xref: /openbmc/u-boot/drivers/net/e1000.c (revision b1e6c4c3)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16 
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21 
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA	02111-1307, USA.
25 
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28 
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32 
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  *
44  *  Copyright 2011 Freescale Semiconductor, Inc.
45  */
46 
47 #include "e1000.h"
48 
49 #define TOUT_LOOP   100000
50 
51 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
52 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
53 
54 #define E1000_DEFAULT_PCI_PBA	0x00000030
55 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
56 
57 /* NIC specific static variables go here */
58 
59 static char tx_pool[128 + 16];
60 static char rx_pool[128 + 16];
61 static char packet[2096];
62 
63 static struct e1000_tx_desc *tx_base;
64 static struct e1000_rx_desc *rx_base;
65 
66 static int tx_tail;
67 static int rx_tail, rx_last;
68 
69 static struct pci_device_id e1000_supported[] = {
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
72 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
86 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
87 	/* E1000 PCIe card */
88 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
89 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
90 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
91 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
92 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
93 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
94 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
95 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
96 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
97 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
98 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
99 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
100 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
101 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
102 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
103 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
104 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
105 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
106 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
107 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
108 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
109 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
110 	{}
111 };
112 
113 /* Function forward declarations */
114 static int e1000_setup_link(struct eth_device *nic);
115 static int e1000_setup_fiber_link(struct eth_device *nic);
116 static int e1000_setup_copper_link(struct eth_device *nic);
117 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
118 static void e1000_config_collision_dist(struct e1000_hw *hw);
119 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
120 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
121 static int e1000_check_for_link(struct eth_device *nic);
122 static int e1000_wait_autoneg(struct e1000_hw *hw);
123 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
124 				       uint16_t * duplex);
125 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 			      uint16_t * phy_data);
127 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
128 			       uint16_t phy_data);
129 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
130 static int e1000_phy_reset(struct e1000_hw *hw);
131 static int e1000_detect_gig_phy(struct e1000_hw *hw);
132 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133 static void e1000_set_media_type(struct e1000_hw *hw);
134 
135 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
136 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
137 
138 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
139 		uint16_t words,
140 		uint16_t *data);
141 /******************************************************************************
142  * Raises the EEPROM's clock input.
143  *
144  * hw - Struct containing variables accessed by shared code
145  * eecd - EECD's current value
146  *****************************************************************************/
147 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
148 {
149 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
150 	 * wait 50 microseconds.
151 	 */
152 	*eecd = *eecd | E1000_EECD_SK;
153 	E1000_WRITE_REG(hw, EECD, *eecd);
154 	E1000_WRITE_FLUSH(hw);
155 	udelay(50);
156 }
157 
158 /******************************************************************************
159  * Lowers the EEPROM's clock input.
160  *
161  * hw - Struct containing variables accessed by shared code
162  * eecd - EECD's current value
163  *****************************************************************************/
164 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
165 {
166 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
167 	 * wait 50 microseconds.
168 	 */
169 	*eecd = *eecd & ~E1000_EECD_SK;
170 	E1000_WRITE_REG(hw, EECD, *eecd);
171 	E1000_WRITE_FLUSH(hw);
172 	udelay(50);
173 }
174 
175 /******************************************************************************
176  * Shift data bits out to the EEPROM.
177  *
178  * hw - Struct containing variables accessed by shared code
179  * data - data to send to the EEPROM
180  * count - number of bits to shift out
181  *****************************************************************************/
182 static void
183 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
184 {
185 	uint32_t eecd;
186 	uint32_t mask;
187 
188 	/* We need to shift "count" bits out to the EEPROM. So, value in the
189 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
190 	 * In order to do this, "data" must be broken down into bits.
191 	 */
192 	mask = 0x01 << (count - 1);
193 	eecd = E1000_READ_REG(hw, EECD);
194 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
195 	do {
196 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
197 		 * and then raising and then lowering the clock (the SK bit controls
198 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
199 		 * by setting "DI" to "0" and then raising and then lowering the clock.
200 		 */
201 		eecd &= ~E1000_EECD_DI;
202 
203 		if (data & mask)
204 			eecd |= E1000_EECD_DI;
205 
206 		E1000_WRITE_REG(hw, EECD, eecd);
207 		E1000_WRITE_FLUSH(hw);
208 
209 		udelay(50);
210 
211 		e1000_raise_ee_clk(hw, &eecd);
212 		e1000_lower_ee_clk(hw, &eecd);
213 
214 		mask = mask >> 1;
215 
216 	} while (mask);
217 
218 	/* We leave the "DI" bit set to "0" when we leave this routine. */
219 	eecd &= ~E1000_EECD_DI;
220 	E1000_WRITE_REG(hw, EECD, eecd);
221 }
222 
223 /******************************************************************************
224  * Shift data bits in from the EEPROM
225  *
226  * hw - Struct containing variables accessed by shared code
227  *****************************************************************************/
228 static uint16_t
229 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
230 {
231 	uint32_t eecd;
232 	uint32_t i;
233 	uint16_t data;
234 
235 	/* In order to read a register from the EEPROM, we need to shift 'count'
236 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
237 	 * input to the EEPROM (setting the SK bit), and then reading the
238 	 * value of the "DO" bit.  During this "shifting in" process the
239 	 * "DI" bit should always be clear.
