac_type <= e1000_82547_rev_2) {
602 			/* Set to default value for initial eeprom read. */
603 			eeprom->word_size = 64;
604 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
605 					&eeprom_size);
606 			if (ret_val)
607 				return ret_val;
608 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
609 				>> EEPROM_SIZE_SHIFT;
610 			/* 256B eeprom size was not supported in earlier
611 			 * hardware, so we bump eeprom_size up one to
612 			 * ensure that "1" (which maps to 256B) is never
613 			 * the result used in the shifting logic below. */
614 			if (eeprom_size)
615 				eeprom_size++;
616 		} else {
617 			eeprom_size = (uint16_t)((eecd &
618 				E1000_EECD_SIZE_EX_MASK) >>
619 				E1000_EECD_SIZE_EX_SHIFT);
620 		}
621 
622 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
623 	}
624 	return ret_val;
625 }
626 
627 /******************************************************************************
628  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
629  *
630  * hw - Struct containing variables accessed by shared code
631  *****************************************************************************/
632 static int32_t
633 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
634 {
635 	uint32_t attempts = 100000;
636 	uint32_t i, reg = 0;
637 	int32_t done = E1000_ERR_EEPROM;
638 
639 	for (i = 0; i < attempts; i++) {
640 		if (eerd == E1000_EEPROM_POLL_READ) {
641 			if (hw->mac_type == e1000_igb)
642 				reg = E1000_READ_REG(hw, I210_EERD);
643 			else
644 				reg = E1000_READ_REG(hw, EERD);
645 		} else {
646 			if (hw->mac_type == e1000_igb)
647 				reg = E1000_READ_REG(hw, I210_EEWR);
648 			else
649 				reg = E1000_READ_REG(hw, EEWR);
650 		}
651 
652 		if (reg & E1000_EEPROM_RW_REG_DONE) {
653 			done = E1000_SUCCESS;
654 			break;
655 		}
656 		udelay(5);
657 	}
658 
659 	return done;
660 }
661 
662 /******************************************************************************
663  * Reads a 16 bit word from the EEPROM using the EERD register.
664  *
665  * hw - Struct containing variables accessed by shared code
666  * offset - offset of  word in the EEPROM to read
667  * data - word read from the EEPROM
668  * words - number of words to read
669  *****************************************************************************/
670 static int32_t
671 e1000_read_eeprom_eerd(struct e1000_hw *hw,
672 			uint16_t offset,
673 			uint16_t words,
674 			uint16_t *data)
675 {
676 	uint32_t i, eerd = 0;
677 	int32_t error = 0;
678 
679 	for (i = 0; i < words; i++) {
680 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
681 			E1000_EEPROM_RW_REG_START;
682 
683 		if (hw->mac_type == e1000_igb)
684 			E1000_WRITE_REG(hw, I210_EERD, eerd);
685 		else
686 			E1000_WRITE_REG(hw, EERD, eerd);
687 
688 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
689 
690 		if (error)
691 			break;
692 
693 		if (hw->mac_type == e1000_igb) {
694 			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
695 				E1000_EEPROM_RW_REG_DATA);
696 		} else {
697 			data[i] = (E1000_READ_REG(hw, EERD) >>
698 				E1000_EEPROM_RW_REG_DATA);
699 		}
700 
701 	}
702 
703 	return error;
704 }
705 
706 void e1000_release_eeprom(struct e1000_hw *hw)
707 {
708 	uint32_t eecd;
709 
710 	DEBUGFUNC();
711 
712 	eecd = E1000_READ_REG(hw, EECD);
713 
714 	if (hw->eeprom.type == e1000_eeprom_spi) {
715 		eecd |= E1000_EECD_CS;  /* Pull CS high */
716 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
717 
718 		E1000_WRITE_REG(hw, EECD, eecd);
719 
720 		udelay(hw->eeprom.delay_usec);
721 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
722 		/* cleanup eeprom */
723 
724 		/* CS on Microwire is active-high */
725 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
726 
727 		E1000_WRITE_REG(hw, EECD, eecd);
728 
729 		/* Rising edge of clock */
730 		eecd |= E1000_EECD_SK;
731 		E1000_WRITE_REG(hw, EECD, eecd);
732 		E1000_WRITE_FLUSH(hw);
733 		udelay(hw->eeprom.delay_usec);
734 
735 		/* Falling edge of clock */
736 		eecd &= ~E1000_EECD_SK;
737 		E1000_WRITE_REG(hw, EECD, eecd);
738 		E1000_WRITE_FLUSH(hw);
739 		udelay(hw->eeprom.delay_usec);
740 	}
741 
742 	/* Stop requesting EEPROM access */
743 	if (hw->mac_type > e1000_82544) {
744 		eecd &= ~E1000_EECD_REQ;
745 		E1000_WRITE_REG(hw, EECD, eecd);
746 	}
747 
748 	e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
749 }
750 
751 /******************************************************************************
752  * Reads a 16 bit word from the EEPROM.
753  *
754  * hw - Struct containing variables accessed by shared code
755  *****************************************************************************/
756 static int32_t
757 e1000_spi_eeprom_ready(struct e1000_hw *hw)
758 {
759 	uint16_t retry_count = 0;
760 	uint8_t spi_stat_reg;
761 
762 	DEBUGFUNC();
763 
764 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
765 	 * EEPROM will signal that the command has been completed by clearing
766 	 * bit 0 of the internal status register.  If it's not cleared within
767 	 * 5 milliseconds, then error out.
768 	 */
769 	retry_count = 0;
770 	do {
771 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
772 			hw->eeprom.opcode_bits);
773 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
774 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
775 			break;
776 
777 		udelay(5);
778 		retry_count += 5;
779 
780 		e1000_standby_eeprom(hw);
781 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
782 
783 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
784 	 * only 0-5mSec on 5V devices)
785 	 */
786 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
787 		DEBUGOUT("SPI EEPROM Status error\n");
788 		return -E1000_ERR_EEPROM;
789 	}
790 
791 	return E1000_SUCCESS;
792 }
793 
794 /******************************************************************************
795  * Reads a 16 bit word from the EEPROM.
796  *
797  * hw - Struct containing variables accessed by shared code
798  * offset - offset of  word in the EEPROM to read
799  * data - word read from the EEPROM
800  *****************************************************************************/
801 static int32_t
802 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
803 		uint16_t words, uint16_t *data)
804 {
805 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
806 	uint32_t i = 0;
807 
808 	DEBUGFUNC();
809 
810 	/* If eeprom is not yet detected, do so now */
811 	if (eeprom->word_size == 0)
812 		e1000_init_eeprom_params(hw);
813 
814 	/* A check for invalid values:  offset too large, too many words,
815 	 * and not enough words.
816 	 */
817 	if ((offset >= eeprom->word_size) ||
818 		(words > eeprom->word_size - offset) ||
819 		(words == 0)) {
820 		DEBUGOUT("\"words\" parameter out of bounds."
821 			"Words = %d, size = %d\n", offset, eeprom->word_size);
822 		return -E1000_ERR_EEPROM;
823 	}
824 
825 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
826 	 * directly. In this case, we need to acquire the EEPROM so that
827 	 * FW or other port software does not interrupt.
828 	 */
829 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
830 		hw->eeprom.use_eerd == false) {
831 
832 		/* Prepare the EEPROM for bit-bang reading */
833 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
834 			return -E1000_ERR_EEPROM;
835 	}
836 
837 	/* Eerd register EEPROM access requires no eeprom aquire/release */
838 	if (eeprom->use_eerd == true)
839 		return e1000_read_eeprom_eerd(hw, offset, words, data);
840 
841 	/* ich8lan does not support currently. if needed, please
842 	 * add corresponding code and functions.
843 	 */
844 #if 0
845 	/* ICH EEPROM access is done via the ICH flash controller */
846 	if (eeprom->type == e1000_eeprom_ich8)
847 		return e1000_read_eeprom_ich8(hw, offset, words, data);
848 #endif
849 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
850 	 * acquired the EEPROM at this point, so any returns should relase it */
851 	if (eeprom->type == e1000_eeprom_spi) {
852 		uint16_t word_in;
853 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
854 
855 		if (e1000_spi_eeprom_ready(hw)) {
856 			e1000_release_eeprom(hw);
857 			return -E1000_ERR_EEPROM;
858 		}
859 
860 		e1000_standby_eeprom(hw);
861 
862 		/* Some SPI eeproms use the 8th address bit embedded in
863 		 * the opcode */
864 		if ((eeprom->address_bits == 8) && (offset >= 128))
865 			read_opcode |= EEPROM_A8_OPCODE_SPI;
866 
867 		/* Send the READ command (opcode + addr)  */
868 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
869 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
870 				eeprom->address_bits);
871 
872 		/* Read the data.  The address of the eeprom internally
873 		 * increments with each byte (spi) being read, saving on the
874 		 * overhead of eeprom setup and tear-down.  The address
875 		 * counter will roll over if reading beyond the size of
876 		 * the eeprom, thus allowing the entire memory to be read
877 		 * starting from any offset. */
878 		for (i = 0; i < words; i++) {
879 			word_in = e1000_shift_in_ee_bits(hw, 16);
880 			data[i] = (word_in >> 8) | (word_in << 8);
881 		}
882 	} else if (eeprom->type == e1000_eeprom_microwire) {
883 		for (i = 0; i < words; i++) {
884 			/* Send the READ command (opcode + addr)  */
885 			e1000_shift_out_ee_bits(hw,
886 				EEPROM_READ_OPCODE_MICROWIRE,
887 				eeprom->opcode_bits);
888 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
889 				eeprom->address_bits);
890 
891 			/* Read the data.  For microwire, each word requires
892 			 * the overhead of eeprom setup and tear-down. */
893 			data[i] = e1000_shift_in_ee_bits(hw, 16);
894 			e1000_standby_eeprom(hw);
895 		}
896 	}
897 
898 	/* End this read operation */
899 	e1000_release_eeprom(hw);
900 
901 	return E1000_SUCCESS;
902 }
903 
904 /******************************************************************************
905  * Verifies that the EEPROM has a valid checksum
906  *
907  * hw - Struct containing variables accessed by shared code
908  *
909  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
910  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
911  * valid.
912  *****************************************************************************/
913 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
914 {
915 	uint16_t i, checksum, checksum_reg, *buf;
916 
917 	DEBUGFUNC();
918 
919 	/* Allocate a temporary buffer */
920 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
921 	if (!buf) {
922 		E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
923 		return -E1000_ERR_EEPROM;
924 	}
925 
926 	/* Read the EEPROM */
927 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
928 		E1000_ERR(hw, "Unable to read EEPROM!\n");
929 		return -E1000_ERR_EEPROM;
930 	}
931 
932 	/* Compute the checksum */
933 	checksum = 0;
934 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
935 		checksum += buf[i];
936 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
937 	checksum_reg = buf[i];
938 
939 	/* Verify it! */
940 	if (checksum == checksum_reg)
941 		return 0;
942 
943 	/* Hrm, verification failed, print an error */
944 	E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
945 	E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
946 		  checksum_reg, checksum);
947 
948 	return -E1000_ERR_EEPROM;
949 }
950 #endif /* CONFIG_E1000_NO_NVM */
951 
952 /*****************************************************************************
953  * Set PHY to class A mode
954  * Assumes the following operations will follow to enable the new class mode.
955  *  1. Do a PHY soft reset
956  *  2. Restart auto-negotiation or force link.
957  *
958  * hw - Struct containing variables accessed by shared code
959  ****************************************************************************/
960 static int32_t
961 e1000_set_phy_mode(struct e1000_hw *hw)
962 {
963 #ifndef CONFIG_E1000_NO_NVM
964 	int32_t ret_val;
965 	uint16_t eeprom_data;
966 
967 	DEBUGFUNC();
968 
969 	if ((hw->mac_type == e1000_82545_rev_3) &&
970 		(hw->media_type == e1000_media_type_copper)) {
971 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
972 				1, &eeprom_data);
973 		if (ret_val)
974 			return ret_val;
975 
976 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
977 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
978 			ret_val = e1000_write_phy_reg(hw,
979 					M88E1000_PHY_PAGE_SELECT, 0x000B);
980 			if (ret_val)
981 				return ret_val;
982 			ret_val = e1000_write_phy_reg(hw,
983 					M88E1000_PHY_GEN_CONTROL, 0x8104);
984 			if (ret_val)
985 				return ret_val;
986 
987 			hw->phy_reset_disable = false;
988 		}
989 	}
990 #endif
991 	return E1000_SUCCESS;
992 }
993 
994 #ifndef CONFIG_E1000_NO_NVM
995 /***************************************************************************
996  *
997  * Obtaining software semaphore bit (SMBI) before resetting PHY.
998  *
999  * hw: Struct containing variables accessed by shared code
1000  *
1001  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1002  *            E1000_SUCCESS at any other case.
1003  *
1004  ***************************************************************************/
1005 static int32_t
1006 e1000_get_software_semaphore(struct e1000_hw *hw)
1007 {
1008 	 int32_t timeout = hw->eeprom.word_size + 1;
1009 	 uint32_t swsm;
1010 
1011 	DEBUGFUNC();
1012 
1013 	if (hw->mac_type != e1000_80003es2lan)
1014 		return E1000_SUCCESS;
1015 
1016 	while (timeout) {
1017 		swsm = E1000_READ_REG(hw, SWSM);
1018 		/* If SMBI bit cleared, it is now set and we hold
1019 		 * the semaphore */
1020 		if (!(swsm & E1000_SWSM_SMBI))
1021 			break;
1022 		mdelay(1);
1023 		timeout--;
1024 	}
1025 
1026 	if (!timeout) {
1027 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1028 		return -E1000_ERR_RESET;
1029 	}
1030 
1031 	return E1000_SUCCESS;
1032 }
1033 #endif
1034 
1035 /***************************************************************************
1036  * This function clears HW semaphore bits.
1037  *
1038  * hw: Struct containing variables accessed by shared code
1039  *
1040  * returns: - None.
1041  *
1042  ***************************************************************************/
1043 static void
1044 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1045 {
1046 #ifndef CONFIG_E1000_NO_NVM
1047 	 uint32_t swsm;
1048 
1049 	DEBUGFUNC();
1050 
1051 	if (!hw->eeprom_semaphore_present)
1052 		return;
1053 
1054 	swsm = E1000_READ_REG(hw, SWSM);
1055 	if (hw->mac_type == e1000_80003es2lan) {
1056 		/* Release both semaphores. */
1057 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1058 	} else
1059 		swsm &= ~(E1000_SWSM_SWESMBI);
1060 	E1000_WRITE_REG(hw, SWSM, swsm);
1061 #endif
1062 }
1063 
1064 /***************************************************************************
1065  *
1066  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1067  * adapter or Eeprom access.
1068  *
1069  * hw: Struct containing variables accessed by shared code
1070  *
1071  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1072  *            E1000_SUCCESS at any other case.
1073  *
1074  ***************************************************************************/
1075 static int32_t
1076 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1077 {
1078 #ifndef CONFIG_E1000_NO_NVM
1079 	int32_t timeout;
1080 	uint32_t swsm;
1081 
1082 	DEBUGFUNC();
1083 
1084 	if (!hw->eeprom_semaphore_present)
1085 		return E1000_SUCCESS;
1086 
1087 	if (hw->mac_type == e1000_80003es2lan) {
1088 		/* Get the SW semaphore. */
1089 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1090 			return -E1000_ERR_EEPROM;
1091 	}
1092 
1093 	/* Get the FW semaphore. */
1094 	timeout = hw->eeprom.word_size + 1;
1095 	while (timeout) {
1096 		swsm = E1000_READ_REG(hw, SWSM);
1097 		swsm |= E1000_SWSM_SWESMBI;
1098 		E1000_WRITE_REG(hw, SWSM, swsm);
1099 		/* if we managed to set the bit we got the semaphore. */
1100 		swsm = E1000_READ_REG(hw, SWSM);
1101 		if (swsm & E1000_SWSM_SWESMBI)
1102 			break;
1103 
1104 		udelay(50);
1105 		timeout--;
1106 	}
1107 
1108 	if (!timeout) {
1109 		/* Release semaphores */
1110 		e1000_put_hw_eeprom_semaphore(hw);
1111 		DEBUGOUT("Driver can't access the Eeprom - "
1112 				"SWESMBI bit is set.\n");
1113 		return -E1000_ERR_EEPROM;
1114 	}
1115 #endif
1116 	return E1000_SUCCESS;
1117 }
1118 
1119 /* Take ownership of the PHY */
1120 static int32_t
1121 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1122 {
1123 	uint32_t swfw_sync = 0;
1124 	uint32_t swmask = mask;
1125 	uint32_t fwmask = mask << 16;
1126 	int32_t timeout = 200;
1127 
1128 	DEBUGFUNC();
1129 	while (timeout) {
1130 		if (e1000_get_hw_eeprom_semaphore(hw))
1131 			return -E1000_ERR_SWFW_SYNC;
1132 
1133 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1134 		if (!(swfw_sync & (fwmask | swmask)))
1135 			break;
1136 
1137 		/* firmware currently using resource (fwmask) */
1138 		/* or other software thread currently using resource (swmask) */
1139 		e1000_put_hw_eeprom_semaphore(hw);
1140 		mdelay(5);
1141 		timeout--;
1142 	}
1143 
1144 	if (!timeout) {
1145 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1146 		return -E1000_ERR_SWFW_SYNC;
1147 	}
1148 
1149 	swfw_sync |= swmask;
1150 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1151 
1152 	e1000_put_hw_eeprom_semaphore(hw);
1153 	return E1000_SUCCESS;
1154 }
1155 
1156 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1157 {
1158 	uint32_t swfw_sync = 0;
1159 
1160 	DEBUGFUNC();
1161 	while (e1000_get_hw_eeprom_semaphore(hw))
1162 		; /* Empty */
1163 
1164 	swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1165 	swfw_sync &= ~mask;
1166 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1167 
1168 	e1000_put_hw_eeprom_semaphore(hw);
1169 }
1170 
1171 static bool e1000_is_second_port(struct e1000_hw *hw)
1172 {
1173 	switch (hw->mac_type) {
1174 	case e1000_80003es2lan:
1175 	case e1000_82546:
1176 	case e1000_82571:
1177 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1178 			return true;
1179 		/* Fallthrough */
1180 	default:
1181 		return false;
1182 	}
1183 }
1184 
1185 #ifndef CONFIG_E1000_NO_NVM
1186 /******************************************************************************
1187  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1188  * second function of dual function devices
1189  *
1190  * nic - Struct containing variables accessed by shared code
1191  *****************************************************************************/
1192 static int
1193 e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1194 {
1195 	uint16_t offset;
1196 	uint16_t eeprom_data;
1197 	uint32_t reg_data = 0;
1198 	int i;
1199 
1200 	DEBUGFUNC();
1201 
1202 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1203 		offset = i >> 1;
1204 		if (hw->mac_type == e1000_igb) {
1205 			/* i210 preloads MAC address into RAL/RAH registers */
1206 			if (offset == 0)
1207 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1208 			else if (offset == 1)
1209 				reg_data >>= 16;
1210 			else if (offset == 2)
1211 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1212 			eeprom_data = reg_data & 0xffff;
1213 		} else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1214 			DEBUGOUT("EEPROM Read Error\n");
1215 			return -E1000_ERR_EEPROM;
1216 		}
1217 		enetaddr[i] = eeprom_data & 0xff;
1218 		enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1219 	}
1220 
1221 	/* Invert the last bit if this is the second device */
1222 	if (e1000_is_second_port(hw))
1223 		enetaddr[5] ^= 1;
1224 
1225 	return 0;
1226 }
1227 #endif
1228 
1229 /******************************************************************************
1230  * Initializes receive address filters.
1231  *
1232  * hw - Struct containing variables accessed by shared code
1233  *
1234  * Places the MAC address in receive address register 0 and clears the rest
1235  * of the receive addresss registers. Clears the multicast table. Assumes
1236  * the receiver is in reset when the routine is called.
1237  *****************************************************************************/
1238 static void
1239 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1240 {
1241 	uint32_t i;
1242 	uint32_t addr_low;
1243 	uint32_t addr_high;
1244 
1245 	DEBUGFUNC();
1246 
1247 	/* Setup the receive address. */
1248 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1249 	addr_low = (enetaddr[0] |
1250 		    (enetaddr[1] << 8) |
1251 		    (enetaddr[2] << 16) | (enetaddr[3] << 24));
1252 
1253 	addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1254 
1255 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1256 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1257 
1258 	/* Zero out the other 15 receive addresses. */
1259 	DEBUGOUT("Clearing RAR[1-15]\n");
1260 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1261 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1262 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1263 	}
1264 }
1265 
1266 /******************************************************************************
1267  * Clears the VLAN filer table
1268  *
1269  * hw - Struct containing variables accessed by shared code
1270  *****************************************************************************/
1271 static void
1272 e1000_clear_vfta(struct e1000_hw *hw)
1273 {
1274 	uint32_t offset;
1275 
1276 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1277 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1278 }
1279 
1280 /******************************************************************************
1281  * Set the mac type member in the hw struct.
