xref: /openbmc/u-boot/drivers/net/e1000.c (revision bfacf466)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16 
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21 
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA	02111-1307, USA.
25 
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28 
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32 
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  *
44  *  Copyright 2011 Freescale Semiconductor, Inc.
45  */
46 
47 #include "e1000.h"
48 
49 #define TOUT_LOOP   100000
50 
51 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
52 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
53 
54 #define E1000_DEFAULT_PCI_PBA	0x00000030
55 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
56 
57 /* NIC specific static variables go here */
58 
59 static char tx_pool[128 + 16];
60 static char rx_pool[128 + 16];
61 static char packet[2096];
62 
63 static struct e1000_tx_desc *tx_base;
64 static struct e1000_rx_desc *rx_base;
65 
66 static int tx_tail;
67 static int rx_tail, rx_last;
68 
69 static struct pci_device_id e1000_supported[] = {
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
72 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
86 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
87 	/* E1000 PCIe card */
88 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
89 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
90 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
91 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
92 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
93 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
94 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
95 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
96 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
97 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
98 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
99 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
100 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
101 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
102 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
103 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
104 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
105 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
106 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
107 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
108 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
109 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
110 	{}
111 };
112 
113 /* Function forward declarations */
114 static int e1000_setup_link(struct eth_device *nic);
115 static int e1000_setup_fiber_link(struct eth_device *nic);
116 static int e1000_setup_copper_link(struct eth_device *nic);
117 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
118 static void e1000_config_collision_dist(struct e1000_hw *hw);
119 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
120 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
121 static int e1000_check_for_link(struct eth_device *nic);
122 static int e1000_wait_autoneg(struct e1000_hw *hw);
123 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
124 				       uint16_t * duplex);
125 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 			      uint16_t * phy_data);
127 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
128 			       uint16_t phy_data);
129 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
130 static int e1000_phy_reset(struct e1000_hw *hw);
131 static int e1000_detect_gig_phy(struct e1000_hw *hw);
132 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133 static void e1000_set_media_type(struct e1000_hw *hw);
134 
135 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
136 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
137 
138 #ifndef CONFIG_AP1000 /* remove for warnings */
139 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
140 		uint16_t words,
141 		uint16_t *data);
142 /******************************************************************************
143  * Raises the EEPROM's clock input.
144  *
145  * hw - Struct containing variables accessed by shared code
146  * eecd - EECD's current value
147  *****************************************************************************/
148 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
149 {
150 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
151 	 * wait 50 microseconds.
152 	 */
153 	*eecd = *eecd | E1000_EECD_SK;
154 	E1000_WRITE_REG(hw, EECD, *eecd);
155 	E1000_WRITE_FLUSH(hw);
156 	udelay(50);
157 }
158 
159 /******************************************************************************
160  * Lowers the EEPROM's clock input.
161  *
162  * hw - Struct containing variables accessed by shared code
163  * eecd - EECD's current value
164  *****************************************************************************/
165 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
166 {
167 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
168 	 * wait 50 microseconds.
169 	 */
170 	*eecd = *eecd & ~E1000_EECD_SK;
171 	E1000_WRITE_REG(hw, EECD, *eecd);
172 	E1000_WRITE_FLUSH(hw);
173 	udelay(50);
174 }
175 
176 /******************************************************************************
177  * Shift data bits out to the EEPROM.
178  *
179  * hw - Struct containing variables accessed by shared code
180  * data - data to send to the EEPROM
181  * count - number of bits to shift out
182  *****************************************************************************/
183 static void
184 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
185 {
186 	uint32_t eecd;
187 	uint32_t mask;
188 
189 	/* We need to shift "count" bits out to the EEPROM. So, value in the
190 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
191 	 * In order to do this, "data" must be broken down into bits.
192 	 */
193 	mask = 0x01 << (count - 1);
194 	eecd = E1000_READ_REG(hw, EECD);
195 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
196 	do {
197 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
198 		 * and then raising and then lowering the clock (the SK bit controls
199 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
200 		 * by setting "DI" to "0" and then raising and then lowering the clock.
201 		 */
202 		eecd &= ~E1000_EECD_DI;
203 
204 		if (data & mask)
205 			eecd |= E1000_EECD_DI;
206 
207 		E1000_WRITE_REG(hw, EECD, eecd);
208 		E1000_WRITE_FLUSH(hw);
209 
210 		udelay(50);
211 
212 		e1000_raise_ee_clk(hw, &eecd);
213 		e1000_lower_ee_clk(hw, &eecd);
214 
215 		mask = mask >> 1;
216 
217 	} while (mask);
218 
219 	/* We leave the "DI" bit set to "0" when we leave this routine. */
220 	eecd &= ~E1000_EECD_DI;
221 	E1000_WRITE_REG(hw, EECD, eecd);
222 }
223 
224 /******************************************************************************
225  * Shift data bits in from the EEPROM
226  *
227  * hw - Struct containing variables accessed by shared code
228  *****************************************************************************/
229 static uint16_t
230 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
231 {
232 	uint32_t eecd;
233 	uint32_t i;
234 	uint16_t data;
235 
236 	/* In order to read a register from the EEPROM, we need to shift 'count'
237 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
238 	 * input to the EEPROM (setting the SK bit), and then reading the
239 	 * value of the "DO" bit.  During this "shifting in" process the
240 	 * "DI" bit should always be clear.
241 	 */
242 
243 	eecd = E1000_READ_REG(hw, EECD);
244 
245 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
246 	data = 0;
247 
248 	for (i = 0; i < count; i++) {
249 		data = data << 1;
250 		e1000_raise_ee_clk(hw, &eecd);
251 
252 		eecd = E1000_READ_REG(hw, EECD);
253 
254 		eecd &= ~(E1000_EECD_DI);
255 		if (eecd & E1000_EECD_DO)
256 			data |= 1;
257 
258 		e1000_lower_ee_clk(hw, &eecd);
259 	}
260 
261 	return data;
262 }
263 
264 /******************************************************************************
265  * Returns EEPROM to a "standby" state
266  *
267  * hw - Struct containing variables accessed by shared code
268  *****************************************************************************/
269 void e1000_standby_eeprom(struct e1000_hw *hw)
270 {
271 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
272 	uint32_t eecd;
273 
274 	eecd = E1000_READ_REG(hw, EECD);
275 
276 	if (eeprom->type == e1000_eeprom_microwire) {
277 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 		E1000_WRITE_REG(hw, EECD, eecd);
279 		E1000_WRITE_FLUSH(hw);
280 		udelay(eeprom->delay_usec);
281 
282 		/* Clock high */
283 		eecd |= E1000_EECD_SK;
284 		E1000_WRITE_REG(hw, EECD, eecd);
285 		E1000_WRITE_FLUSH(hw);
286 		udelay(eeprom->delay_usec);
287 
288 		/* Select EEPROM */
289 		eecd |= E1000_EECD_CS;
290 		E1000_WRITE_REG(hw, EECD, eecd);
291 		E1000_WRITE_FLUSH(hw);
292 		udelay(eeprom->delay_usec);
293 
294 		/* Clock low */
295 		eecd &= ~E1000_EECD_SK;
296 		E1000_WRITE_REG(hw, EECD, eecd);
297 		E1000_WRITE_FLUSH(hw);
298 		udelay(eeprom->delay_usec);
299 	} else if (eeprom->type == e1000_eeprom_spi) {
300 		/* Toggle CS to flush commands */
301 		eecd |= E1000_EECD_CS;
302 		E1000_WRITE_REG(hw, EECD, eecd);
303 		E1000_WRITE_FLUSH(hw);
304 		udelay(eeprom->delay_usec);
305 		eecd &= ~E1000_EECD_CS;
306 		E1000_WRITE_REG(hw, EECD, eecd);
307 		E1000_WRITE_FLUSH(hw);
308 		udelay(eeprom->delay_usec);
309 	}
310 }
311 
312 /***************************************************************************
313 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
314 *
315 * hw - Struct containing variables accessed by shared code
316 ****************************************************************************/
317 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
318 {
319 	uint32_t eecd = 0;
320 
321 	DEBUGFUNC();
322 
323 	if (hw->mac_type == e1000_ich8lan)
324 		return FALSE;
325 
326 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
327 		eecd = E1000_READ_REG(hw, EECD);
328 
329 		/* Isolate bits 15 & 16 */
330 		eecd = ((eecd >> 15) & 0x03);
331 
332 		/* If both bits are set, device is Flash type */
333 		if (eecd == 0x03)
334 			return FALSE;
335 	}
336 	return TRUE;
337 }
338 
339 /******************************************************************************
340  * Prepares EEPROM for access
341  *
342  * hw - Struct containing variables accessed by shared code
343  *
344  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
345  * function should be called before issuing a command to the EEPROM.
346  *****************************************************************************/
347 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
348 {
349 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
350 	uint32_t eecd, i = 0;
351 
352 	DEBUGFUNC();
353 
354 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
355 		return -E1000_ERR_SWFW_SYNC;
356 	eecd = E1000_READ_REG(hw, EECD);
357 
358 	if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
359 		/* Request EEPROM Access */
360 		if (hw->mac_type > e1000_82544) {
361 			eecd |= E1000_EECD_REQ;
362 			E1000_WRITE_REG(hw, EECD, eecd);
363 			eecd = E1000_READ_REG(hw, EECD);
364 			while ((!(eecd & E1000_EECD_GNT)) &&
365 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
366 				i++;
367 				udelay(5);
368 				eecd = E1000_READ_REG(hw, EECD);
369 			}
370 			if (!(eecd & E1000_EECD_GNT)) {
371 				eecd &= ~E1000_EECD_REQ;
372 				E1000_WRITE_REG(hw, EECD, eecd);
373 				DEBUGOUT("Could not acquire EEPROM grant\n");
374 				return -E1000_ERR_EEPROM;
375 			}
376 		}
377 	}
378 
379 	/* Setup EEPROM for Read/Write */
380 
381 	if (eeprom->type == e1000_eeprom_microwire) {
382 		/* Clear SK and DI */
383 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
384 		E1000_WRITE_REG(hw, EECD, eecd);
385 
386 		/* Set CS */
387 		eecd |= E1000_EECD_CS;
388 		E1000_WRITE_REG(hw, EECD, eecd);
389 	} else if (eeprom->type == e1000_eeprom_spi) {
390 		/* Clear SK and CS */
391 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
392 		E1000_WRITE_REG(hw, EECD, eecd);
393 		udelay(1);
394 	}
395 
396 	return E1000_SUCCESS;
397 }
398 
399 /******************************************************************************
400  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
401  * is configured.  Additionally, if this is ICH8, the flash controller GbE
402  * registers must be mapped, or this will crash.
403  *
404  * hw - Struct containing variables accessed by shared code
405  *****************************************************************************/
406 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
407 {
408 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
409 	uint32_t eecd = E1000_READ_REG(hw, EECD);
410 	int32_t ret_val = E1000_SUCCESS;
411 	uint16_t eeprom_size;
412 
413 	DEBUGFUNC();
414 
415 	switch (hw->mac_type) {
416 	case e1000_82542_rev2_0:
417 	case e1000_82542_rev2_1:
418 	case e1000_82543:
419 	case e1000_82544:
420 		eeprom->type = e1000_eeprom_microwire;
421 		eeprom->word_size = 64;
422 		eeprom->opcode_bits = 3;
423 		eeprom->address_bits = 6;
424 		eeprom->delay_usec = 50;
425 		eeprom->use_eerd = FALSE;
426 		eeprom->use_eewr = FALSE;
427 	break;
428 	case e1000_82540:
429 	case e1000_82545:
430 	case e1000_82545_rev_3:
431 	case e1000_82546:
432 	case e1000_82546_rev_3:
433 		eeprom->type = e1000_eeprom_microwire;
434 		eeprom->opcode_bits = 3;
435 		eeprom->delay_usec = 50;
436 		if (eecd & E1000_EECD_SIZE) {
437 			eeprom->word_size = 256;
438 			eeprom->address_bits = 8;
439 		} else {
440 			eeprom->word_size = 64;
441 			eeprom->address_bits = 6;
442 		}
443 		eeprom->use_eerd = FALSE;
444 		eeprom->use_eewr = FALSE;
445 		break;
446 	case e1000_82541:
447 	case e1000_82541_rev_2:
448 	case e1000_82547:
449 	case e1000_82547_rev_2:
450 		if (eecd & E1000_EECD_TYPE) {
451 			eeprom->type = e1000_eeprom_spi;
452 			eeprom->opcode_bits = 8;
453 			eeprom->delay_usec = 1;
454 			if (eecd & E1000_EECD_ADDR_BITS) {
455 				eeprom->page_size = 32;
456 				eeprom->address_bits = 16;
457 			} else {
458 				eeprom->page_size = 8;
459 				eeprom->address_bits = 8;
460 			}
461 		} else {
462 			eeprom->type = e1000_eeprom_microwire;
463 			eeprom->opcode_bits = 3;
464 			eeprom->delay_usec = 50;
465 			if (eecd & E1000_EECD_ADDR_BITS) {
466 				eeprom->word_size = 256;
467 				eeprom->address_bits = 8;
468 			} else {
469 				eeprom->word_size = 64;
470 				eeprom->address_bits = 6;
471 			}
472 		}
473 		eeprom->use_eerd = FALSE;
474 		eeprom->use_eewr = FALSE;
475 		break;
476 	case e1000_82571:
477 	case e1000_82572:
478 		eeprom->type = e1000_eeprom_spi;
479 		eeprom->opcode_bits = 8;
480 		eeprom->delay_usec = 1;
481 		if (eecd & E1000_EECD_ADDR_BITS) {
482 			eeprom->page_size = 32;
483 			eeprom->address_bits = 16;
484 		} else {
485 			eeprom->page_size = 8;
486 			eeprom->address_bits = 8;
487 		}
488 		eeprom->use_eerd = FALSE;
489 		eeprom->use_eewr = FALSE;
490 		break;
491 	case e1000_82573:
492 	case e1000_82574:
493 		eeprom->type = e1000_eeprom_spi;
494 		eeprom->opcode_bits = 8;
495 		eeprom->delay_usec = 1;
496 		if (eecd & E1000_EECD_ADDR_BITS) {
497 			eeprom->page_size = 32;
498 			eeprom->address_bits = 16;
499 		} else {
500 			eeprom->page_size = 8;
501 			eeprom->address_bits = 8;
502 		}
503 		eeprom->use_eerd = TRUE;
504 		eeprom->use_eewr = TRUE;
505 		if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
506 			eeprom->type = e1000_eeprom_flash;
507 			eeprom->word_size = 2048;
508 
509 		/* Ensure that the Autonomous FLASH update bit is cleared due to
510 		 * Flash update issue on parts which use a FLASH for NVM. */
511 			eecd &= ~E1000_EECD_AUPDEN;
512 			E1000_WRITE_REG(hw, EECD, eecd);
513 		}
514 		break;
515 	case e1000_80003es2lan:
516 		eeprom->type = e1000_eeprom_spi;
517 		eeprom->opcode_bits = 8;
518 		eeprom->delay_usec = 1;
519 		if (eecd & E1000_EECD_ADDR_BITS) {
520 			eeprom->page_size = 32;
521 			eeprom->address_bits = 16;
522 		} else {
523 			eeprom->page_size = 8;
524 			eeprom->address_bits = 8;
525 		}
526 		eeprom->use_eerd = TRUE;
527 		eeprom->use_eewr = FALSE;
528 		break;
529 
530 	/* ich8lan does not support currently. if needed, please
531 	 * add corresponding code and functions.
532 	 */
533 #if 0
534 	case e1000_ich8lan:
535 		{
536 		int32_t  i = 0;
537 
538 		eeprom->type = e1000_eeprom_ich8;
539 		eeprom->use_eerd = FALSE;
540 		eeprom->use_eewr = FALSE;
541 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
542 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
543 				ICH_FLASH_GFPREG);
544 		/* Zero the shadow RAM structure. But don't load it from NVM
545 		 * so as to save time for driver init */
546 		if (hw->eeprom_shadow_ram != NULL) {
547 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
548 				hw->eeprom_shadow_ram[i].modified = FALSE;
549 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
550 			}
551 		}
552 
553 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
554 				ICH_FLASH_SECTOR_SIZE;
555 
556 		hw->flash_bank_size = ((flash_size >> 16)
557 				& ICH_GFPREG_BASE_MASK) + 1;
558 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
559 
560 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
561 
562 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
563 		break;
564 		}
565 #endif
566 	default:
567 		break;
568 	}
569 
570 	if (eeprom->type == e1000_eeprom_spi) {
571 		/* eeprom_size will be an enum [0..8] that maps
572 		 * to eeprom sizes 128B to
573 		 * 32KB (incremented by powers of 2).
574 		 */
575 		if (hw->mac_type <= e1000_82547_rev_2) {
576 			/* Set to default value for initial eeprom read. */
577 			eeprom->word_size = 64;
578 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
579 					&eeprom_size);
580 			if (ret_val)
581 				return ret_val;
582 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
583 				>> EEPROM_SIZE_SHIFT;
584 			/* 256B eeprom size was not supported in earlier
585 			 * hardware, so we bump eeprom_size up one to
586 			 * ensure that "1" (which maps to 256B) is never
587 			 * the result used in the shifting logic below. */
588 			if (eeprom_size)
589 				eeprom_size++;
590 		} else {
591 			eeprom_size = (uint16_t)((eecd &
592 				E1000_EECD_SIZE_EX_MASK) >>
593 				E1000_EECD_SIZE_EX_SHIFT);
594 		}
595 
596 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
597 	}
598 	return ret_val;
599 }
600 
601 /******************************************************************************
602  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
603  *
604  * hw - Struct containing variables accessed by shared code
605  *****************************************************************************/
606 static int32_t
607 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
608 {
609 	uint32_t attempts = 100000;
610 	uint32_t i, reg = 0;
611 	int32_t done = E1000_ERR_EEPROM;
612 
613 	for (i = 0; i < attempts; i++) {
614 		if (eerd == E1000_EEPROM_POLL_READ)
615 			reg = E1000_READ_REG(hw, EERD);
616 		else
617 			reg = E1000_READ_REG(hw, EEWR);
618 
619 		if (reg & E1000_EEPROM_RW_REG_DONE) {
620 			done = E1000_SUCCESS;
621 			break;
622 		}
623 		udelay(5);
624 	}
625 
626 	return done;
627 }
628 
629 /******************************************************************************
630  * Reads a 16 bit word from the EEPROM using the EERD register.
631  *
632  * hw - Struct containing variables accessed by shared code
633  * offset - offset of  word in the EEPROM to read
634  * data - word read from the EEPROM
635  * words - number of words to read
636  *****************************************************************************/
637 static int32_t
638 e1000_read_eeprom_eerd(struct e1000_hw *hw,
639 			uint16_t offset,
640 			uint16_t words,
641 			uint16_t *data)
642 {
643 	uint32_t i, eerd = 0;
644 	int32_t error = 0;
645 
646 	for (i = 0; i < words; i++) {
647 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
648 			E1000_EEPROM_RW_REG_START;
649 
650 		E1000_WRITE_REG(hw, EERD, eerd);
651 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
652 
653 		if (error)
654 			break;
655 		data[i] = (E1000_READ_REG(hw, EERD) >>
656 				E1000_EEPROM_RW_REG_DATA);
657 
658 	}
659 
660 	return error;
661 }
662 
663 void e1000_release_eeprom(struct e1000_hw *hw)
664 {
665 	uint32_t eecd;
666 
667 	DEBUGFUNC();
668 
669 	eecd = E1000_READ_REG(hw, EECD);
670 
671 	if (hw->eeprom.type == e1000_eeprom_spi) {
672 		eecd |= E1000_EECD_CS;  /* Pull CS high */
673 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
674 
675 		E1000_WRITE_REG(hw, EECD, eecd);
676 
677 		udelay(hw->eeprom.delay_usec);
678 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
679 		/* cleanup eeprom */
680 
681 		/* CS on Microwire is active-high */
682 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
683 
684 		E1000_WRITE_REG(hw, EECD, eecd);
685 
686 		/* Rising edge of clock */
687 		eecd |= E1000_EECD_SK;
688 		E1000_WRITE_REG(hw, EECD, eecd);
689 		E1000_WRITE_FLUSH(hw);
690 		udelay(hw->eeprom.delay_usec);
691 
692 		/* Falling edge of clock */
693 		eecd &= ~E1000_EECD_SK;
694 		E1000_WRITE_REG(hw, EECD, eecd);
695 		E1000_WRITE_FLUSH(hw);
696 		udelay(hw->eeprom.delay_usec);
697 	}
698 
699 	/* Stop requesting EEPROM access */
700 	if (hw->mac_type > e1000_82544) {
701 		eecd &= ~E1000_EECD_REQ;
702 		E1000_WRITE_REG(hw, EECD, eecd);
703 	}
704 }
705 /******************************************************************************
706  * Reads a 16 bit word from the EEPROM.
707  *
708  * hw - Struct containing variables accessed by shared code
709  *****************************************************************************/
710 static int32_t
711 e1000_spi_eeprom_ready(struct e1000_hw *hw)
712 {
713 	uint16_t retry_count = 0;
714 	uint8_t spi_stat_reg;
715 
716 	DEBUGFUNC();
717 
718 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
719 	 * EEPROM will signal that the command has been completed by clearing
720 	 * bit 0 of the internal status register.  If it's not cleared within
721 	 * 5 milliseconds, then error out.