240 	 */
241 
242 	eecd = E1000_READ_REG(hw, EECD);
243 
244 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
245 	data = 0;
246 
247 	for (i = 0; i < count; i++) {
248 		data = data << 1;
249 		e1000_raise_ee_clk(hw, &eecd);
250 
251 		eecd = E1000_READ_REG(hw, EECD);
252 
253 		eecd &= ~(E1000_EECD_DI);
254 		if (eecd & E1000_EECD_DO)
255 			data |= 1;
256 
257 		e1000_lower_ee_clk(hw, &eecd);
258 	}
259 
260 	return data;
261 }
262 
263 /******************************************************************************
264  * Returns EEPROM to a "standby" state
265  *
266  * hw - Struct containing variables accessed by shared code
267  *****************************************************************************/
268 void e1000_standby_eeprom(struct e1000_hw *hw)
269 {
270 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
271 	uint32_t eecd;
272 
273 	eecd = E1000_READ_REG(hw, EECD);
274 
275 	if (eeprom->type == e1000_eeprom_microwire) {
276 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
277 		E1000_WRITE_REG(hw, EECD, eecd);
278 		E1000_WRITE_FLUSH(hw);
279 		udelay(eeprom->delay_usec);
280 
281 		/* Clock high */
282 		eecd |= E1000_EECD_SK;
283 		E1000_WRITE_REG(hw, EECD, eecd);
284 		E1000_WRITE_FLUSH(hw);
285 		udelay(eeprom->delay_usec);
286 
287 		/* Select EEPROM */
288 		eecd |= E1000_EECD_CS;
289 		E1000_WRITE_REG(hw, EECD, eecd);
290 		E1000_WRITE_FLUSH(hw);
291 		udelay(eeprom->delay_usec);
292 
293 		/* Clock low */
294 		eecd &= ~E1000_EECD_SK;
295 		E1000_WRITE_REG(hw, EECD, eecd);
296 		E1000_WRITE_FLUSH(hw);
297 		udelay(eeprom->delay_usec);
298 	} else if (eeprom->type == e1000_eeprom_spi) {
299 		/* Toggle CS to flush commands */
300 		eecd |= E1000_EECD_CS;
301 		E1000_WRITE_REG(hw, EECD, eecd);
302 		E1000_WRITE_FLUSH(hw);
303 		udelay(eeprom->delay_usec);
304 		eecd &= ~E1000_EECD_CS;
305 		E1000_WRITE_REG(hw, EECD, eecd);
306 		E1000_WRITE_FLUSH(hw);
307 		udelay(eeprom->delay_usec);
308 	}
309 }
310 
311 /***************************************************************************
312 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
313 *
314 * hw - Struct containing variables accessed by shared code
315 ****************************************************************************/
316 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
317 {
318 	uint32_t eecd = 0;
319 
320 	DEBUGFUNC();
321 
322 	if (hw->mac_type == e1000_ich8lan)
323 		return false;
324 
325 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
326 		eecd = E1000_READ_REG(hw, EECD);
327 
328 		/* Isolate bits 15 & 16 */
329 		eecd = ((eecd >> 15) & 0x03);
330 
331 		/* If both bits are set, device is Flash type */
332 		if (eecd == 0x03)
333 			return false;
334 	}
335 	return true;
336 }
337 
338 /******************************************************************************
339  * Prepares EEPROM for access
340  *
341  * hw - Struct containing variables accessed by shared code
342  *
343  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
344  * function should be called before issuing a command to the EEPROM.
345  *****************************************************************************/
346 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
347 {
348 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
349 	uint32_t eecd, i = 0;
350 
351 	DEBUGFUNC();
352 
353 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
354 		return -E1000_ERR_SWFW_SYNC;
355 	eecd = E1000_READ_REG(hw, EECD);
356 
357 	if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
358 		/* Request EEPROM Access */
359 		if (hw->mac_type > e1000_82544) {
360 			eecd |= E1000_EECD_REQ;
361 			E1000_WRITE_REG(hw, EECD, eecd);
362 			eecd = E1000_READ_REG(hw, EECD);
363 			while ((!(eecd & E1000_EECD_GNT)) &&
364 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
365 				i++;
366 				udelay(5);
367 				eecd = E1000_READ_REG(hw, EECD);
368 			}
369 			if (!(eecd & E1000_EECD_GNT)) {
370 				eecd &= ~E1000_EECD_REQ;
371 				E1000_WRITE_REG(hw, EECD, eecd);
372 				DEBUGOUT("Could not acquire EEPROM grant\n");
373 				return -E1000_ERR_EEPROM;
374 			}
375 		}
376 	}
377 
378 	/* Setup EEPROM for Read/Write */
379 
380 	if (eeprom->type == e1000_eeprom_microwire) {
381 		/* Clear SK and DI */
382 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
383 		E1000_WRITE_REG(hw, EECD, eecd);
384 
385 		/* Set CS */
386 		eecd |= E1000_EECD_CS;
387 		E1000_WRITE_REG(hw, EECD, eecd);
388 	} else if (eeprom->type == e1000_eeprom_spi) {
389 		/* Clear SK and CS */
390 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
391 		E1000_WRITE_REG(hw, EECD, eecd);
392 		udelay(1);
393 	}
394 
395 	return E1000_SUCCESS;
396 }
397 
398 /******************************************************************************
399  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
400  * is configured.  Additionally, if this is ICH8, the flash controller GbE
401  * registers must be mapped, or this will crash.
402  *
403  * hw - Struct containing variables accessed by shared code
404  *****************************************************************************/
405 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
406 {
407 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
408 	uint32_t eecd = E1000_READ_REG(hw, EECD);
409 	int32_t ret_val = E1000_SUCCESS;
410 	uint16_t eeprom_size;
411 
412 	DEBUGFUNC();
413 
414 	switch (hw->mac_type) {
415 	case e1000_82542_rev2_0:
416 	case e1000_82542_rev2_1:
417 	case e1000_82543:
418 	case e1000_82544:
419 		eeprom->type = e1000_eeprom_microwire;
420 		eeprom->word_size = 64;
421 		eeprom->opcode_bits = 3;
422 		eeprom->address_bits = 6;
423 		eeprom->delay_usec = 50;
424 		eeprom->use_eerd = false;
425 		eeprom->use_eewr = false;
426 	break;
427 	case e1000_82540:
428 	case e1000_82545:
429 	case e1000_82545_rev_3:
430 	case e1000_82546:
431 	case e1000_82546_rev_3:
432 		eeprom->type = e1000_eeprom_microwire;
433 		eeprom->opcode_bits = 3;
434 		eeprom->delay_usec = 50;
435 		if (eecd & E1000_EECD_SIZE) {
436 			eeprom->word_size = 256;
437 			eeprom->address_bits = 8;
438 		} else {
439 			eeprom->word_size = 64;
440 			eeprom->address_bits = 6;
441 		}
442 		eeprom->use_eerd = false;
443 		eeprom->use_eewr = false;
444 		break;
445 	case e1000_82541:
446 	case e1000_82541_rev_2:
447 	case e1000_82547:
448 	case e1000_82547_rev_2:
449 		if (eecd & E1000_EECD_TYPE) {
450 			eeprom->type = e1000_eeprom_spi;
451 			eeprom->opcode_bits = 8;
452 			eeprom->delay_usec = 1;
453 			if (eecd & E1000_EECD_ADDR_BITS) {
454 				eeprom->page_size = 32;
455 				eeprom->address_bits = 16;
456 			} else {
457 				eeprom->page_size = 8;
458 				eeprom->address_bits = 8;
459 			}
460 		} else {
461 			eeprom->type = e1000_eeprom_microwire;
462 			eeprom->opcode_bits = 3;
463 			eeprom->delay_usec = 50;
464 			if (eecd & E1000_EECD_ADDR_BITS) {
465 				eeprom->word_size = 256;
466 				eeprom->address_bits = 8;
467 			} else {
468 				eeprom->word_size = 64;
469 				eeprom->address_bits = 6;
470 			}
471 		}