1282  *
1283  * hw - Struct containing variables accessed by shared code
1284  *****************************************************************************/
1285 int32_t
1286 e1000_set_mac_type(struct e1000_hw *hw)
1287 {
1288 	DEBUGFUNC();
1289 
1290 	switch (hw->device_id) {
1291 	case E1000_DEV_ID_82542:
1292 		switch (hw->revision_id) {
1293 		case E1000_82542_2_0_REV_ID:
1294 			hw->mac_type = e1000_82542_rev2_0;
1295 			break;
1296 		case E1000_82542_2_1_REV_ID:
1297 			hw->mac_type = e1000_82542_rev2_1;
1298 			break;
1299 		default:
1300 			/* Invalid 82542 revision ID */
1301 			return -E1000_ERR_MAC_TYPE;
1302 		}
1303 		break;
1304 	case E1000_DEV_ID_82543GC_FIBER:
1305 	case E1000_DEV_ID_82543GC_COPPER:
1306 		hw->mac_type = e1000_82543;
1307 		break;
1308 	case E1000_DEV_ID_82544EI_COPPER:
1309 	case E1000_DEV_ID_82544EI_FIBER:
1310 	case E1000_DEV_ID_82544GC_COPPER:
1311 	case E1000_DEV_ID_82544GC_LOM:
1312 		hw->mac_type = e1000_82544;
1313 		break;
1314 	case E1000_DEV_ID_82540EM:
1315 	case E1000_DEV_ID_82540EM_LOM:
1316 	case E1000_DEV_ID_82540EP:
1317 	case E1000_DEV_ID_82540EP_LOM:
1318 	case E1000_DEV_ID_82540EP_LP:
1319 		hw->mac_type = e1000_82540;
1320 		break;
1321 	case E1000_DEV_ID_82545EM_COPPER:
1322 	case E1000_DEV_ID_82545EM_FIBER:
1323 		hw->mac_type = e1000_82545;
1324 		break;
1325 	case E1000_DEV_ID_82545GM_COPPER:
1326 	case E1000_DEV_ID_82545GM_FIBER:
1327 	case E1000_DEV_ID_82545GM_SERDES:
1328 		hw->mac_type = e1000_82545_rev_3;
1329 		break;
1330 	case E1000_DEV_ID_82546EB_COPPER:
1331 	case E1000_DEV_ID_82546EB_FIBER:
1332 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1333 		hw->mac_type = e1000_82546;
1334 		break;
1335 	case E1000_DEV_ID_82546GB_COPPER:
1336 	case E1000_DEV_ID_82546GB_FIBER:
1337 	case E1000_DEV_ID_82546GB_SERDES:
1338 	case E1000_DEV_ID_82546GB_PCIE:
1339 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1340 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1341 		hw->mac_type = e1000_82546_rev_3;
1342 		break;
1343 	case E1000_DEV_ID_82541EI:
1344 	case E1000_DEV_ID_82541EI_MOBILE:
1345 	case E1000_DEV_ID_82541ER_LOM:
1346 		hw->mac_type = e1000_82541;
1347 		break;
1348 	case E1000_DEV_ID_82541ER:
1349 	case E1000_DEV_ID_82541GI:
1350 	case E1000_DEV_ID_82541GI_LF:
1351 	case E1000_DEV_ID_82541GI_MOBILE:
1352 		hw->mac_type = e1000_82541_rev_2;
1353 		break;
1354 	case E1000_DEV_ID_82547EI:
1355 	case E1000_DEV_ID_82547EI_MOBILE:
1356 		hw->mac_type = e1000_82547;
1357 		break;
1358 	case E1000_DEV_ID_82547GI:
1359 		hw->mac_type = e1000_82547_rev_2;
1360 		break;
1361 	case E1000_DEV_ID_82571EB_COPPER:
1362 	case E1000_DEV_ID_82571EB_FIBER:
1363 	case E1000_DEV_ID_82571EB_SERDES:
1364 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1365 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1366 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1367 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1368 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1369 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1370 		hw->mac_type = e1000_82571;
1371 		break;
1372 	case E1000_DEV_ID_82572EI_COPPER:
1373 	case E1000_DEV_ID_82572EI_FIBER:
1374 	case E1000_DEV_ID_82572EI_SERDES:
1375 	case E1000_DEV_ID_82572EI:
1376 		hw->mac_type = e1000_82572;
1377 		break;
1378 	case E1000_DEV_ID_82573E:
1379 	case E1000_DEV_ID_82573E_IAMT:
1380 	case E1000_DEV_ID_82573L:
1381 		hw->mac_type = e1000_82573;
1382 		break;
1383 	case E1000_DEV_ID_82574L:
1384 		hw->mac_type = e1000_82574;
1385 		break;
1386 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1387 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1388 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1389 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1390 		hw->mac_type = e1000_80003es2lan;
1391 		break;
1392 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1393 	case E1000_DEV_ID_ICH8_IGP_AMT:
1394 	case E1000_DEV_ID_ICH8_IGP_C:
1395 	case E1000_DEV_ID_ICH8_IFE:
1396 	case E1000_DEV_ID_ICH8_IFE_GT:
1397 	case E1000_DEV_ID_ICH8_IFE_G:
1398 	case E1000_DEV_ID_ICH8_IGP_M:
1399 		hw->mac_type = e1000_ich8lan;
1400 		break;
1401 	case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1402 	case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1403 	case PCI_DEVICE_ID_INTEL_I210_COPPER:
1404 	case PCI_DEVICE_ID_INTEL_I211_COPPER:
1405 	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1406 	case PCI_DEVICE_ID_INTEL_I210_SERDES:
1407 	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1408 	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1409 		hw->mac_type = e1000_igb;
1410 		break;
1411 	default:
1412 		/* Should never have loaded on this device */
1413 		return -E1000_ERR_MAC_TYPE;
1414 	}
1415 	return E1000_SUCCESS;
1416 }
1417 
1418 /******************************************************************************
1419  * Reset the transmit and receive units; mask and clear all interrupts.
1420  *
1421  * hw - Struct containing variables accessed by shared code
1422  *****************************************************************************/
1423 void
1424 e1000_reset_hw(struct e1000_hw *hw)
1425 {
1426 	uint32_t ctrl;
1427 	uint32_t ctrl_ext;
1428 	uint32_t manc;
1429 	uint32_t pba = 0;
1430 	uint32_t reg;
1431 
1432 	DEBUGFUNC();
1433 
1434 	/* get the correct pba value for both PCI and PCIe*/
1435 	if (hw->mac_type <  e1000_82571)
1436 		pba = E1000_DEFAULT_PCI_PBA;
1437 	else
1438 		pba = E1000_DEFAULT_PCIE_PBA;
1439 
1440 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1441 	if (hw->mac_type == e1000_82542_rev2_0) {
1442 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1443 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1444 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1445 	}
1446 
1447 	/* Clear interrupt mask to stop board from generating interrupts */
1448 	DEBUGOUT("Masking off all interrupts\n");
1449 	if (hw->mac_type == e1000_igb)
1450 		E1000_WRITE_REG(hw, I210_IAM, 0);
1451 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1452 
1453 	/* Disable the Transmit and Receive units.  Then delay to allow
1454 	 * any pending transactions to complete before we hit the MAC with
1455 	 * the global reset.
1456 	 */
1457 	E1000_WRITE_REG(hw, RCTL, 0);
1458 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1459 	E1000_WRITE_FLUSH(hw);
1460 
1461 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1462 	hw->tbi_compatibility_on = false;
1463 
1464 	/* Delay to allow any outstanding PCI transactions to complete before
1465 	 * resetting the device
1466 	 */
1467 	mdelay(10);
1468 
1469 	/* Issue a global reset to the MAC.  This will reset the chip's
1470 	 * transmit, receive, DMA, and link units.  It will not effect
1471 	 * the current PCI configuration.  The global reset bit is self-
1472 	 * clearing, and should clear within a microsecond.
1473 	 */
1474 	DEBUGOUT("Issuing a global reset to MAC\n");
1475 	ctrl = E1000_READ_REG(hw, CTRL);
1476 
1477 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1478 
1479 	/* Force a reload from the EEPROM if necessary */
1480 	if (hw->mac_type == e1000_igb) {
1481 		mdelay(20);
1482 		reg = E1000_READ_REG(hw, STATUS);
1483 		if (reg & E1000_STATUS_PF_RST_DONE)
1484 			DEBUGOUT("PF OK\n");
1485 		reg = E1000_READ_REG(hw, I210_EECD);
1486 		if (reg & E1000_EECD_AUTO_RD)
1487 			DEBUGOUT("EEC OK\n");
1488 	} else if (hw->mac_type < e1000_82540) {
1489 		/* Wait for reset to complete */
1490 		udelay(10);
1491 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1492 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1493 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1494 		E1000_WRITE_FLUSH(hw);
1495 		/* Wait for EEPROM reload */
1496 		mdelay(2);
1497 	} else {
1498 		/* Wait for EEPROM reload (it happens automatically) */
1499 		mdelay(4);
1500 		/* Dissable HW ARPs on ASF enabled adapters */
1501 		manc = E1000_READ_REG(hw, MANC);
1502 		manc &= ~(E1000_MANC_ARP_EN);
1503 		E1000_WRITE_REG(hw, MANC, manc);
1504 	}
1505 
1506 	/* Clear interrupt mask to stop board from generating interrupts */
1507 	DEBUGOUT("Masking off all interrupts\n");
1508 	if (hw->mac_type == e1000_igb)
1509 		E1000_WRITE_REG(hw, I210_IAM, 0);
1510 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1511 
1512 	/* Clear any pending interrupt events. */
1513 	E1000_READ_REG(hw, ICR);
1514 
1515 	/* If MWI was previously enabled, reenable it. */
1516 	if (hw->mac_type == e1000_82542_rev2_0) {
1517 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1518 	}
1519 	if (hw->mac_type != e1000_igb)
1520 		E1000_WRITE_REG(hw, PBA, pba);
1521 }
1522 
1523 /******************************************************************************
1524  *
1525  * Initialize a number of hardware-dependent bits
1526  *
1527  * hw: Struct containing variables accessed by shared code
1528  *
1529  * This function contains hardware limitation workarounds for PCI-E adapters
1530  *
1531  *****************************************************************************/
1532 static void
1533 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1534 {
1535 	if ((hw->mac_type >= e1000_82571) &&
1536 			(!hw->initialize_hw_bits_disable)) {
1537 		/* Settings common to all PCI-express silicon */
1538 		uint32_t reg_ctrl, reg_ctrl_ext;
1539 		uint32_t reg_tarc0, reg_tarc1;
1540 		uint32_t reg_tctl;
1541 		uint32_t reg_txdctl, reg_txdctl1;
1542 
1543 		/* link autonegotiation/sync workarounds */
1544 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1545 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1546 
1547 		/* Enable not-done TX descriptor counting */
1548 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1549 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1550 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1551 
1552 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1553 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1554 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1555 
1556 	/* IGB is cool */
1557 	if (hw->mac_type == e1000_igb)
1558 		return;
1559 
1560 		switch (hw->mac_type) {
1561 		case e1000_82571:
1562 		case e1000_82572:
1563 			/* Clear PHY TX compatible mode bits */
1564 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1565 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1566 
1567 			/* link autonegotiation/sync workarounds */
1568 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1569 
1570 			/* TX ring control fixes */
1571 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1572 
1573 			/* Multiple read bit is reversed polarity */
1574 			reg_tctl = E1000_READ_REG(hw, TCTL);
1575 			if (reg_tctl & E1000_TCTL_MULR)
1576 				reg_tarc1 &= ~(1 << 28);
1577 			else
1578 				reg_tarc1 |= (1 << 28);
1579 
1580 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1581 			break;
1582 		case e1000_82573:
1583 		case e1000_82574:
1584 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1585 			reg_ctrl_ext &= ~(1 << 23);
1586 			reg_ctrl_ext |= (1 << 22);
1587 
1588 			/* TX byte count fix */
1589 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1590 			reg_ctrl &= ~(1 << 29);
1591 
1592 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1593 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1594 			break;
1595 		case e1000_80003es2lan:
1596 	/* improve small packet performace for fiber/serdes */
1597 			if ((hw->media_type == e1000_media_type_fiber)
1598 			|| (hw->media_type ==
1599 				e1000_media_type_internal_serdes)) {
1600 				reg_tarc0 &= ~(1 << 20);
1601 			}
1602 
1603 		/* Multiple read bit is reversed polarity */
1604 			reg_tctl = E1000_READ_REG(hw, TCTL);
1605 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1606 			if (reg_tctl & E1000_TCTL_MULR)
1607 				reg_tarc1 &= ~(1 << 28);
1608 			else
1609 				reg_tarc1 |= (1 << 28);
1610 
1611 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1612 			break;
1613 		case e1000_ich8lan:
1614 			/* Reduce concurrent DMA requests to 3 from 4 */
1615 			if ((hw->revision_id < 3) ||
1616 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1617 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1618 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1619 
1620 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1621 			reg_ctrl_ext |= (1 << 22);
1622 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1623 
1624 			/* workaround TX hang with TSO=on */
1625 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1626 
1627 			/* Multiple read bit is reversed polarity */
1628 			reg_tctl = E1000_READ_REG(hw, TCTL);
1629 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1630 			if (reg_tctl & E1000_TCTL_MULR)
1631 				reg_tarc1 &= ~(1 << 28);
1632 			else
1633 				reg_tarc1 |= (1 << 28);
1634 
1635 			/* workaround TX hang with TSO=on */
1636 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1637 
1638 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1639 			break;
1640 		default:
1641 			break;
1642 		}
1643 
1644 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1645 	}
1646 }
1647 
1648 /******************************************************************************
1649  * Performs basic configuration of the adapter.
1650  *
1651  * hw - Struct containing variables accessed by shared code
1652  *
1653  * Assumes that the controller has previously been reset and is in a
1654  * post-reset uninitialized state. Initializes the receive address registers,
1655  * multicast table, and VLAN filter table. Calls routines to setup link
1656  * configuration and flow control settings. Clears all on-chip counters. Leaves
1657  * the transmit and receive units disabled and uninitialized.
1658  *****************************************************************************/
1659 static int
1660 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1661 {
1662 	uint32_t ctrl;
1663 	uint32_t i;
1664 	int32_t ret_val;
1665 	uint16_t pcix_cmd_word;
1666 	uint16_t pcix_stat_hi_word;
1667 	uint16_t cmd_mmrbc;
1668 	uint16_t stat_mmrbc;
1669 	uint32_t mta_size;
1670 	uint32_t reg_data;
1671 	uint32_t ctrl_ext;
1672 	DEBUGFUNC();
1673 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1674 	if ((hw->mac_type == e1000_ich8lan) &&
1675 		((hw->revision_id < 3) ||
1676 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1677 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1678 			reg_data = E1000_READ_REG(hw, STATUS);
1679 			reg_data &= ~0x80000000;
1680 			E1000_WRITE_REG(hw, STATUS, reg_data);
1681 	}
1682 	/* Do not need initialize Identification LED */
1683 
1684 	/* Set the media type and TBI compatibility */
1685 	e1000_set_media_type(hw);
1686 
1687 	/* Must be called after e1000_set_media_type
1688 	 * because media_type is used */
1689 	e1000_initialize_hardware_bits(hw);
1690 
1691 	/* Disabling VLAN filtering. */
1692 	DEBUGOUT("Initializing the IEEE VLAN\n");
1693 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1694 	if (hw->mac_type != e1000_ich8lan) {
1695 		if (hw->mac_type < e1000_82545_rev_3)
1696 			E1000_WRITE_REG(hw, VET, 0);
1697 		e1000_clear_vfta(hw);
1698 	}
1699 
1700 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1701 	if (hw->mac_type == e1000_82542_rev2_0) {
1702 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1703 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1704 				      hw->
1705 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1706 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1707 		E1000_WRITE_FLUSH(hw);
1708 		mdelay(5);
1709 	}
1710 
1711 	/* Setup the receive address. This involves initializing all of the Receive
1712 	 * Address Registers (RARs 0 - 15).
1713 	 */
1714 	e1000_init_rx_addrs(hw, enetaddr);
1715 
1716 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1717 	if (hw->mac_type == e1000_82542_rev2_0) {
1718 		E1000_WRITE_REG(hw, RCTL, 0);
1719 		E1000_WRITE_FLUSH(hw);
1720 		mdelay(1);
1721 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1722 	}
1723 
1724 	/* Zero out the Multicast HASH table */
1725 	DEBUGOUT("Zeroing the MTA\n");
1726 	mta_size = E1000_MC_TBL_SIZE;
1727 	if (hw->mac_type == e1000_ich8lan)
1728 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1729 	for (i = 0; i < mta_size; i++) {
1730 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1731 		/* use write flush to prevent Memory Write Block (MWB) from
1732 		 * occuring when accessing our register space */
1733 		E1000_WRITE_FLUSH(hw);
1734 	}
1735 #if 0
1736 	/* Set the PCI priority bit correctly in the CTRL register.  This
1737 	 * determines if the adapter gives priority to receives, or if it
1738 	 * gives equal priority to transmits and receives.  Valid only on
1739 	 * 82542 and 82543 silicon.
1740 	 */
1741 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1742 		ctrl = E1000_READ_REG(hw, CTRL);
1743 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1744 	}
1745 #endif
1746 	switch (hw->mac_type) {
1747 	case e1000_82545_rev_3:
1748 	case e1000_82546_rev_3:
1749 	case e1000_igb:
1750 		break;
1751 	default:
1752 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1753 	if (hw->bus_type == e1000_bus_type_pcix) {
1754 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1755 				     &pcix_cmd_word);
1756 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1757 				     &pcix_stat_hi_word);
1758 		cmd_mmrbc =
1759 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1760 		    PCIX_COMMAND_MMRBC_SHIFT;
1761 		stat_mmrbc =
1762 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1763 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1764 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1765 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1766 		if (cmd_mmrbc > stat_mmrbc) {
1767 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1768 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1769 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1770 					      pcix_cmd_word);
1771 		}
1772 	}
1773 		break;
1774 	}
1775 
1776 	/* More time needed for PHY to initialize */
1777 	if (hw->mac_type == e1000_ich8lan)
1778 		mdelay(15);
1779 	if (hw->mac_type == e1000_igb)
1780 		mdelay(15);
1781 
1782 	/* Call a subroutine to configure the link and setup flow control. */
1783 	ret_val = e1000_setup_link(hw);
1784 
1785 	/* Set the transmit descriptor write-back policy */
1786 	if (hw->mac_type > e1000_82544) {
1787 		ctrl = E1000_READ_REG(hw, TXDCTL);
1788 		ctrl =
1789 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1790 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1791 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1792 	}
1793 
1794 	/* Set the receive descriptor write back policy */
1795 	if (hw->mac_type >= e1000_82571) {
1796 		ctrl = E1000_READ_REG(hw, RXDCTL);
1797 		ctrl =
1798 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1799 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1800 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1801 	}
1802 
1803 	switch (hw->mac_type) {
1804 	default:
1805 		break;
1806 	case e1000_80003es2lan:
1807 		/* Enable retransmit on late collisions */
1808 		reg_data = E1000_READ_REG(hw, TCTL);
1809 		reg_data |= E1000_TCTL_RTLC;
1810 		E1000_WRITE_REG(hw, TCTL, reg_data);
1811 
1812 		/* Configure Gigabit Carry Extend Padding */
1813 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1814 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1815 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1816 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1817 
1818 		/* Configure Transmit Inter-Packet Gap */
1819 		reg_data = E1000_READ_REG(hw, TIPG);
1820 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1821 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1822 		E1000_WRITE_REG(hw, TIPG, reg_data);
1823 
1824 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1825 		reg_data &= ~0x00100000;
1826 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1827 		/* Fall through */
1828 	case e1000_82571:
1829 	case e1000_82572:
1830 	case e1000_ich8lan:
1831 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1832 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1833 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1834 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1835 		break;
1836 	case e1000_82573:
1837 	case e1000_82574:
1838 		reg_data = E1000_READ_REG(hw, GCR);
1839 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1840 		E1000_WRITE_REG(hw, GCR, reg_data);
1841 	case e1000_igb:
1842 		break;
1843 	}
1844 
1845 #if 0
1846 	/* Clear all of the statistics registers (clear on read).  It is
1847 	 * important that we do this after we have tried to establish link
1848 	 * because the symbol error count will increment wildly if there
1849 	 * is no link.