722 	 */
723 	retry_count = 0;
724 	do {
725 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
726 			hw->eeprom.opcode_bits);
727 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
728 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
729 			break;
730 
731 		udelay(5);
732 		retry_count += 5;
733 
734 		e1000_standby_eeprom(hw);
735 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
736 
737 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
738 	 * only 0-5mSec on 5V devices)
739 	 */
740 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
741 		DEBUGOUT("SPI EEPROM Status error\n");
742 		return -E1000_ERR_EEPROM;
743 	}
744 
745 	return E1000_SUCCESS;
746 }
747 
748 /******************************************************************************
749  * Reads a 16 bit word from the EEPROM.
750  *
751  * hw - Struct containing variables accessed by shared code
752  * offset - offset of  word in the EEPROM to read
753  * data - word read from the EEPROM
754  *****************************************************************************/
755 static int32_t
756 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
757 		uint16_t words, uint16_t *data)
758 {
759 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
760 	uint32_t i = 0;
761 
762 	DEBUGFUNC();
763 
764 	/* If eeprom is not yet detected, do so now */
765 	if (eeprom->word_size == 0)
766 		e1000_init_eeprom_params(hw);
767 
768 	/* A check for invalid values:  offset too large, too many words,
769 	 * and not enough words.
770 	 */
771 	if ((offset >= eeprom->word_size) ||
772 		(words > eeprom->word_size - offset) ||
773 		(words == 0)) {
774 		DEBUGOUT("\"words\" parameter out of bounds."
775 			"Words = %d, size = %d\n", offset, eeprom->word_size);
776 		return -E1000_ERR_EEPROM;
777 	}
778 
779 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
780 	 * directly. In this case, we need to acquire the EEPROM so that
781 	 * FW or other port software does not interrupt.
782 	 */
783 	if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
784 		hw->eeprom.use_eerd == FALSE) {
785 
786 		/* Prepare the EEPROM for bit-bang reading */
787 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
788 			return -E1000_ERR_EEPROM;
789 	}
790 
791 	/* Eerd register EEPROM access requires no eeprom aquire/release */
792 	if (eeprom->use_eerd == TRUE)
793 		return e1000_read_eeprom_eerd(hw, offset, words, data);
794 
795 	/* ich8lan does not support currently. if needed, please
796 	 * add corresponding code and functions.
797 	 */
798 #if 0
799 	/* ICH EEPROM access is done via the ICH flash controller */
800 	if (eeprom->type == e1000_eeprom_ich8)
801 		return e1000_read_eeprom_ich8(hw, offset, words, data);
802 #endif
803 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
804 	 * acquired the EEPROM at this point, so any returns should relase it */
805 	if (eeprom->type == e1000_eeprom_spi) {
806 		uint16_t word_in;
807 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
808 
809 		if (e1000_spi_eeprom_ready(hw)) {
810 			e1000_release_eeprom(hw);
811 			return -E1000_ERR_EEPROM;
812 		}
813 
814 		e1000_standby_eeprom(hw);
815 
816 		/* Some SPI eeproms use the 8th address bit embedded in
817 		 * the opcode */
818 		if ((eeprom->address_bits == 8) && (offset >= 128))
819 			read_opcode |= EEPROM_A8_OPCODE_SPI;
820 
821 		/* Send the READ command (opcode + addr)  */
822 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
823 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
824 				eeprom->address_bits);
825 
826 		/* Read the data.  The address of the eeprom internally
827 		 * increments with each byte (spi) being read, saving on the
828 		 * overhead of eeprom setup and tear-down.  The address
829 		 * counter will roll over if reading beyond the size of
830 		 * the eeprom, thus allowing the entire memory to be read
831 		 * starting from any offset. */
832 		for (i = 0; i < words; i++) {
833 			word_in = e1000_shift_in_ee_bits(hw, 16);
834 			data[i] = (word_in >> 8) | (word_in << 8);
835 		}
836 	} else if (eeprom->type == e1000_eeprom_microwire) {
837 		for (i = 0; i < words; i++) {
838 			/* Send the READ command (opcode + addr)  */
839 			e1000_shift_out_ee_bits(hw,
840 				EEPROM_READ_OPCODE_MICROWIRE,
841 				eeprom->opcode_bits);
842 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
843 				eeprom->address_bits);
844 
845 			/* Read the data.  For microwire, each word requires
846 			 * the overhead of eeprom setup and tear-down. */
847 			data[i] = e1000_shift_in_ee_bits(hw, 16);
848 			e1000_standby_eeprom(hw);
849 		}
850 	}
851 
852 	/* End this read operation */
853 	e1000_release_eeprom(hw);
854 
855 	return E1000_SUCCESS;
856 }
857 
858 /******************************************************************************
859  * Verifies that the EEPROM has a valid checksum
860  *
861  * hw - Struct containing variables accessed by shared code
862  *
863  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
864  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
865  * valid.
866  *****************************************************************************/
867 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
868 {
869 	uint16_t i, checksum, checksum_reg, *buf;
870 
871 	DEBUGFUNC();
872 
873 	/* Allocate a temporary buffer */
874 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
875 	if (!buf) {
876 		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
877 		return -E1000_ERR_EEPROM;
878 	}
879 
880 	/* Read the EEPROM */
881 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
882 		E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
883 		return -E1000_ERR_EEPROM;
884 	}
885 
886 	/* Compute the checksum */
887 	checksum = 0;
888 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
889 		checksum += buf[i];
890 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
891 	checksum_reg = buf[i];
892 
893 	/* Verify it! */
894 	if (checksum == checksum_reg)
895 		return 0;
896 
897 	/* Hrm, verification failed, print an error */
898 	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
899 	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
900 			checksum_reg, checksum);
901 
902 	return -E1000_ERR_EEPROM;
903 }
904 
905 /*****************************************************************************
906  * Set PHY to class A mode
907  * Assumes the following operations will follow to enable the new class mode.
908  *  1. Do a PHY soft reset
909  *  2. Restart auto-negotiation or force link.
910  *
911  * hw - Struct containing variables accessed by shared code
912  ****************************************************************************/
913 static int32_t
914 e1000_set_phy_mode(struct e1000_hw *hw)
915 {
916 	int32_t ret_val;
917 	uint16_t eeprom_data;
918 
919 	DEBUGFUNC();
920 
921 	if ((hw->mac_type == e1000_82545_rev_3) &&
922 		(hw->media_type == e1000_media_type_copper)) {
923 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
924 				1, &eeprom_data);
925 		if (ret_val)
926 			return ret_val;
927 
928 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
929 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
930 			ret_val = e1000_write_phy_reg(hw,
931 					M88E1000_PHY_PAGE_SELECT, 0x000B);
932 			if (ret_val)
933 				return ret_val;
934 			ret_val = e1000_write_phy_reg(hw,
935 					M88E1000_PHY_GEN_CONTROL, 0x8104);
936 			if (ret_val)
937 				return ret_val;
938 
939 			hw->phy_reset_disable = FALSE;
940 		}
941 	}
942 
943 	return E1000_SUCCESS;
944 }
945 #endif /* #ifndef CONFIG_AP1000 */
946 
947 /***************************************************************************
948  *
949  * Obtaining software semaphore bit (SMBI) before resetting PHY.
950  *
951  * hw: Struct containing variables accessed by shared code
952  *
953  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
954  *            E1000_SUCCESS at any other case.
955  *
956  ***************************************************************************/
957 static int32_t
958 e1000_get_software_semaphore(struct e1000_hw *hw)
959 {
960 	 int32_t timeout = hw->eeprom.word_size + 1;
961 	 uint32_t swsm;
962 
963 	DEBUGFUNC();
964 
965 	if (hw->mac_type != e1000_80003es2lan)
966 		return E1000_SUCCESS;
967 
968 	while (timeout) {
969 		swsm = E1000_READ_REG(hw, SWSM);
970 		/* If SMBI bit cleared, it is now set and we hold
971 		 * the semaphore */
972 		if (!(swsm & E1000_SWSM_SMBI))
973 			break;
974 		mdelay(1);
975 		timeout--;
976 	}
977 
978 	if (!timeout) {
979 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
980 		return -E1000_ERR_RESET;
981 	}
982 
983 	return E1000_SUCCESS;
984 }
985 
986 /***************************************************************************
987  * This function clears HW semaphore bits.
988  *
989  * hw: Struct containing variables accessed by shared code
990  *
991  * returns: - None.
992  *
993  ***************************************************************************/
994 static void
995 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
996 {
997 	 uint32_t swsm;
998 
999 	DEBUGFUNC();
1000 
1001 	if (!hw->eeprom_semaphore_present)
1002 		return;
1003 
1004 	swsm = E1000_READ_REG(hw, SWSM);
1005 	if (hw->mac_type == e1000_80003es2lan) {
1006 		/* Release both semaphores. */
1007 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1008 	} else
1009 		swsm &= ~(E1000_SWSM_SWESMBI);
1010 	E1000_WRITE_REG(hw, SWSM, swsm);
1011 }
1012 
1013 /***************************************************************************
1014  *
1015  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1016  * adapter or Eeprom access.
1017  *
1018  * hw: Struct containing variables accessed by shared code
1019  *
1020  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1021  *            E1000_SUCCESS at any other case.
1022  *
1023  ***************************************************************************/
1024 static int32_t
1025 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1026 {
1027 	int32_t timeout;
1028 	uint32_t swsm;
1029 
1030 	DEBUGFUNC();
1031 
1032 	if (!hw->eeprom_semaphore_present)
1033 		return E1000_SUCCESS;
1034 
1035 	if (hw->mac_type == e1000_80003es2lan) {
1036 		/* Get the SW semaphore. */
1037 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1038 			return -E1000_ERR_EEPROM;
1039 	}
1040 
1041 	/* Get the FW semaphore. */
1042 	timeout = hw->eeprom.word_size + 1;
1043 	while (timeout) {
1044 		swsm = E1000_READ_REG(hw, SWSM);
1045 		swsm |= E1000_SWSM_SWESMBI;
1046 		E1000_WRITE_REG(hw, SWSM, swsm);
1047 		/* if we managed to set the bit we got the semaphore. */
1048 		swsm = E1000_READ_REG(hw, SWSM);
1049 		if (swsm & E1000_SWSM_SWESMBI)
1050 			break;
1051 
1052 		udelay(50);
1053 		timeout--;
1054 	}
1055 
1056 	if (!timeout) {
1057 		/* Release semaphores */
1058 		e1000_put_hw_eeprom_semaphore(hw);
1059 		DEBUGOUT("Driver can't access the Eeprom - "
1060 				"SWESMBI bit is set.\n");
1061 		return -E1000_ERR_EEPROM;
1062 	}
1063 
1064 	return E1000_SUCCESS;
1065 }
1066 
1067 static int32_t
1068 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1069 {
1070 	uint32_t swfw_sync = 0;
1071 	uint32_t swmask = mask;
1072 	uint32_t fwmask = mask << 16;
1073 	int32_t timeout = 200;
1074 
1075 	DEBUGFUNC();
1076 	while (timeout) {
1077 		if (e1000_get_hw_eeprom_semaphore(hw))
1078 			return -E1000_ERR_SWFW_SYNC;
1079 
1080 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1081 		if (!(swfw_sync & (fwmask | swmask)))
1082 			break;
1083 
1084 		/* firmware currently using resource (fwmask) */
1085 		/* or other software thread currently using resource (swmask) */
1086 		e1000_put_hw_eeprom_semaphore(hw);
1087 		mdelay(5);
1088 		timeout--;
1089 	}
1090 
1091 	if (!timeout) {
1092 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1093 		return -E1000_ERR_SWFW_SYNC;
1094 	}
1095 
1096 	swfw_sync |= swmask;
1097 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1098 
1099 	e1000_put_hw_eeprom_semaphore(hw);
1100 	return E1000_SUCCESS;
1101 }
1102 
1103 static boolean_t e1000_is_second_port(struct e1000_hw *hw)
1104 {
1105 	switch (hw->mac_type) {
1106 	case e1000_80003es2lan:
1107 	case e1000_82546:
1108 	case e1000_82571:
1109 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1110 			return TRUE;
1111 		/* Fallthrough */
1112 	default:
1113 		return FALSE;
1114 	}
1115 }
1116 
1117 /******************************************************************************
1118  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1119  * second function of dual function devices
1120  *
1121  * nic - Struct containing variables accessed by shared code
1122  *****************************************************************************/
1123 static int
1124 e1000_read_mac_addr(struct eth_device *nic)
1125 {
1126 #ifndef CONFIG_AP1000
1127 	struct e1000_hw *hw = nic->priv;
1128 	uint16_t offset;
1129 	uint16_t eeprom_data;
1130 	int i;
1131 
1132 	DEBUGFUNC();
1133 
1134 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1135 		offset = i >> 1;
1136 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1137 			DEBUGOUT("EEPROM Read Error\n");
1138 			return -E1000_ERR_EEPROM;
1139 		}
1140 		nic->enetaddr[i] = eeprom_data & 0xff;
1141 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1142 	}
1143 
1144 	/* Invert the last bit if this is the second device */
1145 	if (e1000_is_second_port(hw))
1146 		nic->enetaddr[5] ^= 1;
1147 
1148 #ifdef CONFIG_E1000_FALLBACK_MAC
1149 	if (!is_valid_ether_addr(nic->enetaddr)) {
1150 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1151 
1152 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1153 	}
1154 #endif
1155 #else
1156 	/*
1157 	 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1158 	 * environment variables.  Currently this does not support the addition
1159 	 * of a PMC e1000 card, which is certainly a possibility, so this should
1160 	 * be updated to properly use the env variable only for the onboard e1000
1161 	 */
1162 
1163 	int ii;
1164 	char *s, *e;
1165 
1166 	DEBUGFUNC();
1167 
1168 	s = getenv ("ethaddr");
1169 	if (s == NULL) {
1170 		return -E1000_ERR_EEPROM;
1171 	} else {
1172 		for(ii = 0; ii < 6; ii++) {
1173 			nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1174 			if (s){
1175 				s = (*e) ? e + 1 : e;
1176 			}
1177 		}
1178 	}
1179 #endif
1180 	return 0;
1181 }
1182 
1183 /******************************************************************************
1184  * Initializes receive address filters.
1185  *
1186  * hw - Struct containing variables accessed by shared code
1187  *
1188  * Places the MAC address in receive address register 0 and clears the rest
1189  * of the receive addresss registers. Clears the multicast table. Assumes
1190  * the receiver is in reset when the routine is called.
1191  *****************************************************************************/
1192 static void
1193 e1000_init_rx_addrs(struct eth_device *nic)
1194 {
1195 	struct e1000_hw *hw = nic->priv;
1196 	uint32_t i;
1197 	uint32_t addr_low;
1198 	uint32_t addr_high;
1199 
1200 	DEBUGFUNC();
1201 
1202 	/* Setup the receive address. */
1203 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1204 	addr_low = (nic->enetaddr[0] |
1205 		    (nic->enetaddr[1] << 8) |
1206 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1207 
1208 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1209 
1210 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1211 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1212 
1213 	/* Zero out the other 15 receive addresses. */
1214 	DEBUGOUT("Clearing RAR[1-15]\n");
1215 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1216 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1217 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1218 	}
1219 }
1220 
1221 /******************************************************************************
1222  * Clears the VLAN filer table
1223  *
1224  * hw - Struct containing variables accessed by shared code
1225  *****************************************************************************/
1226 static void
1227 e1000_clear_vfta(struct e1000_hw *hw)
1228 {
1229 	uint32_t offset;
1230 
1231 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1232 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1233 }
1234 
1235 /******************************************************************************
1236  * Set the mac type member in the hw struct.
1237  *
1238  * hw - Struct containing variables accessed by shared code
1239  *****************************************************************************/
1240 int32_t
1241 e1000_set_mac_type(struct e1000_hw *hw)
1242 {
1243 	DEBUGFUNC();
1244 
1245 	switch (hw->device_id) {
1246 	case E1000_DEV_ID_82542:
1247 		switch (hw->revision_id) {
1248 		case E1000_82542_2_0_REV_ID:
1249 			hw->mac_type = e1000_82542_rev2_0;
1250 			break;
1251 		case E1000_82542_2_1_REV_ID:
1252 			hw->mac_type = e1000_82542_rev2_1;
1253 			break;
1254 		default:
1255 			/* Invalid 82542 revision ID */
1256 			return -E1000_ERR_MAC_TYPE;
1257 		}
1258 		break;
1259 	case E1000_DEV_ID_82543GC_FIBER:
1260 	case E1000_DEV_ID_82543GC_COPPER:
1261 		hw->mac_type = e1000_82543;
1262 		break;
1263 	case E1000_DEV_ID_82544EI_COPPER:
1264 	case E1000_DEV_ID_82544EI_FIBER:
1265 	case E1000_DEV_ID_82544GC_COPPER:
1266 	case E1000_DEV_ID_82544GC_LOM:
1267 		hw->mac_type = e1000_82544;
1268 		break;
1269 	case E1000_DEV_ID_82540EM:
1270 	case E1000_DEV_ID_82540EM_LOM:
1271 	case E1000_DEV_ID_82540EP:
1272 	case E1000_DEV_ID_82540EP_LOM:
1273 	case E1000_DEV_ID_82540EP_LP:
1274 		hw->mac_type = e1000_82540;
1275 		break;
1276 	case E1000_DEV_ID_82545EM_COPPER:
1277 	case E1000_DEV_ID_82545EM_FIBER:
1278 		hw->mac_type = e1000_82545;
1279 		break;
1280 	case E1000_DEV_ID_82545GM_COPPER:
1281 	case E1000_DEV_ID_82545GM_FIBER:
1282 	case E1000_DEV_ID_82545GM_SERDES:
1283 		hw->mac_type = e1000_82545_rev_3;
1284 		break;
1285 	case E1000_DEV_ID_82546EB_COPPER:
1286 	case E1000_DEV_ID_82546EB_FIBER:
1287 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1288 		hw->mac_type = e1000_82546;
1289 		break;
1290 	case E1000_DEV_ID_82546GB_COPPER:
1291 	case E1000_DEV_ID_82546GB_FIBER:
1292 	case E1000_DEV_ID_82546GB_SERDES:
1293 	case E1000_DEV_ID_82546GB_PCIE:
1294 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1295 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1296 		hw->mac_type = e1000_82546_rev_3;
1297 		break;
1298 	case E1000_DEV_ID_82541EI:
1299 	case E1000_DEV_ID_82541EI_MOBILE:
1300 	case E1000_DEV_ID_82541ER_LOM:
1301 		hw->mac_type = e1000_82541;
1302 		break;
1303 	case E1000_DEV_ID_82541ER:
1304 	case E1000_DEV_ID_82541GI:
1305 	case E1000_DEV_ID_82541GI_LF:
1306 	case E1000_DEV_ID_82541GI_MOBILE:
1307 		hw->mac_type = e1000_82541_rev_2;
1308 		break;
1309 	case E1000_DEV_ID_82547EI:
1310 	case E1000_DEV_ID_82547EI_MOBILE:
1311 		hw->mac_type = e1000_82547;
1312 		break;
1313 	case E1000_DEV_ID_82547GI:
1314 		hw->mac_type = e1000_82547_rev_2;
1315 		break;
1316 	case E1000_DEV_ID_82571EB_COPPER:
1317 	case E1000_DEV_ID_82571EB_FIBER:
1318 	case E1000_DEV_ID_82571EB_SERDES:
1319 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1320 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1321 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1322 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1323 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1324 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1325 		hw->mac_type = e1000_82571;
1326 		break;
1327 	case E1000_DEV_ID_82572EI_COPPER:
1328 	case E1000_DEV_ID_82572EI_FIBER:
1329 	case E1000_DEV_ID_82572EI_SERDES:
1330 	case E1000_DEV_ID_82572EI:
1331 		hw->mac_type = e1000_82572;
1332 		break;
1333 	case E1000_DEV_ID_82573E:
1334 	case E1000_DEV_ID_82573E_IAMT:
1335 	case E1000_DEV_ID_82573L:
1336 		hw->mac_type = e1000_82573;
1337 		break;
1338 	case E1000_DEV_ID_82574L:
1339 		hw->mac_type = e1000_82574;
1340 		break;
1341 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1342 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1343 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1344 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1345 		hw->mac_type = e1000_80003es2lan;
1346 		break;
1347 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1348 	case E1000_DEV_ID_ICH8_IGP_AMT:
1349 	case E1000_DEV_ID_ICH8_IGP_C:
1350 	case E1000_DEV_ID_ICH8_IFE:
1351 	case E1000_DEV_ID_ICH8_IFE_GT:
1352 	case E1000_DEV_ID_ICH8_IFE_G:
1353 	case E1000_DEV_ID_ICH8_IGP_M:
1354 		hw->mac_type = e1000_ich8lan;
1355 		break;
1356 	default:
1357 		/* Should never have loaded on this device */
1358 		return -E1000_ERR_MAC_TYPE;
1359 	}
1360 	return E1000_SUCCESS;
1361 }
1362 
1363 /******************************************************************************
1364  * Reset the transmit and receive units; mask and clear all interrupts.