472 		eeprom->use_eerd = false;
473 		eeprom->use_eewr = false;
474 		break;
475 	case e1000_82571:
476 	case e1000_82572:
477 		eeprom->type = e1000_eeprom_spi;
478 		eeprom->opcode_bits = 8;
479 		eeprom->delay_usec = 1;
480 		if (eecd & E1000_EECD_ADDR_BITS) {
481 			eeprom->page_size = 32;
482 			eeprom->address_bits = 16;
483 		} else {
484 			eeprom->page_size = 8;
485 			eeprom->address_bits = 8;
486 		}
487 		eeprom->use_eerd = false;
488 		eeprom->use_eewr = false;
489 		break;
490 	case e1000_82573:
491 	case e1000_82574:
492 		eeprom->type = e1000_eeprom_spi;
493 		eeprom->opcode_bits = 8;
494 		eeprom->delay_usec = 1;
495 		if (eecd & E1000_EECD_ADDR_BITS) {
496 			eeprom->page_size = 32;
497 			eeprom->address_bits = 16;
498 		} else {
499 			eeprom->page_size = 8;
500 			eeprom->address_bits = 8;
501 		}
502 		eeprom->use_eerd = true;
503 		eeprom->use_eewr = true;
504 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
505 			eeprom->type = e1000_eeprom_flash;
506 			eeprom->word_size = 2048;
507 
508 		/* Ensure that the Autonomous FLASH update bit is cleared due to
509 		 * Flash update issue on parts which use a FLASH for NVM. */
510 			eecd &= ~E1000_EECD_AUPDEN;
511 			E1000_WRITE_REG(hw, EECD, eecd);
512 		}
513 		break;
514 	case e1000_80003es2lan:
515 		eeprom->type = e1000_eeprom_spi;
516 		eeprom->opcode_bits = 8;
517 		eeprom->delay_usec = 1;
518 		if (eecd & E1000_EECD_ADDR_BITS) {
519 			eeprom->page_size = 32;
520 			eeprom->address_bits = 16;
521 		} else {
522 			eeprom->page_size = 8;
523 			eeprom->address_bits = 8;
524 		}
525 		eeprom->use_eerd = true;
526 		eeprom->use_eewr = false;
527 		break;
528 
529 	/* ich8lan does not support currently. if needed, please
530 	 * add corresponding code and functions.
531 	 */
532 #if 0
533 	case e1000_ich8lan:
534 		{
535 		int32_t  i = 0;
536 
537 		eeprom->type = e1000_eeprom_ich8;
538 		eeprom->use_eerd = false;
539 		eeprom->use_eewr = false;
540 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
541 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
542 				ICH_FLASH_GFPREG);
543 		/* Zero the shadow RAM structure. But don't load it from NVM
544 		 * so as to save time for driver init */
545 		if (hw->eeprom_shadow_ram != NULL) {
546 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
547 				hw->eeprom_shadow_ram[i].modified = false;
548 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
549 			}
550 		}
551 
552 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
553 				ICH_FLASH_SECTOR_SIZE;
554 
555 		hw->flash_bank_size = ((flash_size >> 16)
556 				& ICH_GFPREG_BASE_MASK) + 1;
557 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
558 
559 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
560 
561 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
562 		break;
563 		}
564 #endif
565 	default:
566 		break;
567 	}
568 
569 	if (eeprom->type == e1000_eeprom_spi) {
570 		/* eeprom_size will be an enum [0..8] that maps
571 		 * to eeprom sizes 128B to
572 		 * 32KB (incremented by powers of 2).
573 		 */
574 		if (hw->mac_type <= e1000_82547_rev_2) {
575 			/* Set to default value for initial eeprom read. */
576 			eeprom->word_size = 64;
577 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
578 					&eeprom_size);
579 			if (ret_val)
580 				return ret_val;
581 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
582 				>> EEPROM_SIZE_SHIFT;
583 			/* 256B eeprom size was not supported in earlier
584 			 * hardware, so we bump eeprom_size up one to
585 			 * ensure that "1" (which maps to 256B) is never
586 			 * the result used in the shifting logic below. */
587 			if (eeprom_size)
588 				eeprom_size++;
589 		} else {
590 			eeprom_size = (uint16_t)((eecd &
591 				E1000_EECD_SIZE_EX_MASK) >>
592 				E1000_EECD_SIZE_EX_SHIFT);
593 		}
594 
595 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
596 	}
597 	return ret_val;
598 }
599 
600 /******************************************************************************
601  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
602  *
603  * hw - Struct containing variables accessed by shared code
604  *****************************************************************************/
605 static int32_t
606 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
607 {
608 	uint32_t attempts = 100000;
609 	uint32_t i, reg = 0;
610 	int32_t done = E1000_ERR_EEPROM;
611 
612 	for (i = 0; i < attempts; i++) {
613 		if (eerd == E1000_EEPROM_POLL_READ)
614 			reg = E1000_READ_REG(hw, EERD);
615 		else
616 			reg = E1000_READ_REG(hw, EEWR);
617 
618 		if (reg & E1000_EEPROM_RW_REG_DONE) {
619 			done = E1000_SUCCESS;
620 			break;
621 		}
622 		udelay(5);
623 	}
624 
625 	return done;
626 }
627 
628 /******************************************************************************
629  * Reads a 16 bit word from the EEPROM using the EERD register.
630  *
631  * hw - Struct containing variables accessed by shared code
632  * offset - offset of  word in the EEPROM to read
633  * data - word read from the EEPROM
634  * words - number of words to read
635  *****************************************************************************/
636 static int32_t
637 e1000_read_eeprom_eerd(struct e1000_hw *hw,
638 			uint16_t offset,
639 			uint16_t words,
640 			uint16_t *data)
641 {
642 	uint32_t i, eerd = 0;
643 	int32_t error = 0;
644 
645 	for (i = 0; i < words; i++) {
646 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
647 			E1000_EEPROM_RW_REG_START;
648 
649 		E1000_WRITE_REG(hw, EERD, eerd);
650 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
651 
652 		if (error)
653 			break;
654 		data[i] = (E1000_READ_REG(hw, EERD) >>
655 				E1000_EEPROM_RW_REG_DATA);
656 
657 	}
658 
659 	return error;
660 }
661 
662 void e1000_release_eeprom(struct e1000_hw *hw)
663 {
664 	uint32_t eecd;
665 
666 	DEBUGFUNC();
667 
668 	eecd = E1000_READ_REG(hw, EECD);
669 
670 	if (hw->eeprom.type == e1000_eeprom_spi) {
671 		eecd |= E1000_EECD_CS;  /* Pull CS high */
672 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
673 
674 		E1000_WRITE_REG(hw, EECD, eecd);
675 
676 		udelay(hw->eeprom.delay_usec);
677 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
678 		/* cleanup eeprom */
679 
680 		/* CS on Microwire is active-high */
681 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
682 
683 		E1000_WRITE_REG(hw, EECD, eecd);
684 
685 		/* Rising edge of clock */
686 		eecd |= E1000_EECD_SK;
687 		E1000_WRITE_REG(hw, EECD, eecd);
688 		E1000_WRITE_FLUSH(hw);
689 		udelay(hw->eeprom.delay_usec);
690 
691 		/* Falling edge of clock */
692 		eecd &= ~E1000_EECD_SK;
693 		E1000_WRITE_REG(hw, EECD, eecd);
694 		E1000_WRITE_FLUSH(hw);
695 		udelay(hw->eeprom.delay_usec);
696 	}
697 
698 	/* Stop requesting EEPROM access */
699 	if (hw->mac_type > e1000_82544) {
700 		eecd &= ~E1000_EECD_REQ;
701 		E1000_WRITE_REG(hw, EECD, eecd);
702 	}
703 }
704 /******************************************************************************
705  * Reads a 16 bit word from the EEPROM.