1850 	 */
1851 	e1000_clear_hw_cntrs(hw);
1852 
1853 	/* ICH8 No-snoop bits are opposite polarity.
1854 	 * Set to snoop by default after reset. */
1855 	if (hw->mac_type == e1000_ich8lan)
1856 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1857 #endif
1858 
1859 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1860 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1861 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1862 		/* Relaxed ordering must be disabled to avoid a parity
1863 		 * error crash in a PCI slot. */
1864 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1865 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1866 	}
1867 
1868 	return ret_val;
1869 }
1870 
1871 /******************************************************************************
1872  * Configures flow control and link settings.
1873  *
1874  * hw - Struct containing variables accessed by shared code
1875  *
1876  * Determines which flow control settings to use. Calls the apropriate media-
1877  * specific link configuration function. Configures the flow control settings.
1878  * Assuming the adapter has a valid link partner, a valid link should be
1879  * established. Assumes the hardware has previously been reset and the
1880  * transmitter and receiver are not enabled.
1881  *****************************************************************************/
1882 static int
1883 e1000_setup_link(struct e1000_hw *hw)
1884 {
1885 	int32_t ret_val;
1886 #ifndef CONFIG_E1000_NO_NVM
1887 	uint32_t ctrl_ext;
1888 	uint16_t eeprom_data;
1889 #endif
1890 
1891 	DEBUGFUNC();
1892 
1893 	/* In the case of the phy reset being blocked, we already have a link.
1894 	 * We do not have to set it up again. */
1895 	if (e1000_check_phy_reset_block(hw))
1896 		return E1000_SUCCESS;
1897 
1898 #ifndef CONFIG_E1000_NO_NVM
1899 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1900 	 * that determine the hardware's default PAUSE (flow control) mode,
1901 	 * a bit that determines whether the HW defaults to enabling or
1902 	 * disabling auto-negotiation, and the direction of the
1903 	 * SW defined pins. If there is no SW over-ride of the flow
1904 	 * control setting, then the variable hw->fc will
1905 	 * be initialized based on a value in the EEPROM.
1906 	 */
1907 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1908 				&eeprom_data) < 0) {
1909 		DEBUGOUT("EEPROM Read Error\n");
1910 		return -E1000_ERR_EEPROM;
1911 	}
1912 #endif
1913 	if (hw->fc == e1000_fc_default) {
1914 		switch (hw->mac_type) {
1915 		case e1000_ich8lan:
1916 		case e1000_82573:
1917 		case e1000_82574:
1918 		case e1000_igb:
1919 			hw->fc = e1000_fc_full;
1920 			break;
1921 		default:
1922 #ifndef CONFIG_E1000_NO_NVM
1923 			ret_val = e1000_read_eeprom(hw,
1924 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1925 			if (ret_val) {
1926 				DEBUGOUT("EEPROM Read Error\n");
1927 				return -E1000_ERR_EEPROM;
1928 			}
1929 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1930 				hw->fc = e1000_fc_none;
1931 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1932 				    EEPROM_WORD0F_ASM_DIR)
1933 				hw->fc = e1000_fc_tx_pause;
1934 			else
1935 #endif
1936 				hw->fc = e1000_fc_full;
1937 			break;
1938 		}
1939 	}
1940 
1941 	/* We want to save off the original Flow Control configuration just
1942 	 * in case we get disconnected and then reconnected into a different
1943 	 * hub or switch with different Flow Control capabilities.
1944 	 */
1945 	if (hw->mac_type == e1000_82542_rev2_0)
1946 		hw->fc &= (~e1000_fc_tx_pause);
1947 
1948 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1949 		hw->fc &= (~e1000_fc_rx_pause);
1950 
1951 	hw->original_fc = hw->fc;
1952 
1953 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1954 
1955 #ifndef CONFIG_E1000_NO_NVM
1956 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1957 	 * polarity value for the SW controlled pins, and setup the
1958 	 * Extended Device Control reg with that info.
1959 	 * This is needed because one of the SW controlled pins is used for
1960 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1961 	 * or e1000_phy_setup() is called.
1962 	 */
1963 	if (hw->mac_type == e1000_82543) {
1964 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1965 			    SWDPIO__EXT_SHIFT);
1966 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1967 	}
1968 #endif
1969 
1970 	/* Call the necessary subroutine to configure the link. */
1971 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1972 	    e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
1973 	if (ret_val < 0) {
1974 		return ret_val;
1975 	}
1976 
1977 	/* Initialize the flow control address, type, and PAUSE timer
1978 	 * registers to their default values.  This is done even if flow
1979 	 * control is disabled, because it does not hurt anything to
1980 	 * initialize these registers.
1981 	 */
1982 	DEBUGOUT("Initializing the Flow Control address, type"
1983 			"and timer regs\n");
1984 
1985 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1986 	if (hw->mac_type != e1000_ich8lan) {
1987 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1988 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1989 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1990 	}
1991 
1992 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1993 
1994 	/* Set the flow control receive threshold registers.  Normally,
1995 	 * these registers will be set to a default threshold that may be
1996 	 * adjusted later by the driver's runtime code.  However, if the
1997 	 * ability to transmit pause frames in not enabled, then these
1998 	 * registers will be set to 0.
1999 	 */
2000 	if (!(hw->fc & e1000_fc_tx_pause)) {
2001 		E1000_WRITE_REG(hw, FCRTL, 0);
2002 		E1000_WRITE_REG(hw, FCRTH, 0);
2003 	} else {
2004 		/* We need to set up the Receive Threshold high and low water marks
2005 		 * as well as (optionally) enabling the transmission of XON frames.
2006 		 */
2007 		if (hw->fc_send_xon) {
2008 			E1000_WRITE_REG(hw, FCRTL,
2009 					(hw->fc_low_water | E1000_FCRTL_XONE));
2010 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2011 		} else {
2012 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2013 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2014 		}
2015 	}
2016 	return ret_val;
2017 }
2018 
2019 /******************************************************************************
2020  * Sets up link for a fiber based adapter
2021  *
2022  * hw - Struct containing variables accessed by shared code
2023  *
2024  * Manipulates Physical Coding Sublayer functions in order to configure
2025  * link. Assumes the hardware has been previously reset and the transmitter
2026  * and receiver are not enabled.
2027  *****************************************************************************/
2028 static int
2029 e1000_setup_fiber_link(struct e1000_hw *hw)
2030 {
2031 	uint32_t ctrl;
2032 	uint32_t status;
2033 	uint32_t txcw = 0;
2034 	uint32_t i;
2035 	uint32_t signal;
2036 	int32_t ret_val;
2037 
2038 	DEBUGFUNC();
2039 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2040 	 * set when the optics detect a signal. On older adapters, it will be
2041 	 * cleared when there is a signal
2042 	 */
2043 	ctrl = E1000_READ_REG(hw, CTRL);
2044 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2045 		signal = E1000_CTRL_SWDPIN1;
2046 	else
2047 		signal = 0;
2048 
2049 	printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2050 	       ctrl);
2051 	/* Take the link out of reset */
2052 	ctrl &= ~(E1000_CTRL_LRST);
2053 
2054 	e1000_config_collision_dist(hw);
2055 
2056 	/* Check for a software override of the flow control settings, and setup
2057 	 * the device accordingly.  If auto-negotiation is enabled, then software
2058 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2059 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2060 	 * auto-negotiation is disabled, then software will have to manually
2061 	 * configure the two flow control enable bits in the CTRL register.
2062 	 *
2063 	 * The possible values of the "fc" parameter are:
2064 	 *	0:  Flow control is completely disabled
2065 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
2066 	 *	    not send pause frames).
2067 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
2068 	 *	    not support receiving pause frames).
2069 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
2070 	 */
2071 	switch (hw->fc) {
2072 	case e1000_fc_none:
2073 		/* Flow control is completely disabled by a software over-ride. */
2074 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2075 		break;
2076 	case e1000_fc_rx_pause:
2077 		/* RX Flow control is enabled and TX Flow control is disabled by a
2078 		 * software over-ride. Since there really isn't a way to advertise
2079 		 * that we are capable of RX Pause ONLY, we will advertise that we
2080 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
2081 		 *  disable the adapter's ability to send PAUSE frames.
2082 		 */
2083 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2084 		break;
2085 	case e1000_fc_tx_pause:
2086 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
2087 		 * software over-ride.
2088 		 */
2089 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2090 		break;
2091 	case e1000_fc_full:
2092 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
2093 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2094 		break;
2095 	default:
2096 		DEBUGOUT("Flow control param set incorrectly\n");
2097 		return -E1000_ERR_CONFIG;
2098 		break;
2099 	}
2100 
2101 	/* Since auto-negotiation is enabled, take the link out of reset (the link
2102 	 * will be in reset, because we previously reset the chip). This will
2103 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2104 	 * link-up status bit will be set and the flow control enable bits (RFCE
2105 	 * and TFCE) will be set according to their negotiated value.
2106 	 */
2107 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2108 
2109 	E1000_WRITE_REG(hw, TXCW, txcw);
2110 	E1000_WRITE_REG(hw, CTRL, ctrl);
2111 	E1000_WRITE_FLUSH(hw);
2112 
2113 	hw->txcw = txcw;
2114 	mdelay(1);
2115 
2116 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2117 	 * indication in the Device Status Register.  Time-out if a link isn't
2118 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2119 	 * less than 500 milliseconds even if the other end is doing it in SW).
2120 	 */
2121 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2122 		DEBUGOUT("Looking for Link\n");
2123 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2124 			mdelay(10);
2125 			status = E1000_READ_REG(hw, STATUS);
2126 			if (status & E1000_STATUS_LU)
2127 				break;
2128 		}
2129 		if (i == (LINK_UP_TIMEOUT / 10)) {
2130 			/* AutoNeg failed to achieve a link, so we'll call
2131 			 * e1000_check_for_link. This routine will force the link up if we
2132 			 * detect a signal. This will allow us to communicate with
2133 			 * non-autonegotiating link partners.
2134 			 */
2135 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2136 			hw->autoneg_failed = 1;
2137 			ret_val = e1000_check_for_link(hw);
2138 			if (ret_val < 0) {
2139 				DEBUGOUT("Error while checking for link\n");
2140 				return ret_val;
2141 			}
2142 			hw->autoneg_failed = 0;
2143 		} else {
2144 			hw->autoneg_failed = 0;
2145 			DEBUGOUT("Valid Link Found\n");
2146 		}
2147 	} else {
2148 		DEBUGOUT("No Signal Detected\n");
2149 		return -E1000_ERR_NOLINK;
2150 	}
2151 	return 0;
2152 }
2153 
2154 /******************************************************************************
2155 * Make sure we have a valid PHY and change PHY mode before link setup.
2156 *
2157 * hw - Struct containing variables accessed by shared code
2158 ******************************************************************************/
2159 static int32_t
2160 e1000_copper_link_preconfig(struct e1000_hw *hw)
2161 {
2162 	uint32_t ctrl;
2163 	int32_t ret_val;
2164 	uint16_t phy_data;
2165 
2166 	DEBUGFUNC();
2167 
2168 	ctrl = E1000_READ_REG(hw, CTRL);
2169 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2170 	 * the PHY speed and duplex configuration is. In addition, we need to
2171 	 * perform a hardware reset on the PHY to take it out of reset.
2172 	 */
2173 	if (hw->mac_type > e1000_82543) {
2174 		ctrl |= E1000_CTRL_SLU;
2175 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2176 		E1000_WRITE_REG(hw, CTRL, ctrl);
2177 	} else {
2178 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2179 				| E1000_CTRL_SLU);
2180 		E1000_WRITE_REG(hw, CTRL, ctrl);
2181 		ret_val = e1000_phy_hw_reset(hw);
2182 		if (ret_val)
2183 			return ret_val;
2184 	}
2185 
2186 	/* Make sure we have a valid PHY */
2187 	ret_val = e1000_detect_gig_phy(hw);
2188 	if (ret_val) {
2189 		DEBUGOUT("Error, did not detect valid phy.\n");
2190 		return ret_val;
2191 	}
2192 	DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2193 
2194 	/* Set PHY to class A mode (if necessary) */
2195 	ret_val = e1000_set_phy_mode(hw);
2196 	if (ret_val)
2197 		return ret_val;
2198 	if ((hw->mac_type == e1000_82545_rev_3) ||
2199 		(hw->mac_type == e1000_82546_rev_3)) {
2200 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2201 				&phy_data);
2202 		phy_data |= 0x00000008;
2203 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2204 				phy_data);
2205 	}
2206 
2207 	if (hw->mac_type <= e1000_82543 ||
2208 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2209 		hw->mac_type == e1000_82541_rev_2
2210 		|| hw->mac_type == e1000_82547_rev_2)
2211 			hw->phy_reset_disable = false;
2212 
2213 	return E1000_SUCCESS;
2214 }
2215 
2216 /*****************************************************************************
2217  *
2218  * This function sets the lplu state according to the active flag.  When
2219  * activating lplu this function also disables smart speed and vise versa.
2220  * lplu will not be activated unless the device autonegotiation advertisment
2221  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2222  * hw: Struct containing variables accessed by shared code
2223  * active - true to enable lplu false to disable lplu.
2224  *
2225  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2226  *            E1000_SUCCESS at any other case.
2227  *
2228  ****************************************************************************/
2229 
2230 static int32_t
2231 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2232 {
2233 	uint32_t phy_ctrl = 0;
2234 	int32_t ret_val;
2235 	uint16_t phy_data;
2236 	DEBUGFUNC();
2237 
2238 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2239 	    && hw->phy_type != e1000_phy_igp_3)
2240 		return E1000_SUCCESS;
2241 
2242 	/* During driver activity LPLU should not be used or it will attain link
2243 	 * from the lowest speeds starting from 10Mbps. The capability is used
2244 	 * for Dx transitions and states */
2245 	if (hw->mac_type == e1000_82541_rev_2
2246 			|| hw->mac_type == e1000_82547_rev_2) {
2247 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2248 				&phy_data);
2249 		if (ret_val)
2250 			return ret_val;
2251 	} else if (hw->mac_type == e1000_ich8lan) {
2252 		/* MAC writes into PHY register based on the state transition
2253 		 * and start auto-negotiation. SW driver can overwrite the
2254 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2255 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2256 	} else {
2257 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2258 				&phy_data);
2259 		if (ret_val)
2260 			return ret_val;
2261 	}
2262 
2263 	if (!active) {
2264 		if (hw->mac_type == e1000_82541_rev_2 ||
2265 			hw->mac_type == e1000_82547_rev_2) {
2266 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2267 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2268 					phy_data);
2269 			if (ret_val)
2270 				return ret_val;
2271 		} else {
2272 			if (hw->mac_type == e1000_ich8lan) {
2273 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2274 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2275 			} else {
2276 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2277 				ret_val = e1000_write_phy_reg(hw,
2278 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2279 				if (ret_val)
2280 					return ret_val;
2281 			}
2282 		}
2283 
2284 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2285 	 * Dx states where the power conservation is most important.  During
2286 	 * driver activity we should enable SmartSpeed, so performance is
2287 	 * maintained. */
2288 		if (hw->smart_speed == e1000_smart_speed_on) {
2289 			ret_val = e1000_read_phy_reg(hw,
2290 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2291 			if (ret_val)
2292 				return ret_val;
2293 
2294 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2295 			ret_val = e1000_write_phy_reg(hw,
2296 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2297 			if (ret_val)
2298 				return ret_val;
2299 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2300 			ret_val = e1000_read_phy_reg(hw,
2301 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2302 			if (ret_val)
2303 				return ret_val;
2304 
2305 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2306 			ret_val = e1000_write_phy_reg(hw,
2307 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2308 			if (ret_val)
2309 				return ret_val;
2310 		}
2311 
2312 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2313 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2314 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2315 
2316 		if (hw->mac_type == e1000_82541_rev_2 ||
2317 		    hw->mac_type == e1000_82547_rev_2) {
2318 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2319 			ret_val = e1000_write_phy_reg(hw,
2320 					IGP01E1000_GMII_FIFO, phy_data);
2321 			if (ret_val)
2322 				return ret_val;
2323 		} else {
2324 			if (hw->mac_type == e1000_ich8lan) {
2325 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2326 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2327 			} else {
2328 				phy_data |= IGP02E1000_PM_D3_LPLU;
2329 				ret_val = e1000_write_phy_reg(hw,
2330 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2331 				if (ret_val)
2332 					return ret_val;
2333 			}
2334 		}
2335 
2336 		/* When LPLU is enabled we should disable SmartSpeed */
2337 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2338 				&phy_data);
2339 		if (ret_val)
2340 			return ret_val;
2341 
2342 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2343 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2344 				phy_data);
2345 		if (ret_val)
2346 			return ret_val;
2347 	}
2348 	return E1000_SUCCESS;
2349 }
2350 
2351 /*****************************************************************************
2352  *
2353  * This function sets the lplu d0 state according to the active flag.  When
2354  * activating lplu this function also disables smart speed and vise versa.
2355  * lplu will not be activated unless the device autonegotiation advertisment
2356  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2357  * hw: Struct containing variables accessed by shared code
2358  * active - true to enable lplu false to disable lplu.
2359  *
2360  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2361  *            E1000_SUCCESS at any other case.
2362  *
2363  ****************************************************************************/
2364 
2365 static int32_t
2366 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2367 {
2368 	uint32_t phy_ctrl = 0;
2369 	int32_t ret_val;
2370 	uint16_t phy_data;
2371 	DEBUGFUNC();
2372 
2373 	if (hw->mac_type <= e1000_82547_rev_2)
2374 		return E1000_SUCCESS;
2375 
2376 	if (hw->mac_type == e1000_ich8lan) {
2377 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2378 	} else if (hw->mac_type == e1000_igb) {
2379 		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2380 	} else {
2381 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2382 				&phy_data);
2383 		if (ret_val)
2384 			return ret_val;
2385 	}
2386 
2387 	if (!active) {
2388 		if (hw->mac_type == e1000_ich8lan) {
2389 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2390 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2391 		} else if (hw->mac_type == e1000_igb) {
2392 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2393 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2394 		} else {
2395 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2396 			ret_val = e1000_write_phy_reg(hw,
2397 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2398 			if (ret_val)
2399 				return ret_val;
2400 		}
2401 
2402 		if (hw->mac_type == e1000_igb)
2403 			return E1000_SUCCESS;
2404 
2405 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2406 	 * Dx states where the power conservation is most important.  During
2407 	 * driver activity we should enable SmartSpeed, so performance is
2408 	 * maintained. */
2409 		if (hw->smart_speed == e1000_smart_speed_on) {
2410 			ret_val = e1000_read_phy_reg(hw,
2411 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2412 			if (ret_val)
2413 				return ret_val;
2414 
2415 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2416 			ret_val = e1000_write_phy_reg(hw,
2417 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2418 			if (ret_val)
2419 				return ret_val;
2420 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2421 			ret_val = e1000_read_phy_reg(hw,
2422 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2423 			if (ret_val)
2424 				return ret_val;
2425 
2426 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2427 			ret_val = e1000_write_phy_reg(hw,
2428 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2429 			if (ret_val)
2430 				return ret_val;
2431 		}
2432 
2433 
2434 	} else {
2435 
2436 		if (hw->mac_type == e1000_ich8lan) {
2437 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2438 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2439 		} else if (hw->mac_type == e1000_igb) {
2440 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2441 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2442 		} else {
2443 			phy_data |= IGP02E1000_PM_D0_LPLU;
2444 			ret_val = e1000_write_phy_reg(hw,
2445 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2446 			if (ret_val)
2447 				return ret_val;
2448 		}
2449 
2450 		if (hw->mac_type == e1000_igb)
2451 			return E1000_SUCCESS;
2452 
2453 		/* When LPLU is enabled we should disable SmartSpeed */
2454 		ret_val = e1000_read_phy_reg(hw,
2455 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2456 		if (ret_val)
2457 			return ret_val;
2458 
2459 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2460 		ret_val = e1000_write_phy_reg(hw,
2461 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2462 		if (ret_val)
2463 			return ret_val;
2464 
2465 	}
2466 	return E1000_SUCCESS;
2467 }
2468 
2469 /********************************************************************
2470 * Copper link setup for e1000_phy_igp series.