1365  *
1366  * hw - Struct containing variables accessed by shared code
1367  *****************************************************************************/
1368 void
1369 e1000_reset_hw(struct e1000_hw *hw)
1370 {
1371 	uint32_t ctrl;
1372 	uint32_t ctrl_ext;
1373 	uint32_t manc;
1374 	uint32_t pba = 0;
1375 
1376 	DEBUGFUNC();
1377 
1378 	/* get the correct pba value for both PCI and PCIe*/
1379 	if (hw->mac_type <  e1000_82571)
1380 		pba = E1000_DEFAULT_PCI_PBA;
1381 	else
1382 		pba = E1000_DEFAULT_PCIE_PBA;
1383 
1384 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1385 	if (hw->mac_type == e1000_82542_rev2_0) {
1386 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1387 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1388 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1389 	}
1390 
1391 	/* Clear interrupt mask to stop board from generating interrupts */
1392 	DEBUGOUT("Masking off all interrupts\n");
1393 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1394 
1395 	/* Disable the Transmit and Receive units.  Then delay to allow
1396 	 * any pending transactions to complete before we hit the MAC with
1397 	 * the global reset.
1398 	 */
1399 	E1000_WRITE_REG(hw, RCTL, 0);
1400 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1401 	E1000_WRITE_FLUSH(hw);
1402 
1403 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1404 	hw->tbi_compatibility_on = FALSE;
1405 
1406 	/* Delay to allow any outstanding PCI transactions to complete before
1407 	 * resetting the device
1408 	 */
1409 	mdelay(10);
1410 
1411 	/* Issue a global reset to the MAC.  This will reset the chip's
1412 	 * transmit, receive, DMA, and link units.  It will not effect
1413 	 * the current PCI configuration.  The global reset bit is self-
1414 	 * clearing, and should clear within a microsecond.
1415 	 */
1416 	DEBUGOUT("Issuing a global reset to MAC\n");
1417 	ctrl = E1000_READ_REG(hw, CTRL);
1418 
1419 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1420 
1421 	/* Force a reload from the EEPROM if necessary */
1422 	if (hw->mac_type < e1000_82540) {
1423 		/* Wait for reset to complete */
1424 		udelay(10);
1425 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1426 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1427 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1428 		E1000_WRITE_FLUSH(hw);
1429 		/* Wait for EEPROM reload */
1430 		mdelay(2);
1431 	} else {
1432 		/* Wait for EEPROM reload (it happens automatically) */
1433 		mdelay(4);
1434 		/* Dissable HW ARPs on ASF enabled adapters */
1435 		manc = E1000_READ_REG(hw, MANC);
1436 		manc &= ~(E1000_MANC_ARP_EN);
1437 		E1000_WRITE_REG(hw, MANC, manc);
1438 	}
1439 
1440 	/* Clear interrupt mask to stop board from generating interrupts */
1441 	DEBUGOUT("Masking off all interrupts\n");
1442 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1443 
1444 	/* Clear any pending interrupt events. */
1445 	E1000_READ_REG(hw, ICR);
1446 
1447 	/* If MWI was previously enabled, reenable it. */
1448 	if (hw->mac_type == e1000_82542_rev2_0) {
1449 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1450 	}
1451 	E1000_WRITE_REG(hw, PBA, pba);
1452 }
1453 
1454 /******************************************************************************
1455  *
1456  * Initialize a number of hardware-dependent bits
1457  *
1458  * hw: Struct containing variables accessed by shared code
1459  *
1460  * This function contains hardware limitation workarounds for PCI-E adapters
1461  *
1462  *****************************************************************************/
1463 static void
1464 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1465 {
1466 	if ((hw->mac_type >= e1000_82571) &&
1467 			(!hw->initialize_hw_bits_disable)) {
1468 		/* Settings common to all PCI-express silicon */
1469 		uint32_t reg_ctrl, reg_ctrl_ext;
1470 		uint32_t reg_tarc0, reg_tarc1;
1471 		uint32_t reg_tctl;
1472 		uint32_t reg_txdctl, reg_txdctl1;
1473 
1474 		/* link autonegotiation/sync workarounds */
1475 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1476 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1477 
1478 		/* Enable not-done TX descriptor counting */
1479 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1480 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1481 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1482 
1483 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1484 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1485 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1486 
1487 		switch (hw->mac_type) {
1488 		case e1000_82571:
1489 		case e1000_82572:
1490 			/* Clear PHY TX compatible mode bits */
1491 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1492 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1493 
1494 			/* link autonegotiation/sync workarounds */
1495 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1496 
1497 			/* TX ring control fixes */
1498 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1499 
1500 			/* Multiple read bit is reversed polarity */
1501 			reg_tctl = E1000_READ_REG(hw, TCTL);
1502 			if (reg_tctl & E1000_TCTL_MULR)
1503 				reg_tarc1 &= ~(1 << 28);
1504 			else
1505 				reg_tarc1 |= (1 << 28);
1506 
1507 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1508 			break;
1509 		case e1000_82573:
1510 		case e1000_82574:
1511 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1512 			reg_ctrl_ext &= ~(1 << 23);
1513 			reg_ctrl_ext |= (1 << 22);
1514 
1515 			/* TX byte count fix */
1516 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1517 			reg_ctrl &= ~(1 << 29);
1518 
1519 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1520 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1521 			break;
1522 		case e1000_80003es2lan:
1523 	/* improve small packet performace for fiber/serdes */
1524 			if ((hw->media_type == e1000_media_type_fiber)
1525 			|| (hw->media_type ==
1526 				e1000_media_type_internal_serdes)) {
1527 				reg_tarc0 &= ~(1 << 20);
1528 			}
1529 
1530 		/* Multiple read bit is reversed polarity */
1531 			reg_tctl = E1000_READ_REG(hw, TCTL);
1532 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1533 			if (reg_tctl & E1000_TCTL_MULR)
1534 				reg_tarc1 &= ~(1 << 28);
1535 			else
1536 				reg_tarc1 |= (1 << 28);
1537 
1538 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1539 			break;
1540 		case e1000_ich8lan:
1541 			/* Reduce concurrent DMA requests to 3 from 4 */
1542 			if ((hw->revision_id < 3) ||
1543 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1544 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1545 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1546 
1547 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1548 			reg_ctrl_ext |= (1 << 22);
1549 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1550 
1551 			/* workaround TX hang with TSO=on */
1552 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1553 
1554 			/* Multiple read bit is reversed polarity */
1555 			reg_tctl = E1000_READ_REG(hw, TCTL);
1556 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1557 			if (reg_tctl & E1000_TCTL_MULR)
1558 				reg_tarc1 &= ~(1 << 28);
1559 			else
1560 				reg_tarc1 |= (1 << 28);
1561 
1562 			/* workaround TX hang with TSO=on */
1563 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1564 
1565 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1566 			break;
1567 		default:
1568 			break;
1569 		}
1570 
1571 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1572 	}
1573 }
1574 
1575 /******************************************************************************
1576  * Performs basic configuration of the adapter.
1577  *
1578  * hw - Struct containing variables accessed by shared code
1579  *
1580  * Assumes that the controller has previously been reset and is in a
1581  * post-reset uninitialized state. Initializes the receive address registers,
1582  * multicast table, and VLAN filter table. Calls routines to setup link
1583  * configuration and flow control settings. Clears all on-chip counters. Leaves
1584  * the transmit and receive units disabled and uninitialized.
1585  *****************************************************************************/
1586 static int
1587 e1000_init_hw(struct eth_device *nic)
1588 {
1589 	struct e1000_hw *hw = nic->priv;
1590 	uint32_t ctrl;
1591 	uint32_t i;
1592 	int32_t ret_val;
1593 	uint16_t pcix_cmd_word;
1594 	uint16_t pcix_stat_hi_word;
1595 	uint16_t cmd_mmrbc;
1596 	uint16_t stat_mmrbc;
1597 	uint32_t mta_size;
1598 	uint32_t reg_data;
1599 	uint32_t ctrl_ext;
1600 	DEBUGFUNC();
1601 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1602 	if ((hw->mac_type == e1000_ich8lan) &&
1603 		((hw->revision_id < 3) ||
1604 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1605 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1606 			reg_data = E1000_READ_REG(hw, STATUS);
1607 			reg_data &= ~0x80000000;
1608 			E1000_WRITE_REG(hw, STATUS, reg_data);
1609 	}
1610 	/* Do not need initialize Identification LED */
1611 
1612 	/* Set the media type and TBI compatibility */
1613 	e1000_set_media_type(hw);
1614 
1615 	/* Must be called after e1000_set_media_type
1616 	 * because media_type is used */
1617 	e1000_initialize_hardware_bits(hw);
1618 
1619 	/* Disabling VLAN filtering. */
1620 	DEBUGOUT("Initializing the IEEE VLAN\n");
1621 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1622 	if (hw->mac_type != e1000_ich8lan) {
1623 		if (hw->mac_type < e1000_82545_rev_3)
1624 			E1000_WRITE_REG(hw, VET, 0);
1625 		e1000_clear_vfta(hw);
1626 	}
1627 
1628 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1629 	if (hw->mac_type == e1000_82542_rev2_0) {
1630 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1631 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1632 				      hw->
1633 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1634 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1635 		E1000_WRITE_FLUSH(hw);
1636 		mdelay(5);
1637 	}
1638 
1639 	/* Setup the receive address. This involves initializing all of the Receive
1640 	 * Address Registers (RARs 0 - 15).
1641 	 */
1642 	e1000_init_rx_addrs(nic);
1643 
1644 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1645 	if (hw->mac_type == e1000_82542_rev2_0) {
1646 		E1000_WRITE_REG(hw, RCTL, 0);
1647 		E1000_WRITE_FLUSH(hw);
1648 		mdelay(1);
1649 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1650 	}
1651 
1652 	/* Zero out the Multicast HASH table */
1653 	DEBUGOUT("Zeroing the MTA\n");
1654 	mta_size = E1000_MC_TBL_SIZE;
1655 	if (hw->mac_type == e1000_ich8lan)
1656 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1657 	for (i = 0; i < mta_size; i++) {
1658 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1659 		/* use write flush to prevent Memory Write Block (MWB) from
1660 		 * occuring when accessing our register space */
1661 		E1000_WRITE_FLUSH(hw);
1662 	}
1663 #if 0
1664 	/* Set the PCI priority bit correctly in the CTRL register.  This
1665 	 * determines if the adapter gives priority to receives, or if it
1666 	 * gives equal priority to transmits and receives.  Valid only on
1667 	 * 82542 and 82543 silicon.
1668 	 */
1669 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1670 		ctrl = E1000_READ_REG(hw, CTRL);
1671 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1672 	}
1673 #endif
1674 	switch (hw->mac_type) {
1675 	case e1000_82545_rev_3:
1676 	case e1000_82546_rev_3:
1677 		break;
1678 	default:
1679 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1680 	if (hw->bus_type == e1000_bus_type_pcix) {
1681 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1682 				     &pcix_cmd_word);
1683 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1684 				     &pcix_stat_hi_word);
1685 		cmd_mmrbc =
1686 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1687 		    PCIX_COMMAND_MMRBC_SHIFT;
1688 		stat_mmrbc =
1689 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1690 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1691 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1692 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1693 		if (cmd_mmrbc > stat_mmrbc) {
1694 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1695 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1696 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1697 					      pcix_cmd_word);
1698 		}
1699 	}
1700 		break;
1701 	}
1702 
1703 	/* More time needed for PHY to initialize */
1704 	if (hw->mac_type == e1000_ich8lan)
1705 		mdelay(15);
1706 
1707 	/* Call a subroutine to configure the link and setup flow control. */
1708 	ret_val = e1000_setup_link(nic);
1709 
1710 	/* Set the transmit descriptor write-back policy */
1711 	if (hw->mac_type > e1000_82544) {
1712 		ctrl = E1000_READ_REG(hw, TXDCTL);
1713 		ctrl =
1714 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1715 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1716 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1717 	}
1718 
1719 	switch (hw->mac_type) {
1720 	default:
1721 		break;
1722 	case e1000_80003es2lan:
1723 		/* Enable retransmit on late collisions */
1724 		reg_data = E1000_READ_REG(hw, TCTL);
1725 		reg_data |= E1000_TCTL_RTLC;
1726 		E1000_WRITE_REG(hw, TCTL, reg_data);
1727 
1728 		/* Configure Gigabit Carry Extend Padding */
1729 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1730 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1731 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1732 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1733 
1734 		/* Configure Transmit Inter-Packet Gap */
1735 		reg_data = E1000_READ_REG(hw, TIPG);
1736 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1737 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1738 		E1000_WRITE_REG(hw, TIPG, reg_data);
1739 
1740 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1741 		reg_data &= ~0x00100000;
1742 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1743 		/* Fall through */
1744 	case e1000_82571:
1745 	case e1000_82572:
1746 	case e1000_ich8lan:
1747 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1748 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1749 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1750 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1751 		break;
1752 	case e1000_82573:
1753 	case e1000_82574:
1754 		reg_data = E1000_READ_REG(hw, GCR);
1755 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1756 		E1000_WRITE_REG(hw, GCR, reg_data);
1757 	}
1758 
1759 #if 0
1760 	/* Clear all of the statistics registers (clear on read).  It is
1761 	 * important that we do this after we have tried to establish link
1762 	 * because the symbol error count will increment wildly if there
1763 	 * is no link.
1764 	 */
1765 	e1000_clear_hw_cntrs(hw);
1766 
1767 	/* ICH8 No-snoop bits are opposite polarity.
1768 	 * Set to snoop by default after reset. */
1769 	if (hw->mac_type == e1000_ich8lan)
1770 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1771 #endif
1772 
1773 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1774 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1775 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1776 		/* Relaxed ordering must be disabled to avoid a parity
1777 		 * error crash in a PCI slot. */
1778 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1779 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1780 	}
1781 
1782 	return ret_val;
1783 }
1784 
1785 /******************************************************************************
1786  * Configures flow control and link settings.
1787  *
1788  * hw - Struct containing variables accessed by shared code
1789  *
1790  * Determines which flow control settings to use. Calls the apropriate media-
1791  * specific link configuration function. Configures the flow control settings.
1792  * Assuming the adapter has a valid link partner, a valid link should be
1793  * established. Assumes the hardware has previously been reset and the
1794  * transmitter and receiver are not enabled.
1795  *****************************************************************************/
1796 static int
1797 e1000_setup_link(struct eth_device *nic)
1798 {
1799 	struct e1000_hw *hw = nic->priv;
1800 	uint32_t ctrl_ext;
1801 	int32_t ret_val;
1802 	uint16_t eeprom_data;
1803 
1804 	DEBUGFUNC();
1805 
1806 	/* In the case of the phy reset being blocked, we already have a link.
1807 	 * We do not have to set it up again. */
1808 	if (e1000_check_phy_reset_block(hw))
1809 		return E1000_SUCCESS;
1810 
1811 #ifndef CONFIG_AP1000
1812 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1813 	 * that determine the hardware's default PAUSE (flow control) mode,
1814 	 * a bit that determines whether the HW defaults to enabling or
1815 	 * disabling auto-negotiation, and the direction of the
1816 	 * SW defined pins. If there is no SW over-ride of the flow
1817 	 * control setting, then the variable hw->fc will
1818 	 * be initialized based on a value in the EEPROM.
1819 	 */
1820 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1821 				&eeprom_data) < 0) {
1822 		DEBUGOUT("EEPROM Read Error\n");
1823 		return -E1000_ERR_EEPROM;
1824 	}
1825 #else
1826 	/* we have to hardcode the proper value for our hardware. */
1827 	/* this value is for the 82540EM pci card used for prototyping, and it works. */
1828 	eeprom_data = 0xb220;
1829 #endif
1830 
1831 	if (hw->fc == e1000_fc_default) {
1832 		switch (hw->mac_type) {
1833 		case e1000_ich8lan:
1834 		case e1000_82573:
1835 		case e1000_82574:
1836 			hw->fc = e1000_fc_full;
1837 			break;
1838 		default:
1839 #ifndef CONFIG_AP1000
1840 			ret_val = e1000_read_eeprom(hw,
1841 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1842 			if (ret_val) {
1843 				DEBUGOUT("EEPROM Read Error\n");
1844 				return -E1000_ERR_EEPROM;
1845 			}
1846 #else
1847 			eeprom_data = 0xb220;
1848 #endif
1849 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1850 				hw->fc = e1000_fc_none;
1851 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1852 				    EEPROM_WORD0F_ASM_DIR)
1853 				hw->fc = e1000_fc_tx_pause;
1854 			else
1855 				hw->fc = e1000_fc_full;
1856 			break;
1857 		}
1858 	}
1859 
1860 	/* We want to save off the original Flow Control configuration just
1861 	 * in case we get disconnected and then reconnected into a different
1862 	 * hub or switch with different Flow Control capabilities.
1863 	 */
1864 	if (hw->mac_type == e1000_82542_rev2_0)
1865 		hw->fc &= (~e1000_fc_tx_pause);
1866 
1867 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1868 		hw->fc &= (~e1000_fc_rx_pause);
1869 
1870 	hw->original_fc = hw->fc;
1871 
1872 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1873 
1874 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1875 	 * polarity value for the SW controlled pins, and setup the
1876 	 * Extended Device Control reg with that info.
1877 	 * This is needed because one of the SW controlled pins is used for
1878 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1879 	 * or e1000_phy_setup() is called.
1880 	 */
1881 	if (hw->mac_type == e1000_82543) {
1882 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1883 			    SWDPIO__EXT_SHIFT);
1884 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1885 	}
1886 
1887 	/* Call the necessary subroutine to configure the link. */
1888 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1889 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1890 	if (ret_val < 0) {
1891 		return ret_val;
1892 	}
1893 
1894 	/* Initialize the flow control address, type, and PAUSE timer
1895 	 * registers to their default values.  This is done even if flow
1896 	 * control is disabled, because it does not hurt anything to
1897 	 * initialize these registers.
1898 	 */
1899 	DEBUGOUT("Initializing the Flow Control address, type"
1900 			"and timer regs\n");
1901 
1902 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1903 	if (hw->mac_type != e1000_ich8lan) {
1904 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1905 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1906 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1907 	}
1908 
1909 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1910 
1911 	/* Set the flow control receive threshold registers.  Normally,
1912 	 * these registers will be set to a default threshold that may be
1913 	 * adjusted later by the driver's runtime code.  However, if the
1914 	 * ability to transmit pause frames in not enabled, then these
1915 	 * registers will be set to 0.
1916 	 */
1917 	if (!(hw->fc & e1000_fc_tx_pause)) {
1918 		E1000_WRITE_REG(hw, FCRTL, 0);
1919 		E1000_WRITE_REG(hw, FCRTH, 0);
1920 	} else {
1921 		/* We need to set up the Receive Threshold high and low water marks
1922 		 * as well as (optionally) enabling the transmission of XON frames.
1923 		 */
1924 		if (hw->fc_send_xon) {
1925 			E1000_WRITE_REG(hw, FCRTL,
1926 					(hw->fc_low_water | E1000_FCRTL_XONE));
1927 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1928 		} else {
1929 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1930 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1931 		}
1932 	}
1933 	return ret_val;
1934 }
1935 
1936 /******************************************************************************
1937  * Sets up link for a fiber based adapter
1938  *
1939  * hw - Struct containing variables accessed by shared code
1940  *
1941  * Manipulates Physical Coding Sublayer functions in order to configure
1942  * link. Assumes the hardware has been previously reset and the transmitter
1943  * and receiver are not enabled.
1944  *****************************************************************************/
1945 static int
1946 e1000_setup_fiber_link(struct eth_device *nic)
1947 {
1948 	struct e1000_hw *hw = nic->priv;
1949 	uint32_t ctrl;
1950 	uint32_t status;
1951 	uint32_t txcw = 0;
1952 	uint32_t i;
1953 	uint32_t signal;
1954 	int32_t ret_val;
1955 
1956 	DEBUGFUNC();
1957 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1958 	 * set when the optics detect a signal. On older adapters, it will be
1959 	 * cleared when there is a signal
1960 	 */
1961 	ctrl = E1000_READ_REG(hw, CTRL);
1962 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1963 		signal = E1000_CTRL_SWDPIN1;
1964 	else
1965 		signal = 0;
1966 
1967 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1968 	       ctrl);
1969 	/* Take the link out of reset */
1970 	ctrl &= ~(E1000_CTRL_LRST);
1971 
1972 	e1000_config_collision_dist(hw);
1973 
1974 	/* Check for a software override of the flow control settings, and setup
1975 	 * the device accordingly.  If auto-negotiation is enabled, then software
1976 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1977 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1978 	 * auto-negotiation is disabled, then software will have to manually
1979 	 * configure the two flow control enable bits in the CTRL register.
1980 	 *
1981 	 * The possible values of the "fc" parameter are:
1982 	 *	0:  Flow control is completely disabled
1983 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
1984 	 *	    not send pause frames).
1985 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
1986 	 *	    not support receiving pause frames).
1987 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1988 	 */
1989 	switch (hw->fc) {
1990 	case e1000_fc_none:
1991 		/* Flow control is completely disabled by a software over-ride. */
1992 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1993 		break;
1994 	case e1000_fc_rx_pause:
1995 		/* RX Flow control is enabled and TX Flow control is disabled by a
1996 		 * software over-ride. Since there really isn't a way to advertise
1997 		 * that we are capable of RX Pause ONLY, we will advertise that we
1998 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
1999 		 *  disable the adapter's ability to send PAUSE frames.
2000 		 */
2001 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2002 		break;
2003 	case e1000_fc_tx_pause:
2004 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
2005 		 * software over-ride.