706  *
707  * hw - Struct containing variables accessed by shared code
708  *****************************************************************************/
709 static int32_t
710 e1000_spi_eeprom_ready(struct e1000_hw *hw)
711 {
712 	uint16_t retry_count = 0;
713 	uint8_t spi_stat_reg;
714 
715 	DEBUGFUNC();
716 
717 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
718 	 * EEPROM will signal that the command has been completed by clearing
719 	 * bit 0 of the internal status register.  If it's not cleared within
720 	 * 5 milliseconds, then error out.
721 	 */
722 	retry_count = 0;
723 	do {
724 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
725 			hw->eeprom.opcode_bits);
726 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
727 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
728 			break;
729 
730 		udelay(5);
731 		retry_count += 5;
732 
733 		e1000_standby_eeprom(hw);
734 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
735 
736 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
737 	 * only 0-5mSec on 5V devices)
738 	 */
739 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
740 		DEBUGOUT("SPI EEPROM Status error\n");
741 		return -E1000_ERR_EEPROM;
742 	}
743 
744 	return E1000_SUCCESS;
745 }
746 
747 /******************************************************************************
748  * Reads a 16 bit word from the EEPROM.
749  *
750  * hw - Struct containing variables accessed by shared code
751  * offset - offset of  word in the EEPROM to read
752  * data - word read from the EEPROM
753  *****************************************************************************/
754 static int32_t
755 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
756 		uint16_t words, uint16_t *data)
757 {
758 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
759 	uint32_t i = 0;
760 
761 	DEBUGFUNC();
762 
763 	/* If eeprom is not yet detected, do so now */
764 	if (eeprom->word_size == 0)
765 		e1000_init_eeprom_params(hw);
766 
767 	/* A check for invalid values:  offset too large, too many words,
768 	 * and not enough words.
769 	 */
770 	if ((offset >= eeprom->word_size) ||
771 		(words > eeprom->word_size - offset) ||
772 		(words == 0)) {
773 		DEBUGOUT("\"words\" parameter out of bounds."
774 			"Words = %d, size = %d\n", offset, eeprom->word_size);
775 		return -E1000_ERR_EEPROM;
776 	}
777 
778 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
779 	 * directly. In this case, we need to acquire the EEPROM so that
780 	 * FW or other port software does not interrupt.
781 	 */
782 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
783 		hw->eeprom.use_eerd == false) {
784 
785 		/* Prepare the EEPROM for bit-bang reading */
786 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
787 			return -E1000_ERR_EEPROM;
788 	}
789 
790 	/* Eerd register EEPROM access requires no eeprom aquire/release */
791 	if (eeprom->use_eerd == true)
792 		return e1000_read_eeprom_eerd(hw, offset, words, data);
793 
794 	/* ich8lan does not support currently. if needed, please
795 	 * add corresponding code and functions.
796 	 */
797 #if 0
798 	/* ICH EEPROM access is done via the ICH flash controller */
799 	if (eeprom->type == e1000_eeprom_ich8)
800 		return e1000_read_eeprom_ich8(hw, offset, words, data);
801 #endif
802 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
803 	 * acquired the EEPROM at this point, so any returns should relase it */
804 	if (eeprom->type == e1000_eeprom_spi) {
805 		uint16_t word_in;
806 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
807 
808 		if (e1000_spi_eeprom_ready(hw)) {
809 			e1000_release_eeprom(hw);
810 			return -E1000_ERR_EEPROM;
811 		}
812 
813 		e1000_standby_eeprom(hw);
814 
815 		/* Some SPI eeproms use the 8th address bit embedded in
816 		 * the opcode */
817 		if ((eeprom->address_bits == 8) && (offset >= 128))
818 			read_opcode |= EEPROM_A8_OPCODE_SPI;
819 
820 		/* Send the READ command (opcode + addr)  */
821 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
822 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
823 				eeprom->address_bits);
824 
825 		/* Read the data.  The address of the eeprom internally
826 		 * increments with each byte (spi) being read, saving on the
827 		 * overhead of eeprom setup and tear-down.  The address
828 		 * counter will roll over if reading beyond the size of
829 		 * the eeprom, thus allowing the entire memory to be read
830 		 * starting from any offset. */
831 		for (i = 0; i < words; i++) {
832 			word_in = e1000_shift_in_ee_bits(hw, 16);
833 			data[i] = (word_in >> 8) | (word_in << 8);
834 		}
835 	} else if (eeprom->type == e1000_eeprom_microwire) {
836 		for (i = 0; i < words; i++) {
837 			/* Send the READ command (opcode + addr)  */
838 			e1000_shift_out_ee_bits(hw,
839 				EEPROM_READ_OPCODE_MICROWIRE,
840 				eeprom->opcode_bits);
841 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
842 				eeprom->address_bits);
843 
844 			/* Read the data.  For microwire, each word requires
845 			 * the overhead of eeprom setup and tear-down. */
846 			data[i] = e1000_shift_in_ee_bits(hw, 16);
847 			e1000_standby_eeprom(hw);
848 		}
849 	}
850 
851 	/* End this read operation */
852 	e1000_release_eeprom(hw);
853 
854 	return E1000_SUCCESS;
855 }
856 
857 /******************************************************************************
858  * Verifies that the EEPROM has a valid checksum
859  *
860  * hw - Struct containing variables accessed by shared code
861  *
862  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
863  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
864  * valid.