2471 *
2472 * hw - Struct containing variables accessed by shared code
2473 *********************************************************************/
2474 static int32_t
2475 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2476 {
2477 	uint32_t led_ctrl;
2478 	int32_t ret_val;
2479 	uint16_t phy_data;
2480 
2481 	DEBUGFUNC();
2482 
2483 	if (hw->phy_reset_disable)
2484 		return E1000_SUCCESS;
2485 
2486 	ret_val = e1000_phy_reset(hw);
2487 	if (ret_val) {
2488 		DEBUGOUT("Error Resetting the PHY\n");
2489 		return ret_val;
2490 	}
2491 
2492 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2493 	mdelay(15);
2494 	if (hw->mac_type != e1000_ich8lan) {
2495 		/* Configure activity LED after PHY reset */
2496 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2497 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2498 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2499 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2500 	}
2501 
2502 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2503 	if (hw->phy_type == e1000_phy_igp) {
2504 		/* disable lplu d3 during driver init */
2505 		ret_val = e1000_set_d3_lplu_state(hw, false);
2506 		if (ret_val) {
2507 			DEBUGOUT("Error Disabling LPLU D3\n");
2508 			return ret_val;
2509 		}
2510 	}
2511 
2512 	/* disable lplu d0 during driver init */
2513 	ret_val = e1000_set_d0_lplu_state(hw, false);
2514 	if (ret_val) {
2515 		DEBUGOUT("Error Disabling LPLU D0\n");
2516 		return ret_val;
2517 	}
2518 	/* Configure mdi-mdix settings */
2519 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2520 	if (ret_val)
2521 		return ret_val;
2522 
2523 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2524 		hw->dsp_config_state = e1000_dsp_config_disabled;
2525 		/* Force MDI for earlier revs of the IGP PHY */
2526 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2527 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2528 		hw->mdix = 1;
2529 
2530 	} else {
2531 		hw->dsp_config_state = e1000_dsp_config_enabled;
2532 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2533 
2534 		switch (hw->mdix) {
2535 		case 1:
2536 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2537 			break;
2538 		case 2:
2539 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2540 			break;
2541 		case 0:
2542 		default:
2543 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2544 			break;
2545 		}
2546 	}
2547 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2548 	if (ret_val)
2549 		return ret_val;
2550 
2551 	/* set auto-master slave resolution settings */
2552 	if (hw->autoneg) {
2553 		e1000_ms_type phy_ms_setting = hw->master_slave;
2554 
2555 		if (hw->ffe_config_state == e1000_ffe_config_active)
2556 			hw->ffe_config_state = e1000_ffe_config_enabled;
2557 
2558 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2559 			hw->dsp_config_state = e1000_dsp_config_enabled;
2560 
2561 		/* when autonegotiation advertisment is only 1000Mbps then we
2562 		  * should disable SmartSpeed and enable Auto MasterSlave
2563 		  * resolution as hardware default. */
2564 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2565 			/* Disable SmartSpeed */
2566 			ret_val = e1000_read_phy_reg(hw,
2567 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2568 			if (ret_val)
2569 				return ret_val;
2570 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2571 			ret_val = e1000_write_phy_reg(hw,
2572 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2573 			if (ret_val)
2574 				return ret_val;
2575 			/* Set auto Master/Slave resolution process */
2576 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2577 					&phy_data);
2578 			if (ret_val)
2579 				return ret_val;
2580 			phy_data &= ~CR_1000T_MS_ENABLE;
2581 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2582 					phy_data);
2583 			if (ret_val)
2584 				return ret_val;
2585 		}
2586 
2587 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2588 		if (ret_val)
2589 			return ret_val;
2590 
2591 		/* load defaults for future use */
2592 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2593 				((phy_data & CR_1000T_MS_VALUE) ?
2594 				e1000_ms_force_master :
2595 				e1000_ms_force_slave) :
2596 				e1000_ms_auto;
2597 
2598 		switch (phy_ms_setting) {
2599 		case e1000_ms_force_master:
2600 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2601 			break;
2602 		case e1000_ms_force_slave:
2603 			phy_data |= CR_1000T_MS_ENABLE;
2604 			phy_data &= ~(CR_1000T_MS_VALUE);
2605 			break;
2606 		case e1000_ms_auto:
2607 			phy_data &= ~CR_1000T_MS_ENABLE;
2608 		default:
2609 			break;
2610 		}
2611 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2612 		if (ret_val)
2613 			return ret_val;
2614 	}
2615 
2616 	return E1000_SUCCESS;
2617 }
2618 
2619 /*****************************************************************************
2620  * This function checks the mode of the firmware.
2621  *
2622  * returns  - true when the mode is IAMT or false.
2623  ****************************************************************************/
2624 bool
2625 e1000_check_mng_mode(struct e1000_hw *hw)
2626 {
2627 	uint32_t fwsm;
2628 	DEBUGFUNC();
2629 
2630 	fwsm = E1000_READ_REG(hw, FWSM);
2631 
2632 	if (hw->mac_type == e1000_ich8lan) {
2633 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2634 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2635 			return true;
2636 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2637 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2638 			return true;
2639 
2640 	return false;
2641 }
2642 
2643 static int32_t
2644 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2645 {
2646 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2647 	uint32_t reg_val;
2648 	DEBUGFUNC();
2649 
2650 	if (e1000_is_second_port(hw))
2651 		swfw = E1000_SWFW_PHY1_SM;
2652 
2653 	if (e1000_swfw_sync_acquire(hw, swfw))
2654 		return -E1000_ERR_SWFW_SYNC;
2655 
2656 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2657 			& E1000_KUMCTRLSTA_OFFSET) | data;
2658 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2659 	udelay(2);
2660 
2661 	return E1000_SUCCESS;
2662 }
2663 
2664 static int32_t
2665 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2666 {
2667 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2668 	uint32_t reg_val;
2669 	DEBUGFUNC();
2670 
2671 	if (e1000_is_second_port(hw))
2672 		swfw = E1000_SWFW_PHY1_SM;
2673 
2674 	if (e1000_swfw_sync_acquire(hw, swfw)) {
2675 		debug("%s[%i]\n", __func__, __LINE__);
2676 		return -E1000_ERR_SWFW_SYNC;
2677 	}
2678 
2679 	/* Write register address */
2680 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2681 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2682 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2683 	udelay(2);
2684 
2685 	/* Read the data returned */
2686 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2687 	*data = (uint16_t)reg_val;
2688 
2689 	return E1000_SUCCESS;
2690 }
2691 
2692 /********************************************************************
2693 * Copper link setup for e1000_phy_gg82563 series.
2694 *
2695 * hw - Struct containing variables accessed by shared code
2696 *********************************************************************/
2697 static int32_t
2698 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2699 {
2700 	int32_t ret_val;
2701 	uint16_t phy_data;
2702 	uint32_t reg_data;
2703 
2704 	DEBUGFUNC();
2705 
2706 	if (!hw->phy_reset_disable) {
2707 		/* Enable CRS on TX for half-duplex operation. */
2708 		ret_val = e1000_read_phy_reg(hw,
2709 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2710 		if (ret_val)
2711 			return ret_val;
2712 
2713 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2714 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2715 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2716 
2717 		ret_val = e1000_write_phy_reg(hw,
2718 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2719 		if (ret_val)
2720 			return ret_val;
2721 
2722 		/* Options:
2723 		 *   MDI/MDI-X = 0 (default)
2724 		 *   0 - Auto for all speeds
2725 		 *   1 - MDI mode
2726 		 *   2 - MDI-X mode
2727 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2728 		 */
2729 		ret_val = e1000_read_phy_reg(hw,
2730 				GG82563_PHY_SPEC_CTRL, &phy_data);
2731 		if (ret_val)
2732 			return ret_val;
2733 
2734 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2735 
2736 		switch (hw->mdix) {
2737 		case 1:
2738 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2739 			break;
2740 		case 2:
2741 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2742 			break;
2743 		case 0:
2744 		default:
2745 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2746 			break;
2747 		}
2748 
2749 		/* Options:
2750 		 *   disable_polarity_correction = 0 (default)
2751 		 *       Automatic Correction for Reversed Cable Polarity
2752 		 *   0 - Disabled
2753 		 *   1 - Enabled
2754 		 */
2755 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2756 		ret_val = e1000_write_phy_reg(hw,
2757 				GG82563_PHY_SPEC_CTRL, phy_data);
2758 
2759 		if (ret_val)
2760 			return ret_val;
2761 
2762 		/* SW Reset the PHY so all changes take effect */
2763 		ret_val = e1000_phy_reset(hw);
2764 		if (ret_val) {
2765 			DEBUGOUT("Error Resetting the PHY\n");
2766 			return ret_val;
2767 		}
2768 	} /* phy_reset_disable */
2769 
2770 	if (hw->mac_type == e1000_80003es2lan) {
2771 		/* Bypass RX and TX FIFO's */
2772 		ret_val = e1000_write_kmrn_reg(hw,
2773 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2774 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2775 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2776 		if (ret_val)
2777 			return ret_val;
2778 
2779 		ret_val = e1000_read_phy_reg(hw,
2780 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2781 		if (ret_val)
2782 			return ret_val;
2783 
2784 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2785 		ret_val = e1000_write_phy_reg(hw,
2786 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2787 
2788 		if (ret_val)
2789 			return ret_val;
2790 
2791 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2792 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2793 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2794 
2795 		ret_val = e1000_read_phy_reg(hw,
2796 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2797 		if (ret_val)
2798 			return ret_val;
2799 
2800 	/* Do not init these registers when the HW is in IAMT mode, since the
2801 	 * firmware will have already initialized them.  We only initialize
2802 	 * them if the HW is not in IAMT mode.
2803 	 */
2804 		if (e1000_check_mng_mode(hw) == false) {
2805 			/* Enable Electrical Idle on the PHY */
2806 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2807 			ret_val = e1000_write_phy_reg(hw,
2808 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2809 			if (ret_val)
2810 				return ret_val;
2811 
2812 			ret_val = e1000_read_phy_reg(hw,
2813 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2814 			if (ret_val)
2815 				return ret_val;
2816 
2817 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2818 			ret_val = e1000_write_phy_reg(hw,
2819 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2820 
2821 			if (ret_val)
2822 				return ret_val;
2823 		}
2824 
2825 		/* Workaround: Disable padding in Kumeran interface in the MAC
2826 		 * and in the PHY to avoid CRC errors.
2827 		 */
2828 		ret_val = e1000_read_phy_reg(hw,
2829 				GG82563_PHY_INBAND_CTRL, &phy_data);
2830 		if (ret_val)
2831 			return ret_val;
2832 		phy_data |= GG82563_ICR_DIS_PADDING;
2833 		ret_val = e1000_write_phy_reg(hw,
2834 				GG82563_PHY_INBAND_CTRL, phy_data);
2835 		if (ret_val)
2836 			return ret_val;
2837 	}
2838 	return E1000_SUCCESS;
2839 }
2840 
2841 /********************************************************************
2842 * Copper link setup for e1000_phy_m88 series.
2843 *
2844 * hw - Struct containing variables accessed by shared code
2845 *********************************************************************/
2846 static int32_t
2847 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2848 {
2849 	int32_t ret_val;
2850 	uint16_t phy_data;
2851 
2852 	DEBUGFUNC();
2853 
2854 	if (hw->phy_reset_disable)
2855 		return E1000_SUCCESS;
2856 
2857 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2858 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2859 	if (ret_val)
2860 		return ret_val;
2861 
2862 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2863 
2864 	/* Options:
2865 	 *   MDI/MDI-X = 0 (default)
2866 	 *   0 - Auto for all speeds
2867 	 *   1 - MDI mode
2868 	 *   2 - MDI-X mode
2869 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2870 	 */
2871 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2872 
2873 	switch (hw->mdix) {
2874 	case 1:
2875 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2876 		break;
2877 	case 2:
2878 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2879 		break;
2880 	case 3:
2881 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2882 		break;
2883 	case 0:
2884 	default:
2885 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2886 		break;
2887 	}
2888 
2889 	/* Options:
2890 	 *   disable_polarity_correction = 0 (default)
2891 	 *       Automatic Correction for Reversed Cable Polarity
2892 	 *   0 - Disabled
2893 	 *   1 - Enabled
2894 	 */
2895 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2896 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2897 	if (ret_val)
2898 		return ret_val;
2899 
2900 	if (hw->phy_revision < M88E1011_I_REV_4) {
2901 		/* Force TX_CLK in the Extended PHY Specific Control Register
2902 		 * to 25MHz clock.
2903 		 */
2904 		ret_val = e1000_read_phy_reg(hw,
2905 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2906 		if (ret_val)
2907 			return ret_val;
2908 
2909 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2910 
2911 		if ((hw->phy_revision == E1000_REVISION_2) &&
2912 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2913 			/* Vidalia Phy, set the downshift counter to 5x */
2914 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2915 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2916 			ret_val = e1000_write_phy_reg(hw,
2917 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2918 			if (ret_val)
2919 				return ret_val;
2920 		} else {
2921 			/* Configure Master and Slave downshift values */
2922 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2923 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2924 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2925 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2926 			ret_val = e1000_write_phy_reg(hw,
2927 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2928 			if (ret_val)
2929 				return ret_val;
2930 		}
2931 	}
2932 
2933 	/* SW Reset the PHY so all changes take effect */
2934 	ret_val = e1000_phy_reset(hw);
2935 	if (ret_val) {
2936 		DEBUGOUT("Error Resetting the PHY\n");
2937 		return ret_val;
2938 	}
2939 
2940 	return E1000_SUCCESS;
2941 }
2942 
2943 /********************************************************************
2944 * Setup auto-negotiation and flow control advertisements,
2945 * and then perform auto-negotiation.
2946 *
2947 * hw - Struct containing variables accessed by shared code
2948 *********************************************************************/
2949 static int32_t
2950 e1000_copper_link_autoneg(struct e1000_hw *hw)
2951 {
2952 	int32_t ret_val;
2953 	uint16_t phy_data;
2954 
2955 	DEBUGFUNC();
2956 
2957 	/* Perform some bounds checking on the hw->autoneg_advertised
2958 	 * parameter.  If this variable is zero, then set it to the default.
2959 	 */
2960 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2961 
2962 	/* If autoneg_advertised is zero, we assume it was not defaulted
2963 	 * by the calling code so we set to advertise full capability.
2964 	 */
2965 	if (hw->autoneg_advertised == 0)
2966 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2967 
2968 	/* IFE phy only supports 10/100 */
2969 	if (hw->phy_type == e1000_phy_ife)
2970 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2971 
2972 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2973 	ret_val = e1000_phy_setup_autoneg(hw);
2974 	if (ret_val) {
2975 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2976 		return ret_val;
2977 	}
2978 	DEBUGOUT("Restarting Auto-Neg\n");
2979 
2980 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2981 	 * the Auto Neg Restart bit in the PHY control register.
2982 	 */
2983 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2984 	if (ret_val)
2985 		return ret_val;
2986 
2987 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2988 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2989 	if (ret_val)
2990 		return ret_val;
2991 
2992 	/* Does the user want to wait for Auto-Neg to complete here, or
2993 	 * check at a later time (for example, callback routine).
2994 	 */
2995 	/* If we do not wait for autonegtation to complete I
2996 	 * do not see a valid link status.
2997 	 * wait_autoneg_complete = 1 .
2998 	 */
2999 	if (hw->wait_autoneg_complete) {
3000 		ret_val = e1000_wait_autoneg(hw);
3001 		if (ret_val) {
3002 			DEBUGOUT("Error while waiting for autoneg"
3003 					"to complete\n");
3004 			return ret_val;
3005 		}
3006 	}
3007 
3008 	hw->get_link_status = true;
3009 
3010 	return E1000_SUCCESS;
3011 }
3012 
3013 /******************************************************************************
3014 * Config the MAC and the PHY after link is up.
3015 *   1) Set up the MAC to the current PHY speed/duplex
3016 *      if we are on 82543.  If we
3017 *      are on newer silicon, we only need to configure
3018 *      collision distance in the Transmit Control Register.
3019 *   2) Set up flow control on the MAC to that established with
3020 *      the link partner.
3021 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3022 *
3023 * hw - Struct containing variables accessed by shared code
3024 ******************************************************************************/
3025 static int32_t
3026 e1000_copper_link_postconfig(struct e1000_hw *hw)
3027 {
3028 	int32_t ret_val;
3029 	DEBUGFUNC();
3030 
3031 	if (hw->mac_type >= e1000_82544) {
3032 		e1000_config_collision_dist(hw);
3033 	} else {
3034 		ret_val = e1000_config_mac_to_phy(hw);
3035 		if (ret_val) {
3036 			DEBUGOUT("Error configuring MAC to PHY settings\n");
3037 			return ret_val;
3038 		}
3039 	}
3040 	ret_val = e1000_config_fc_after_link_up(hw);
3041 	if (ret_val) {
3042 		DEBUGOUT("Error Configuring Flow Control\n");
3043 		return ret_val;
3044 	}
3045 	return E1000_SUCCESS;
3046 }
3047 
3048 /******************************************************************************
3049 * Detects which PHY is present and setup the speed and duplex
3050 *
3051 * hw - Struct containing variables accessed by shared code
3052 ******************************************************************************/
3053 static int
3054 e1000_setup_copper_link(struct e1000_hw *hw)
3055 {
3056 	int32_t ret_val;
3057 	uint16_t i;
3058 	uint16_t phy_data;
3059 	uint16_t reg_data;
3060 
3061 	DEBUGFUNC();
3062 
3063 	switch (hw->mac_type) {
3064 	case e1000_80003es2lan:
3065 	case e1000_ich8lan:
3066 		/* Set the mac to wait the maximum time between each
3067 		 * iteration and increase the max iterations when
3068 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3069 		ret_val = e1000_write_kmrn_reg(hw,
3070 				GG82563_REG(0x34, 4), 0xFFFF);
3071 		if (ret_val)
3072 			return ret_val;
3073 		ret_val = e1000_read_kmrn_reg(hw,
3074 				GG82563_REG(0x34, 9), &reg_data);
3075 		if (ret_val)
3076 			return ret_val;
3077 		reg_data |= 0x3F;
3078 		ret_val = e1000_write_kmrn_reg(hw,
3079 				GG82563_REG(0x34, 9), reg_data);
3080 		if (ret_val)
3081 			return ret_val;
3082 	default:
3083 		break;
3084 	}
3085 
3086 	/* Check if it is a valid PHY and set PHY mode if necessary. */
3087 	ret_val = e1000_copper_link_preconfig(hw);
3088 	if (ret_val)
3089 		return ret_val;
3090 	switch (hw->mac_type) {
3091 	case e1000_80003es2lan:
3092 		/* Kumeran registers are written-only */
3093 		reg_data =
3094 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3095 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3096 		ret_val = e1000_write_kmrn_reg(hw,
3097 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3098 		if (ret_val)
3099 			return ret_val;
3100 		break;
3101 	default:
3102 		break;
3103 	}
3104 
3105 	if (hw->phy_type == e1000_phy_igp ||
3106 		hw->phy_type == e1000_phy_igp_3 ||
3107 		hw->phy_type == e1000_phy_igp_2) {
3108 		ret_val = e1000_copper_link_igp_setup(hw);
3109 		if (ret_val)
3110 			return ret_val;
3111 	} else if (hw->phy_type == e1000_phy_m88 ||
3112 		hw->phy_type == e1000_phy_igb) {
3113 		ret_val = e1000_copper_link_mgp_setup(hw);
3114 		if (ret_val)
3115 			return ret_val;
3116 	} else if (hw->phy_type == e1000_phy_gg82563) {
3117 		ret_val = e1000_copper_link_ggp_setup(hw);
3118 		if (ret_val)
3119 			return ret_val;
3120 	}
3121 
3122 	/* always auto */
3123 	/* Setup autoneg and flow control advertisement
3124 	  * and perform autonegotiation */
3125 	ret_val = e1000_copper_link_autoneg(hw);
3126 	if (ret_val)
3127 		return ret_val;
3128 
3129 	/* Check link status. Wait up to 100 microseconds for link to become
3130 	 * valid.
3131 	 */
3132 	for (i = 0; i < 10; i++) {
3133 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3134 		if (ret_val)
3135 			return ret_val;
3136 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3137 		if (ret_val)
3138 			return ret_val;
3139 
3140 		if (phy_data & MII_SR_LINK_STATUS) {
3141 			/* Config the MAC and PHY after link is up */
3142 			ret_val = e1000_copper_link_postconfig(hw);
3143 			if (ret_val)
3144 				return ret_val;
3145 
3146 			DEBUGOUT("Valid link established!!!\n");
3147 			return E1000_SUCCESS;
3148 		}
3149 		udelay(10);
3150 	}
3151 
3152 	DEBUGOUT("Unable to establish link!!!\n");
3153 	return E1000_SUCCESS;
3154 }
3155 
3156 /******************************************************************************
3157 * Configures PHY autoneg and flow control advertisement settings
3158 *
3159 * hw - Struct containing variables accessed by shared code
3160 ******************************************************************************/
3161 int32_t
3162 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3163 {
3164 	int32_t ret_val;
3165 	uint16_t mii_autoneg_adv_reg;
3166 	uint16_t mii_1000t_ctrl_reg;
3167 
3168 	DEBUGFUNC();
3169 
3170 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3171 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3172 	if (ret_val)
3173 		return ret_val;
3174 
3175 	if (hw->phy_type != e1000_phy_ife) {
3176 		/* Read the MII 1000Base-T Control Register (Address 9). */
3177 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3178 				&mii_1000t_ctrl_reg);
3179 		if (ret_val)
3180 			return ret_val;
3181 	} else
3182 		mii_1000t_ctrl_reg = 0;
3183 
3184 	/* Need to parse both autoneg_advertised and fc and set up
3185 	 * the appropriate PHY registers.  First we will parse for
3186 	 * autoneg_advertised software override.  Since we can advertise
3187 	 * a plethora of combinations, we need to check each bit
3188 	 * individually.