2006 		 */
2007 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2008 		break;
2009 	case e1000_fc_full:
2010 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
2011 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2012 		break;
2013 	default:
2014 		DEBUGOUT("Flow control param set incorrectly\n");
2015 		return -E1000_ERR_CONFIG;
2016 		break;
2017 	}
2018 
2019 	/* Since auto-negotiation is enabled, take the link out of reset (the link
2020 	 * will be in reset, because we previously reset the chip). This will
2021 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2022 	 * link-up status bit will be set and the flow control enable bits (RFCE
2023 	 * and TFCE) will be set according to their negotiated value.
2024 	 */
2025 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2026 
2027 	E1000_WRITE_REG(hw, TXCW, txcw);
2028 	E1000_WRITE_REG(hw, CTRL, ctrl);
2029 	E1000_WRITE_FLUSH(hw);
2030 
2031 	hw->txcw = txcw;
2032 	mdelay(1);
2033 
2034 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2035 	 * indication in the Device Status Register.  Time-out if a link isn't
2036 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2037 	 * less than 500 milliseconds even if the other end is doing it in SW).
2038 	 */
2039 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2040 		DEBUGOUT("Looking for Link\n");
2041 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2042 			mdelay(10);
2043 			status = E1000_READ_REG(hw, STATUS);
2044 			if (status & E1000_STATUS_LU)
2045 				break;
2046 		}
2047 		if (i == (LINK_UP_TIMEOUT / 10)) {
2048 			/* AutoNeg failed to achieve a link, so we'll call
2049 			 * e1000_check_for_link. This routine will force the link up if we
2050 			 * detect a signal. This will allow us to communicate with
2051 			 * non-autonegotiating link partners.
2052 			 */
2053 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2054 			hw->autoneg_failed = 1;
2055 			ret_val = e1000_check_for_link(nic);
2056 			if (ret_val < 0) {
2057 				DEBUGOUT("Error while checking for link\n");
2058 				return ret_val;
2059 			}
2060 			hw->autoneg_failed = 0;
2061 		} else {
2062 			hw->autoneg_failed = 0;
2063 			DEBUGOUT("Valid Link Found\n");
2064 		}
2065 	} else {
2066 		DEBUGOUT("No Signal Detected\n");
2067 		return -E1000_ERR_NOLINK;
2068 	}
2069 	return 0;
2070 }
2071 
2072 /******************************************************************************
2073 * Make sure we have a valid PHY and change PHY mode before link setup.
2074 *
2075 * hw - Struct containing variables accessed by shared code
2076 ******************************************************************************/
2077 static int32_t
2078 e1000_copper_link_preconfig(struct e1000_hw *hw)
2079 {
2080 	uint32_t ctrl;
2081 	int32_t ret_val;
2082 	uint16_t phy_data;
2083 
2084 	DEBUGFUNC();
2085 
2086 	ctrl = E1000_READ_REG(hw, CTRL);
2087 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2088 	 * the PHY speed and duplex configuration is. In addition, we need to
2089 	 * perform a hardware reset on the PHY to take it out of reset.
2090 	 */
2091 	if (hw->mac_type > e1000_82543) {
2092 		ctrl |= E1000_CTRL_SLU;
2093 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2094 		E1000_WRITE_REG(hw, CTRL, ctrl);
2095 	} else {
2096 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2097 				| E1000_CTRL_SLU);
2098 		E1000_WRITE_REG(hw, CTRL, ctrl);
2099 		ret_val = e1000_phy_hw_reset(hw);
2100 		if (ret_val)
2101 			return ret_val;
2102 	}
2103 
2104 	/* Make sure we have a valid PHY */
2105 	ret_val = e1000_detect_gig_phy(hw);
2106 	if (ret_val) {
2107 		DEBUGOUT("Error, did not detect valid phy.\n");
2108 		return ret_val;
2109 	}
2110 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2111 
2112 #ifndef CONFIG_AP1000
2113 	/* Set PHY to class A mode (if necessary) */
2114 	ret_val = e1000_set_phy_mode(hw);
2115 	if (ret_val)
2116 		return ret_val;
2117 #endif
2118 	if ((hw->mac_type == e1000_82545_rev_3) ||
2119 		(hw->mac_type == e1000_82546_rev_3)) {
2120 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2121 				&phy_data);
2122 		phy_data |= 0x00000008;
2123 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2124 				phy_data);
2125 	}
2126 
2127 	if (hw->mac_type <= e1000_82543 ||
2128 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2129 		hw->mac_type == e1000_82541_rev_2
2130 		|| hw->mac_type == e1000_82547_rev_2)
2131 			hw->phy_reset_disable = FALSE;
2132 
2133 	return E1000_SUCCESS;
2134 }
2135 
2136 /*****************************************************************************
2137  *
2138  * This function sets the lplu state according to the active flag.  When
2139  * activating lplu this function also disables smart speed and vise versa.
2140  * lplu will not be activated unless the device autonegotiation advertisment
2141  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2142  * hw: Struct containing variables accessed by shared code
2143  * active - true to enable lplu false to disable lplu.
2144  *
2145  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2146  *            E1000_SUCCESS at any other case.
2147  *
2148  ****************************************************************************/
2149 
2150 static int32_t
2151 e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2152 {
2153 	uint32_t phy_ctrl = 0;
2154 	int32_t ret_val;
2155 	uint16_t phy_data;
2156 	DEBUGFUNC();
2157 
2158 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2159 	    && hw->phy_type != e1000_phy_igp_3)
2160 		return E1000_SUCCESS;
2161 
2162 	/* During driver activity LPLU should not be used or it will attain link
2163 	 * from the lowest speeds starting from 10Mbps. The capability is used
2164 	 * for Dx transitions and states */
2165 	if (hw->mac_type == e1000_82541_rev_2
2166 			|| hw->mac_type == e1000_82547_rev_2) {
2167 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2168 				&phy_data);
2169 		if (ret_val)
2170 			return ret_val;
2171 	} else if (hw->mac_type == e1000_ich8lan) {
2172 		/* MAC writes into PHY register based on the state transition
2173 		 * and start auto-negotiation. SW driver can overwrite the
2174 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2175 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2176 	} else {
2177 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2178 				&phy_data);
2179 		if (ret_val)
2180 			return ret_val;
2181 	}
2182 
2183 	if (!active) {
2184 		if (hw->mac_type == e1000_82541_rev_2 ||
2185 			hw->mac_type == e1000_82547_rev_2) {
2186 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2187 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2188 					phy_data);
2189 			if (ret_val)
2190 				return ret_val;
2191 		} else {
2192 			if (hw->mac_type == e1000_ich8lan) {
2193 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2194 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2195 			} else {
2196 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2197 				ret_val = e1000_write_phy_reg(hw,
2198 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2199 				if (ret_val)
2200 					return ret_val;
2201 			}
2202 		}
2203 
2204 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2205 	 * Dx states where the power conservation is most important.  During
2206 	 * driver activity we should enable SmartSpeed, so performance is
2207 	 * maintained. */
2208 		if (hw->smart_speed == e1000_smart_speed_on) {
2209 			ret_val = e1000_read_phy_reg(hw,
2210 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2211 			if (ret_val)
2212 				return ret_val;
2213 
2214 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2215 			ret_val = e1000_write_phy_reg(hw,
2216 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2217 			if (ret_val)
2218 				return ret_val;
2219 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2220 			ret_val = e1000_read_phy_reg(hw,
2221 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2222 			if (ret_val)
2223 				return ret_val;
2224 
2225 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2226 			ret_val = e1000_write_phy_reg(hw,
2227 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2228 			if (ret_val)
2229 				return ret_val;
2230 		}
2231 
2232 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2233 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2234 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2235 
2236 		if (hw->mac_type == e1000_82541_rev_2 ||
2237 		    hw->mac_type == e1000_82547_rev_2) {
2238 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2239 			ret_val = e1000_write_phy_reg(hw,
2240 					IGP01E1000_GMII_FIFO, phy_data);
2241 			if (ret_val)
2242 				return ret_val;
2243 		} else {
2244 			if (hw->mac_type == e1000_ich8lan) {
2245 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2246 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2247 			} else {
2248 				phy_data |= IGP02E1000_PM_D3_LPLU;
2249 				ret_val = e1000_write_phy_reg(hw,
2250 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2251 				if (ret_val)
2252 					return ret_val;
2253 			}
2254 		}
2255 
2256 		/* When LPLU is enabled we should disable SmartSpeed */
2257 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2258 				&phy_data);
2259 		if (ret_val)
2260 			return ret_val;
2261 
2262 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2263 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2264 				phy_data);
2265 		if (ret_val)
2266 			return ret_val;
2267 	}
2268 	return E1000_SUCCESS;
2269 }
2270 
2271 /*****************************************************************************
2272  *
2273  * This function sets the lplu d0 state according to the active flag.  When
2274  * activating lplu this function also disables smart speed and vise versa.
2275  * lplu will not be activated unless the device autonegotiation advertisment
2276  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2277  * hw: Struct containing variables accessed by shared code
2278  * active - true to enable lplu false to disable lplu.
2279  *
2280  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2281  *            E1000_SUCCESS at any other case.
2282  *
2283  ****************************************************************************/
2284 
2285 static int32_t
2286 e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2287 {
2288 	uint32_t phy_ctrl = 0;
2289 	int32_t ret_val;
2290 	uint16_t phy_data;
2291 	DEBUGFUNC();
2292 
2293 	if (hw->mac_type <= e1000_82547_rev_2)
2294 		return E1000_SUCCESS;
2295 
2296 	if (hw->mac_type == e1000_ich8lan) {
2297 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2298 	} else {
2299 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2300 				&phy_data);
2301 		if (ret_val)
2302 			return ret_val;
2303 	}
2304 
2305 	if (!active) {
2306 		if (hw->mac_type == e1000_ich8lan) {
2307 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2308 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2309 		} else {
2310 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2311 			ret_val = e1000_write_phy_reg(hw,
2312 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2313 			if (ret_val)
2314 				return ret_val;
2315 		}
2316 
2317 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2318 	 * Dx states where the power conservation is most important.  During
2319 	 * driver activity we should enable SmartSpeed, so performance is
2320 	 * maintained. */
2321 		if (hw->smart_speed == e1000_smart_speed_on) {
2322 			ret_val = e1000_read_phy_reg(hw,
2323 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2324 			if (ret_val)
2325 				return ret_val;
2326 
2327 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2328 			ret_val = e1000_write_phy_reg(hw,
2329 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2330 			if (ret_val)
2331 				return ret_val;
2332 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2333 			ret_val = e1000_read_phy_reg(hw,
2334 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2335 			if (ret_val)
2336 				return ret_val;
2337 
2338 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2339 			ret_val = e1000_write_phy_reg(hw,
2340 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2341 			if (ret_val)
2342 				return ret_val;
2343 		}
2344 
2345 
2346 	} else {
2347 
2348 		if (hw->mac_type == e1000_ich8lan) {
2349 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2350 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2351 		} else {
2352 			phy_data |= IGP02E1000_PM_D0_LPLU;
2353 			ret_val = e1000_write_phy_reg(hw,
2354 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2355 			if (ret_val)
2356 				return ret_val;
2357 		}
2358 
2359 		/* When LPLU is enabled we should disable SmartSpeed */
2360 		ret_val = e1000_read_phy_reg(hw,
2361 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2362 		if (ret_val)
2363 			return ret_val;
2364 
2365 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2366 		ret_val = e1000_write_phy_reg(hw,
2367 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2368 		if (ret_val)
2369 			return ret_val;
2370 
2371 	}
2372 	return E1000_SUCCESS;
2373 }
2374 
2375 /********************************************************************
2376 * Copper link setup for e1000_phy_igp series.
2377 *
2378 * hw - Struct containing variables accessed by shared code
2379 *********************************************************************/
2380 static int32_t
2381 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2382 {
2383 	uint32_t led_ctrl;
2384 	int32_t ret_val;
2385 	uint16_t phy_data;
2386 
2387 	DEBUGFUNC();
2388 
2389 	if (hw->phy_reset_disable)
2390 		return E1000_SUCCESS;
2391 
2392 	ret_val = e1000_phy_reset(hw);
2393 	if (ret_val) {
2394 		DEBUGOUT("Error Resetting the PHY\n");
2395 		return ret_val;
2396 	}
2397 
2398 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2399 	mdelay(15);
2400 	if (hw->mac_type != e1000_ich8lan) {
2401 		/* Configure activity LED after PHY reset */
2402 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2403 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2404 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2405 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2406 	}
2407 
2408 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2409 	if (hw->phy_type == e1000_phy_igp) {
2410 		/* disable lplu d3 during driver init */
2411 		ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2412 		if (ret_val) {
2413 			DEBUGOUT("Error Disabling LPLU D3\n");
2414 			return ret_val;
2415 		}
2416 	}
2417 
2418 	/* disable lplu d0 during driver init */
2419 	ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2420 	if (ret_val) {
2421 		DEBUGOUT("Error Disabling LPLU D0\n");
2422 		return ret_val;
2423 	}
2424 	/* Configure mdi-mdix settings */
2425 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2426 	if (ret_val)
2427 		return ret_val;
2428 
2429 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2430 		hw->dsp_config_state = e1000_dsp_config_disabled;
2431 		/* Force MDI for earlier revs of the IGP PHY */
2432 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2433 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2434 		hw->mdix = 1;
2435 
2436 	} else {
2437 		hw->dsp_config_state = e1000_dsp_config_enabled;
2438 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2439 
2440 		switch (hw->mdix) {
2441 		case 1:
2442 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2443 			break;
2444 		case 2:
2445 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2446 			break;
2447 		case 0:
2448 		default:
2449 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2450 			break;
2451 		}
2452 	}
2453 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2454 	if (ret_val)
2455 		return ret_val;
2456 
2457 	/* set auto-master slave resolution settings */
2458 	if (hw->autoneg) {
2459 		e1000_ms_type phy_ms_setting = hw->master_slave;
2460 
2461 		if (hw->ffe_config_state == e1000_ffe_config_active)
2462 			hw->ffe_config_state = e1000_ffe_config_enabled;
2463 
2464 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2465 			hw->dsp_config_state = e1000_dsp_config_enabled;
2466 
2467 		/* when autonegotiation advertisment is only 1000Mbps then we
2468 		  * should disable SmartSpeed and enable Auto MasterSlave
2469 		  * resolution as hardware default. */
2470 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2471 			/* Disable SmartSpeed */
2472 			ret_val = e1000_read_phy_reg(hw,
2473 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2474 			if (ret_val)
2475 				return ret_val;
2476 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2477 			ret_val = e1000_write_phy_reg(hw,
2478 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2479 			if (ret_val)
2480 				return ret_val;
2481 			/* Set auto Master/Slave resolution process */
2482 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2483 					&phy_data);
2484 			if (ret_val)
2485 				return ret_val;
2486 			phy_data &= ~CR_1000T_MS_ENABLE;
2487 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2488 					phy_data);
2489 			if (ret_val)
2490 				return ret_val;
2491 		}
2492 
2493 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2494 		if (ret_val)
2495 			return ret_val;
2496 
2497 		/* load defaults for future use */
2498 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2499 				((phy_data & CR_1000T_MS_VALUE) ?
2500 				e1000_ms_force_master :
2501 				e1000_ms_force_slave) :
2502 				e1000_ms_auto;
2503 
2504 		switch (phy_ms_setting) {
2505 		case e1000_ms_force_master:
2506 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2507 			break;
2508 		case e1000_ms_force_slave:
2509 			phy_data |= CR_1000T_MS_ENABLE;
2510 			phy_data &= ~(CR_1000T_MS_VALUE);
2511 			break;
2512 		case e1000_ms_auto:
2513 			phy_data &= ~CR_1000T_MS_ENABLE;
2514 		default:
2515 			break;
2516 		}
2517 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2518 		if (ret_val)
2519 			return ret_val;
2520 	}
2521 
2522 	return E1000_SUCCESS;
2523 }
2524 
2525 /*****************************************************************************
2526  * This function checks the mode of the firmware.
2527  *
2528  * returns  - TRUE when the mode is IAMT or FALSE.
2529  ****************************************************************************/
2530 boolean_t
2531 e1000_check_mng_mode(struct e1000_hw *hw)
2532 {
2533 	uint32_t fwsm;
2534 	DEBUGFUNC();
2535 
2536 	fwsm = E1000_READ_REG(hw, FWSM);
2537 
2538 	if (hw->mac_type == e1000_ich8lan) {
2539 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2540 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2541 			return TRUE;
2542 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2543 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2544 			return TRUE;
2545 
2546 	return FALSE;
2547 }
2548 
2549 static int32_t
2550 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2551 {
2552 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2553 	uint32_t reg_val;
2554 	DEBUGFUNC();
2555 
2556 	if (e1000_is_second_port(hw))
2557 		swfw = E1000_SWFW_PHY1_SM;
2558 
2559 	if (e1000_swfw_sync_acquire(hw, swfw))
2560 		return -E1000_ERR_SWFW_SYNC;
2561 
2562 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2563 			& E1000_KUMCTRLSTA_OFFSET) | data;
2564 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2565 	udelay(2);
2566 
2567 	return E1000_SUCCESS;
2568 }
2569 
2570 static int32_t
2571 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2572 {
2573 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2574 	uint32_t reg_val;
2575 	DEBUGFUNC();
2576 
2577 	if (e1000_is_second_port(hw))
2578 		swfw = E1000_SWFW_PHY1_SM;
2579 
2580 	if (e1000_swfw_sync_acquire(hw, swfw))
2581 		return -E1000_ERR_SWFW_SYNC;
2582 
2583 	/* Write register address */
2584 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2585 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2586 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2587 	udelay(2);
2588 
2589 	/* Read the data returned */
2590 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2591 	*data = (uint16_t)reg_val;
2592 
2593 	return E1000_SUCCESS;
2594 }
2595 
2596 /********************************************************************
2597 * Copper link setup for e1000_phy_gg82563 series.
2598 *
2599 * hw - Struct containing variables accessed by shared code
2600 *********************************************************************/
2601 static int32_t
2602 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2603 {
2604 	int32_t ret_val;
2605 	uint16_t phy_data;
2606 	uint32_t reg_data;
2607 
2608 	DEBUGFUNC();
2609 
2610 	if (!hw->phy_reset_disable) {
2611 		/* Enable CRS on TX for half-duplex operation. */
2612 		ret_val = e1000_read_phy_reg(hw,
2613 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2614 		if (ret_val)
2615 			return ret_val;
2616 
2617 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2618 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2619 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2620 
2621 		ret_val = e1000_write_phy_reg(hw,
2622 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2623 		if (ret_val)
2624 			return ret_val;
2625 
2626 		/* Options:
2627 		 *   MDI/MDI-X = 0 (default)
2628 		 *   0 - Auto for all speeds
2629 		 *   1 - MDI mode
2630 		 *   2 - MDI-X mode
2631 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2632 		 */
2633 		ret_val = e1000_read_phy_reg(hw,
2634 				GG82563_PHY_SPEC_CTRL, &phy_data);
2635 		if (ret_val)
2636 			return ret_val;
2637 
2638 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2639 
2640 		switch (hw->mdix) {
2641 		case 1:
2642 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2643 			break;
2644 		case 2:
2645 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2646 			break;
2647 		case 0:
2648 		default:
2649 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2650 			break;
2651 		}
2652 
2653 		/* Options:
2654 		 *   disable_polarity_correction = 0 (default)
2655 		 *       Automatic Correction for Reversed Cable Polarity
2656 		 *   0 - Disabled
2657 		 *   1 - Enabled
2658 		 */
2659 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2660 		ret_val = e1000_write_phy_reg(hw,
2661 				GG82563_PHY_SPEC_CTRL, phy_data);
2662 
2663 		if (ret_val)
2664 			return ret_val;
2665 
2666 		/* SW Reset the PHY so all changes take effect */
2667 		ret_val = e1000_phy_reset(hw);
2668 		if (ret_val) {
2669 			DEBUGOUT("Error Resetting the PHY\n");
2670 			return ret_val;
2671 		}
2672 	} /* phy_reset_disable */
2673 
2674 	if (hw->mac_type == e1000_80003es2lan) {
2675 		/* Bypass RX and TX FIFO's */
2676 		ret_val = e1000_write_kmrn_reg(hw,
2677 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2678 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2679 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2680 		if (ret_val)
2681 			return ret_val;
2682 
2683 		ret_val = e1000_read_phy_reg(hw,
2684 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2685 		if (ret_val)
2686 			return ret_val;
2687 
2688 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2689 		ret_val = e1000_write_phy_reg(hw,
2690 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2691 
2692 		if (ret_val)
2693 			return ret_val;
2694 
2695 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2696 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2697 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2698 
2699 		ret_val = e1000_read_phy_reg(hw,
2700 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2701 		if (ret_val)
2702 			return ret_val;
2703 
2704 	/* Do not init these registers when the HW is in IAMT mode, since the
2705 	 * firmware will have already initialized them.  We only initialize
2706 	 * them if the HW is not in IAMT mode.
2707 	 */
2708 		if (e1000_check_mng_mode(hw) == FALSE) {
2709 			/* Enable Electrical Idle on the PHY */
2710 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2711 			ret_val = e1000_write_phy_reg(hw,
2712 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2713 			if (ret_val)
2714 				return ret_val;
2715 
2716 			ret_val = e1000_read_phy_reg(hw,
2717 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2718 			if (ret_val)
2719 				return ret_val;
2720 
2721 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2722 			ret_val = e1000_write_phy_reg(hw,
2723 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2724 
2725 			if (ret_val)
2726 				return ret_val;
2727 		}
2728 
2729 		/* Workaround: Disable padding in Kumeran interface in the MAC
2730 		 * and in the PHY to avoid CRC errors.