865  *****************************************************************************/
866 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
867 {
868 	uint16_t i, checksum, checksum_reg, *buf;
869 
870 	DEBUGFUNC();
871 
872 	/* Allocate a temporary buffer */
873 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
874 	if (!buf) {
875 		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
876 		return -E1000_ERR_EEPROM;
877 	}
878 
879 	/* Read the EEPROM */
880 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
881 		E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
882 		return -E1000_ERR_EEPROM;
883 	}
884 
885 	/* Compute the checksum */
886 	checksum = 0;
887 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
888 		checksum += buf[i];
889 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
890 	checksum_reg = buf[i];
891 
892 	/* Verify it! */
893 	if (checksum == checksum_reg)
894 		return 0;
895 
896 	/* Hrm, verification failed, print an error */
897 	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
898 	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
899 			checksum_reg, checksum);
900 
901 	return -E1000_ERR_EEPROM;
902 }
903 
904 /*****************************************************************************
905  * Set PHY to class A mode
906  * Assumes the following operations will follow to enable the new class mode.
907  *  1. Do a PHY soft reset
908  *  2. Restart auto-negotiation or force link.
909  *
910  * hw - Struct containing variables accessed by shared code
911  ****************************************************************************/
912 static int32_t
913 e1000_set_phy_mode(struct e1000_hw *hw)
914 {
915 	int32_t ret_val;
916 	uint16_t eeprom_data;
917 
918 	DEBUGFUNC();
919 
920 	if ((hw->mac_type == e1000_82545_rev_3) &&
921 		(hw->media_type == e1000_media_type_copper)) {
922 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
923 				1, &eeprom_data);
924 		if (ret_val)
925 			return ret_val;
926 
927 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
928 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
929 			ret_val = e1000_write_phy_reg(hw,
930 					M88E1000_PHY_PAGE_SELECT, 0x000B);
931 			if (ret_val)
932 				return ret_val;
933 			ret_val = e1000_write_phy_reg(hw,
934 					M88E1000_PHY_GEN_CONTROL, 0x8104);
935 			if (ret_val)
936 				return ret_val;
937 
938 			hw->phy_reset_disable = false;
939 		}
940 	}
941 
942 	return E1000_SUCCESS;
943 }
944 
945 /***************************************************************************
946  *
947  * Obtaining software semaphore bit (SMBI) before resetting PHY.
948  *
949  * hw: Struct containing variables accessed by shared code
950  *
951  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
952  *            E1000_SUCCESS at any other case.
953  *
954  ***************************************************************************/
955 static int32_t
956 e1000_get_software_semaphore(struct e1000_hw *hw)
957 {
958 	 int32_t timeout = hw->eeprom.word_size + 1;
959 	 uint32_t swsm;
960 
961 	DEBUGFUNC();
962 
963 	if (hw->mac_type != e1000_80003es2lan)
964 		return E1000_SUCCESS;
965 
966 	while (timeout) {
967 		swsm = E1000_READ_REG(hw, SWSM);
968 		/* If SMBI bit cleared, it is now set and we hold
969 		 * the semaphore */
970 		if (!(swsm & E1000_SWSM_SMBI))
971 			break;
972 		mdelay(1);
973 		timeout--;
974 	}
975 
976 	if (!timeout) {
977 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
978 		return -E1000_ERR_RESET;
979 	}
980 
981 	return E1000_SUCCESS;
982 }
983 
984 /***************************************************************************
985  * This function clears HW semaphore bits.
986  *
987  * hw: Struct containing variables accessed by shared code
988  *
989  * returns: - None.
990  *
991  ***************************************************************************/
992 static void
993 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
994 {
995 	 uint32_t swsm;
996 
997 	DEBUGFUNC();
998 
999 	if (!hw->eeprom_semaphore_present)
1000 		return;
1001 
1002 	swsm = E1000_READ_REG(hw, SWSM);
1003 	if (hw->mac_type == e1000_80003es2lan) {
1004 		/* Release both semaphores. */
1005 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1006 	} else
1007 		swsm &= ~(E1000_SWSM_SWESMBI);
1008 	E1000_WRITE_REG(hw, SWSM, swsm);
1009 }
1010 
1011 /***************************************************************************
1012  *
1013  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1014  * adapter or Eeprom access.
1015  *
1016  * hw: Struct containing variables accessed by shared code
1017  *
1018  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1019  *            E1000_SUCCESS at any other case.
1020  *
1021  ***************************************************************************/
1022 static int32_t
1023 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1024 {
1025 	int32_t timeout;
1026 	uint32_t swsm;
1027 
1028 	DEBUGFUNC();
1029 
1030 	if (!hw->eeprom_semaphore_present)
1031 		return E1000_SUCCESS;
1032 
1033 	if (hw->mac_type == e1000_80003es2lan) {
1034 		/* Get the SW semaphore. */
1035 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1036 			return -E1000_ERR_EEPROM;
1037 	}
1038 
1039 	/* Get the FW semaphore. */
1040 	timeout = hw->eeprom.word_size + 1;
1041 	while (timeout) {
1042 		swsm = E1000_READ_REG(hw, SWSM);
1043 		swsm |= E1000_SWSM_SWESMBI;
1044 		E1000_WRITE_REG(hw, SWSM, swsm);
1045 		/* if we managed to set the bit we got the semaphore. */
1046 		swsm = E1000_READ_REG(hw, SWSM);
1047 		if (swsm & E1000_SWSM_SWESMBI)
1048 			break;
1049 
1050 		udelay(50);
1051 		timeout--;
1052 	}
1053 
1054 	if (!timeout) {
1055 		/* Release semaphores */
1056 		e1000_put_hw_eeprom_semaphore(hw);
1057 		DEBUGOUT("Driver can't access the Eeprom - "
1058 				"SWESMBI bit is set.\n");
1059 		return -E1000_ERR_EEPROM;
1060 	}
1061 
1062 	return E1000_SUCCESS;
1063 }
1064 
1065 static int32_t
1066 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1067 {
1068 	uint32_t swfw_sync = 0;
1069 	uint32_t swmask = mask;
1070 	uint32_t fwmask = mask << 16;
1071 	int32_t timeout = 200;
1072 
1073 	DEBUGFUNC();
1074 	while (timeout) {
1075 		if (e1000_get_hw_eeprom_semaphore(hw))
1076 			return -E1000_ERR_SWFW_SYNC;
1077 
1078 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1079 		if (!(swfw_sync & (fwmask | swmask)))
1080 			break;
1081 
1082 		/* firmware currently using resource (fwmask) */
1083 		/* or other software thread currently using resource (swmask) */
1084 		e1000_put_hw_eeprom_semaphore(hw);
1085 		mdelay(5);
1086 		timeout--;