3189 	 */
3190 
3191 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3192 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3193 	 * the  1000Base-T Control Register (Address 9).
3194 	 */
3195 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3196 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3197 
3198 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3199 
3200 	/* Do we want to advertise 10 Mb Half Duplex? */
3201 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3202 		DEBUGOUT("Advertise 10mb Half duplex\n");
3203 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3204 	}
3205 
3206 	/* Do we want to advertise 10 Mb Full Duplex? */
3207 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3208 		DEBUGOUT("Advertise 10mb Full duplex\n");
3209 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3210 	}
3211 
3212 	/* Do we want to advertise 100 Mb Half Duplex? */
3213 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3214 		DEBUGOUT("Advertise 100mb Half duplex\n");
3215 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3216 	}
3217 
3218 	/* Do we want to advertise 100 Mb Full Duplex? */
3219 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3220 		DEBUGOUT("Advertise 100mb Full duplex\n");
3221 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3222 	}
3223 
3224 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3225 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3226 		DEBUGOUT
3227 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3228 	}
3229 
3230 	/* Do we want to advertise 1000 Mb Full Duplex? */
3231 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3232 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3233 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3234 	}
3235 
3236 	/* Check for a software override of the flow control settings, and
3237 	 * setup the PHY advertisement registers accordingly.  If
3238 	 * auto-negotiation is enabled, then software will have to set the
3239 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3240 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3241 	 *
3242 	 * The possible values of the "fc" parameter are:
3243 	 *	0:  Flow control is completely disabled
3244 	 *	1:  Rx flow control is enabled (we can receive pause frames
3245 	 *	    but not send pause frames).
3246 	 *	2:  Tx flow control is enabled (we can send pause frames
3247 	 *	    but we do not support receiving pause frames).
3248 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3249 	 *  other:  No software override.  The flow control configuration
3250 	 *	    in the EEPROM is used.
3251 	 */
3252 	switch (hw->fc) {
3253 	case e1000_fc_none:	/* 0 */
3254 		/* Flow control (RX & TX) is completely disabled by a
3255 		 * software over-ride.
3256 		 */
3257 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3258 		break;
3259 	case e1000_fc_rx_pause:	/* 1 */
3260 		/* RX Flow control is enabled, and TX Flow control is
3261 		 * disabled, by a software over-ride.
3262 		 */
3263 		/* Since there really isn't a way to advertise that we are
3264 		 * capable of RX Pause ONLY, we will advertise that we
3265 		 * support both symmetric and asymmetric RX PAUSE.  Later
3266 		 * (in e1000_config_fc_after_link_up) we will disable the
3267 		 *hw's ability to send PAUSE frames.
3268 		 */
3269 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3270 		break;
3271 	case e1000_fc_tx_pause:	/* 2 */
3272 		/* TX Flow control is enabled, and RX Flow control is
3273 		 * disabled, by a software over-ride.
3274 		 */
3275 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3276 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3277 		break;
3278 	case e1000_fc_full:	/* 3 */
3279 		/* Flow control (both RX and TX) is enabled by a software
3280 		 * over-ride.
3281 		 */
3282 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3283 		break;
3284 	default:
3285 		DEBUGOUT("Flow control param set incorrectly\n");
3286 		return -E1000_ERR_CONFIG;
3287 	}
3288 
3289 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3290 	if (ret_val)
3291 		return ret_val;
3292 
3293 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3294 
3295 	if (hw->phy_type != e1000_phy_ife) {
3296 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3297 				mii_1000t_ctrl_reg);
3298 		if (ret_val)
3299 			return ret_val;
3300 	}
3301 
3302 	return E1000_SUCCESS;
3303 }
3304 
3305 /******************************************************************************
3306 * Sets the collision distance in the Transmit Control register
3307 *
3308 * hw - Struct containing variables accessed by shared code
3309 *
3310 * Link should have been established previously. Reads the speed and duplex
3311 * information from the Device Status register.
3312 ******************************************************************************/
3313 static void
3314 e1000_config_collision_dist(struct e1000_hw *hw)
3315 {
3316 	uint32_t tctl, coll_dist;
3317 
3318 	DEBUGFUNC();
3319 
3320 	if (hw->mac_type < e1000_82543)
3321 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3322 	else
3323 		coll_dist = E1000_COLLISION_DISTANCE;
3324 
3325 	tctl = E1000_READ_REG(hw, TCTL);
3326 
3327 	tctl &= ~E1000_TCTL_COLD;
3328 	tctl |= coll_dist << E1000_COLD_SHIFT;
3329 
3330 	E1000_WRITE_REG(hw, TCTL, tctl);
3331 	E1000_WRITE_FLUSH(hw);
3332 }
3333 
3334 /******************************************************************************
3335 * Sets MAC speed and duplex settings to reflect the those in the PHY
3336 *
3337 * hw - Struct containing variables accessed by shared code
3338 * mii_reg - data to write to the MII control register
3339 *
3340 * The contents of the PHY register containing the needed information need to
3341 * be passed in.
3342 ******************************************************************************/
3343 static int
3344 e1000_config_mac_to_phy(struct e1000_hw *hw)
3345 {
3346 	uint32_t ctrl;
3347 	uint16_t phy_data;
3348 
3349 	DEBUGFUNC();
3350 
3351 	/* Read the Device Control Register and set the bits to Force Speed
3352 	 * and Duplex.
3353 	 */
3354 	ctrl = E1000_READ_REG(hw, CTRL);
3355 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3356 	ctrl &= ~(E1000_CTRL_ILOS);
3357 	ctrl |= (E1000_CTRL_SPD_SEL);
3358 
3359 	/* Set up duplex in the Device Control and Transmit Control
3360 	 * registers depending on negotiated values.
3361 	 */
3362 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3363 		DEBUGOUT("PHY Read Error\n");
3364 		return -E1000_ERR_PHY;
3365 	}
3366 	if (phy_data & M88E1000_PSSR_DPLX)
3367 		ctrl |= E1000_CTRL_FD;
3368 	else
3369 		ctrl &= ~E1000_CTRL_FD;
3370 
3371 	e1000_config_collision_dist(hw);
3372 
3373 	/* Set up speed in the Device Control register depending on
3374 	 * negotiated values.
3375 	 */
3376 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3377 		ctrl |= E1000_CTRL_SPD_1000;
3378 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3379 		ctrl |= E1000_CTRL_SPD_100;
3380 	/* Write the configured values back to the Device Control Reg. */
3381 	E1000_WRITE_REG(hw, CTRL, ctrl);
3382 	return 0;
3383 }
3384 
3385 /******************************************************************************
3386  * Forces the MAC's flow control settings.
3387  *
3388  * hw - Struct containing variables accessed by shared code
3389  *
3390  * Sets the TFCE and RFCE bits in the device control register to reflect
3391  * the adapter settings. TFCE and RFCE need to be explicitly set by
3392  * software when a Copper PHY is used because autonegotiation is managed
3393  * by the PHY rather than the MAC. Software must also configure these
3394  * bits when link is forced on a fiber connection.
3395  *****************************************************************************/
3396 static int
3397 e1000_force_mac_fc(struct e1000_hw *hw)
3398 {
3399 	uint32_t ctrl;
3400 
3401 	DEBUGFUNC();
3402 
3403 	/* Get the current configuration of the Device Control Register */
3404 	ctrl = E1000_READ_REG(hw, CTRL);
3405 
3406 	/* Because we didn't get link via the internal auto-negotiation
3407 	 * mechanism (we either forced link or we got link via PHY
3408 	 * auto-neg), we have to manually enable/disable transmit an
3409 	 * receive flow control.
3410 	 *
3411 	 * The "Case" statement below enables/disable flow control
3412 	 * according to the "hw->fc" parameter.
3413 	 *
3414 	 * The possible values of the "fc" parameter are:
3415 	 *	0:  Flow control is completely disabled
3416 	 *	1:  Rx flow control is enabled (we can receive pause
3417 	 *	    frames but not send pause frames).
3418 	 *	2:  Tx flow control is enabled (we can send pause frames
3419 	 *	    frames but we do not receive pause frames).
3420 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3421 	 *  other:  No other values should be possible at this point.
3422 	 */
3423 
3424 	switch (hw->fc) {
3425 	case e1000_fc_none:
3426 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3427 		break;
3428 	case e1000_fc_rx_pause:
3429 		ctrl &= (~E1000_CTRL_TFCE);
3430 		ctrl |= E1000_CTRL_RFCE;
3431 		break;
3432 	case e1000_fc_tx_pause:
3433 		ctrl &= (~E1000_CTRL_RFCE);
3434 		ctrl |= E1000_CTRL_TFCE;
3435 		break;
3436 	case e1000_fc_full:
3437 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3438 		break;
3439 	default:
3440 		DEBUGOUT("Flow control param set incorrectly\n");
3441 		return -E1000_ERR_CONFIG;
3442 	}
3443 
3444 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3445 	if (hw->mac_type == e1000_82542_rev2_0)
3446 		ctrl &= (~E1000_CTRL_TFCE);
3447 
3448 	E1000_WRITE_REG(hw, CTRL, ctrl);
3449 	return 0;
3450 }
3451 
3452 /******************************************************************************
3453  * Configures flow control settings after link is established
3454  *
3455  * hw - Struct containing variables accessed by shared code
3456  *
3457  * Should be called immediately after a valid link has been established.
3458  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3459  * and autonegotiation is enabled, the MAC flow control settings will be set
3460  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3461  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3462  *****************************************************************************/
3463 static int32_t
3464 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3465 {
3466 	int32_t ret_val;
3467 	uint16_t mii_status_reg;
3468 	uint16_t mii_nway_adv_reg;
3469 	uint16_t mii_nway_lp_ability_reg;
3470 	uint16_t speed;
3471 	uint16_t duplex;
3472 
3473 	DEBUGFUNC();
3474 
3475 	/* Check for the case where we have fiber media and auto-neg failed
3476 	 * so we had to force link.  In this case, we need to force the
3477 	 * configuration of the MAC to match the "fc" parameter.
3478 	 */
3479 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3480 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3481 		&& (hw->autoneg_failed))
3482 		|| ((hw->media_type == e1000_media_type_copper)
3483 		&& (!hw->autoneg))) {
3484 		ret_val = e1000_force_mac_fc(hw);
3485 		if (ret_val < 0) {
3486 			DEBUGOUT("Error forcing flow control settings\n");
3487 			return ret_val;
3488 		}
3489 	}
3490 
3491 	/* Check for the case where we have copper media and auto-neg is
3492 	 * enabled.  In this case, we need to check and see if Auto-Neg
3493 	 * has completed, and if so, how the PHY and link partner has
3494 	 * flow control configured.
3495 	 */
3496 	if (hw->media_type == e1000_media_type_copper) {
3497 		/* Read the MII Status Register and check to see if AutoNeg
3498 		 * has completed.  We read this twice because this reg has
3499 		 * some "sticky" (latched) bits.
3500 		 */
3501 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3502 			DEBUGOUT("PHY Read Error\n");
3503 			return -E1000_ERR_PHY;
3504 		}
3505 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3506 			DEBUGOUT("PHY Read Error\n");
3507 			return -E1000_ERR_PHY;
3508 		}
3509 
3510 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3511 			/* The AutoNeg process has completed, so we now need to
3512 			 * read both the Auto Negotiation Advertisement Register
3513 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3514 			 * Register (Address 5) to determine how flow control was
3515 			 * negotiated.
3516 			 */
3517 			if (e1000_read_phy_reg
3518 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3519 				DEBUGOUT("PHY Read Error\n");
3520 				return -E1000_ERR_PHY;
3521 			}
3522 			if (e1000_read_phy_reg
3523 			    (hw, PHY_LP_ABILITY,
3524 			     &mii_nway_lp_ability_reg) < 0) {
3525 				DEBUGOUT("PHY Read Error\n");
3526 				return -E1000_ERR_PHY;
3527 			}
3528 
3529 			/* Two bits in the Auto Negotiation Advertisement Register
3530 			 * (Address 4) and two bits in the Auto Negotiation Base
3531 			 * Page Ability Register (Address 5) determine flow control
3532 			 * for both the PHY and the link partner.  The following
3533 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3534 			 * 1999, describes these PAUSE resolution bits and how flow
3535 			 * control is determined based upon these settings.
3536 			 * NOTE:  DC = Don't Care
3537 			 *
3538 			 *   LOCAL DEVICE  |   LINK PARTNER
3539 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3540 			 *-------|---------|-------|---------|--------------------
3541 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3542 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3543 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3544 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3545 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3546 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3547 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3548 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3549 			 *
3550 			 */
3551 			/* Are both PAUSE bits set to 1?  If so, this implies
3552 			 * Symmetric Flow Control is enabled at both ends.  The
3553 			 * ASM_DIR bits are irrelevant per the spec.
3554 			 *
3555 			 * For Symmetric Flow Control:
3556 			 *
3557 			 *   LOCAL DEVICE  |   LINK PARTNER
3558 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3559 			 *-------|---------|-------|---------|--------------------
3560 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3561 			 *
3562 			 */
3563 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3564 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3565 				/* Now we need to check if the user selected RX ONLY
3566 				 * of pause frames.  In this case, we had to advertise
3567 				 * FULL flow control because we could not advertise RX
3568 				 * ONLY. Hence, we must now check to see if we need to
3569 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3570 				 */
3571 				if (hw->original_fc == e1000_fc_full) {
3572 					hw->fc = e1000_fc_full;
3573 					DEBUGOUT("Flow Control = FULL.\r\n");
3574 				} else {
3575 					hw->fc = e1000_fc_rx_pause;
3576 					DEBUGOUT
3577 					    ("Flow Control = RX PAUSE frames only.\r\n");
3578 				}
3579 			}
3580 			/* For receiving PAUSE frames ONLY.
3581 			 *
3582 			 *   LOCAL DEVICE  |   LINK PARTNER
3583 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3584 			 *-------|---------|-------|---------|--------------------
3585 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3586 			 *
3587 			 */
3588 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3589 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3590 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3591 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3592 			{
3593 				hw->fc = e1000_fc_tx_pause;
3594 				DEBUGOUT
3595 				    ("Flow Control = TX PAUSE frames only.\r\n");
3596 			}
3597 			/* For transmitting PAUSE frames ONLY.
3598 			 *
3599 			 *   LOCAL DEVICE  |   LINK PARTNER
3600 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3601 			 *-------|---------|-------|---------|--------------------
3602 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3603 			 *
3604 			 */
3605 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3606 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3607 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3608 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3609 			{
3610 				hw->fc = e1000_fc_rx_pause;
3611 				DEBUGOUT
3612 				    ("Flow Control = RX PAUSE frames only.\r\n");
3613 			}
3614 			/* Per the IEEE spec, at this point flow control should be
3615 			 * disabled.  However, we want to consider that we could
3616 			 * be connected to a legacy switch that doesn't advertise
3617 			 * desired flow control, but can be forced on the link
3618 			 * partner.  So if we advertised no flow control, that is
3619 			 * what we will resolve to.  If we advertised some kind of
3620 			 * receive capability (Rx Pause Only or Full Flow Control)
3621 			 * and the link partner advertised none, we will configure
3622 			 * ourselves to enable Rx Flow Control only.  We can do
3623 			 * this safely for two reasons:  If the link partner really
3624 			 * didn't want flow control enabled, and we enable Rx, no
3625 			 * harm done since we won't be receiving any PAUSE frames
3626 			 * anyway.  If the intent on the link partner was to have
3627 			 * flow control enabled, then by us enabling RX only, we
3628 			 * can at least receive pause frames and process them.
3629 			 * This is a good idea because in most cases, since we are
3630 			 * predominantly a server NIC, more times than not we will
3631 			 * be asked to delay transmission of packets than asking
3632 			 * our link partner to pause transmission of frames.
3633 			 */
3634 			else if (hw->original_fc == e1000_fc_none ||
3635 				 hw->original_fc == e1000_fc_tx_pause) {
3636 				hw->fc = e1000_fc_none;
3637 				DEBUGOUT("Flow Control = NONE.\r\n");
3638 			} else {
3639 				hw->fc = e1000_fc_rx_pause;
3640 				DEBUGOUT
3641 				    ("Flow Control = RX PAUSE frames only.\r\n");
3642 			}
3643 
3644 			/* Now we need to do one last check...	If we auto-
3645 			 * negotiated to HALF DUPLEX, flow control should not be
3646 			 * enabled per IEEE 802.3 spec.
3647 			 */
3648 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3649 
3650 			if (duplex == HALF_DUPLEX)
3651 				hw->fc = e1000_fc_none;
3652 
3653 			/* Now we call a subroutine to actually force the MAC
3654 			 * controller to use the correct flow control settings.
3655 			 */
3656 			ret_val = e1000_force_mac_fc(hw);
3657 			if (ret_val < 0) {
3658 				DEBUGOUT
3659 				    ("Error forcing flow control settings\n");
3660 				return ret_val;
3661 			}
3662 		} else {
3663 			DEBUGOUT
3664 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3665 		}
3666 	}
3667 	return E1000_SUCCESS;
3668 }
3669 
3670 /******************************************************************************
3671  * Checks to see if the link status of the hardware has changed.
3672  *
3673  * hw - Struct containing variables accessed by shared code
3674  *
3675  * Called by any function that needs to check the link status of the adapter.
3676  *****************************************************************************/
3677 static int
3678 e1000_check_for_link(struct e1000_hw *hw)
3679 {
3680 	uint32_t rxcw;
3681 	uint32_t ctrl;
3682 	uint32_t status;
3683 	uint32_t rctl;
3684 	uint32_t signal;
3685 	int32_t ret_val;
3686 	uint16_t phy_data;
3687 	uint16_t lp_capability;
3688 
3689 	DEBUGFUNC();
3690 
3691 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3692 	 * set when the optics detect a signal. On older adapters, it will be
3693 	 * cleared when there is a signal
3694 	 */
3695 	ctrl = E1000_READ_REG(hw, CTRL);
3696 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3697 		signal = E1000_CTRL_SWDPIN1;
3698 	else
3699 		signal = 0;
3700 
3701 	status = E1000_READ_REG(hw, STATUS);
3702 	rxcw = E1000_READ_REG(hw, RXCW);
3703 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3704 
3705 	/* If we have a copper PHY then we only want to go out to the PHY
3706 	 * registers to see if Auto-Neg has completed and/or if our link
3707 	 * status has changed.	The get_link_status flag will be set if we
3708 	 * receive a Link Status Change interrupt or we have Rx Sequence
3709 	 * Errors.
3710 	 */
3711 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3712 		/* First we want to see if the MII Status Register reports
3713 		 * link.  If so, then we want to get the current speed/duplex
3714 		 * of the PHY.
3715 		 * Read the register twice since the link bit is sticky.
3716 		 */
3717 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3718 			DEBUGOUT("PHY Read Error\n");
3719 			return -E1000_ERR_PHY;
3720 		}
3721 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3722 			DEBUGOUT("PHY Read Error\n");
3723 			return -E1000_ERR_PHY;
3724 		}
3725 
3726 		if (phy_data & MII_SR_LINK_STATUS) {
3727 			hw->get_link_status = false;
3728 		} else {
3729 			/* No link detected */
3730 			return -E1000_ERR_NOLINK;
3731 		}
3732 
3733 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3734 		 * have Si on board that is 82544 or newer, Auto
3735 		 * Speed Detection takes care of MAC speed/duplex
3736 		 * configuration.  So we only need to configure Collision
3737 		 * Distance in the MAC.  Otherwise, we need to force
3738 		 * speed/duplex on the MAC to the current PHY speed/duplex
3739 		 * settings.