2731 		 */
2732 		ret_val = e1000_read_phy_reg(hw,
2733 				GG82563_PHY_INBAND_CTRL, &phy_data);
2734 		if (ret_val)
2735 			return ret_val;
2736 		phy_data |= GG82563_ICR_DIS_PADDING;
2737 		ret_val = e1000_write_phy_reg(hw,
2738 				GG82563_PHY_INBAND_CTRL, phy_data);
2739 		if (ret_val)
2740 			return ret_val;
2741 	}
2742 	return E1000_SUCCESS;
2743 }
2744 
2745 /********************************************************************
2746 * Copper link setup for e1000_phy_m88 series.
2747 *
2748 * hw - Struct containing variables accessed by shared code
2749 *********************************************************************/
2750 static int32_t
2751 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2752 {
2753 	int32_t ret_val;
2754 	uint16_t phy_data;
2755 
2756 	DEBUGFUNC();
2757 
2758 	if (hw->phy_reset_disable)
2759 		return E1000_SUCCESS;
2760 
2761 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2762 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2763 	if (ret_val)
2764 		return ret_val;
2765 
2766 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2767 
2768 	/* Options:
2769 	 *   MDI/MDI-X = 0 (default)
2770 	 *   0 - Auto for all speeds
2771 	 *   1 - MDI mode
2772 	 *   2 - MDI-X mode
2773 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2774 	 */
2775 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2776 
2777 	switch (hw->mdix) {
2778 	case 1:
2779 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2780 		break;
2781 	case 2:
2782 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2783 		break;
2784 	case 3:
2785 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2786 		break;
2787 	case 0:
2788 	default:
2789 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2790 		break;
2791 	}
2792 
2793 	/* Options:
2794 	 *   disable_polarity_correction = 0 (default)
2795 	 *       Automatic Correction for Reversed Cable Polarity
2796 	 *   0 - Disabled
2797 	 *   1 - Enabled
2798 	 */
2799 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2800 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2801 	if (ret_val)
2802 		return ret_val;
2803 
2804 	if (hw->phy_revision < M88E1011_I_REV_4) {
2805 		/* Force TX_CLK in the Extended PHY Specific Control Register
2806 		 * to 25MHz clock.
2807 		 */
2808 		ret_val = e1000_read_phy_reg(hw,
2809 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2810 		if (ret_val)
2811 			return ret_val;
2812 
2813 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2814 
2815 		if ((hw->phy_revision == E1000_REVISION_2) &&
2816 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2817 			/* Vidalia Phy, set the downshift counter to 5x */
2818 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2819 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2820 			ret_val = e1000_write_phy_reg(hw,
2821 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2822 			if (ret_val)
2823 				return ret_val;
2824 		} else {
2825 			/* Configure Master and Slave downshift values */
2826 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2827 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2828 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2829 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2830 			ret_val = e1000_write_phy_reg(hw,
2831 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2832 			if (ret_val)
2833 				return ret_val;
2834 		}
2835 	}
2836 
2837 	/* SW Reset the PHY so all changes take effect */
2838 	ret_val = e1000_phy_reset(hw);
2839 	if (ret_val) {
2840 		DEBUGOUT("Error Resetting the PHY\n");
2841 		return ret_val;
2842 	}
2843 
2844 	return E1000_SUCCESS;
2845 }
2846 
2847 /********************************************************************
2848 * Setup auto-negotiation and flow control advertisements,
2849 * and then perform auto-negotiation.
2850 *
2851 * hw - Struct containing variables accessed by shared code
2852 *********************************************************************/
2853 static int32_t
2854 e1000_copper_link_autoneg(struct e1000_hw *hw)
2855 {
2856 	int32_t ret_val;
2857 	uint16_t phy_data;
2858 
2859 	DEBUGFUNC();
2860 
2861 	/* Perform some bounds checking on the hw->autoneg_advertised
2862 	 * parameter.  If this variable is zero, then set it to the default.
2863 	 */
2864 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2865 
2866 	/* If autoneg_advertised is zero, we assume it was not defaulted
2867 	 * by the calling code so we set to advertise full capability.
2868 	 */
2869 	if (hw->autoneg_advertised == 0)
2870 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2871 
2872 	/* IFE phy only supports 10/100 */
2873 	if (hw->phy_type == e1000_phy_ife)
2874 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2875 
2876 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2877 	ret_val = e1000_phy_setup_autoneg(hw);
2878 	if (ret_val) {
2879 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2880 		return ret_val;
2881 	}
2882 	DEBUGOUT("Restarting Auto-Neg\n");
2883 
2884 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2885 	 * the Auto Neg Restart bit in the PHY control register.
2886 	 */
2887 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2888 	if (ret_val)
2889 		return ret_val;
2890 
2891 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2892 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2893 	if (ret_val)
2894 		return ret_val;
2895 
2896 	/* Does the user want to wait for Auto-Neg to complete here, or
2897 	 * check at a later time (for example, callback routine).
2898 	 */
2899 	/* If we do not wait for autonegtation to complete I
2900 	 * do not see a valid link status.
2901 	 * wait_autoneg_complete = 1 .
2902 	 */
2903 	if (hw->wait_autoneg_complete) {
2904 		ret_val = e1000_wait_autoneg(hw);
2905 		if (ret_val) {
2906 			DEBUGOUT("Error while waiting for autoneg"
2907 					"to complete\n");
2908 			return ret_val;
2909 		}
2910 	}
2911 
2912 	hw->get_link_status = TRUE;
2913 
2914 	return E1000_SUCCESS;
2915 }
2916 
2917 /******************************************************************************
2918 * Config the MAC and the PHY after link is up.
2919 *   1) Set up the MAC to the current PHY speed/duplex
2920 *      if we are on 82543.  If we
2921 *      are on newer silicon, we only need to configure
2922 *      collision distance in the Transmit Control Register.
2923 *   2) Set up flow control on the MAC to that established with
2924 *      the link partner.
2925 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2926 *
2927 * hw - Struct containing variables accessed by shared code
2928 ******************************************************************************/
2929 static int32_t
2930 e1000_copper_link_postconfig(struct e1000_hw *hw)
2931 {
2932 	int32_t ret_val;
2933 	DEBUGFUNC();
2934 
2935 	if (hw->mac_type >= e1000_82544) {
2936 		e1000_config_collision_dist(hw);
2937 	} else {
2938 		ret_val = e1000_config_mac_to_phy(hw);
2939 		if (ret_val) {
2940 			DEBUGOUT("Error configuring MAC to PHY settings\n");
2941 			return ret_val;
2942 		}
2943 	}
2944 	ret_val = e1000_config_fc_after_link_up(hw);
2945 	if (ret_val) {
2946 		DEBUGOUT("Error Configuring Flow Control\n");
2947 		return ret_val;
2948 	}
2949 	return E1000_SUCCESS;
2950 }
2951 
2952 /******************************************************************************
2953 * Detects which PHY is present and setup the speed and duplex
2954 *
2955 * hw - Struct containing variables accessed by shared code
2956 ******************************************************************************/
2957 static int
2958 e1000_setup_copper_link(struct eth_device *nic)
2959 {
2960 	struct e1000_hw *hw = nic->priv;
2961 	int32_t ret_val;
2962 	uint16_t i;
2963 	uint16_t phy_data;
2964 	uint16_t reg_data;
2965 
2966 	DEBUGFUNC();
2967 
2968 	switch (hw->mac_type) {
2969 	case e1000_80003es2lan:
2970 	case e1000_ich8lan:
2971 		/* Set the mac to wait the maximum time between each
2972 		 * iteration and increase the max iterations when
2973 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2974 		ret_val = e1000_write_kmrn_reg(hw,
2975 				GG82563_REG(0x34, 4), 0xFFFF);
2976 		if (ret_val)
2977 			return ret_val;
2978 		ret_val = e1000_read_kmrn_reg(hw,
2979 				GG82563_REG(0x34, 9), &reg_data);
2980 		if (ret_val)
2981 			return ret_val;
2982 		reg_data |= 0x3F;
2983 		ret_val = e1000_write_kmrn_reg(hw,
2984 				GG82563_REG(0x34, 9), reg_data);
2985 		if (ret_val)
2986 			return ret_val;
2987 	default:
2988 		break;
2989 	}
2990 
2991 	/* Check if it is a valid PHY and set PHY mode if necessary. */
2992 	ret_val = e1000_copper_link_preconfig(hw);
2993 	if (ret_val)
2994 		return ret_val;
2995 	switch (hw->mac_type) {
2996 	case e1000_80003es2lan:
2997 		/* Kumeran registers are written-only */
2998 		reg_data =
2999 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3000 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3001 		ret_val = e1000_write_kmrn_reg(hw,
3002 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3003 		if (ret_val)
3004 			return ret_val;
3005 		break;
3006 	default:
3007 		break;
3008 	}
3009 
3010 	if (hw->phy_type == e1000_phy_igp ||
3011 		hw->phy_type == e1000_phy_igp_3 ||
3012 		hw->phy_type == e1000_phy_igp_2) {
3013 		ret_val = e1000_copper_link_igp_setup(hw);
3014 		if (ret_val)
3015 			return ret_val;
3016 	} else if (hw->phy_type == e1000_phy_m88) {
3017 		ret_val = e1000_copper_link_mgp_setup(hw);
3018 		if (ret_val)
3019 			return ret_val;
3020 	} else if (hw->phy_type == e1000_phy_gg82563) {
3021 		ret_val = e1000_copper_link_ggp_setup(hw);
3022 		if (ret_val)
3023 			return ret_val;
3024 	}
3025 
3026 	/* always auto */
3027 	/* Setup autoneg and flow control advertisement
3028 	  * and perform autonegotiation */
3029 	ret_val = e1000_copper_link_autoneg(hw);
3030 	if (ret_val)
3031 		return ret_val;
3032 
3033 	/* Check link status. Wait up to 100 microseconds for link to become
3034 	 * valid.
3035 	 */
3036 	for (i = 0; i < 10; i++) {
3037 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3038 		if (ret_val)
3039 			return ret_val;
3040 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3041 		if (ret_val)
3042 			return ret_val;
3043 
3044 		if (phy_data & MII_SR_LINK_STATUS) {
3045 			/* Config the MAC and PHY after link is up */
3046 			ret_val = e1000_copper_link_postconfig(hw);
3047 			if (ret_val)
3048 				return ret_val;
3049 
3050 			DEBUGOUT("Valid link established!!!\n");
3051 			return E1000_SUCCESS;
3052 		}
3053 		udelay(10);
3054 	}
3055 
3056 	DEBUGOUT("Unable to establish link!!!\n");
3057 	return E1000_SUCCESS;
3058 }
3059 
3060 /******************************************************************************
3061 * Configures PHY autoneg and flow control advertisement settings
3062 *
3063 * hw - Struct containing variables accessed by shared code
3064 ******************************************************************************/
3065 int32_t
3066 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3067 {
3068 	int32_t ret_val;
3069 	uint16_t mii_autoneg_adv_reg;
3070 	uint16_t mii_1000t_ctrl_reg;
3071 
3072 	DEBUGFUNC();
3073 
3074 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3075 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3076 	if (ret_val)
3077 		return ret_val;
3078 
3079 	if (hw->phy_type != e1000_phy_ife) {
3080 		/* Read the MII 1000Base-T Control Register (Address 9). */
3081 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3082 				&mii_1000t_ctrl_reg);
3083 		if (ret_val)
3084 			return ret_val;
3085 	} else
3086 		mii_1000t_ctrl_reg = 0;
3087 
3088 	/* Need to parse both autoneg_advertised and fc and set up
3089 	 * the appropriate PHY registers.  First we will parse for
3090 	 * autoneg_advertised software override.  Since we can advertise
3091 	 * a plethora of combinations, we need to check each bit
3092 	 * individually.
3093 	 */
3094 
3095 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3096 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3097 	 * the  1000Base-T Control Register (Address 9).
3098 	 */
3099 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3100 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3101 
3102 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3103 
3104 	/* Do we want to advertise 10 Mb Half Duplex? */
3105 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3106 		DEBUGOUT("Advertise 10mb Half duplex\n");
3107 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3108 	}
3109 
3110 	/* Do we want to advertise 10 Mb Full Duplex? */
3111 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3112 		DEBUGOUT("Advertise 10mb Full duplex\n");
3113 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3114 	}
3115 
3116 	/* Do we want to advertise 100 Mb Half Duplex? */
3117 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3118 		DEBUGOUT("Advertise 100mb Half duplex\n");
3119 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3120 	}
3121 
3122 	/* Do we want to advertise 100 Mb Full Duplex? */
3123 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3124 		DEBUGOUT("Advertise 100mb Full duplex\n");
3125 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3126 	}
3127 
3128 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3129 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3130 		DEBUGOUT
3131 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3132 	}
3133 
3134 	/* Do we want to advertise 1000 Mb Full Duplex? */
3135 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3136 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3137 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3138 	}
3139 
3140 	/* Check for a software override of the flow control settings, and
3141 	 * setup the PHY advertisement registers accordingly.  If
3142 	 * auto-negotiation is enabled, then software will have to set the
3143 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3144 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3145 	 *
3146 	 * The possible values of the "fc" parameter are:
3147 	 *	0:  Flow control is completely disabled
3148 	 *	1:  Rx flow control is enabled (we can receive pause frames
3149 	 *	    but not send pause frames).
3150 	 *	2:  Tx flow control is enabled (we can send pause frames
3151 	 *	    but we do not support receiving pause frames).
3152 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3153 	 *  other:  No software override.  The flow control configuration
3154 	 *	    in the EEPROM is used.
3155 	 */
3156 	switch (hw->fc) {
3157 	case e1000_fc_none:	/* 0 */
3158 		/* Flow control (RX & TX) is completely disabled by a
3159 		 * software over-ride.
3160 		 */
3161 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3162 		break;
3163 	case e1000_fc_rx_pause:	/* 1 */
3164 		/* RX Flow control is enabled, and TX Flow control is
3165 		 * disabled, by a software over-ride.
3166 		 */
3167 		/* Since there really isn't a way to advertise that we are
3168 		 * capable of RX Pause ONLY, we will advertise that we
3169 		 * support both symmetric and asymmetric RX PAUSE.  Later
3170 		 * (in e1000_config_fc_after_link_up) we will disable the
3171 		 *hw's ability to send PAUSE frames.
3172 		 */
3173 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3174 		break;
3175 	case e1000_fc_tx_pause:	/* 2 */
3176 		/* TX Flow control is enabled, and RX Flow control is
3177 		 * disabled, by a software over-ride.
3178 		 */
3179 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3180 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3181 		break;
3182 	case e1000_fc_full:	/* 3 */
3183 		/* Flow control (both RX and TX) is enabled by a software
3184 		 * over-ride.
3185 		 */
3186 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3187 		break;
3188 	default:
3189 		DEBUGOUT("Flow control param set incorrectly\n");
3190 		return -E1000_ERR_CONFIG;
3191 	}
3192 
3193 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3194 	if (ret_val)
3195 		return ret_val;
3196 
3197 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3198 
3199 	if (hw->phy_type != e1000_phy_ife) {
3200 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3201 				mii_1000t_ctrl_reg);
3202 		if (ret_val)
3203 			return ret_val;
3204 	}
3205 
3206 	return E1000_SUCCESS;
3207 }
3208 
3209 /******************************************************************************
3210 * Sets the collision distance in the Transmit Control register
3211 *
3212 * hw - Struct containing variables accessed by shared code
3213 *
3214 * Link should have been established previously. Reads the speed and duplex
3215 * information from the Device Status register.
3216 ******************************************************************************/
3217 static void
3218 e1000_config_collision_dist(struct e1000_hw *hw)
3219 {
3220 	uint32_t tctl, coll_dist;
3221 
3222 	DEBUGFUNC();
3223 
3224 	if (hw->mac_type < e1000_82543)
3225 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3226 	else
3227 		coll_dist = E1000_COLLISION_DISTANCE;
3228 
3229 	tctl = E1000_READ_REG(hw, TCTL);
3230 
3231 	tctl &= ~E1000_TCTL_COLD;
3232 	tctl |= coll_dist << E1000_COLD_SHIFT;
3233 
3234 	E1000_WRITE_REG(hw, TCTL, tctl);
3235 	E1000_WRITE_FLUSH(hw);
3236 }
3237 
3238 /******************************************************************************
3239 * Sets MAC speed and duplex settings to reflect the those in the PHY
3240 *
3241 * hw - Struct containing variables accessed by shared code
3242 * mii_reg - data to write to the MII control register
3243 *
3244 * The contents of the PHY register containing the needed information need to
3245 * be passed in.
3246 ******************************************************************************/
3247 static int
3248 e1000_config_mac_to_phy(struct e1000_hw *hw)
3249 {
3250 	uint32_t ctrl;
3251 	uint16_t phy_data;
3252 
3253 	DEBUGFUNC();
3254 
3255 	/* Read the Device Control Register and set the bits to Force Speed
3256 	 * and Duplex.
3257 	 */
3258 	ctrl = E1000_READ_REG(hw, CTRL);
3259 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3260 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3261 
3262 	/* Set up duplex in the Device Control and Transmit Control
3263 	 * registers depending on negotiated values.
3264 	 */
3265 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3266 		DEBUGOUT("PHY Read Error\n");
3267 		return -E1000_ERR_PHY;
3268 	}
3269 	if (phy_data & M88E1000_PSSR_DPLX)
3270 		ctrl |= E1000_CTRL_FD;
3271 	else
3272 		ctrl &= ~E1000_CTRL_FD;
3273 
3274 	e1000_config_collision_dist(hw);
3275 
3276 	/* Set up speed in the Device Control register depending on
3277 	 * negotiated values.
3278 	 */
3279 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3280 		ctrl |= E1000_CTRL_SPD_1000;
3281 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3282 		ctrl |= E1000_CTRL_SPD_100;
3283 	/* Write the configured values back to the Device Control Reg. */
3284 	E1000_WRITE_REG(hw, CTRL, ctrl);
3285 	return 0;
3286 }
3287 
3288 /******************************************************************************
3289  * Forces the MAC's flow control settings.
3290  *
3291  * hw - Struct containing variables accessed by shared code
3292  *
3293  * Sets the TFCE and RFCE bits in the device control register to reflect
3294  * the adapter settings. TFCE and RFCE need to be explicitly set by
3295  * software when a Copper PHY is used because autonegotiation is managed
3296  * by the PHY rather than the MAC. Software must also configure these
3297  * bits when link is forced on a fiber connection.
3298  *****************************************************************************/
3299 static int
3300 e1000_force_mac_fc(struct e1000_hw *hw)
3301 {
3302 	uint32_t ctrl;
3303 
3304 	DEBUGFUNC();
3305 
3306 	/* Get the current configuration of the Device Control Register */
3307 	ctrl = E1000_READ_REG(hw, CTRL);
3308 
3309 	/* Because we didn't get link via the internal auto-negotiation
3310 	 * mechanism (we either forced link or we got link via PHY
3311 	 * auto-neg), we have to manually enable/disable transmit an
3312 	 * receive flow control.
3313 	 *
3314 	 * The "Case" statement below enables/disable flow control
3315 	 * according to the "hw->fc" parameter.
3316 	 *
3317 	 * The possible values of the "fc" parameter are:
3318 	 *	0:  Flow control is completely disabled
3319 	 *	1:  Rx flow control is enabled (we can receive pause
3320 	 *	    frames but not send pause frames).
3321 	 *	2:  Tx flow control is enabled (we can send pause frames
3322 	 *	    frames but we do not receive pause frames).
3323 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3324 	 *  other:  No other values should be possible at this point.
3325 	 */
3326 
3327 	switch (hw->fc) {
3328 	case e1000_fc_none:
3329 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3330 		break;
3331 	case e1000_fc_rx_pause:
3332 		ctrl &= (~E1000_CTRL_TFCE);
3333 		ctrl |= E1000_CTRL_RFCE;
3334 		break;
3335 	case e1000_fc_tx_pause:
3336 		ctrl &= (~E1000_CTRL_RFCE);
3337 		ctrl |= E1000_CTRL_TFCE;
3338 		break;
3339 	case e1000_fc_full:
3340 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3341 		break;
3342 	default:
3343 		DEBUGOUT("Flow control param set incorrectly\n");
3344 		return -E1000_ERR_CONFIG;
3345 	}
3346 
3347 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3348 	if (hw->mac_type == e1000_82542_rev2_0)
3349 		ctrl &= (~E1000_CTRL_TFCE);
3350 
3351 	E1000_WRITE_REG(hw, CTRL, ctrl);
3352 	return 0;
3353 }
3354 
3355 /******************************************************************************
3356  * Configures flow control settings after link is established
3357  *
3358  * hw - Struct containing variables accessed by shared code
3359  *
3360  * Should be called immediately after a valid link has been established.
3361  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3362  * and autonegotiation is enabled, the MAC flow control settings will be set
3363  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3364  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3365  *****************************************************************************/
3366 static int32_t
3367 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3368 {
3369 	int32_t ret_val;
3370 	uint16_t mii_status_reg;
3371 	uint16_t mii_nway_adv_reg;
3372 	uint16_t mii_nway_lp_ability_reg;
3373 	uint16_t speed;
3374 	uint16_t duplex;
3375 
3376 	DEBUGFUNC();
3377 
3378 	/* Check for the case where we have fiber media and auto-neg failed
3379 	 * so we had to force link.  In this case, we need to force the
3380 	 * configuration of the MAC to match the "fc" parameter.