1087 	}
1088 
1089 	if (!timeout) {
1090 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1091 		return -E1000_ERR_SWFW_SYNC;
1092 	}
1093 
1094 	swfw_sync |= swmask;
1095 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1096 
1097 	e1000_put_hw_eeprom_semaphore(hw);
1098 	return E1000_SUCCESS;
1099 }
1100 
1101 static bool e1000_is_second_port(struct e1000_hw *hw)
1102 {
1103 	switch (hw->mac_type) {
1104 	case e1000_80003es2lan:
1105 	case e1000_82546:
1106 	case e1000_82571:
1107 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1108 			return true;
1109 		/* Fallthrough */
1110 	default:
1111 		return false;
1112 	}
1113 }
1114 
1115 /******************************************************************************
1116  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1117  * second function of dual function devices
1118  *
1119  * nic - Struct containing variables accessed by shared code
1120  *****************************************************************************/
1121 static int
1122 e1000_read_mac_addr(struct eth_device *nic)
1123 {
1124 	struct e1000_hw *hw = nic->priv;
1125 	uint16_t offset;
1126 	uint16_t eeprom_data;
1127 	int i;
1128 
1129 	DEBUGFUNC();
1130 
1131 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1132 		offset = i >> 1;
1133 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1134 			DEBUGOUT("EEPROM Read Error\n");
1135 			return -E1000_ERR_EEPROM;
1136 		}
1137 		nic->enetaddr[i] = eeprom_data & 0xff;
1138 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1139 	}
1140 
1141 	/* Invert the last bit if this is the second device */
1142 	if (e1000_is_second_port(hw))
1143 		nic->enetaddr[5] ^= 1;
1144 
1145 #ifdef CONFIG_E1000_FALLBACK_MAC
1146 	if (!is_valid_ether_addr(nic->enetaddr)) {
1147 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1148 
1149 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1150 	}
1151 #endif
1152 	return 0;
1153 }
1154 
1155 /******************************************************************************
1156  * Initializes receive address filters.
1157  *
1158  * hw - Struct containing variables accessed by shared code
1159  *
1160  * Places the MAC address in receive address register 0 and clears the rest
1161  * of the receive addresss registers. Clears the multicast table. Assumes
1162  * the receiver is in reset when the routine is called.
1163  *****************************************************************************/
1164 static void
1165 e1000_init_rx_addrs(struct eth_device *nic)
1166 {
1167 	struct e1000_hw *hw = nic->priv;
1168 	uint32_t i;
1169 	uint32_t addr_low;
1170 	uint32_t addr_high;
1171 
1172 	DEBUGFUNC();
1173 
1174 	/* Setup the receive address. */
1175 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1176 	addr_low = (nic->enetaddr[0] |
1177 		    (nic->enetaddr[1] << 8) |
1178 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1179 
1180 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1181 
1182 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1183 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1184 
1185 	/* Zero out the other 15 receive addresses. */
1186 	DEBUGOUT("Clearing RAR[1-15]\n");
1187 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1188 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1189 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1190 	}
1191 }
1192 
1193 /******************************************************************************
1194  * Clears the VLAN filer table
1195  *
1196  * hw - Struct containing variables accessed by shared code
1197  *****************************************************************************/
1198 static void
1199 e1000_clear_vfta(struct e1000_hw *hw)
1200 {
1201 	uint32_t offset;
1202 
1203 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1204 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1205 }
1206 
1207 /******************************************************************************
1208  * Set the mac type member in the hw struct.
1209  *
1210  * hw - Struct containing variables accessed by shared code
1211  *****************************************************************************/
1212 int32_t
1213 e1000_set_mac_type(struct e1000_hw *hw)
1214 {
1215 	DEBUGFUNC();
1216 
1217 	switch (hw->device_id) {
1218 	case E1000_DEV_ID_82542:
1219 		switch (hw->revision_id) {
1220 		case E1000_82542_2_0_REV_ID:
1221 			hw->mac_type = e1000_82542_rev2_0;
1222 			break;
1223 		case E1000_82542_2_1_REV_ID:
1224 			hw->mac_type = e1000_82542_rev2_1;
1225 			break;
1226 		default:
1227 			/* Invalid 82542 revision ID */
1228 			return -E1000_ERR_MAC_TYPE;
1229 		}
1230 		break;
1231 	case E1000_DEV_ID_82543GC_FIBER:
1232 	case E1000_DEV_ID_82543GC_COPPER:
1233 		hw->mac_type = e1000_82543;
1234 		break;
1235 	case E1000_DEV_ID_82544EI_COPPER:
1236 	case E1000_DEV_ID_82544EI_FIBER:
1237 	case E1000_DEV_ID_82544GC_COPPER:
1238 	case E1000_DEV_ID_82544GC_LOM:
1239 		hw->mac_type = e1000_82544;
1240 		break;
1241 	case E1000_DEV_ID_82540EM:
1242 	case E1000_DEV_ID_82540EM_LOM:
1243 	case E1000_DEV_ID_82540EP:
1244 	case E1000_DEV_ID_82540EP_LOM:
1245 	case E1000_DEV_ID_82540EP_LP:
1246 		hw->mac_type = e1000_82540;
1247 		break;
1248 	case E1000_DEV_ID_82545EM_COPPER:
1249 	case E1000_DEV_ID_82545EM_FIBER:
1250 		hw->mac_type = e1000_82545;
1251 		break;
1252 	case E1000_DEV_ID_82545GM_COPPER:
1253 	case E1000_DEV_ID_82545GM_FIBER:
1254 	case E1000_DEV_ID_82545GM_SERDES:
1255 		hw->mac_type = e1000_82545_rev_3;
1256 		break;
1257 	case E1000_DEV_ID_82546EB_COPPER:
1258 	case E1000_DEV_ID_82546EB_FIBER:
1259 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1260 		hw->mac_type = e1000_82546;
1261 		break;
1262 	case E1000_DEV_ID_82546GB_COPPER:
1263 	case E1000_DEV_ID_82546GB_FIBER:
1264 	case E1000_DEV_ID_82546GB_SERDES:
1265 	case E1000_DEV_ID_82546GB_PCIE:
1266 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1267 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1268 		hw->mac_type = e1000_82546_rev_3;
1269 		break;
1270 	case E1000_DEV_ID_82541EI:
1271 	case E1000_DEV_ID_82541EI_MOBILE:
1272 	case E1000_DEV_ID_82541ER_LOM:
1273 		hw->mac_type = e1000_82541;
1274 		break;
1275 	case E1000_DEV_ID_82541ER:
1276 	case E1000_DEV_ID_82541GI:
1277 	case E1000_DEV_ID_82541GI_LF:
1278 	case E1000_DEV_ID_82541GI_MOBILE:
1279 		hw->mac_type = e1000_82541_rev_2;
1280 		break;
1281 	case E1000_DEV_ID_82547EI:
1282 	case E1000_DEV_ID_82547EI_MOBILE:
1283 		hw->mac_type = e1000_82547;
1284 		break;
1285 	case E1000_DEV_ID_82547GI:
1286 		hw->mac_type = e1000_82547_rev_2;
1287 		break;