3740 		 */
3741 		if (hw->mac_type >= e1000_82544)
3742 			e1000_config_collision_dist(hw);
3743 		else {
3744 			ret_val = e1000_config_mac_to_phy(hw);
3745 			if (ret_val < 0) {
3746 				DEBUGOUT
3747 				    ("Error configuring MAC to PHY settings\n");
3748 				return ret_val;
3749 			}
3750 		}
3751 
3752 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3753 		 * need to restore the desired flow control settings because we may
3754 		 * have had to re-autoneg with a different link partner.
3755 		 */
3756 		ret_val = e1000_config_fc_after_link_up(hw);
3757 		if (ret_val < 0) {
3758 			DEBUGOUT("Error configuring flow control\n");
3759 			return ret_val;
3760 		}
3761 
3762 		/* At this point we know that we are on copper and we have
3763 		 * auto-negotiated link.  These are conditions for checking the link
3764 		 * parter capability register.	We use the link partner capability to
3765 		 * determine if TBI Compatibility needs to be turned on or off.  If
3766 		 * the link partner advertises any speed in addition to Gigabit, then
3767 		 * we assume that they are GMII-based, and TBI compatibility is not
3768 		 * needed. If no other speeds are advertised, we assume the link
3769 		 * partner is TBI-based, and we turn on TBI Compatibility.
3770 		 */
3771 		if (hw->tbi_compatibility_en) {
3772 			if (e1000_read_phy_reg
3773 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3774 				DEBUGOUT("PHY Read Error\n");
3775 				return -E1000_ERR_PHY;
3776 			}
3777 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3778 					     NWAY_LPAR_10T_FD_CAPS |
3779 					     NWAY_LPAR_100TX_HD_CAPS |
3780 					     NWAY_LPAR_100TX_FD_CAPS |
3781 					     NWAY_LPAR_100T4_CAPS)) {
3782 				/* If our link partner advertises anything in addition to
3783 				 * gigabit, we do not need to enable TBI compatibility.
3784 				 */
3785 				if (hw->tbi_compatibility_on) {
3786 					/* If we previously were in the mode, turn it off. */
3787 					rctl = E1000_READ_REG(hw, RCTL);
3788 					rctl &= ~E1000_RCTL_SBP;
3789 					E1000_WRITE_REG(hw, RCTL, rctl);
3790 					hw->tbi_compatibility_on = false;
3791 				}
3792 			} else {
3793 				/* If TBI compatibility is was previously off, turn it on. For
3794 				 * compatibility with a TBI link partner, we will store bad
3795 				 * packets. Some frames have an additional byte on the end and
3796 				 * will look like CRC errors to to the hardware.
3797 				 */
3798 				if (!hw->tbi_compatibility_on) {
3799 					hw->tbi_compatibility_on = true;
3800 					rctl = E1000_READ_REG(hw, RCTL);
3801 					rctl |= E1000_RCTL_SBP;
3802 					E1000_WRITE_REG(hw, RCTL, rctl);
3803 				}
3804 			}
3805 		}
3806 	}
3807 	/* If we don't have link (auto-negotiation failed or link partner cannot
3808 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3809 	 * link partner is not trying to auto-negotiate with us (we are receiving
3810 	 * idles or data), we need to force link up. We also need to give
3811 	 * auto-negotiation time to complete, in case the cable was just plugged
3812 	 * in. The autoneg_failed flag does this.
3813 	 */
3814 	else if ((hw->media_type == e1000_media_type_fiber) &&
3815 		 (!(status & E1000_STATUS_LU)) &&
3816 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3817 		 (!(rxcw & E1000_RXCW_C))) {
3818 		if (hw->autoneg_failed == 0) {
3819 			hw->autoneg_failed = 1;
3820 			return 0;
3821 		}
3822 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3823 
3824 		/* Disable auto-negotiation in the TXCW register */
3825 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3826 
3827 		/* Force link-up and also force full-duplex. */
3828 		ctrl = E1000_READ_REG(hw, CTRL);
3829 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3830 		E1000_WRITE_REG(hw, CTRL, ctrl);
3831 
3832 		/* Configure Flow Control after forcing link up. */
3833 		ret_val = e1000_config_fc_after_link_up(hw);
3834 		if (ret_val < 0) {
3835 			DEBUGOUT("Error configuring flow control\n");
3836 			return ret_val;
3837 		}
3838 	}
3839 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3840 	 * auto-negotiation in the TXCW register and disable forced link in the
3841 	 * Device Control register in an attempt to auto-negotiate with our link
3842 	 * partner.
3843 	 */
3844 	else if ((hw->media_type == e1000_media_type_fiber) &&
3845 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3846 		DEBUGOUT
3847 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3848 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3849 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3850 	}
3851 	return 0;
3852 }
3853 
3854 /******************************************************************************
3855 * Configure the MAC-to-PHY interface for 10/100Mbps
3856 *
3857 * hw - Struct containing variables accessed by shared code
3858 ******************************************************************************/
3859 static int32_t
3860 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3861 {
3862 	int32_t ret_val = E1000_SUCCESS;
3863 	uint32_t tipg;
3864 	uint16_t reg_data;
3865 
3866 	DEBUGFUNC();
3867 
3868 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3869 	ret_val = e1000_write_kmrn_reg(hw,
3870 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3871 	if (ret_val)
3872 		return ret_val;
3873 
3874 	/* Configure Transmit Inter-Packet Gap */
3875 	tipg = E1000_READ_REG(hw, TIPG);
3876 	tipg &= ~E1000_TIPG_IPGT_MASK;
3877 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3878 	E1000_WRITE_REG(hw, TIPG, tipg);
3879 
3880 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3881 
3882 	if (ret_val)
3883 		return ret_val;
3884 
3885 	if (duplex == HALF_DUPLEX)
3886 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3887 	else
3888 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3889 
3890 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3891 
3892 	return ret_val;
3893 }
3894 
3895 static int32_t
3896 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3897 {
3898 	int32_t ret_val = E1000_SUCCESS;
3899 	uint16_t reg_data;
3900 	uint32_t tipg;
3901 
3902 	DEBUGFUNC();
3903 
3904 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3905 	ret_val = e1000_write_kmrn_reg(hw,
3906 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3907 	if (ret_val)
3908 		return ret_val;
3909 
3910 	/* Configure Transmit Inter-Packet Gap */
3911 	tipg = E1000_READ_REG(hw, TIPG);
3912 	tipg &= ~E1000_TIPG_IPGT_MASK;
3913 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3914 	E1000_WRITE_REG(hw, TIPG, tipg);
3915 
3916 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3917 
3918 	if (ret_val)
3919 		return ret_val;
3920 
3921 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3922 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3923 
3924 	return ret_val;
3925 }
3926 
3927 /******************************************************************************
3928  * Detects the current speed and duplex settings of the hardware.
3929  *
3930  * hw - Struct containing variables accessed by shared code
3931  * speed - Speed of the connection
3932  * duplex - Duplex setting of the connection
3933  *****************************************************************************/
3934 static int
3935 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3936 		uint16_t *duplex)
3937 {
3938 	uint32_t status;
3939 	int32_t ret_val;
3940 	uint16_t phy_data;
3941 
3942 	DEBUGFUNC();
3943 
3944 	if (hw->mac_type >= e1000_82543) {
3945 		status = E1000_READ_REG(hw, STATUS);
3946 		if (status & E1000_STATUS_SPEED_1000) {
3947 			*speed = SPEED_1000;
3948 			DEBUGOUT("1000 Mbs, ");
3949 		} else if (status & E1000_STATUS_SPEED_100) {
3950 			*speed = SPEED_100;
3951 			DEBUGOUT("100 Mbs, ");
3952 		} else {
3953 			*speed = SPEED_10;
3954 			DEBUGOUT("10 Mbs, ");
3955 		}
3956 
3957 		if (status & E1000_STATUS_FD) {
3958 			*duplex = FULL_DUPLEX;
3959 			DEBUGOUT("Full Duplex\r\n");
3960 		} else {
3961 			*duplex = HALF_DUPLEX;
3962 			DEBUGOUT(" Half Duplex\r\n");
3963 		}
3964 	} else {
3965 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3966 		*speed = SPEED_1000;
3967 		*duplex = FULL_DUPLEX;
3968 	}
3969 
3970 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3971 	 * even if it is operating at half duplex.  Here we set the duplex
3972 	 * settings to match the duplex in the link partner's capabilities.
3973 	 */
3974 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3975 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3976 		if (ret_val)
3977 			return ret_val;
3978 
3979 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3980 			*duplex = HALF_DUPLEX;
3981 		else {
3982 			ret_val = e1000_read_phy_reg(hw,
3983 					PHY_LP_ABILITY, &phy_data);
3984 			if (ret_val)
3985 				return ret_val;
3986 			if ((*speed == SPEED_100 &&
3987 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3988 				|| (*speed == SPEED_10
3989 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3990 				*duplex = HALF_DUPLEX;
3991 		}
3992 	}
3993 
3994 	if ((hw->mac_type == e1000_80003es2lan) &&
3995 		(hw->media_type == e1000_media_type_copper)) {
3996 		if (*speed == SPEED_1000)
3997 			ret_val = e1000_configure_kmrn_for_1000(hw);
3998 		else
3999 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4000 		if (ret_val)
4001 			return ret_val;
4002 	}
4003 	return E1000_SUCCESS;
4004 }
4005 
4006 /******************************************************************************
4007 * Blocks until autoneg completes or times out (~4.5 seconds)
4008 *
4009 * hw - Struct containing variables accessed by shared code
4010 ******************************************************************************/
4011 static int
4012 e1000_wait_autoneg(struct e1000_hw *hw)
4013 {
4014 	uint16_t i;
4015 	uint16_t phy_data;
4016 
4017 	DEBUGFUNC();
4018 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4019 
4020 	/* We will wait for autoneg to complete or timeout to expire. */
4021 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4022 		/* Read the MII Status Register and wait for Auto-Neg
4023 		 * Complete bit to be set.
4024 		 */
4025 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4026 			DEBUGOUT("PHY Read Error\n");
4027 			return -E1000_ERR_PHY;
4028 		}
4029 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4030 			DEBUGOUT("PHY Read Error\n");
4031 			return -E1000_ERR_PHY;
4032 		}
4033 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4034 			DEBUGOUT("Auto-Neg complete.\n");
4035 			return 0;
4036 		}
4037 		mdelay(100);
4038 	}
4039 	DEBUGOUT("Auto-Neg timedout.\n");
4040 	return -E1000_ERR_TIMEOUT;
4041 }
4042 
4043 /******************************************************************************
4044 * Raises the Management Data Clock
4045 *
4046 * hw - Struct containing variables accessed by shared code
4047 * ctrl - Device control register's current value
4048 ******************************************************************************/
4049 static void
4050 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4051 {
4052 	/* Raise the clock input to the Management Data Clock (by setting the MDC
4053 	 * bit), and then delay 2 microseconds.
4054 	 */
4055 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4056 	E1000_WRITE_FLUSH(hw);
4057 	udelay(2);
4058 }
4059 
4060 /******************************************************************************
4061 * Lowers the Management Data Clock
4062 *
4063 * hw - Struct containing variables accessed by shared code
4064 * ctrl - Device control register's current value
4065 ******************************************************************************/
4066 static void
4067 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4068 {
4069 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
4070 	 * bit), and then delay 2 microseconds.
4071 	 */
4072 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4073 	E1000_WRITE_FLUSH(hw);
4074 	udelay(2);
4075 }
4076 
4077 /******************************************************************************
4078 * Shifts data bits out to the PHY
4079 *
4080 * hw - Struct containing variables accessed by shared code
4081 * data - Data to send out to the PHY
4082 * count - Number of bits to shift out
4083 *
4084 * Bits are shifted out in MSB to LSB order.
4085 ******************************************************************************/
4086 static void
4087 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4088 {
4089 	uint32_t ctrl;
4090 	uint32_t mask;
4091 
4092 	/* We need to shift "count" number of bits out to the PHY. So, the value
4093 	 * in the "data" parameter will be shifted out to the PHY one bit at a
4094 	 * time. In order to do this, "data" must be broken down into bits.
4095 	 */
4096 	mask = 0x01;
4097 	mask <<= (count - 1);
4098 
4099 	ctrl = E1000_READ_REG(hw, CTRL);
4100 
4101 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4102 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4103 
4104 	while (mask) {
4105 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4106 		 * then raising and lowering the Management Data Clock. A "0" is
4107 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
4108 		 * raising and lowering the clock.
4109 		 */
4110 		if (data & mask)
4111 			ctrl |= E1000_CTRL_MDIO;
4112 		else
4113 			ctrl &= ~E1000_CTRL_MDIO;
4114 
4115 		E1000_WRITE_REG(hw, CTRL, ctrl);
4116 		E1000_WRITE_FLUSH(hw);
4117 
4118 		udelay(2);
4119 
4120 		e1000_raise_mdi_clk(hw, &ctrl);
4121 		e1000_lower_mdi_clk(hw, &ctrl);
4122 
4123 		mask = mask >> 1;
4124 	}
4125 }
4126 
4127 /******************************************************************************
4128 * Shifts data bits in from the PHY
4129 *
4130 * hw - Struct containing variables accessed by shared code
4131 *
4132 * Bits are shifted in in MSB to LSB order.
4133 ******************************************************************************/
4134 static uint16_t
4135 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4136 {
4137 	uint32_t ctrl;
4138 	uint16_t data = 0;
4139 	uint8_t i;
4140 
4141 	/* In order to read a register from the PHY, we need to shift in a total
4142 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4143 	 * to avoid contention on the MDIO pin when a read operation is performed.
4144 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4145 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4146 	 * and then reading the value of the MDIO bit.
4147 	 */
4148 	ctrl = E1000_READ_REG(hw, CTRL);
4149 
4150 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4151 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4152 	ctrl &= ~E1000_CTRL_MDIO;
4153 
4154 	E1000_WRITE_REG(hw, CTRL, ctrl);
4155 	E1000_WRITE_FLUSH(hw);
4156 
4157 	/* Raise and Lower the clock before reading in the data. This accounts for
4158 	 * the turnaround bits. The first clock occurred when we clocked out the
4159 	 * last bit of the Register Address.
4160 	 */
4161 	e1000_raise_mdi_clk(hw, &ctrl);
4162 	e1000_lower_mdi_clk(hw, &ctrl);
4163 
4164 	for (data = 0, i = 0; i < 16; i++) {
4165 		data = data << 1;
4166 		e1000_raise_mdi_clk(hw, &ctrl);
4167 		ctrl = E1000_READ_REG(hw, CTRL);
4168 		/* Check to see if we shifted in a "1". */
4169 		if (ctrl & E1000_CTRL_MDIO)
4170 			data |= 1;
4171 		e1000_lower_mdi_clk(hw, &ctrl);
4172 	}
4173 
4174 	e1000_raise_mdi_clk(hw, &ctrl);
4175 	e1000_lower_mdi_clk(hw, &ctrl);
4176 
4177 	return data;
4178 }
4179 
4180 /*****************************************************************************
4181 * Reads the value from a PHY register
4182 *
4183 * hw - Struct containing variables accessed by shared code
4184 * reg_addr - address of the PHY register to read
4185 ******************************************************************************/
4186 static int
4187 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4188 {
4189 	uint32_t i;
4190 	uint32_t mdic = 0;
4191 	const uint32_t phy_addr = 1;
4192 
4193 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4194 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4195 		return -E1000_ERR_PARAM;
4196 	}
4197 
4198 	if (hw->mac_type > e1000_82543) {
4199 		/* Set up Op-code, Phy Address, and register address in the MDI
4200 		 * Control register.  The MAC will take care of interfacing with the
4201 		 * PHY to retrieve the desired data.
4202 		 */
4203 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4204 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4205 			(E1000_MDIC_OP_READ));
4206 
4207 		E1000_WRITE_REG(hw, MDIC, mdic);
4208 
4209 		/* Poll the ready bit to see if the MDI read completed */
4210 		for (i = 0; i < 64; i++) {
4211 			udelay(10);
4212 			mdic = E1000_READ_REG(hw, MDIC);
4213 			if (mdic & E1000_MDIC_READY)
4214 				break;
4215 		}
4216 		if (!(mdic & E1000_MDIC_READY)) {
4217 			DEBUGOUT("MDI Read did not complete\n");
4218 			return -E1000_ERR_PHY;
4219 		}
4220 		if (mdic & E1000_MDIC_ERROR) {
4221 			DEBUGOUT("MDI Error\n");
4222 			return -E1000_ERR_PHY;
4223 		}
4224 		*phy_data = (uint16_t) mdic;
4225 	} else {
4226 		/* We must first send a preamble through the MDIO pin to signal the
4227 		 * beginning of an MII instruction.  This is done by sending 32
4228 		 * consecutive "1" bits.
4229 		 */
4230 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4231 
4232 		/* Now combine the next few fields that are required for a read
4233 		 * operation.  We use this method instead of calling the
4234 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4235 		 * a MII read instruction consists of a shift out of 14 bits and is
4236 		 * defined as follows:
4237 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4238 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4239 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4240 		 * READ operation is performed.  These two bits are thrown away
4241 		 * followed by a shift in of 16 bits which contains the desired data.
4242 		 */
4243 		mdic = ((reg_addr) | (phy_addr << 5) |
4244 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4245 
4246 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4247 
4248 		/* Now that we've shifted out the read command to the MII, we need to
4249 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4250 		 * register address.
4251 		 */
4252 		*phy_data = e1000_shift_in_mdi_bits(hw);
4253 	}
4254 	return 0;
4255 }
4256 
4257 /******************************************************************************
4258 * Writes a value to a PHY register
4259 *
4260 * hw - Struct containing variables accessed by shared code
4261 * reg_addr - address of the PHY register to write
4262 * data - data to write to the PHY
4263 ******************************************************************************/
4264 static int
4265 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4266 {
4267 	uint32_t i;
4268 	uint32_t mdic = 0;
4269 	const uint32_t phy_addr = 1;
4270 
4271 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4272 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4273 		return -E1000_ERR_PARAM;
4274 	}
4275 
4276 	if (hw->mac_type > e1000_82543) {
4277 		/* Set up Op-code, Phy Address, register address, and data intended
4278 		 * for the PHY register in the MDI Control register.  The MAC will take
4279 		 * care of interfacing with the PHY to send the desired data.
4280 		 */
4281 		mdic = (((uint32_t) phy_data) |
4282 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4283 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4284 			(E1000_MDIC_OP_WRITE));
4285 
4286 		E1000_WRITE_REG(hw, MDIC, mdic);
4287 
4288 		/* Poll the ready bit to see if the MDI read completed */
4289 		for (i = 0; i < 64; i++) {
4290 			udelay(10);
4291 			mdic = E1000_READ_REG(hw, MDIC);
4292 			if (mdic & E1000_MDIC_READY)
4293 				break;
4294 		}
4295 		if (!(mdic & E1000_MDIC_READY)) {
4296 			DEBUGOUT("MDI Write did not complete\n");
4297 			return -E1000_ERR_PHY;
4298 		}
4299 	} else {
4300 		/* We'll need to use the SW defined pins to shift the write command
4301 		 * out to the PHY. We first send a preamble to the PHY to signal the
4302 		 * beginning of the MII instruction.  This is done by sending 32
4303 		 * consecutive "1" bits.
4304 		 */
4305 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4306 
4307 		/* Now combine the remaining required fields that will indicate a
4308 		 * write operation. We use this method instead of calling the
4309 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4310 		 * format of a MII write instruction is as follows:
4311 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4312 		 */
4313 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4314 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4315 		mdic <<= 16;
4316 		mdic |= (uint32_t) phy_data;
4317 
4318 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4319 	}
4320 	return 0;
4321 }
4322 
4323 /******************************************************************************
4324  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4325  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4326  * the caller to figure out how to deal with it.
4327  *
4328  * hw - Struct containing variables accessed by shared code
4329  *
4330  * returns: - E1000_BLK_PHY_RESET
4331  *            E1000_SUCCESS
4332  *
4333  *****************************************************************************/
4334 int32_t
4335 e1000_check_phy_reset_block(struct e1000_hw *hw)
4336 {
4337 	uint32_t manc = 0;
4338 	uint32_t fwsm = 0;
4339 
4340 	if (hw->mac_type == e1000_ich8lan) {
4341 		fwsm = E1000_READ_REG(hw, FWSM);
4342 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4343 						: E1000_BLK_PHY_RESET;
4344 	}
4345 
4346 	if (hw->mac_type > e1000_82547_rev_2)
4347 		manc = E1000_READ_REG(hw, MANC);
4348 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4349 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4350 }
4351 
4352 /***************************************************************************
4353  * Checks if the PHY configuration is done
4354  *
4355  * hw: Struct containing variables accessed by shared code
4356  *
4357  * returns: - E1000_ERR_RESET if fail to reset MAC
4358  *            E1000_SUCCESS at any other case.