3381 	 */
3382 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3383 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3384 		&& (hw->autoneg_failed))
3385 		|| ((hw->media_type == e1000_media_type_copper)
3386 		&& (!hw->autoneg))) {
3387 		ret_val = e1000_force_mac_fc(hw);
3388 		if (ret_val < 0) {
3389 			DEBUGOUT("Error forcing flow control settings\n");
3390 			return ret_val;
3391 		}
3392 	}
3393 
3394 	/* Check for the case where we have copper media and auto-neg is
3395 	 * enabled.  In this case, we need to check and see if Auto-Neg
3396 	 * has completed, and if so, how the PHY and link partner has
3397 	 * flow control configured.
3398 	 */
3399 	if (hw->media_type == e1000_media_type_copper) {
3400 		/* Read the MII Status Register and check to see if AutoNeg
3401 		 * has completed.  We read this twice because this reg has
3402 		 * some "sticky" (latched) bits.
3403 		 */
3404 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3405 			DEBUGOUT("PHY Read Error \n");
3406 			return -E1000_ERR_PHY;
3407 		}
3408 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3409 			DEBUGOUT("PHY Read Error \n");
3410 			return -E1000_ERR_PHY;
3411 		}
3412 
3413 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3414 			/* The AutoNeg process has completed, so we now need to
3415 			 * read both the Auto Negotiation Advertisement Register
3416 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3417 			 * Register (Address 5) to determine how flow control was
3418 			 * negotiated.
3419 			 */
3420 			if (e1000_read_phy_reg
3421 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3422 				DEBUGOUT("PHY Read Error\n");
3423 				return -E1000_ERR_PHY;
3424 			}
3425 			if (e1000_read_phy_reg
3426 			    (hw, PHY_LP_ABILITY,
3427 			     &mii_nway_lp_ability_reg) < 0) {
3428 				DEBUGOUT("PHY Read Error\n");
3429 				return -E1000_ERR_PHY;
3430 			}
3431 
3432 			/* Two bits in the Auto Negotiation Advertisement Register
3433 			 * (Address 4) and two bits in the Auto Negotiation Base
3434 			 * Page Ability Register (Address 5) determine flow control
3435 			 * for both the PHY and the link partner.  The following
3436 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3437 			 * 1999, describes these PAUSE resolution bits and how flow
3438 			 * control is determined based upon these settings.
3439 			 * NOTE:  DC = Don't Care
3440 			 *
3441 			 *   LOCAL DEVICE  |   LINK PARTNER
3442 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3443 			 *-------|---------|-------|---------|--------------------
3444 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3445 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3446 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3447 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3448 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3449 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3450 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3451 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3452 			 *
3453 			 */
3454 			/* Are both PAUSE bits set to 1?  If so, this implies
3455 			 * Symmetric Flow Control is enabled at both ends.  The
3456 			 * ASM_DIR bits are irrelevant per the spec.
3457 			 *
3458 			 * For Symmetric Flow Control:
3459 			 *
3460 			 *   LOCAL DEVICE  |   LINK PARTNER
3461 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3462 			 *-------|---------|-------|---------|--------------------
3463 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3464 			 *
3465 			 */
3466 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3467 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3468 				/* Now we need to check if the user selected RX ONLY
3469 				 * of pause frames.  In this case, we had to advertise
3470 				 * FULL flow control because we could not advertise RX
3471 				 * ONLY. Hence, we must now check to see if we need to
3472 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3473 				 */
3474 				if (hw->original_fc == e1000_fc_full) {
3475 					hw->fc = e1000_fc_full;
3476 					DEBUGOUT("Flow Control = FULL.\r\n");
3477 				} else {
3478 					hw->fc = e1000_fc_rx_pause;
3479 					DEBUGOUT
3480 					    ("Flow Control = RX PAUSE frames only.\r\n");
3481 				}
3482 			}
3483 			/* For receiving PAUSE frames ONLY.
3484 			 *
3485 			 *   LOCAL DEVICE  |   LINK PARTNER
3486 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3487 			 *-------|---------|-------|---------|--------------------
3488 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3489 			 *
3490 			 */
3491 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3492 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3493 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3494 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3495 			{
3496 				hw->fc = e1000_fc_tx_pause;
3497 				DEBUGOUT
3498 				    ("Flow Control = TX PAUSE frames only.\r\n");
3499 			}
3500 			/* For transmitting PAUSE frames ONLY.
3501 			 *
3502 			 *   LOCAL DEVICE  |   LINK PARTNER
3503 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3504 			 *-------|---------|-------|---------|--------------------
3505 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3506 			 *
3507 			 */
3508 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3509 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3510 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3511 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3512 			{
3513 				hw->fc = e1000_fc_rx_pause;
3514 				DEBUGOUT
3515 				    ("Flow Control = RX PAUSE frames only.\r\n");
3516 			}
3517 			/* Per the IEEE spec, at this point flow control should be
3518 			 * disabled.  However, we want to consider that we could
3519 			 * be connected to a legacy switch that doesn't advertise
3520 			 * desired flow control, but can be forced on the link
3521 			 * partner.  So if we advertised no flow control, that is
3522 			 * what we will resolve to.  If we advertised some kind of
3523 			 * receive capability (Rx Pause Only or Full Flow Control)
3524 			 * and the link partner advertised none, we will configure
3525 			 * ourselves to enable Rx Flow Control only.  We can do
3526 			 * this safely for two reasons:  If the link partner really
3527 			 * didn't want flow control enabled, and we enable Rx, no
3528 			 * harm done since we won't be receiving any PAUSE frames
3529 			 * anyway.  If the intent on the link partner was to have
3530 			 * flow control enabled, then by us enabling RX only, we
3531 			 * can at least receive pause frames and process them.
3532 			 * This is a good idea because in most cases, since we are
3533 			 * predominantly a server NIC, more times than not we will
3534 			 * be asked to delay transmission of packets than asking
3535 			 * our link partner to pause transmission of frames.
3536 			 */
3537 			else if (hw->original_fc == e1000_fc_none ||
3538 				 hw->original_fc == e1000_fc_tx_pause) {
3539 				hw->fc = e1000_fc_none;
3540 				DEBUGOUT("Flow Control = NONE.\r\n");
3541 			} else {
3542 				hw->fc = e1000_fc_rx_pause;
3543 				DEBUGOUT
3544 				    ("Flow Control = RX PAUSE frames only.\r\n");
3545 			}
3546 
3547 			/* Now we need to do one last check...	If we auto-
3548 			 * negotiated to HALF DUPLEX, flow control should not be
3549 			 * enabled per IEEE 802.3 spec.
3550 			 */
3551 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3552 
3553 			if (duplex == HALF_DUPLEX)
3554 				hw->fc = e1000_fc_none;
3555 
3556 			/* Now we call a subroutine to actually force the MAC
3557 			 * controller to use the correct flow control settings.
3558 			 */
3559 			ret_val = e1000_force_mac_fc(hw);
3560 			if (ret_val < 0) {
3561 				DEBUGOUT
3562 				    ("Error forcing flow control settings\n");
3563 				return ret_val;
3564 			}
3565 		} else {
3566 			DEBUGOUT
3567 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3568 		}
3569 	}
3570 	return E1000_SUCCESS;
3571 }
3572 
3573 /******************************************************************************
3574  * Checks to see if the link status of the hardware has changed.
3575  *
3576  * hw - Struct containing variables accessed by shared code
3577  *
3578  * Called by any function that needs to check the link status of the adapter.
3579  *****************************************************************************/
3580 static int
3581 e1000_check_for_link(struct eth_device *nic)
3582 {
3583 	struct e1000_hw *hw = nic->priv;
3584 	uint32_t rxcw;
3585 	uint32_t ctrl;
3586 	uint32_t status;
3587 	uint32_t rctl;
3588 	uint32_t signal;
3589 	int32_t ret_val;
3590 	uint16_t phy_data;
3591 	uint16_t lp_capability;
3592 
3593 	DEBUGFUNC();
3594 
3595 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3596 	 * set when the optics detect a signal. On older adapters, it will be
3597 	 * cleared when there is a signal
3598 	 */
3599 	ctrl = E1000_READ_REG(hw, CTRL);
3600 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3601 		signal = E1000_CTRL_SWDPIN1;
3602 	else
3603 		signal = 0;
3604 
3605 	status = E1000_READ_REG(hw, STATUS);
3606 	rxcw = E1000_READ_REG(hw, RXCW);
3607 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3608 
3609 	/* If we have a copper PHY then we only want to go out to the PHY
3610 	 * registers to see if Auto-Neg has completed and/or if our link
3611 	 * status has changed.	The get_link_status flag will be set if we
3612 	 * receive a Link Status Change interrupt or we have Rx Sequence
3613 	 * Errors.
3614 	 */
3615 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3616 		/* First we want to see if the MII Status Register reports
3617 		 * link.  If so, then we want to get the current speed/duplex
3618 		 * of the PHY.
3619 		 * Read the register twice since the link bit is sticky.
3620 		 */
3621 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3622 			DEBUGOUT("PHY Read Error\n");
3623 			return -E1000_ERR_PHY;
3624 		}
3625 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3626 			DEBUGOUT("PHY Read Error\n");
3627 			return -E1000_ERR_PHY;
3628 		}
3629 
3630 		if (phy_data & MII_SR_LINK_STATUS) {
3631 			hw->get_link_status = FALSE;
3632 		} else {
3633 			/* No link detected */
3634 			return -E1000_ERR_NOLINK;
3635 		}
3636 
3637 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3638 		 * have Si on board that is 82544 or newer, Auto
3639 		 * Speed Detection takes care of MAC speed/duplex
3640 		 * configuration.  So we only need to configure Collision
3641 		 * Distance in the MAC.  Otherwise, we need to force
3642 		 * speed/duplex on the MAC to the current PHY speed/duplex
3643 		 * settings.
3644 		 */
3645 		if (hw->mac_type >= e1000_82544)
3646 			e1000_config_collision_dist(hw);
3647 		else {
3648 			ret_val = e1000_config_mac_to_phy(hw);
3649 			if (ret_val < 0) {
3650 				DEBUGOUT
3651 				    ("Error configuring MAC to PHY settings\n");
3652 				return ret_val;
3653 			}
3654 		}
3655 
3656 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3657 		 * need to restore the desired flow control settings because we may
3658 		 * have had to re-autoneg with a different link partner.
3659 		 */
3660 		ret_val = e1000_config_fc_after_link_up(hw);
3661 		if (ret_val < 0) {
3662 			DEBUGOUT("Error configuring flow control\n");
3663 			return ret_val;
3664 		}
3665 
3666 		/* At this point we know that we are on copper and we have
3667 		 * auto-negotiated link.  These are conditions for checking the link
3668 		 * parter capability register.	We use the link partner capability to
3669 		 * determine if TBI Compatibility needs to be turned on or off.  If
3670 		 * the link partner advertises any speed in addition to Gigabit, then
3671 		 * we assume that they are GMII-based, and TBI compatibility is not
3672 		 * needed. If no other speeds are advertised, we assume the link
3673 		 * partner is TBI-based, and we turn on TBI Compatibility.
3674 		 */
3675 		if (hw->tbi_compatibility_en) {
3676 			if (e1000_read_phy_reg
3677 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3678 				DEBUGOUT("PHY Read Error\n");
3679 				return -E1000_ERR_PHY;
3680 			}
3681 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3682 					     NWAY_LPAR_10T_FD_CAPS |
3683 					     NWAY_LPAR_100TX_HD_CAPS |
3684 					     NWAY_LPAR_100TX_FD_CAPS |
3685 					     NWAY_LPAR_100T4_CAPS)) {
3686 				/* If our link partner advertises anything in addition to
3687 				 * gigabit, we do not need to enable TBI compatibility.
3688 				 */
3689 				if (hw->tbi_compatibility_on) {
3690 					/* If we previously were in the mode, turn it off. */
3691 					rctl = E1000_READ_REG(hw, RCTL);
3692 					rctl &= ~E1000_RCTL_SBP;
3693 					E1000_WRITE_REG(hw, RCTL, rctl);
3694 					hw->tbi_compatibility_on = FALSE;
3695 				}
3696 			} else {
3697 				/* If TBI compatibility is was previously off, turn it on. For
3698 				 * compatibility with a TBI link partner, we will store bad
3699 				 * packets. Some frames have an additional byte on the end and
3700 				 * will look like CRC errors to to the hardware.
3701 				 */
3702 				if (!hw->tbi_compatibility_on) {
3703 					hw->tbi_compatibility_on = TRUE;
3704 					rctl = E1000_READ_REG(hw, RCTL);
3705 					rctl |= E1000_RCTL_SBP;
3706 					E1000_WRITE_REG(hw, RCTL, rctl);
3707 				}
3708 			}
3709 		}
3710 	}
3711 	/* If we don't have link (auto-negotiation failed or link partner cannot
3712 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3713 	 * link partner is not trying to auto-negotiate with us (we are receiving
3714 	 * idles or data), we need to force link up. We also need to give
3715 	 * auto-negotiation time to complete, in case the cable was just plugged
3716 	 * in. The autoneg_failed flag does this.
3717 	 */
3718 	else if ((hw->media_type == e1000_media_type_fiber) &&
3719 		 (!(status & E1000_STATUS_LU)) &&
3720 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3721 		 (!(rxcw & E1000_RXCW_C))) {
3722 		if (hw->autoneg_failed == 0) {
3723 			hw->autoneg_failed = 1;
3724 			return 0;
3725 		}
3726 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3727 
3728 		/* Disable auto-negotiation in the TXCW register */
3729 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3730 
3731 		/* Force link-up and also force full-duplex. */
3732 		ctrl = E1000_READ_REG(hw, CTRL);
3733 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3734 		E1000_WRITE_REG(hw, CTRL, ctrl);
3735 
3736 		/* Configure Flow Control after forcing link up. */
3737 		ret_val = e1000_config_fc_after_link_up(hw);
3738 		if (ret_val < 0) {
3739 			DEBUGOUT("Error configuring flow control\n");
3740 			return ret_val;
3741 		}
3742 	}
3743 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3744 	 * auto-negotiation in the TXCW register and disable forced link in the
3745 	 * Device Control register in an attempt to auto-negotiate with our link
3746 	 * partner.
3747 	 */
3748 	else if ((hw->media_type == e1000_media_type_fiber) &&
3749 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3750 		DEBUGOUT
3751 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3752 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3753 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3754 	}
3755 	return 0;
3756 }
3757 
3758 /******************************************************************************
3759 * Configure the MAC-to-PHY interface for 10/100Mbps
3760 *
3761 * hw - Struct containing variables accessed by shared code
3762 ******************************************************************************/
3763 static int32_t
3764 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3765 {
3766 	int32_t ret_val = E1000_SUCCESS;
3767 	uint32_t tipg;
3768 	uint16_t reg_data;
3769 
3770 	DEBUGFUNC();
3771 
3772 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3773 	ret_val = e1000_write_kmrn_reg(hw,
3774 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3775 	if (ret_val)
3776 		return ret_val;
3777 
3778 	/* Configure Transmit Inter-Packet Gap */
3779 	tipg = E1000_READ_REG(hw, TIPG);
3780 	tipg &= ~E1000_TIPG_IPGT_MASK;
3781 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3782 	E1000_WRITE_REG(hw, TIPG, tipg);
3783 
3784 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3785 
3786 	if (ret_val)
3787 		return ret_val;
3788 
3789 	if (duplex == HALF_DUPLEX)
3790 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3791 	else
3792 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3793 
3794 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3795 
3796 	return ret_val;
3797 }
3798 
3799 static int32_t
3800 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3801 {
3802 	int32_t ret_val = E1000_SUCCESS;
3803 	uint16_t reg_data;
3804 	uint32_t tipg;
3805 
3806 	DEBUGFUNC();
3807 
3808 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3809 	ret_val = e1000_write_kmrn_reg(hw,
3810 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3811 	if (ret_val)
3812 		return ret_val;
3813 
3814 	/* Configure Transmit Inter-Packet Gap */
3815 	tipg = E1000_READ_REG(hw, TIPG);
3816 	tipg &= ~E1000_TIPG_IPGT_MASK;
3817 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3818 	E1000_WRITE_REG(hw, TIPG, tipg);
3819 
3820 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3821 
3822 	if (ret_val)
3823 		return ret_val;
3824 
3825 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3826 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3827 
3828 	return ret_val;
3829 }
3830 
3831 /******************************************************************************
3832  * Detects the current speed and duplex settings of the hardware.
3833  *
3834  * hw - Struct containing variables accessed by shared code
3835  * speed - Speed of the connection
3836  * duplex - Duplex setting of the connection
3837  *****************************************************************************/
3838 static int
3839 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3840 		uint16_t *duplex)
3841 {
3842 	uint32_t status;
3843 	int32_t ret_val;
3844 	uint16_t phy_data;
3845 
3846 	DEBUGFUNC();
3847 
3848 	if (hw->mac_type >= e1000_82543) {
3849 		status = E1000_READ_REG(hw, STATUS);
3850 		if (status & E1000_STATUS_SPEED_1000) {
3851 			*speed = SPEED_1000;
3852 			DEBUGOUT("1000 Mbs, ");
3853 		} else if (status & E1000_STATUS_SPEED_100) {
3854 			*speed = SPEED_100;
3855 			DEBUGOUT("100 Mbs, ");
3856 		} else {
3857 			*speed = SPEED_10;
3858 			DEBUGOUT("10 Mbs, ");
3859 		}
3860 
3861 		if (status & E1000_STATUS_FD) {
3862 			*duplex = FULL_DUPLEX;
3863 			DEBUGOUT("Full Duplex\r\n");
3864 		} else {
3865 			*duplex = HALF_DUPLEX;
3866 			DEBUGOUT(" Half Duplex\r\n");
3867 		}
3868 	} else {
3869 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3870 		*speed = SPEED_1000;
3871 		*duplex = FULL_DUPLEX;
3872 	}
3873 
3874 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3875 	 * even if it is operating at half duplex.  Here we set the duplex
3876 	 * settings to match the duplex in the link partner's capabilities.
3877 	 */
3878 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3879 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3880 		if (ret_val)
3881 			return ret_val;
3882 
3883 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3884 			*duplex = HALF_DUPLEX;
3885 		else {
3886 			ret_val = e1000_read_phy_reg(hw,
3887 					PHY_LP_ABILITY, &phy_data);
3888 			if (ret_val)
3889 				return ret_val;
3890 			if ((*speed == SPEED_100 &&
3891 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3892 				|| (*speed == SPEED_10
3893 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3894 				*duplex = HALF_DUPLEX;
3895 		}
3896 	}
3897 
3898 	if ((hw->mac_type == e1000_80003es2lan) &&
3899 		(hw->media_type == e1000_media_type_copper)) {
3900 		if (*speed == SPEED_1000)
3901 			ret_val = e1000_configure_kmrn_for_1000(hw);
3902 		else
3903 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3904 		if (ret_val)
3905 			return ret_val;
3906 	}
3907 	return E1000_SUCCESS;
3908 }
3909 
3910 /******************************************************************************
3911 * Blocks until autoneg completes or times out (~4.5 seconds)
3912 *
3913 * hw - Struct containing variables accessed by shared code
3914 ******************************************************************************/
3915 static int
3916 e1000_wait_autoneg(struct e1000_hw *hw)
3917 {
3918 	uint16_t i;
3919 	uint16_t phy_data;
3920 
3921 	DEBUGFUNC();
3922 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3923 
3924 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
3925 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3926 		/* Read the MII Status Register and wait for Auto-Neg
3927 		 * Complete bit to be set.
3928 		 */
3929 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3930 			DEBUGOUT("PHY Read Error\n");
3931 			return -E1000_ERR_PHY;
3932 		}
3933 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3934 			DEBUGOUT("PHY Read Error\n");
3935 			return -E1000_ERR_PHY;
3936 		}
3937 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3938 			DEBUGOUT("Auto-Neg complete.\n");
3939 			return 0;
3940 		}
3941 		mdelay(100);
3942 	}
3943 	DEBUGOUT("Auto-Neg timedout.\n");
3944 	return -E1000_ERR_TIMEOUT;
3945 }
3946 
3947 /******************************************************************************
3948 * Raises the Management Data Clock
3949 *
3950 * hw - Struct containing variables accessed by shared code
3951 * ctrl - Device control register's current value
3952 ******************************************************************************/
3953 static void
3954 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3955 {
3956 	/* Raise the clock input to the Management Data Clock (by setting the MDC
3957 	 * bit), and then delay 2 microseconds.
3958 	 */
3959 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3960 	E1000_WRITE_FLUSH(hw);
3961 	udelay(2);
3962 }
3963 
3964 /******************************************************************************
3965 * Lowers the Management Data Clock
3966 *
3967 * hw - Struct containing variables accessed by shared code
3968 * ctrl - Device control register's current value
3969 ******************************************************************************/
3970 static void
3971 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3972 {
3973 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
3974 	 * bit), and then delay 2 microseconds.
3975 	 */
3976 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3977 	E1000_WRITE_FLUSH(hw);
3978 	udelay(2);
3979 }
3980 
3981 /******************************************************************************
3982 * Shifts data bits out to the PHY
3983 *
3984 * hw - Struct containing variables accessed by shared code
3985 * data - Data to send out to the PHY
3986 * count - Number of bits to shift out
3987 *
3988 * Bits are shifted out in MSB to LSB order.