1288 	case E1000_DEV_ID_82571EB_COPPER:
1289 	case E1000_DEV_ID_82571EB_FIBER:
1290 	case E1000_DEV_ID_82571EB_SERDES:
1291 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1292 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1293 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1294 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1295 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1296 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1297 		hw->mac_type = e1000_82571;
1298 		break;
1299 	case E1000_DEV_ID_82572EI_COPPER:
1300 	case E1000_DEV_ID_82572EI_FIBER:
1301 	case E1000_DEV_ID_82572EI_SERDES:
1302 	case E1000_DEV_ID_82572EI:
1303 		hw->mac_type = e1000_82572;
1304 		break;
1305 	case E1000_DEV_ID_82573E:
1306 	case E1000_DEV_ID_82573E_IAMT:
1307 	case E1000_DEV_ID_82573L:
1308 		hw->mac_type = e1000_82573;
1309 		break;
1310 	case E1000_DEV_ID_82574L:
1311 		hw->mac_type = e1000_82574;
1312 		break;
1313 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1314 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1315 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1316 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1317 		hw->mac_type = e1000_80003es2lan;
1318 		break;
1319 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1320 	case E1000_DEV_ID_ICH8_IGP_AMT:
1321 	case E1000_DEV_ID_ICH8_IGP_C:
1322 	case E1000_DEV_ID_ICH8_IFE:
1323 	case E1000_DEV_ID_ICH8_IFE_GT:
1324 	case E1000_DEV_ID_ICH8_IFE_G:
1325 	case E1000_DEV_ID_ICH8_IGP_M:
1326 		hw->mac_type = e1000_ich8lan;
1327 		break;
1328 	default:
1329 		/* Should never have loaded on this device */
1330 		return -E1000_ERR_MAC_TYPE;
1331 	}
1332 	return E1000_SUCCESS;
1333 }
1334 
1335 /******************************************************************************
1336  * Reset the transmit and receive units; mask and clear all interrupts.
1337  *
1338  * hw - Struct containing variables accessed by shared code
1339  *****************************************************************************/
1340 void
1341 e1000_reset_hw(struct e1000_hw *hw)
1342 {
1343 	uint32_t ctrl;
1344 	uint32_t ctrl_ext;
1345 	uint32_t manc;
1346 	uint32_t pba = 0;
1347 
1348 	DEBUGFUNC();
1349 
1350 	/* get the correct pba value for both PCI and PCIe*/
1351 	if (hw->mac_type <  e1000_82571)
1352 		pba = E1000_DEFAULT_PCI_PBA;
1353 	else
1354 		pba = E1000_DEFAULT_PCIE_PBA;
1355 
1356 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1357 	if (hw->mac_type == e1000_82542_rev2_0) {
1358 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1359 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1360 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1361 	}
1362 
1363 	/* Clear interrupt mask to stop board from generating interrupts */
1364 	DEBUGOUT("Masking off all interrupts\n");
1365 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1366 
1367 	/* Disable the Transmit and Receive units.  Then delay to allow
1368 	 * any pending transactions to complete before we hit the MAC with
1369 	 * the global reset.
1370 	 */
1371 	E1000_WRITE_REG(hw, RCTL, 0);
1372 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1373 	E1000_WRITE_FLUSH(hw);
1374 
1375 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1376 	hw->tbi_compatibility_on = false;
1377 
1378 	/* Delay to allow any outstanding PCI transactions to complete before
1379 	 * resetting the device
1380 	 */
1381 	mdelay(10);
1382 
1383 	/* Issue a global reset to the MAC.  This will reset the chip's
1384 	 * transmit, receive, DMA, and link units.  It will not effect
1385 	 * the current PCI configuration.  The global reset bit is self-
1386 	 * clearing, and should clear within a microsecond.
1387 	 */
1388 	DEBUGOUT("Issuing a global reset to MAC\n");
1389 	ctrl = E1000_READ_REG(hw, CTRL);
1390 
1391 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1392 
1393 	/* Force a reload from the EEPROM if necessary */
1394 	if (hw->mac_type < e1000_82540) {
1395 		/* Wait for reset to complete */
1396 		udelay(10);
1397 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1398 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1399 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1400 		E1000_WRITE_FLUSH(hw);
1401 		/* Wait for EEPROM reload */
1402 		mdelay(2);
1403 	} else {
1404 		/* Wait for EEPROM reload (it happens automatically) */
1405 		mdelay(4);
1406 		/* Dissable HW ARPs on ASF enabled adapters */
1407 		manc = E1000_READ_REG(hw, MANC);
1408 		manc &= ~(E1000_MANC_ARP_EN);
1409 		E1000_WRITE_REG(hw, MANC, manc);
1410 	}
1411 
1412 	/* Clear interrupt mask to stop board from generating interrupts */
1413 	DEBUGOUT("Masking off all interrupts\n");
1414 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1415 
1416 	/* Clear any pending interrupt events. */
1417 	E1000_READ_REG(hw, ICR);
1418 
1419 	/* If MWI was previously enabled, reenable it. */
1420 	if (hw->mac_type == e1000_82542_rev2_0) {
1421 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1422 	}
1423 	E1000_WRITE_REG(hw, PBA, pba);
1424 }
1425 
1426 /******************************************************************************
1427  *
1428  * Initialize a number of hardware-dependent bits
1429  *
1430  * hw: Struct containing variables accessed by shared code
1431  *
1432  * This function contains hardware limitation workarounds for PCI-E adapters
1433  *
1434  *****************************************************************************/
1435 static void
1436 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1437 {
1438 	if ((hw->mac_type >= e1000_82571) &&
1439 			(!hw->initialize_hw_bits_disable)) {
1440 		/* Settings common to all PCI-express silicon */
1441 		uint32_t reg_ctrl, reg_ctrl_ext;
1442 		uint32_t reg_tarc0, reg_tarc1;
1443 		uint32_t reg_tctl;
1444 		uint32_t reg_txdctl, reg_txdctl1;
1445 
1446 		/* link autonegotiation/sync workarounds */
1447 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1448 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1449 
1450 		/* Enable not-done TX descriptor counting */
1451 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1452 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1453 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1454 
1455 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1456 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1457 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1458 
1459 		switch (hw->mac_type) {
1460 		case e1000_82571:
1461 		case e1000_82572:
1462 			/* Clear PHY TX compatible mode bits */
1463 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1464 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1465 