4359  *
4360  ***************************************************************************/
4361 static int32_t
4362 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4363 {
4364 	int32_t timeout = PHY_CFG_TIMEOUT;
4365 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4366 
4367 	DEBUGFUNC();
4368 
4369 	switch (hw->mac_type) {
4370 	default:
4371 		mdelay(10);
4372 		break;
4373 
4374 	case e1000_80003es2lan:
4375 		/* Separate *_CFG_DONE_* bit for each port */
4376 		if (e1000_is_second_port(hw))
4377 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4378 		/* Fall Through */
4379 
4380 	case e1000_82571:
4381 	case e1000_82572:
4382 	case e1000_igb:
4383 		while (timeout) {
4384 			if (hw->mac_type == e1000_igb) {
4385 				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4386 					break;
4387 			} else {
4388 				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4389 					break;
4390 			}
4391 			mdelay(1);
4392 			timeout--;
4393 		}
4394 		if (!timeout) {
4395 			DEBUGOUT("MNG configuration cycle has not "
4396 					"completed.\n");
4397 			return -E1000_ERR_RESET;
4398 		}
4399 		break;
4400 	}
4401 
4402 	return E1000_SUCCESS;
4403 }
4404 
4405 /******************************************************************************
4406 * Returns the PHY to the power-on reset state
4407 *
4408 * hw - Struct containing variables accessed by shared code
4409 ******************************************************************************/
4410 int32_t
4411 e1000_phy_hw_reset(struct e1000_hw *hw)
4412 {
4413 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4414 	uint32_t ctrl, ctrl_ext;
4415 	uint32_t led_ctrl;
4416 	int32_t ret_val;
4417 
4418 	DEBUGFUNC();
4419 
4420 	/* In the case of the phy reset being blocked, it's not an error, we
4421 	 * simply return success without performing the reset. */
4422 	ret_val = e1000_check_phy_reset_block(hw);
4423 	if (ret_val)
4424 		return E1000_SUCCESS;
4425 
4426 	DEBUGOUT("Resetting Phy...\n");
4427 
4428 	if (hw->mac_type > e1000_82543) {
4429 		if (e1000_is_second_port(hw))
4430 			swfw = E1000_SWFW_PHY1_SM;
4431 
4432 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4433 			DEBUGOUT("Unable to acquire swfw sync\n");
4434 			return -E1000_ERR_SWFW_SYNC;
4435 		}
4436 
4437 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4438 		 * bit. Then, take it out of reset.
4439 		 */
4440 		ctrl = E1000_READ_REG(hw, CTRL);
4441 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4442 		E1000_WRITE_FLUSH(hw);
4443 
4444 		if (hw->mac_type < e1000_82571)
4445 			udelay(10);
4446 		else
4447 			udelay(100);
4448 
4449 		E1000_WRITE_REG(hw, CTRL, ctrl);
4450 		E1000_WRITE_FLUSH(hw);
4451 
4452 		if (hw->mac_type >= e1000_82571)
4453 			mdelay(10);
4454 
4455 	} else {
4456 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4457 		 * bit to put the PHY into reset. Then, take it out of reset.
4458 		 */
4459 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4460 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4461 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4462 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4463 		E1000_WRITE_FLUSH(hw);
4464 		mdelay(10);
4465 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4466 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4467 		E1000_WRITE_FLUSH(hw);
4468 	}
4469 	udelay(150);
4470 
4471 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4472 		/* Configure activity LED after PHY reset */
4473 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4474 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4475 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4476 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4477 	}
4478 
4479 	e1000_swfw_sync_release(hw, swfw);
4480 
4481 	/* Wait for FW to finish PHY configuration. */
4482 	ret_val = e1000_get_phy_cfg_done(hw);
4483 	if (ret_val != E1000_SUCCESS)
4484 		return ret_val;
4485 
4486 	return ret_val;
4487 }
4488 
4489 /******************************************************************************
4490  * IGP phy init script - initializes the GbE PHY
4491  *
4492  * hw - Struct containing variables accessed by shared code
4493  *****************************************************************************/
4494 static void
4495 e1000_phy_init_script(struct e1000_hw *hw)
4496 {
4497 	uint32_t ret_val;
4498 	uint16_t phy_saved_data;
4499 	DEBUGFUNC();
4500 
4501 	if (hw->phy_init_script) {
4502 		mdelay(20);
4503 
4504 		/* Save off the current value of register 0x2F5B to be
4505 		 * restored at the end of this routine. */
4506 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4507 
4508 		/* Disabled the PHY transmitter */
4509 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4510 
4511 		mdelay(20);
4512 
4513 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4514 
4515 		mdelay(5);
4516 
4517 		switch (hw->mac_type) {
4518 		case e1000_82541:
4519 		case e1000_82547:
4520 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4521 
4522 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4523 
4524 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4525 
4526 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4527 
4528 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4529 
4530 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4531 
4532 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4533 
4534 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4535 
4536 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4537 			break;
4538 
4539 		case e1000_82541_rev_2:
4540 		case e1000_82547_rev_2:
4541 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4542 			break;
4543 		default:
4544 			break;
4545 		}
4546 
4547 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4548 
4549 		mdelay(20);
4550 
4551 		/* Now enable the transmitter */
4552 		if (!ret_val)
4553 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4554 
4555 		if (hw->mac_type == e1000_82547) {
4556 			uint16_t fused, fine, coarse;
4557 
4558 			/* Move to analog registers page */
4559 			e1000_read_phy_reg(hw,
4560 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4561 
4562 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4563 				e1000_read_phy_reg(hw,
4564 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4565 
4566 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4567 				coarse = fused
4568 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4569 
4570 				if (coarse >
4571 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4572 					coarse -=
4573 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4574 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4575 				} else if (coarse
4576 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4577 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4578 
4579 				fused = (fused
4580 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4581 					(fine
4582 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4583 					(coarse
4584 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4585 
4586 				e1000_write_phy_reg(hw,
4587 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4588 				e1000_write_phy_reg(hw,
4589 					IGP01E1000_ANALOG_FUSE_BYPASS,
4590 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4591 			}
4592 		}
4593 	}
4594 }
4595 
4596 /******************************************************************************
4597 * Resets the PHY
4598 *
4599 * hw - Struct containing variables accessed by shared code
4600 *
4601 * Sets bit 15 of the MII Control register
4602 ******************************************************************************/
4603 int32_t
4604 e1000_phy_reset(struct e1000_hw *hw)
4605 {
4606 	int32_t ret_val;
4607 	uint16_t phy_data;
4608 
4609 	DEBUGFUNC();
4610 
4611 	/* In the case of the phy reset being blocked, it's not an error, we
4612 	 * simply return success without performing the reset. */
4613 	ret_val = e1000_check_phy_reset_block(hw);
4614 	if (ret_val)
4615 		return E1000_SUCCESS;
4616 
4617 	switch (hw->phy_type) {
4618 	case e1000_phy_igp:
4619 	case e1000_phy_igp_2:
4620 	case e1000_phy_igp_3:
4621 	case e1000_phy_ife:
4622 	case e1000_phy_igb:
4623 		ret_val = e1000_phy_hw_reset(hw);
4624 		if (ret_val)
4625 			return ret_val;
4626 		break;
4627 	default:
4628 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4629 		if (ret_val)
4630 			return ret_val;
4631 
4632 		phy_data |= MII_CR_RESET;
4633 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4634 		if (ret_val)
4635 			return ret_val;
4636 
4637 		udelay(1);
4638 		break;
4639 	}
4640 
4641 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4642 		e1000_phy_init_script(hw);
4643 
4644 	return E1000_SUCCESS;
4645 }
4646 
4647 static int e1000_set_phy_type (struct e1000_hw *hw)
4648 {
4649 	DEBUGFUNC ();
4650 
4651 	if (hw->mac_type == e1000_undefined)
4652 		return -E1000_ERR_PHY_TYPE;
4653 
4654 	switch (hw->phy_id) {
4655 	case M88E1000_E_PHY_ID:
4656 	case M88E1000_I_PHY_ID:
4657 	case M88E1011_I_PHY_ID:
4658 	case M88E1111_I_PHY_ID:
4659 		hw->phy_type = e1000_phy_m88;
4660 		break;
4661 	case IGP01E1000_I_PHY_ID:
4662 		if (hw->mac_type == e1000_82541 ||
4663 			hw->mac_type == e1000_82541_rev_2 ||
4664 			hw->mac_type == e1000_82547 ||
4665 			hw->mac_type == e1000_82547_rev_2) {
4666 			hw->phy_type = e1000_phy_igp;
4667 			break;
4668 		}
4669 	case IGP03E1000_E_PHY_ID:
4670 		hw->phy_type = e1000_phy_igp_3;
4671 		break;
4672 	case IFE_E_PHY_ID:
4673 	case IFE_PLUS_E_PHY_ID:
4674 	case IFE_C_E_PHY_ID:
4675 		hw->phy_type = e1000_phy_ife;
4676 		break;
4677 	case GG82563_E_PHY_ID:
4678 		if (hw->mac_type == e1000_80003es2lan) {
4679 			hw->phy_type = e1000_phy_gg82563;
4680 			break;
4681 		}
4682 	case BME1000_E_PHY_ID:
4683 		hw->phy_type = e1000_phy_bm;
4684 		break;
4685 	case I210_I_PHY_ID:
4686 		hw->phy_type = e1000_phy_igb;
4687 		break;
4688 		/* Fall Through */
4689 	default:
4690 		/* Should never have loaded on this device */
4691 		hw->phy_type = e1000_phy_undefined;
4692 		return -E1000_ERR_PHY_TYPE;
4693 	}
4694 
4695 	return E1000_SUCCESS;
4696 }
4697 
4698 /******************************************************************************
4699 * Probes the expected PHY address for known PHY IDs
4700 *
4701 * hw - Struct containing variables accessed by shared code
4702 ******************************************************************************/
4703 static int32_t
4704 e1000_detect_gig_phy(struct e1000_hw *hw)
4705 {
4706 	int32_t phy_init_status, ret_val;
4707 	uint16_t phy_id_high, phy_id_low;
4708 	bool match = false;
4709 
4710 	DEBUGFUNC();
4711 
4712 	/* The 82571 firmware may still be configuring the PHY.  In this
4713 	 * case, we cannot access the PHY until the configuration is done.  So
4714 	 * we explicitly set the PHY values. */
4715 	if (hw->mac_type == e1000_82571 ||
4716 		hw->mac_type == e1000_82572) {
4717 		hw->phy_id = IGP01E1000_I_PHY_ID;
4718 		hw->phy_type = e1000_phy_igp_2;
4719 		return E1000_SUCCESS;
4720 	}
4721 
4722 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4723 	 * work- around that forces PHY page 0 to be set or the reads fail.
4724 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4725 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4726 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4727 	 * the routines below will figure this out as well. */
4728 	if (hw->mac_type == e1000_80003es2lan)
4729 		hw->phy_type = e1000_phy_gg82563;
4730 
4731 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4732 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4733 	if (ret_val)
4734 		return ret_val;
4735 
4736 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4737 	udelay(20);
4738 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4739 	if (ret_val)
4740 		return ret_val;
4741 
4742 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4743 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4744 
4745 	switch (hw->mac_type) {
4746 	case e1000_82543:
4747 		if (hw->phy_id == M88E1000_E_PHY_ID)
4748 			match = true;
4749 		break;
4750 	case e1000_82544:
4751 		if (hw->phy_id == M88E1000_I_PHY_ID)
4752 			match = true;
4753 		break;
4754 	case e1000_82540:
4755 	case e1000_82545:
4756 	case e1000_82545_rev_3:
4757 	case e1000_82546:
4758 	case e1000_82546_rev_3:
4759 		if (hw->phy_id == M88E1011_I_PHY_ID)
4760 			match = true;
4761 		break;
4762 	case e1000_82541:
4763 	case e1000_82541_rev_2:
4764 	case e1000_82547:
4765 	case e1000_82547_rev_2:
4766 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4767 			match = true;
4768 
4769 		break;
4770 	case e1000_82573:
4771 		if (hw->phy_id == M88E1111_I_PHY_ID)
4772 			match = true;
4773 		break;
4774 	case e1000_82574:
4775 		if (hw->phy_id == BME1000_E_PHY_ID)
4776 			match = true;
4777 		break;
4778 	case e1000_80003es2lan:
4779 		if (hw->phy_id == GG82563_E_PHY_ID)
4780 			match = true;
4781 		break;
4782 	case e1000_ich8lan:
4783 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4784 			match = true;
4785 		if (hw->phy_id == IFE_E_PHY_ID)
4786 			match = true;
4787 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4788 			match = true;
4789 		if (hw->phy_id == IFE_C_E_PHY_ID)
4790 			match = true;
4791 		break;
4792 	case e1000_igb:
4793 		if (hw->phy_id == I210_I_PHY_ID)
4794 			match = true;
4795 		break;
4796 	default:
4797 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4798 		return -E1000_ERR_CONFIG;
4799 	}
4800 
4801 	phy_init_status = e1000_set_phy_type(hw);
4802 
4803 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4804 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4805 		return 0;
4806 	}
4807 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4808 	return -E1000_ERR_PHY;
4809 }
4810 
4811 /*****************************************************************************
4812  * Set media type and TBI compatibility.
4813  *
4814  * hw - Struct containing variables accessed by shared code
4815  * **************************************************************************/
4816 void
4817 e1000_set_media_type(struct e1000_hw *hw)
4818 {
4819 	uint32_t status;
4820 
4821 	DEBUGFUNC();
4822 
4823 	if (hw->mac_type != e1000_82543) {
4824 		/* tbi_compatibility is only valid on 82543 */
4825 		hw->tbi_compatibility_en = false;
4826 	}
4827 
4828 	switch (hw->device_id) {
4829 	case E1000_DEV_ID_82545GM_SERDES:
4830 	case E1000_DEV_ID_82546GB_SERDES:
4831 	case E1000_DEV_ID_82571EB_SERDES:
4832 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4833 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4834 	case E1000_DEV_ID_82572EI_SERDES:
4835 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4836 		hw->media_type = e1000_media_type_internal_serdes;
4837 		break;
4838 	default:
4839 		switch (hw->mac_type) {
4840 		case e1000_82542_rev2_0:
4841 		case e1000_82542_rev2_1:
4842 			hw->media_type = e1000_media_type_fiber;
4843 			break;
4844 		case e1000_ich8lan:
4845 		case e1000_82573:
4846 		case e1000_82574:
4847 		case e1000_igb:
4848 			/* The STATUS_TBIMODE bit is reserved or reused
4849 			 * for the this device.
4850 			 */
4851 			hw->media_type = e1000_media_type_copper;
4852 			break;
4853 		default:
4854 			status = E1000_READ_REG(hw, STATUS);
4855 			if (status & E1000_STATUS_TBIMODE) {
4856 				hw->media_type = e1000_media_type_fiber;
4857 				/* tbi_compatibility not valid on fiber */
4858 				hw->tbi_compatibility_en = false;
4859 			} else {
4860 				hw->media_type = e1000_media_type_copper;
4861 			}
4862 			break;
4863 		}
4864 	}
4865 }
4866 
4867 /**
4868  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4869  *
4870  * e1000_sw_init initializes the Adapter private data structure.
4871  * Fields are initialized based on PCI device information and
4872  * OS network device settings (MTU size).
4873  **/
4874 
4875 static int
4876 e1000_sw_init(struct e1000_hw *hw)
4877 {
4878 	int result;
4879 
4880 	/* PCI config space info */
4881 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4882 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4883 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4884 			     &hw->subsystem_vendor_id);
4885 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4886 
4887 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4888 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4889 
4890 	/* identify the MAC */
4891 	result = e1000_set_mac_type(hw);
4892 	if (result) {
4893 		E1000_ERR(hw, "Unknown MAC Type\n");
4894 		return result;
4895 	}
4896 
4897 	switch (hw->mac_type) {
4898 	default:
4899 		break;
4900 	case e1000_82541:
4901 	case e1000_82547:
4902 	case e1000_82541_rev_2:
4903 	case e1000_82547_rev_2:
4904 		hw->phy_init_script = 1;
4905 		break;
4906 	}
4907 
4908 	/* flow control settings */
4909 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4910 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4911 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4912 	hw->fc_send_xon = 1;
4913 
4914 	/* Media type - copper or fiber */
4915 	hw->tbi_compatibility_en = true;
4916 	e1000_set_media_type(hw);
4917 
4918 	if (hw->mac_type >= e1000_82543) {
4919 		uint32_t status = E1000_READ_REG(hw, STATUS);
4920 
4921 		if (status & E1000_STATUS_TBIMODE) {
4922 			DEBUGOUT("fiber interface\n");
4923 			hw->media_type = e1000_media_type_fiber;
4924 		} else {
4925 			DEBUGOUT("copper interface\n");
4926 			hw->media_type = e1000_media_type_copper;
4927 		}
4928 	} else {
4929 		hw->media_type = e1000_media_type_fiber;
4930 	}
4931 
4932 	hw->wait_autoneg_complete = true;
4933 	if (hw->mac_type < e1000_82543)
4934 		hw->report_tx_early = 0;
4935 	else
4936 		hw->report_tx_early = 1;
4937 
4938 	return E1000_SUCCESS;
4939 }
4940 
4941 void
4942 fill_rx(struct e1000_hw *hw)
4943 {
4944 	struct e1000_rx_desc *rd;
4945 	unsigned long flush_start, flush_end;
4946 
4947 	rx_last = rx_tail;
4948 	rd = rx_base + rx_tail;
4949 	rx_tail = (rx_tail + 1) % 8;
4950 	memset(rd, 0, 16);
4951 	rd->buffer_addr = cpu_to_le64((unsigned long)packet);
4952 
4953 	/*
4954 	 * Make sure there are no stale data in WB over this area, which
4955 	 * might get written into the memory while the e1000 also writes
4956 	 * into the same memory area.
4957 	 */
4958 	invalidate_dcache_range((unsigned long)packet,
4959 				(unsigned long)packet + 4096);
4960 	/* Dump the DMA descriptor into RAM. */
4961 	flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
4962 	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4963 	flush_dcache_range(flush_start, flush_end);
4964 
4965 	E1000_WRITE_REG(hw, RDT, rx_tail);
4966 }
4967 
4968 /**
4969  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4970  * @adapter: board private structure
4971  *
4972  * Configure the Tx unit of the MAC after a reset.
4973  **/
4974 
4975 static void
4976 e1000_configure_tx(struct e1000_hw *hw)
4977 {
4978 	unsigned long tctl;
4979 	unsigned long tipg, tarc;
4980 	uint32_t ipgr1, ipgr2;
4981 
4982 	E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
4983 	E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
4984 
4985 	E1000_WRITE_REG(hw, TDLEN, 128);
4986 
4987 	/* Setup the HW Tx Head and Tail descriptor pointers */
4988 	E1000_WRITE_REG(hw, TDH, 0);
4989 	E1000_WRITE_REG(hw, TDT, 0);
4990 	tx_tail = 0;
4991 
4992 	/* Set the default values for the Tx Inter Packet Gap timer */
4993 	if (hw->mac_type <= e1000_82547_rev_2 &&
4994 	    (hw->media_type == e1000_media_type_fiber ||
4995 	     hw->media_type == e1000_media_type_internal_serdes))
4996 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4997 	else
4998 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4999 
5000 	/* Set the default values for the Tx Inter Packet Gap timer */
5001 	switch (hw->mac_type) {
5002 	case e1000_82542_rev2_0:
5003 	case e1000_82542_rev2_1:
5004 		tipg = DEFAULT_82542_TIPG_IPGT;
5005 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5006 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5007 		break;
5008 	case e1000_80003es2lan:
5009 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5010 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5011 		break;
5012 	default:
5013 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5014 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5015 		break;
5016 	}
5017 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5018 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5019 	E1000_WRITE_REG(hw, TIPG, tipg);
5020 	/* Program the Transmit Control Register */
5021 	tctl = E1000_READ_REG(hw, TCTL);
5022 	tctl &= ~E1000_TCTL_CT;
5023 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5024 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5025 
5026 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5027 		tarc = E1000_READ_REG(hw, TARC0);
5028 		/* set the speed mode bit, we'll clear it if we're not at
5029 		 * gigabit link later */
5030 		/* git bit can be set to 1*/
5031 	} else if (hw->mac_type == e1000_80003es2lan) {
5032 		tarc = E1000_READ_REG(hw, TARC0);
5033 		tarc |= 1;
5034 		E1000_WRITE_REG(hw, TARC0, tarc);
5035 		tarc = E1000_READ_REG(hw, TARC1);
5036 		tarc |= 1;
5037 		E1000_WRITE_REG(hw, TARC1, tarc);
5038 	}
5039 
5040 
5041 	e1000_config_collision_dist(hw);
5042 	/* Setup Transmit Descriptor Settings for eop descriptor */
5043 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5044 
5045 	/* Need to set up RS bit */
5046 	if (hw->mac_type < e1000_82543)
5047 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
5048 	else
5049 		hw->txd_cmd |= E1000_TXD_CMD_RS;
5050 
5051 
5052 	if (hw->mac_type == e1000_igb) {
5053 		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5054 
5055 		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5056 		reg_txdctl |= 1 << 25;
5057 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5058 		mdelay(20);
5059 	}
5060 
5061 
5062 
5063 	E1000_WRITE_REG(hw, TCTL, tctl);
5064 
5065 
5066 }
5067 
5068 /**
5069  * e1000_setup_rctl - configure the receive control register
5070  * @adapter: Board private structure
5071  **/
5072 static void
5073 e1000_setup_rctl(struct e1000_hw *hw)
5074 {
5075 	uint32_t rctl;
5076 
5077 	rctl = E1000_READ_REG(hw, RCTL);
5078 
5079 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5080 
5081 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5082 		| E1000_RCTL_RDMTS_HALF;	/* |
5083 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5084 
5085 	if (hw->tbi_compatibility_on == 1)
5086 		rctl |= E1000_RCTL_SBP;
5087 	else
5088 		rctl &= ~E1000_RCTL_SBP;
5089 
5090 	rctl &= ~(E1000_RCTL_SZ_4096);
5091 		rctl |= E1000_RCTL_SZ_2048;
5092 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5093 	E1000_WRITE_REG(hw, RCTL, rctl);
5094 }
5095 
5096 /**
5097  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5098  * @adapter: board private structure
5099  *
5100  * Configure the Rx unit of the MAC after a reset.