3989 ******************************************************************************/
3990 static void
3991 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3992 {
3993 	uint32_t ctrl;
3994 	uint32_t mask;
3995 
3996 	/* We need to shift "count" number of bits out to the PHY. So, the value
3997 	 * in the "data" parameter will be shifted out to the PHY one bit at a
3998 	 * time. In order to do this, "data" must be broken down into bits.
3999 	 */
4000 	mask = 0x01;
4001 	mask <<= (count - 1);
4002 
4003 	ctrl = E1000_READ_REG(hw, CTRL);
4004 
4005 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4006 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4007 
4008 	while (mask) {
4009 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4010 		 * then raising and lowering the Management Data Clock. A "0" is
4011 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
4012 		 * raising and lowering the clock.
4013 		 */
4014 		if (data & mask)
4015 			ctrl |= E1000_CTRL_MDIO;
4016 		else
4017 			ctrl &= ~E1000_CTRL_MDIO;
4018 
4019 		E1000_WRITE_REG(hw, CTRL, ctrl);
4020 		E1000_WRITE_FLUSH(hw);
4021 
4022 		udelay(2);
4023 
4024 		e1000_raise_mdi_clk(hw, &ctrl);
4025 		e1000_lower_mdi_clk(hw, &ctrl);
4026 
4027 		mask = mask >> 1;
4028 	}
4029 }
4030 
4031 /******************************************************************************
4032 * Shifts data bits in from the PHY
4033 *
4034 * hw - Struct containing variables accessed by shared code
4035 *
4036 * Bits are shifted in in MSB to LSB order.
4037 ******************************************************************************/
4038 static uint16_t
4039 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4040 {
4041 	uint32_t ctrl;
4042 	uint16_t data = 0;
4043 	uint8_t i;
4044 
4045 	/* In order to read a register from the PHY, we need to shift in a total
4046 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4047 	 * to avoid contention on the MDIO pin when a read operation is performed.
4048 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4049 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4050 	 * and then reading the value of the MDIO bit.
4051 	 */
4052 	ctrl = E1000_READ_REG(hw, CTRL);
4053 
4054 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4055 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4056 	ctrl &= ~E1000_CTRL_MDIO;
4057 
4058 	E1000_WRITE_REG(hw, CTRL, ctrl);
4059 	E1000_WRITE_FLUSH(hw);
4060 
4061 	/* Raise and Lower the clock before reading in the data. This accounts for
4062 	 * the turnaround bits. The first clock occurred when we clocked out the
4063 	 * last bit of the Register Address.
4064 	 */
4065 	e1000_raise_mdi_clk(hw, &ctrl);
4066 	e1000_lower_mdi_clk(hw, &ctrl);
4067 
4068 	for (data = 0, i = 0; i < 16; i++) {
4069 		data = data << 1;
4070 		e1000_raise_mdi_clk(hw, &ctrl);
4071 		ctrl = E1000_READ_REG(hw, CTRL);
4072 		/* Check to see if we shifted in a "1". */
4073 		if (ctrl & E1000_CTRL_MDIO)
4074 			data |= 1;
4075 		e1000_lower_mdi_clk(hw, &ctrl);
4076 	}
4077 
4078 	e1000_raise_mdi_clk(hw, &ctrl);
4079 	e1000_lower_mdi_clk(hw, &ctrl);
4080 
4081 	return data;
4082 }
4083 
4084 /*****************************************************************************
4085 * Reads the value from a PHY register
4086 *
4087 * hw - Struct containing variables accessed by shared code
4088 * reg_addr - address of the PHY register to read
4089 ******************************************************************************/
4090 static int
4091 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4092 {
4093 	uint32_t i;
4094 	uint32_t mdic = 0;
4095 	const uint32_t phy_addr = 1;
4096 
4097 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4098 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4099 		return -E1000_ERR_PARAM;
4100 	}
4101 
4102 	if (hw->mac_type > e1000_82543) {
4103 		/* Set up Op-code, Phy Address, and register address in the MDI
4104 		 * Control register.  The MAC will take care of interfacing with the
4105 		 * PHY to retrieve the desired data.
4106 		 */
4107 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4108 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4109 			(E1000_MDIC_OP_READ));
4110 
4111 		E1000_WRITE_REG(hw, MDIC, mdic);
4112 
4113 		/* Poll the ready bit to see if the MDI read completed */
4114 		for (i = 0; i < 64; i++) {
4115 			udelay(10);
4116 			mdic = E1000_READ_REG(hw, MDIC);
4117 			if (mdic & E1000_MDIC_READY)
4118 				break;
4119 		}
4120 		if (!(mdic & E1000_MDIC_READY)) {
4121 			DEBUGOUT("MDI Read did not complete\n");
4122 			return -E1000_ERR_PHY;
4123 		}
4124 		if (mdic & E1000_MDIC_ERROR) {
4125 			DEBUGOUT("MDI Error\n");
4126 			return -E1000_ERR_PHY;
4127 		}
4128 		*phy_data = (uint16_t) mdic;
4129 	} else {
4130 		/* We must first send a preamble through the MDIO pin to signal the
4131 		 * beginning of an MII instruction.  This is done by sending 32
4132 		 * consecutive "1" bits.
4133 		 */
4134 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4135 
4136 		/* Now combine the next few fields that are required for a read
4137 		 * operation.  We use this method instead of calling the
4138 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4139 		 * a MII read instruction consists of a shift out of 14 bits and is
4140 		 * defined as follows:
4141 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4142 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4143 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4144 		 * READ operation is performed.  These two bits are thrown away
4145 		 * followed by a shift in of 16 bits which contains the desired data.
4146 		 */
4147 		mdic = ((reg_addr) | (phy_addr << 5) |
4148 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4149 
4150 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4151 
4152 		/* Now that we've shifted out the read command to the MII, we need to
4153 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4154 		 * register address.
4155 		 */
4156 		*phy_data = e1000_shift_in_mdi_bits(hw);
4157 	}
4158 	return 0;
4159 }
4160 
4161 /******************************************************************************
4162 * Writes a value to a PHY register
4163 *
4164 * hw - Struct containing variables accessed by shared code
4165 * reg_addr - address of the PHY register to write
4166 * data - data to write to the PHY
4167 ******************************************************************************/
4168 static int
4169 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4170 {
4171 	uint32_t i;
4172 	uint32_t mdic = 0;
4173 	const uint32_t phy_addr = 1;
4174 
4175 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4176 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4177 		return -E1000_ERR_PARAM;
4178 	}
4179 
4180 	if (hw->mac_type > e1000_82543) {
4181 		/* Set up Op-code, Phy Address, register address, and data intended
4182 		 * for the PHY register in the MDI Control register.  The MAC will take
4183 		 * care of interfacing with the PHY to send the desired data.
4184 		 */
4185 		mdic = (((uint32_t) phy_data) |
4186 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4187 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4188 			(E1000_MDIC_OP_WRITE));
4189 
4190 		E1000_WRITE_REG(hw, MDIC, mdic);
4191 
4192 		/* Poll the ready bit to see if the MDI read completed */
4193 		for (i = 0; i < 64; i++) {
4194 			udelay(10);
4195 			mdic = E1000_READ_REG(hw, MDIC);
4196 			if (mdic & E1000_MDIC_READY)
4197 				break;
4198 		}
4199 		if (!(mdic & E1000_MDIC_READY)) {
4200 			DEBUGOUT("MDI Write did not complete\n");
4201 			return -E1000_ERR_PHY;
4202 		}
4203 	} else {
4204 		/* We'll need to use the SW defined pins to shift the write command
4205 		 * out to the PHY. We first send a preamble to the PHY to signal the
4206 		 * beginning of the MII instruction.  This is done by sending 32
4207 		 * consecutive "1" bits.
4208 		 */
4209 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4210 
4211 		/* Now combine the remaining required fields that will indicate a
4212 		 * write operation. We use this method instead of calling the
4213 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4214 		 * format of a MII write instruction is as follows:
4215 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4216 		 */
4217 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4218 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4219 		mdic <<= 16;
4220 		mdic |= (uint32_t) phy_data;
4221 
4222 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4223 	}
4224 	return 0;
4225 }
4226 
4227 /******************************************************************************
4228  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4229  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4230  * the caller to figure out how to deal with it.
4231  *
4232  * hw - Struct containing variables accessed by shared code
4233  *
4234  * returns: - E1000_BLK_PHY_RESET
4235  *            E1000_SUCCESS
4236  *
4237  *****************************************************************************/
4238 int32_t
4239 e1000_check_phy_reset_block(struct e1000_hw *hw)
4240 {
4241 	uint32_t manc = 0;
4242 	uint32_t fwsm = 0;
4243 
4244 	if (hw->mac_type == e1000_ich8lan) {
4245 		fwsm = E1000_READ_REG(hw, FWSM);
4246 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4247 						: E1000_BLK_PHY_RESET;
4248 	}
4249 
4250 	if (hw->mac_type > e1000_82547_rev_2)
4251 		manc = E1000_READ_REG(hw, MANC);
4252 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4253 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4254 }
4255 
4256 /***************************************************************************
4257  * Checks if the PHY configuration is done
4258  *
4259  * hw: Struct containing variables accessed by shared code
4260  *
4261  * returns: - E1000_ERR_RESET if fail to reset MAC
4262  *            E1000_SUCCESS at any other case.
4263  *
4264  ***************************************************************************/
4265 static int32_t
4266 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4267 {
4268 	int32_t timeout = PHY_CFG_TIMEOUT;
4269 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4270 
4271 	DEBUGFUNC();
4272 
4273 	switch (hw->mac_type) {
4274 	default:
4275 		mdelay(10);
4276 		break;
4277 
4278 	case e1000_80003es2lan:
4279 		/* Separate *_CFG_DONE_* bit for each port */
4280 		if (e1000_is_second_port(hw))
4281 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4282 		/* Fall Through */
4283 
4284 	case e1000_82571:
4285 	case e1000_82572:
4286 		while (timeout) {
4287 			if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4288 				break;
4289 			else
4290 				mdelay(1);
4291 			timeout--;
4292 		}
4293 		if (!timeout) {
4294 			DEBUGOUT("MNG configuration cycle has not "
4295 					"completed.\n");
4296 			return -E1000_ERR_RESET;
4297 		}
4298 		break;
4299 	}
4300 
4301 	return E1000_SUCCESS;
4302 }
4303 
4304 /******************************************************************************
4305 * Returns the PHY to the power-on reset state
4306 *
4307 * hw - Struct containing variables accessed by shared code
4308 ******************************************************************************/
4309 int32_t
4310 e1000_phy_hw_reset(struct e1000_hw *hw)
4311 {
4312 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4313 	uint32_t ctrl, ctrl_ext;
4314 	uint32_t led_ctrl;
4315 	int32_t ret_val;
4316 
4317 	DEBUGFUNC();
4318 
4319 	/* In the case of the phy reset being blocked, it's not an error, we
4320 	 * simply return success without performing the reset. */
4321 	ret_val = e1000_check_phy_reset_block(hw);
4322 	if (ret_val)
4323 		return E1000_SUCCESS;
4324 
4325 	DEBUGOUT("Resetting Phy...\n");
4326 
4327 	if (hw->mac_type > e1000_82543) {
4328 		if (e1000_is_second_port(hw))
4329 			swfw = E1000_SWFW_PHY1_SM;
4330 
4331 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4332 			DEBUGOUT("Unable to acquire swfw sync\n");
4333 			return -E1000_ERR_SWFW_SYNC;
4334 		}
4335 
4336 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4337 		 * bit. Then, take it out of reset.
4338 		 */
4339 		ctrl = E1000_READ_REG(hw, CTRL);
4340 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4341 		E1000_WRITE_FLUSH(hw);
4342 
4343 		if (hw->mac_type < e1000_82571)
4344 			udelay(10);
4345 		else
4346 			udelay(100);
4347 
4348 		E1000_WRITE_REG(hw, CTRL, ctrl);
4349 		E1000_WRITE_FLUSH(hw);
4350 
4351 		if (hw->mac_type >= e1000_82571)
4352 			mdelay(10);
4353 
4354 	} else {
4355 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4356 		 * bit to put the PHY into reset. Then, take it out of reset.
4357 		 */
4358 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4359 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4360 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4361 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4362 		E1000_WRITE_FLUSH(hw);
4363 		mdelay(10);
4364 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4365 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4366 		E1000_WRITE_FLUSH(hw);
4367 	}
4368 	udelay(150);
4369 
4370 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4371 		/* Configure activity LED after PHY reset */
4372 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4373 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4374 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4375 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4376 	}
4377 
4378 	/* Wait for FW to finish PHY configuration. */
4379 	ret_val = e1000_get_phy_cfg_done(hw);
4380 	if (ret_val != E1000_SUCCESS)
4381 		return ret_val;
4382 
4383 	return ret_val;
4384 }
4385 
4386 /******************************************************************************
4387  * IGP phy init script - initializes the GbE PHY
4388  *
4389  * hw - Struct containing variables accessed by shared code
4390  *****************************************************************************/
4391 static void
4392 e1000_phy_init_script(struct e1000_hw *hw)
4393 {
4394 	uint32_t ret_val;
4395 	uint16_t phy_saved_data;
4396 	DEBUGFUNC();
4397 
4398 	if (hw->phy_init_script) {
4399 		mdelay(20);
4400 
4401 		/* Save off the current value of register 0x2F5B to be
4402 		 * restored at the end of this routine. */
4403 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4404 
4405 		/* Disabled the PHY transmitter */
4406 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4407 
4408 		mdelay(20);
4409 
4410 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4411 
4412 		mdelay(5);
4413 
4414 		switch (hw->mac_type) {
4415 		case e1000_82541:
4416 		case e1000_82547:
4417 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4418 
4419 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4420 
4421 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4422 
4423 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4424 
4425 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4426 
4427 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4428 
4429 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4430 
4431 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4432 
4433 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4434 			break;
4435 
4436 		case e1000_82541_rev_2:
4437 		case e1000_82547_rev_2:
4438 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4439 			break;
4440 		default:
4441 			break;
4442 		}
4443 
4444 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4445 
4446 		mdelay(20);
4447 
4448 		/* Now enable the transmitter */
4449 		if (!ret_val)
4450 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4451 
4452 		if (hw->mac_type == e1000_82547) {
4453 			uint16_t fused, fine, coarse;
4454 
4455 			/* Move to analog registers page */
4456 			e1000_read_phy_reg(hw,
4457 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4458 
4459 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4460 				e1000_read_phy_reg(hw,
4461 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4462 
4463 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4464 				coarse = fused
4465 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4466 
4467 				if (coarse >
4468 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4469 					coarse -=
4470 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4471 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4472 				} else if (coarse
4473 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4474 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4475 
4476 				fused = (fused
4477 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4478 					(fine
4479 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4480 					(coarse
4481 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4482 
4483 				e1000_write_phy_reg(hw,
4484 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4485 				e1000_write_phy_reg(hw,
4486 					IGP01E1000_ANALOG_FUSE_BYPASS,
4487 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4488 			}
4489 		}
4490 	}
4491 }
4492 
4493 /******************************************************************************
4494 * Resets the PHY
4495 *
4496 * hw - Struct containing variables accessed by shared code
4497 *
4498 * Sets bit 15 of the MII Control register
4499 ******************************************************************************/
4500 int32_t
4501 e1000_phy_reset(struct e1000_hw *hw)
4502 {
4503 	int32_t ret_val;
4504 	uint16_t phy_data;
4505 
4506 	DEBUGFUNC();
4507 
4508 	/* In the case of the phy reset being blocked, it's not an error, we
4509 	 * simply return success without performing the reset. */
4510 	ret_val = e1000_check_phy_reset_block(hw);
4511 	if (ret_val)
4512 		return E1000_SUCCESS;
4513 
4514 	switch (hw->phy_type) {
4515 	case e1000_phy_igp:
4516 	case e1000_phy_igp_2:
4517 	case e1000_phy_igp_3:
4518 	case e1000_phy_ife:
4519 		ret_val = e1000_phy_hw_reset(hw);
4520 		if (ret_val)
4521 			return ret_val;
4522 		break;
4523 	default:
4524 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4525 		if (ret_val)
4526 			return ret_val;
4527 
4528 		phy_data |= MII_CR_RESET;
4529 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4530 		if (ret_val)
4531 			return ret_val;
4532 
4533 		udelay(1);
4534 		break;
4535 	}
4536 
4537 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4538 		e1000_phy_init_script(hw);
4539 
4540 	return E1000_SUCCESS;
4541 }
4542 
4543 static int e1000_set_phy_type (struct e1000_hw *hw)
4544 {
4545 	DEBUGFUNC ();
4546 
4547 	if (hw->mac_type == e1000_undefined)
4548 		return -E1000_ERR_PHY_TYPE;
4549 
4550 	switch (hw->phy_id) {
4551 	case M88E1000_E_PHY_ID:
4552 	case M88E1000_I_PHY_ID:
4553 	case M88E1011_I_PHY_ID:
4554 	case M88E1111_I_PHY_ID:
4555 		hw->phy_type = e1000_phy_m88;
4556 		break;
4557 	case IGP01E1000_I_PHY_ID:
4558 		if (hw->mac_type == e1000_82541 ||
4559 			hw->mac_type == e1000_82541_rev_2 ||
4560 			hw->mac_type == e1000_82547 ||
4561 			hw->mac_type == e1000_82547_rev_2) {
4562 			hw->phy_type = e1000_phy_igp;
4563 			hw->phy_type = e1000_phy_igp;
4564 			break;
4565 		}
4566 	case IGP03E1000_E_PHY_ID:
4567 		hw->phy_type = e1000_phy_igp_3;
4568 		break;
4569 	case IFE_E_PHY_ID:
4570 	case IFE_PLUS_E_PHY_ID:
4571 	case IFE_C_E_PHY_ID:
4572 		hw->phy_type = e1000_phy_ife;
4573 		break;
4574 	case GG82563_E_PHY_ID:
4575 		if (hw->mac_type == e1000_80003es2lan) {
4576 			hw->phy_type = e1000_phy_gg82563;
4577 			break;
4578 		}
4579 	case BME1000_E_PHY_ID:
4580 		hw->phy_type = e1000_phy_bm;
4581 		break;
4582 		/* Fall Through */
4583 	default:
4584 		/* Should never have loaded on this device */
4585 		hw->phy_type = e1000_phy_undefined;
4586 		return -E1000_ERR_PHY_TYPE;
4587 	}
4588 
4589 	return E1000_SUCCESS;
4590 }
4591 
4592 /******************************************************************************
4593 * Probes the expected PHY address for known PHY IDs
4594 *
4595 * hw - Struct containing variables accessed by shared code
4596 ******************************************************************************/
4597 static int32_t
4598 e1000_detect_gig_phy(struct e1000_hw *hw)
4599 {
4600 	int32_t phy_init_status, ret_val;
4601 	uint16_t phy_id_high, phy_id_low;
4602 	boolean_t match = FALSE;
4603 
4604 	DEBUGFUNC();
4605 
4606 	/* The 82571 firmware may still be configuring the PHY.  In this
4607 	 * case, we cannot access the PHY until the configuration is done.  So
4608 	 * we explicitly set the PHY values. */
4609 	if (hw->mac_type == e1000_82571 ||
4610 		hw->mac_type == e1000_82572) {
4611 		hw->phy_id = IGP01E1000_I_PHY_ID;
4612 		hw->phy_type = e1000_phy_igp_2;
4613 		return E1000_SUCCESS;
4614 	}
4615 
4616 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4617 	 * work- around that forces PHY page 0 to be set or the reads fail.
4618 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4619 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4620 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4621 	 * the routines below will figure this out as well. */
4622 	if (hw->mac_type == e1000_80003es2lan)
4623 		hw->phy_type = e1000_phy_gg82563;
4624 
4625 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4626 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4627 	if (ret_val)
4628 		return ret_val;
4629 
4630 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4631 	udelay(20);
4632 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4633 	if (ret_val)
4634 		return ret_val;
4635 
4636 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4637 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4638 
4639 	switch (hw->mac_type) {
4640 	case e1000_82543:
4641 		if (hw->phy_id == M88E1000_E_PHY_ID)
4642 			match = TRUE;
4643 		break;
4644 	case e1000_82544:
4645 		if (hw->phy_id == M88E1000_I_PHY_ID)
4646 			match = TRUE;
4647 		break;
4648 	case e1000_82540:
4649 	case e1000_82545:
4650 	case e1000_82545_rev_3:
4651 	case e1000_82546:
4652 	case e1000_82546_rev_3:
4653 		if (hw->phy_id == M88E1011_I_PHY_ID)
4654 			match = TRUE;
4655 		break;
4656 	case e1000_82541:
4657 	case e1000_82541_rev_2:
4658 	case e1000_82547:
4659 	case e1000_82547_rev_2:
4660 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4661 			match = TRUE;
4662 
4663 		break;
4664 	case e1000_82573:
4665 		if (hw->phy_id == M88E1111_I_PHY_ID)
4666 			match = TRUE;
4667 		break;
4668 	case e1000_82574:
4669 		if (hw->phy_id == BME1000_E_PHY_ID)
4670 			match = TRUE;
4671 		break;
4672 	case e1000_80003es2lan:
4673 		if (hw->phy_id == GG82563_E_PHY_ID)
4674 			match = TRUE;
4675 		break;
4676 	case e1000_ich8lan:
4677 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4678 			match = TRUE;
4679 		if (hw->phy_id == IFE_E_PHY_ID)
4680 			match = TRUE;
4681 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4682 			match = TRUE;
4683 		if (hw->phy_id == IFE_C_E_PHY_ID)
4684 			match = TRUE;
4685 		break;
4686 	default:
4687 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4688 		return -E1000_ERR_CONFIG;
4689 	}
4690 
4691 	phy_init_status = e1000_set_phy_type(hw);
4692 
4693 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4694 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4695 		return 0;
4696 	}
4697 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4698 	return -E1000_ERR_PHY;
4699 }
4700 
4701 /*****************************************************************************
4702  * Set media type and TBI compatibility.