5101  **/
5102 static void
5103 e1000_configure_rx(struct e1000_hw *hw)
5104 {
5105 	unsigned long rctl, ctrl_ext;
5106 	rx_tail = 0;
5107 
5108 	/* make sure receives are disabled while setting up the descriptors */
5109 	rctl = E1000_READ_REG(hw, RCTL);
5110 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5111 	if (hw->mac_type >= e1000_82540) {
5112 		/* Set the interrupt throttling rate.  Value is calculated
5113 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5114 #define MAX_INTS_PER_SEC	8000
5115 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
5116 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5117 	}
5118 
5119 	if (hw->mac_type >= e1000_82571) {
5120 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5121 		/* Reset delay timers after every interrupt */
5122 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5123 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5124 		E1000_WRITE_FLUSH(hw);
5125 	}
5126 	/* Setup the Base and Length of the Rx Descriptor Ring */
5127 	E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5128 	E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5129 
5130 	E1000_WRITE_REG(hw, RDLEN, 128);
5131 
5132 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
5133 	E1000_WRITE_REG(hw, RDH, 0);
5134 	E1000_WRITE_REG(hw, RDT, 0);
5135 	/* Enable Receives */
5136 
5137 	if (hw->mac_type == e1000_igb) {
5138 
5139 		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5140 		reg_rxdctl |= 1 << 25;
5141 		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5142 		mdelay(20);
5143 	}
5144 
5145 	E1000_WRITE_REG(hw, RCTL, rctl);
5146 
5147 	fill_rx(hw);
5148 }
5149 
5150 /**************************************************************************
5151 POLL - Wait for a frame
5152 ***************************************************************************/
5153 static int
5154 _e1000_poll(struct e1000_hw *hw)
5155 {
5156 	struct e1000_rx_desc *rd;
5157 	unsigned long inval_start, inval_end;
5158 	uint32_t len;
5159 
5160 	/* return true if there's an ethernet packet ready to read */
5161 	rd = rx_base + rx_last;
5162 
5163 	/* Re-load the descriptor from RAM. */
5164 	inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5165 	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5166 	invalidate_dcache_range(inval_start, inval_end);
5167 
5168 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5169 		return 0;
5170 	/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5171 	/* Packet received, make sure the data are re-loaded from RAM. */
5172 	len = le32_to_cpu(rd->length);
5173 	invalidate_dcache_range((unsigned long)packet,
5174 				(unsigned long)packet +
5175 				roundup(len, ARCH_DMA_MINALIGN));
5176 	return len;
5177 }
5178 
5179 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5180 {
5181 	void *nv_packet = (void *)txpacket;
5182 	struct e1000_tx_desc *txp;
5183 	int i = 0;
5184 	unsigned long flush_start, flush_end;
5185 
5186 	txp = tx_base + tx_tail;
5187 	tx_tail = (tx_tail + 1) % 8;
5188 
5189 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5190 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5191 	txp->upper.data = 0;
5192 
5193 	/* Dump the packet into RAM so e1000 can pick them. */
5194 	flush_dcache_range((unsigned long)nv_packet,
5195 			   (unsigned long)nv_packet +
5196 			   roundup(length, ARCH_DMA_MINALIGN));
5197 	/* Dump the descriptor into RAM as well. */
5198 	flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5199 	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5200 	flush_dcache_range(flush_start, flush_end);
5201 
5202 	E1000_WRITE_REG(hw, TDT, tx_tail);
5203 
5204 	E1000_WRITE_FLUSH(hw);
5205 	while (1) {
5206 		invalidate_dcache_range(flush_start, flush_end);
5207 		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5208 			break;
5209 		if (i++ > TOUT_LOOP) {
5210 			DEBUGOUT("e1000: tx timeout\n");
5211 			return 0;
5212 		}
5213 		udelay(10);	/* give the nic a chance to write to the register */
5214 	}
5215 	return 1;
5216 }
5217 
5218 static void
5219 _e1000_disable(struct e1000_hw *hw)
5220 {
5221 	/* Turn off the ethernet interface */
5222 	E1000_WRITE_REG(hw, RCTL, 0);
5223 	E1000_WRITE_REG(hw, TCTL, 0);
5224 
5225 	/* Clear the transmit ring */
5226 	E1000_WRITE_REG(hw, TDH, 0);
5227 	E1000_WRITE_REG(hw, TDT, 0);
5228 
5229 	/* Clear the receive ring */
5230 	E1000_WRITE_REG(hw, RDH, 0);
5231 	E1000_WRITE_REG(hw, RDT, 0);
5232 
5233 	/* put the card in its initial state */
5234 #if 0
5235 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5236 #endif
5237 	mdelay(10);
5238 }
5239 
5240 /*reset function*/
5241 static inline int
5242 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5243 {
5244 	e1000_reset_hw(hw);
5245 	if (hw->mac_type >= e1000_82544)
5246 		E1000_WRITE_REG(hw, WUC, 0);
5247 
5248 	return e1000_init_hw(hw, enetaddr);
5249 }
5250 
5251 static int
5252 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5253 {
5254 	int ret_val = 0;
5255 
5256 	ret_val = e1000_reset(hw, enetaddr);
5257 	if (ret_val < 0) {
5258 		if ((ret_val == -E1000_ERR_NOLINK) ||
5259 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5260 			E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5261 		} else {
5262 			E1000_ERR(hw, "Hardware Initialization Failed\n");
5263 		}
5264 		return ret_val;
5265 	}
5266 	e1000_configure_tx(hw);
5267 	e1000_setup_rctl(hw);
5268 	e1000_configure_rx(hw);
5269 	return 0;
5270 }
5271 
5272 /******************************************************************************
5273  * Gets the current PCI bus type of hardware
5274  *
5275  * hw - Struct containing variables accessed by shared code
5276  *****************************************************************************/
5277 void e1000_get_bus_type(struct e1000_hw *hw)
5278 {
5279 	uint32_t status;
5280 
5281 	switch (hw->mac_type) {
5282 	case e1000_82542_rev2_0:
5283 	case e1000_82542_rev2_1:
5284 		hw->bus_type = e1000_bus_type_pci;
5285 		break;
5286 	case e1000_82571:
5287 	case e1000_82572:
5288 	case e1000_82573:
5289 	case e1000_82574:
5290 	case e1000_80003es2lan:
5291 	case e1000_ich8lan:
5292 	case e1000_igb:
5293 		hw->bus_type = e1000_bus_type_pci_express;
5294 		break;
5295 	default:
5296 		status = E1000_READ_REG(hw, STATUS);
5297 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5298 				e1000_bus_type_pcix : e1000_bus_type_pci;
5299 		break;
5300 	}
5301 }
5302 
5303 #ifndef CONFIG_DM_ETH
5304 /* A list of all registered e1000 devices */
5305 static LIST_HEAD(e1000_hw_list);
5306 #endif
5307 
5308 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5309 			  unsigned char enetaddr[6])
5310 {
5311 	u32 val;
5312 
5313 	/* Assign the passed-in values */
5314 	hw->pdev = devno;
5315 	hw->cardnum = cardnum;
5316 
5317 	/* Print a debug message with the IO base address */
5318 	pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5319 	E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5320 
5321 	/* Try to enable I/O accesses and bus-mastering */
5322 	val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5323 	pci_write_config_dword(devno, PCI_COMMAND, val);
5324 
5325 	/* Make sure it worked */
5326 	pci_read_config_dword(devno, PCI_COMMAND, &val);
5327 	if (!(val & PCI_COMMAND_MEMORY)) {
5328 		E1000_ERR(hw, "Can't enable I/O memory\n");
5329 		return -ENOSPC;
5330 	}
5331 	if (!(val & PCI_COMMAND_MASTER)) {
5332 		E1000_ERR(hw, "Can't enable bus-mastering\n");
5333 		return -EPERM;
5334 	}
5335 
5336 	/* Are these variables needed? */
5337 	hw->fc = e1000_fc_default;
5338 	hw->original_fc = e1000_fc_default;
5339 	hw->autoneg_failed = 0;
5340 	hw->autoneg = 1;
5341 	hw->get_link_status = true;
5342 #ifndef CONFIG_E1000_NO_NVM
5343 	hw->eeprom_semaphore_present = true;
5344 #endif
5345 	hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5346 						PCI_REGION_MEM);
5347 	hw->mac_type = e1000_undefined;
5348 
5349 	/* MAC and Phy settings */
5350 	if (e1000_sw_init(hw) < 0) {
5351 		E1000_ERR(hw, "Software init failed\n");
5352 		return -EIO;
5353 	}
5354 	if (e1000_check_phy_reset_block(hw))
5355 		E1000_ERR(hw, "PHY Reset is blocked!\n");
5356 
5357 	/* Basic init was OK, reset the hardware and allow SPI access */
5358 	e1000_reset_hw(hw);
5359 
5360 #ifndef CONFIG_E1000_NO_NVM
5361 	/* Validate the EEPROM and get chipset information */
5362 #if !defined(CONFIG_MVBC_1G)
5363 	if (e1000_init_eeprom_params(hw)) {
5364 		E1000_ERR(hw, "EEPROM is invalid!\n");
5365 		return -EINVAL;
5366 	}
5367 	if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5368 	    e1000_validate_eeprom_checksum(hw))
5369 		return -ENXIO;
5370 #endif
5371 	e1000_read_mac_addr(hw, enetaddr);
5372 #endif
5373 	e1000_get_bus_type(hw);
5374 
5375 #ifndef CONFIG_E1000_NO_NVM
5376 	printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5377 	       enetaddr[0], enetaddr[1], enetaddr[2],
5378 	       enetaddr[3], enetaddr[4], enetaddr[5]);
5379 #else
5380 	memset(enetaddr, 0, 6);
5381 	printf("e1000: no NVM\n");
5382 #endif
5383 
5384 	return 0;
5385 }
5386 
5387 /* Put the name of a device in a string */
5388 static void e1000_name(char *str, int cardnum)
5389 {
5390 	sprintf(str, "e1000#%u", cardnum);
5391 }
5392 
5393 #ifndef CONFIG_DM_ETH
5394 /**************************************************************************
5395 TRANSMIT - Transmit a frame
5396 ***************************************************************************/
5397 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5398 {
5399 	struct e1000_hw *hw = nic->priv;
5400 
5401 	return _e1000_transmit(hw, txpacket, length);
5402 }
5403 
5404 /**************************************************************************
5405 DISABLE - Turn off ethernet interface
5406 ***************************************************************************/
5407 static void
5408 e1000_disable(struct eth_device *nic)
5409 {
5410 	struct e1000_hw *hw = nic->priv;
5411 
5412 	_e1000_disable(hw);
5413 }
5414 
5415 /**************************************************************************
5416 INIT - set up ethernet interface(s)
5417 ***************************************************************************/
5418 static int
5419 e1000_init(struct eth_device *nic, bd_t *bis)
5420 {
5421 	struct e1000_hw *hw = nic->priv;
5422 
5423 	return _e1000_init(hw, nic->enetaddr);
5424 }
5425 
5426 static int
5427 e1000_poll(struct eth_device *nic)
5428 {
5429 	struct e1000_hw *hw = nic->priv;
5430 	int len;
5431 
5432 	len = _e1000_poll(hw);
5433 	if (len) {
5434 		net_process_received_packet((uchar *)packet, len);
5435 		fill_rx(hw);
5436 	}
5437 
5438 	return len ? 1 : 0;
5439 }
5440 
5441 /**************************************************************************
5442 PROBE - Look for an adapter, this routine's visible to the outside
5443 You should omit the last argument struct pci_device * for a non-PCI NIC
5444 ***************************************************************************/
5445 int
5446 e1000_initialize(bd_t * bis)
5447 {
5448 	unsigned int i;
5449 	pci_dev_t devno;
5450 	int ret;
5451 
5452 	DEBUGFUNC();
5453 
5454 	/* Find and probe all the matching PCI devices */
5455 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5456 		/*
5457 		 * These will never get freed due to errors, this allows us to
5458 		 * perform SPI EEPROM programming from U-boot, for example.
5459 		 */
5460 		struct eth_device *nic = malloc(sizeof(*nic));
5461 		struct e1000_hw *hw = malloc(sizeof(*hw));
5462 		if (!nic || !hw) {
5463 			printf("e1000#%u: Out of Memory!\n", i);
5464 			free(nic);
5465 			free(hw);
5466 			continue;
5467 		}
5468 
5469 		/* Make sure all of the fields are initially zeroed */
5470 		memset(nic, 0, sizeof(*nic));
5471 		memset(hw, 0, sizeof(*hw));
5472 		nic->priv = hw;
5473 
5474 		/* Generate a card name */
5475 		e1000_name(nic->name, i);
5476 		hw->name = nic->name;
5477 
5478 		ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5479 		if (ret)
5480 			continue;
5481 		list_add_tail(&hw->list_node, &e1000_hw_list);
5482 
5483 		hw->nic = nic;
5484 
5485 		/* Set up the function pointers and register the device */
5486 		nic->init = e1000_init;
5487 		nic->recv = e1000_poll;
5488 		nic->send = e1000_transmit;
5489 		nic->halt = e1000_disable;
5490 		eth_register(nic);
5491 	}
5492 
5493 	return i;
5494 }
5495 
5496 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5497 {
5498 	struct e1000_hw *hw;
5499 
5500 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5501 		if (hw->cardnum == cardnum)
5502 			return hw;
5503 
5504 	return NULL;
5505 }
5506 #endif /* !CONFIG_DM_ETH */
5507 
5508 #ifdef CONFIG_CMD_E1000
5509 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5510 		int argc, char * const argv[])
5511 {
5512 	unsigned char *mac = NULL;
5513 #ifdef CONFIG_DM_ETH
5514 	struct eth_pdata *plat;
5515 	struct udevice *dev;
5516 	char name[30];
5517 	int ret;
5518 #else
5519 	struct e1000_hw *hw;
5520 #endif
5521 	int cardnum;
5522 
5523 	if (argc < 3) {
5524 		cmd_usage(cmdtp);
5525 		return 1;
5526 	}
5527 
5528 	/* Make sure we can find the requested e1000 card */
5529 	cardnum = simple_strtoul(argv[1], NULL, 10);
5530 #ifdef CONFIG_DM_ETH
5531 	e1000_name(name, cardnum);
5532 	ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5533 	if (!ret) {
5534 		plat = dev_get_platdata(dev);
5535 		mac = plat->enetaddr;
5536 	}
5537 #else
5538 	hw = e1000_find_card(cardnum);
5539 	if (hw)
5540 		mac = hw->nic->enetaddr;
5541 #endif
5542 	if (!mac) {
5543 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5544 		return 1;
5545 	}
5546 
5547 	if (!strcmp(argv[2], "print-mac-address")) {
5548 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5549 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5550 		return 0;
5551 	}
5552 
5553 #ifdef CONFIG_E1000_SPI
5554 	/* Handle the "SPI" subcommand */
5555 	if (!strcmp(argv[2], "spi"))
5556 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5557 #endif
5558 
5559 	cmd_usage(cmdtp);
5560 	return 1;
5561 }
5562 
5563 U_BOOT_CMD(
5564 	e1000, 7, 0, do_e1000,
5565 	"Intel e1000 controller management",
5566 	/*  */"<card#> print-mac-address\n"
5567 #ifdef CONFIG_E1000_SPI
5568 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5569 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5570 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5571 	"e1000 <card#> spi checksum [update]\n"
5572 #endif
5573 	"       - Manage the Intel E1000 PCI device"
5574 );
5575 #endif /* not CONFIG_CMD_E1000 */
5576 
5577 #ifdef CONFIG_DM_ETH
5578 static int e1000_eth_start(struct udevice *dev)
5579 {
5580 	struct eth_pdata *plat = dev_get_platdata(dev);
5581 	struct e1000_hw *hw = dev_get_priv(dev);
5582 
5583 	return _e1000_init(hw, plat->enetaddr);
5584 }
5585 
5586 static void e1000_eth_stop(struct udevice *dev)
5587 {
5588 	struct e1000_hw *hw = dev_get_priv(dev);
5589 
5590 	_e1000_disable(hw);
5591 }
5592 
5593 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5594 {
5595 	struct e1000_hw *hw = dev_get_priv(dev);
5596 	int ret;
5597 
5598 	ret = _e1000_transmit(hw, packet, length);
5599 
5600 	return ret ? 0 : -ETIMEDOUT;
5601 }
5602 
5603 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5604 {
5605 	struct e1000_hw *hw = dev_get_priv(dev);
5606 	int len;
5607 
5608 	len = _e1000_poll(hw);
5609 	if (len)
5610 		*packetp = packet;
5611 
5612 	return len ? len : -EAGAIN;
5613 }
5614 
5615 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5616 {
5617 	struct e1000_hw *hw = dev_get_priv(dev);
5618 
5619 	fill_rx(hw);
5620 
5621 	return 0;
5622 }
5623 
5624 static int e1000_eth_probe(struct udevice *dev)
5625 {
5626 	struct eth_pdata *plat = dev_get_platdata(dev);
5627 	struct e1000_hw *hw = dev_get_priv(dev);
5628 	int ret;
5629 
5630 	hw->name = dev->name;
5631 	ret = e1000_init_one(hw, trailing_strtol(dev->name), pci_get_bdf(dev),
5632 			     plat->enetaddr);
5633 	if (ret < 0) {
5634 		printf(pr_fmt("failed to initialize card: %d\n"), ret);
5635 		return ret;
5636 	}
5637 
5638 	return 0;
5639 }
5640 
5641 static int e1000_eth_bind(struct udevice *dev)
5642 {
5643 	char name[20];
5644 
5645 	/*
5646 	 * A simple way to number the devices. When device tree is used this
5647 	 * is unnecessary, but when the device is just discovered on the PCI
5648 	 * bus we need a name. We could instead have the uclass figure out
5649 	 * which devices are different and number them.
5650 	 */
5651 	e1000_name(name, num_cards++);
5652 
5653 	return device_set_name(dev, name);
5654 }
5655 
5656 static const struct eth_ops e1000_eth_ops = {
5657 	.start	= e1000_eth_start,
5658 	.send	= e1000_eth_send,
5659 	.recv	= e1000_eth_recv,
5660 	.stop	= e1000_eth_stop,
5661 	.free_pkt = e1000_free_pkt,
5662 };
5663 
5664 static const struct udevice_id e1000_eth_ids[] = {
5665 	{ .compatible = "intel,e1000" },
5666 	{ }
5667 };
5668 
5669 U_BOOT_DRIVER(eth_e1000) = {
5670 	.name	= "eth_e1000",
5671 	.id	= UCLASS_ETH,
5672 	.of_match = e1000_eth_ids,
5673 	.bind	= e1000_eth_bind,
5674 	.probe	= e1000_eth_probe,
5675 	.ops	= &e1000_eth_ops,
5676 	.priv_auto_alloc_size = sizeof(struct e1000_hw),
5677 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
5678 };
5679 
5680 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5681 #endif
5682