4703  *
4704  * hw - Struct containing variables accessed by shared code
4705  * **************************************************************************/
4706 void
4707 e1000_set_media_type(struct e1000_hw *hw)
4708 {
4709 	uint32_t status;
4710 
4711 	DEBUGFUNC();
4712 
4713 	if (hw->mac_type != e1000_82543) {
4714 		/* tbi_compatibility is only valid on 82543 */
4715 		hw->tbi_compatibility_en = FALSE;
4716 	}
4717 
4718 	switch (hw->device_id) {
4719 	case E1000_DEV_ID_82545GM_SERDES:
4720 	case E1000_DEV_ID_82546GB_SERDES:
4721 	case E1000_DEV_ID_82571EB_SERDES:
4722 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4723 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4724 	case E1000_DEV_ID_82572EI_SERDES:
4725 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4726 		hw->media_type = e1000_media_type_internal_serdes;
4727 		break;
4728 	default:
4729 		switch (hw->mac_type) {
4730 		case e1000_82542_rev2_0:
4731 		case e1000_82542_rev2_1:
4732 			hw->media_type = e1000_media_type_fiber;
4733 			break;
4734 		case e1000_ich8lan:
4735 		case e1000_82573:
4736 		case e1000_82574:
4737 			/* The STATUS_TBIMODE bit is reserved or reused
4738 			 * for the this device.
4739 			 */
4740 			hw->media_type = e1000_media_type_copper;
4741 			break;
4742 		default:
4743 			status = E1000_READ_REG(hw, STATUS);
4744 			if (status & E1000_STATUS_TBIMODE) {
4745 				hw->media_type = e1000_media_type_fiber;
4746 				/* tbi_compatibility not valid on fiber */
4747 				hw->tbi_compatibility_en = FALSE;
4748 			} else {
4749 				hw->media_type = e1000_media_type_copper;
4750 			}
4751 			break;
4752 		}
4753 	}
4754 }
4755 
4756 /**
4757  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4758  *
4759  * e1000_sw_init initializes the Adapter private data structure.
4760  * Fields are initialized based on PCI device information and
4761  * OS network device settings (MTU size).
4762  **/
4763 
4764 static int
4765 e1000_sw_init(struct eth_device *nic)
4766 {
4767 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
4768 	int result;
4769 
4770 	/* PCI config space info */
4771 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4772 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4773 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4774 			     &hw->subsystem_vendor_id);
4775 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4776 
4777 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4778 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4779 
4780 	/* identify the MAC */
4781 	result = e1000_set_mac_type(hw);
4782 	if (result) {
4783 		E1000_ERR(hw->nic, "Unknown MAC Type\n");
4784 		return result;
4785 	}
4786 
4787 	switch (hw->mac_type) {
4788 	default:
4789 		break;
4790 	case e1000_82541:
4791 	case e1000_82547:
4792 	case e1000_82541_rev_2:
4793 	case e1000_82547_rev_2:
4794 		hw->phy_init_script = 1;
4795 		break;
4796 	}
4797 
4798 	/* flow control settings */
4799 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4800 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4801 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4802 	hw->fc_send_xon = 1;
4803 
4804 	/* Media type - copper or fiber */
4805 	e1000_set_media_type(hw);
4806 
4807 	if (hw->mac_type >= e1000_82543) {
4808 		uint32_t status = E1000_READ_REG(hw, STATUS);
4809 
4810 		if (status & E1000_STATUS_TBIMODE) {
4811 			DEBUGOUT("fiber interface\n");
4812 			hw->media_type = e1000_media_type_fiber;
4813 		} else {
4814 			DEBUGOUT("copper interface\n");
4815 			hw->media_type = e1000_media_type_copper;
4816 		}
4817 	} else {
4818 		hw->media_type = e1000_media_type_fiber;
4819 	}
4820 
4821 	hw->tbi_compatibility_en = TRUE;
4822 	hw->wait_autoneg_complete = TRUE;
4823 	if (hw->mac_type < e1000_82543)
4824 		hw->report_tx_early = 0;
4825 	else
4826 		hw->report_tx_early = 1;
4827 
4828 	return E1000_SUCCESS;
4829 }
4830 
4831 void
4832 fill_rx(struct e1000_hw *hw)
4833 {
4834 	struct e1000_rx_desc *rd;
4835 
4836 	rx_last = rx_tail;
4837 	rd = rx_base + rx_tail;
4838 	rx_tail = (rx_tail + 1) % 8;
4839 	memset(rd, 0, 16);
4840 	rd->buffer_addr = cpu_to_le64((u32) & packet);
4841 	E1000_WRITE_REG(hw, RDT, rx_tail);
4842 }
4843 
4844 /**
4845  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4846  * @adapter: board private structure
4847  *
4848  * Configure the Tx unit of the MAC after a reset.
4849  **/
4850 
4851 static void
4852 e1000_configure_tx(struct e1000_hw *hw)
4853 {
4854 	unsigned long ptr;
4855 	unsigned long tctl;
4856 	unsigned long tipg, tarc;
4857 	uint32_t ipgr1, ipgr2;
4858 
4859 	ptr = (u32) tx_pool;
4860 	if (ptr & 0xf)
4861 		ptr = (ptr + 0x10) & (~0xf);
4862 
4863 	tx_base = (typeof(tx_base)) ptr;
4864 
4865 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4866 	E1000_WRITE_REG(hw, TDBAH, 0);
4867 
4868 	E1000_WRITE_REG(hw, TDLEN, 128);
4869 
4870 	/* Setup the HW Tx Head and Tail descriptor pointers */
4871 	E1000_WRITE_REG(hw, TDH, 0);
4872 	E1000_WRITE_REG(hw, TDT, 0);
4873 	tx_tail = 0;
4874 
4875 	/* Set the default values for the Tx Inter Packet Gap timer */
4876 	if (hw->mac_type <= e1000_82547_rev_2 &&
4877 	    (hw->media_type == e1000_media_type_fiber ||
4878 	     hw->media_type == e1000_media_type_internal_serdes))
4879 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4880 	else
4881 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4882 
4883 	/* Set the default values for the Tx Inter Packet Gap timer */
4884 	switch (hw->mac_type) {
4885 	case e1000_82542_rev2_0:
4886 	case e1000_82542_rev2_1:
4887 		tipg = DEFAULT_82542_TIPG_IPGT;
4888 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4889 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4890 		break;
4891 	case e1000_80003es2lan:
4892 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4893 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4894 		break;
4895 	default:
4896 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4897 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4898 		break;
4899 	}
4900 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4901 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4902 	E1000_WRITE_REG(hw, TIPG, tipg);
4903 	/* Program the Transmit Control Register */
4904 	tctl = E1000_READ_REG(hw, TCTL);
4905 	tctl &= ~E1000_TCTL_CT;
4906 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4907 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4908 
4909 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4910 		tarc = E1000_READ_REG(hw, TARC0);
4911 		/* set the speed mode bit, we'll clear it if we're not at
4912 		 * gigabit link later */
4913 		/* git bit can be set to 1*/
4914 	} else if (hw->mac_type == e1000_80003es2lan) {
4915 		tarc = E1000_READ_REG(hw, TARC0);
4916 		tarc |= 1;
4917 		E1000_WRITE_REG(hw, TARC0, tarc);
4918 		tarc = E1000_READ_REG(hw, TARC1);
4919 		tarc |= 1;
4920 		E1000_WRITE_REG(hw, TARC1, tarc);
4921 	}
4922 
4923 
4924 	e1000_config_collision_dist(hw);
4925 	/* Setup Transmit Descriptor Settings for eop descriptor */
4926 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4927 
4928 	/* Need to set up RS bit */
4929 	if (hw->mac_type < e1000_82543)
4930 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
4931 	else
4932 		hw->txd_cmd |= E1000_TXD_CMD_RS;
4933 	E1000_WRITE_REG(hw, TCTL, tctl);
4934 }
4935 
4936 /**
4937  * e1000_setup_rctl - configure the receive control register
4938  * @adapter: Board private structure
4939  **/
4940 static void
4941 e1000_setup_rctl(struct e1000_hw *hw)
4942 {
4943 	uint32_t rctl;
4944 
4945 	rctl = E1000_READ_REG(hw, RCTL);
4946 
4947 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4948 
4949 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4950 		| E1000_RCTL_RDMTS_HALF;	/* |
4951 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4952 
4953 	if (hw->tbi_compatibility_on == 1)
4954 		rctl |= E1000_RCTL_SBP;
4955 	else
4956 		rctl &= ~E1000_RCTL_SBP;
4957 
4958 	rctl &= ~(E1000_RCTL_SZ_4096);
4959 		rctl |= E1000_RCTL_SZ_2048;
4960 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4961 	E1000_WRITE_REG(hw, RCTL, rctl);
4962 }
4963 
4964 /**
4965  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4966  * @adapter: board private structure
4967  *
4968  * Configure the Rx unit of the MAC after a reset.
4969  **/
4970 static void
4971 e1000_configure_rx(struct e1000_hw *hw)
4972 {
4973 	unsigned long ptr;
4974 	unsigned long rctl, ctrl_ext;
4975 	rx_tail = 0;
4976 	/* make sure receives are disabled while setting up the descriptors */
4977 	rctl = E1000_READ_REG(hw, RCTL);
4978 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4979 	if (hw->mac_type >= e1000_82540) {
4980 		/* Set the interrupt throttling rate.  Value is calculated
4981 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4982 #define MAX_INTS_PER_SEC	8000
4983 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
4984 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4985 	}
4986 
4987 	if (hw->mac_type >= e1000_82571) {
4988 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4989 		/* Reset delay timers after every interrupt */
4990 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4991 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4992 		E1000_WRITE_FLUSH(hw);
4993 	}
4994 	/* Setup the Base and Length of the Rx Descriptor Ring */
4995 	ptr = (u32) rx_pool;
4996 	if (ptr & 0xf)
4997 		ptr = (ptr + 0x10) & (~0xf);
4998 	rx_base = (typeof(rx_base)) ptr;
4999 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
5000 	E1000_WRITE_REG(hw, RDBAH, 0);
5001 
5002 	E1000_WRITE_REG(hw, RDLEN, 128);
5003 
5004 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
5005 	E1000_WRITE_REG(hw, RDH, 0);
5006 	E1000_WRITE_REG(hw, RDT, 0);
5007 	/* Enable Receives */
5008 
5009 	E1000_WRITE_REG(hw, RCTL, rctl);
5010 	fill_rx(hw);
5011 }
5012 
5013 /**************************************************************************
5014 POLL - Wait for a frame
5015 ***************************************************************************/
5016 static int
5017 e1000_poll(struct eth_device *nic)
5018 {
5019 	struct e1000_hw *hw = nic->priv;
5020 	struct e1000_rx_desc *rd;
5021 	/* return true if there's an ethernet packet ready to read */
5022 	rd = rx_base + rx_last;
5023 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5024 		return 0;
5025 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5026 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
5027 	fill_rx(hw);
5028 	return 1;
5029 }
5030 
5031 /**************************************************************************
5032 TRANSMIT - Transmit a frame
5033 ***************************************************************************/
5034 static int
5035 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5036 {
5037 	void * nv_packet = (void *)packet;
5038 	struct e1000_hw *hw = nic->priv;
5039 	struct e1000_tx_desc *txp;
5040 	int i = 0;
5041 
5042 	txp = tx_base + tx_tail;
5043 	tx_tail = (tx_tail + 1) % 8;
5044 
5045 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5046 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5047 	txp->upper.data = 0;
5048 	E1000_WRITE_REG(hw, TDT, tx_tail);
5049 
5050 	E1000_WRITE_FLUSH(hw);
5051 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5052 		if (i++ > TOUT_LOOP) {
5053 			DEBUGOUT("e1000: tx timeout\n");
5054 			return 0;
5055 		}
5056 		udelay(10);	/* give the nic a chance to write to the register */
5057 	}
5058 	return 1;
5059 }
5060 
5061 /*reset function*/
5062 static inline int
5063 e1000_reset(struct eth_device *nic)
5064 {
5065 	struct e1000_hw *hw = nic->priv;
5066 
5067 	e1000_reset_hw(hw);
5068 	if (hw->mac_type >= e1000_82544) {
5069 		E1000_WRITE_REG(hw, WUC, 0);
5070 	}
5071 	return e1000_init_hw(nic);
5072 }
5073 
5074 /**************************************************************************
5075 DISABLE - Turn off ethernet interface
5076 ***************************************************************************/
5077 static void
5078 e1000_disable(struct eth_device *nic)
5079 {
5080 	struct e1000_hw *hw = nic->priv;
5081 
5082 	/* Turn off the ethernet interface */
5083 	E1000_WRITE_REG(hw, RCTL, 0);
5084 	E1000_WRITE_REG(hw, TCTL, 0);
5085 
5086 	/* Clear the transmit ring */
5087 	E1000_WRITE_REG(hw, TDH, 0);
5088 	E1000_WRITE_REG(hw, TDT, 0);
5089 
5090 	/* Clear the receive ring */
5091 	E1000_WRITE_REG(hw, RDH, 0);
5092 	E1000_WRITE_REG(hw, RDT, 0);
5093 
5094 	/* put the card in its initial state */
5095 #if 0
5096 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5097 #endif
5098 	mdelay(10);
5099 
5100 }
5101 
5102 /**************************************************************************
5103 INIT - set up ethernet interface(s)
5104 ***************************************************************************/
5105 static int
5106 e1000_init(struct eth_device *nic, bd_t * bis)
5107 {
5108 	struct e1000_hw *hw = nic->priv;
5109 	int ret_val = 0;
5110 
5111 	ret_val = e1000_reset(nic);
5112 	if (ret_val < 0) {
5113 		if ((ret_val == -E1000_ERR_NOLINK) ||
5114 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5115 			E1000_ERR(hw->nic, "Valid Link not detected\n");
5116 		} else {
5117 			E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5118 		}
5119 		return 0;
5120 	}
5121 	e1000_configure_tx(hw);
5122 	e1000_setup_rctl(hw);
5123 	e1000_configure_rx(hw);
5124 	return 1;
5125 }
5126 
5127 /******************************************************************************
5128  * Gets the current PCI bus type of hardware
5129  *
5130  * hw - Struct containing variables accessed by shared code
5131  *****************************************************************************/
5132 void e1000_get_bus_type(struct e1000_hw *hw)
5133 {
5134 	uint32_t status;
5135 
5136 	switch (hw->mac_type) {
5137 	case e1000_82542_rev2_0:
5138 	case e1000_82542_rev2_1:
5139 		hw->bus_type = e1000_bus_type_pci;
5140 		break;
5141 	case e1000_82571:
5142 	case e1000_82572:
5143 	case e1000_82573:
5144 	case e1000_82574:
5145 	case e1000_80003es2lan:
5146 		hw->bus_type = e1000_bus_type_pci_express;
5147 		break;
5148 	case e1000_ich8lan:
5149 		hw->bus_type = e1000_bus_type_pci_express;
5150 		break;
5151 	default:
5152 		status = E1000_READ_REG(hw, STATUS);
5153 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5154 				e1000_bus_type_pcix : e1000_bus_type_pci;
5155 		break;
5156 	}
5157 }
5158 
5159 /* A list of all registered e1000 devices */
5160 static LIST_HEAD(e1000_hw_list);
5161 
5162 /**************************************************************************
5163 PROBE - Look for an adapter, this routine's visible to the outside
5164 You should omit the last argument struct pci_device * for a non-PCI NIC
5165 ***************************************************************************/
5166 int
5167 e1000_initialize(bd_t * bis)
5168 {
5169 	unsigned int i;
5170 	pci_dev_t devno;
5171 
5172 	DEBUGFUNC();
5173 
5174 	/* Find and probe all the matching PCI devices */
5175 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5176 		u32 val;
5177 
5178 		/*
5179 		 * These will never get freed due to errors, this allows us to
5180 		 * perform SPI EEPROM programming from U-boot, for example.
5181 		 */
5182 		struct eth_device *nic = malloc(sizeof(*nic));
5183 		struct e1000_hw *hw = malloc(sizeof(*hw));
5184 		if (!nic || !hw) {
5185 			printf("e1000#%u: Out of Memory!\n", i);
5186 			free(nic);
5187 			free(hw);
5188 			continue;
5189 		}
5190 
5191 		/* Make sure all of the fields are initially zeroed */
5192 		memset(nic, 0, sizeof(*nic));
5193 		memset(hw, 0, sizeof(*hw));
5194 
5195 		/* Assign the passed-in values */
5196 		hw->cardnum = i;
5197 		hw->pdev = devno;
5198 		hw->nic = nic;
5199 		nic->priv = hw;
5200 
5201 		/* Generate a card name */
5202 		sprintf(nic->name, "e1000#%u", hw->cardnum);
5203 
5204 		/* Print a debug message with the IO base address */
5205 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5206 		E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5207 
5208 		/* Try to enable I/O accesses and bus-mastering */
5209 		val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5210 		pci_write_config_dword(devno, PCI_COMMAND, val);
5211 
5212 		/* Make sure it worked */
5213 		pci_read_config_dword(devno, PCI_COMMAND, &val);
5214 		if (!(val & PCI_COMMAND_MEMORY)) {
5215 			E1000_ERR(nic, "Can't enable I/O memory\n");
5216 			continue;
5217 		}
5218 		if (!(val & PCI_COMMAND_MASTER)) {
5219 			E1000_ERR(nic, "Can't enable bus-mastering\n");
5220 			continue;
5221 		}
5222 
5223 		/* Are these variables needed? */
5224 		hw->fc = e1000_fc_default;
5225 		hw->original_fc = e1000_fc_default;
5226 		hw->autoneg_failed = 0;
5227 		hw->autoneg = 1;
5228 		hw->get_link_status = TRUE;
5229 		hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5230 							PCI_REGION_MEM);
5231 		hw->mac_type = e1000_undefined;
5232 
5233 		/* MAC and Phy settings */
5234 		if (e1000_sw_init(nic) < 0) {
5235 			E1000_ERR(nic, "Software init failed\n");
5236 			continue;
5237 		}
5238 		if (e1000_check_phy_reset_block(hw))
5239 			E1000_ERR(nic, "PHY Reset is blocked!\n");
5240 
5241 		/* Basic init was OK, reset the hardware and allow SPI access */
5242 		e1000_reset_hw(hw);
5243 		list_add_tail(&hw->list_node, &e1000_hw_list);
5244 
5245 		/* Validate the EEPROM and get chipset information */
5246 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
5247 		if (e1000_init_eeprom_params(hw)) {
5248 			E1000_ERR(nic, "EEPROM is invalid!\n");
5249 			continue;
5250 		}
5251 		if (e1000_validate_eeprom_checksum(hw))
5252 			continue;
5253 #endif
5254 		e1000_read_mac_addr(nic);
5255 		e1000_get_bus_type(hw);
5256 
5257 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5258 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5259 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5260 
5261 		/* Set up the function pointers and register the device */
5262 		nic->init = e1000_init;
5263 		nic->recv = e1000_poll;
5264 		nic->send = e1000_transmit;
5265 		nic->halt = e1000_disable;
5266 		eth_register(nic);
5267 	}
5268 
5269 	return i;
5270 }
5271 
5272 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5273 {
5274 	struct e1000_hw *hw;
5275 
5276 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5277 		if (hw->cardnum == cardnum)
5278 			return hw;
5279 
5280 	return NULL;
5281 }
5282 
5283 #ifdef CONFIG_CMD_E1000
5284 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5285 		int argc, char * const argv[])
5286 {
5287 	struct e1000_hw *hw;
5288 
5289 	if (argc < 3) {
5290 		cmd_usage(cmdtp);
5291 		return 1;
5292 	}
5293 
5294 	/* Make sure we can find the requested e1000 card */
5295 	hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5296 	if (!hw) {
5297 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5298 		return 1;
5299 	}
5300 
5301 	if (!strcmp(argv[2], "print-mac-address")) {
5302 		unsigned char *mac = hw->nic->enetaddr;
5303 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5304 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5305 		return 0;
5306 	}
5307 
5308 #ifdef CONFIG_E1000_SPI
5309 	/* Handle the "SPI" subcommand */
5310 	if (!strcmp(argv[2], "spi"))
5311 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5312 #endif
5313 
5314 	cmd_usage(cmdtp);
5315 	return 1;
5316 }
5317 
5318 U_BOOT_CMD(
5319 	e1000, 7, 0, do_e1000,
5320 	"Intel e1000 controller management",
5321 	/*  */"<card#> print-mac-address\n"
5322 #ifdef CONFIG_E1000_SPI
5323 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5324 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5325 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5326 	"e1000 <card#> spi checksum [update]\n"
5327 #endif
5328 	"       - Manage the Intel E1000 PCI device"
5329 );
5330 #endif /* not CONFIG_CMD_E1000 */
5331