1466 			/* link autonegotiation/sync workarounds */
1467 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1468 
1469 			/* TX ring control fixes */
1470 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1471 
1472 			/* Multiple read bit is reversed polarity */
1473 			reg_tctl = E1000_READ_REG(hw, TCTL);
1474 			if (reg_tctl & E1000_TCTL_MULR)
1475 				reg_tarc1 &= ~(1 << 28);
1476 			else
1477 				reg_tarc1 |= (1 << 28);
1478 
1479 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1480 			break;
1481 		case e1000_82573:
1482 		case e1000_82574:
1483 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1484 			reg_ctrl_ext &= ~(1 << 23);
1485 			reg_ctrl_ext |= (1 << 22);
1486 
1487 			/* TX byte count fix */
1488 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1489 			reg_ctrl &= ~(1 << 29);
1490 
1491 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1492 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1493 			break;
1494 		case e1000_80003es2lan:
1495 	/* improve small packet performace for fiber/serdes */
1496 			if ((hw->media_type == e1000_media_type_fiber)
1497 			|| (hw->media_type ==
1498 				e1000_media_type_internal_serdes)) {
1499 				reg_tarc0 &= ~(1 << 20);
1500 			}
1501 
1502 		/* Multiple read bit is reversed polarity */
1503 			reg_tctl = E1000_READ_REG(hw, TCTL);
1504 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1505 			if (reg_tctl & E1000_TCTL_MULR)
1506 				reg_tarc1 &= ~(1 << 28);
1507 			else
1508 				reg_tarc1 |= (1 << 28);
1509 
1510 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1511 			break;
1512 		case e1000_ich8lan:
1513 			/* Reduce concurrent DMA requests to 3 from 4 */
1514 			if ((hw->revision_id < 3) ||
1515 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1516 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1517 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1518 
1519 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1520 			reg_ctrl_ext |= (1 << 22);
1521 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1522 
1523 			/* workaround TX hang with TSO=on */
1524 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1525 
1526 			/* Multiple read bit is reversed polarity */
1527 			reg_tctl = E1000_READ_REG(hw, TCTL);
1528 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1529 			if (reg_tctl & E1000_TCTL_MULR)
1530 				reg_tarc1 &= ~(1 << 28);
1531 			else
1532 				reg_tarc1 |= (1 << 28);
1533 
1534 			/* workaround TX hang with TSO=on */
1535 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1536 
1537 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1538 			break;
1539 		default:
1540 			break;
1541 		}
1542 
1543 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1544 	}
1545 }
1546 
1547 /******************************************************************************
1548  * Performs basic configuration of the adapter.
1549  *
1550  * hw - Struct containing variables accessed by shared code
1551  *
1552  * Assumes that the controller has previously been reset and is in a
1553  * post-reset uninitialized state. Initializes the receive address registers,
1554  * multicast table, and VLAN filter table. Calls routines to setup link
1555  * configuration and flow control settings. Clears all on-chip counters. Leaves
1556  * the transmit and receive units disabled and uninitialized.
1557  *****************************************************************************/
1558 static int
1559 e1000_init_hw(struct eth_device *nic)
1560 {
1561 	struct e1000_hw *hw = nic->priv;
1562 	uint32_t ctrl;
1563 	uint32_t i;
1564 	int32_t ret_val;
1565 	uint16_t pcix_cmd_word;
1566 	uint16_t pcix_stat_hi_word;
1567 	uint16_t cmd_mmrbc;
1568 	uint16_t stat_mmrbc;
1569 	uint32_t mta_size;
1570 	uint32_t reg_data;
1571 	uint32_t ctrl_ext;
1572 	DEBUGFUNC();
1573 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1574 	if ((hw->mac_type == e1000_ich8lan) &&
1575 		((hw->revision_id < 3) ||
1576 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1577 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1578 			reg_data = E1000_READ_REG(hw, STATUS);
1579 			reg_data &= ~0x80000000;
1580 			E1000_WRITE_REG(hw, STATUS, reg_data);
1581 	}
1582 	/* Do not need initialize Identification LED */
1583 
1584 	/* Set the media type and TBI compatibility */
1585 	e1000_set_media_type(hw);
1586 
1587 	/* Must be called after e1000_set_media_type
1588 	 * because media_type is used */
1589 	e1000_initialize_hardware_bits(hw);
1590 
1591 	/* Disabling VLAN filtering. */
1592 	DEBUGOUT("Initializing the IEEE VLAN\n");
1593 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1594 	if (hw->mac_type != e1000_ich8lan) {
1595 		if (hw->mac_type < e1000_82545_rev_3)
1596 			E1000_WRITE_REG(hw, VET, 0);
1597 		e1000_clear_vfta(hw);
1598 	}
1599 
1600 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1601 	if (hw->mac_type == e1000_82542_rev2_0) {
1602 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1603 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1604 				      hw->
1605 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1606 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1607 		E1000_WRITE_FLUSH(hw);
1608 		mdelay(5);
1609 	}
1610 
1611 	/* Setup the receive address. This involves initializing all of the Receive
1612 	 * Address Registers (RARs 0 - 15).
1613 	 */
1614 	e1000_init_rx_addrs(nic);
1615 
1616 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1617 	if (hw->mac_type == e1000_82542_rev2_0) {
1618 		E1000_WRITE_REG(hw, RCTL, 0);
1619 		E1000_WRITE_FLUSH(hw);
1620 		mdelay(1);
1621 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1622 	}
1623 
1624 	/* Zero out the Multicast HASH table */
1625 	DEBUGOUT("Zeroing the MTA\n");
1626 	mta_size = E1000_MC_TBL_SIZE;
1627 	if (hw->mac_type == e1000_ich8lan)
1628 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1629 	for (i = 0; i < mta_size; i++) {
1630 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1631 		/* use write flush to prevent Memory Write Block (MWB) from
1632 		 * occuring when accessing our register space */
1633 		E1000_WRITE_FLUSH(hw);
1634 	}
1635 #if 0
1636 	/* Set the PCI priority bit correctly in the CTRL register.  This
1637 	 * determines if the adapter gives priority to receives, or if it
1638 	 * gives equal priority to transmits and receives.  Valid only on
1639 	 * 82542 and 82543 silicon.
1640 	 */
1641 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1642 		ctrl = E1000_READ_REG(hw, CTRL);
1643 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1644 	}
1645 #endif
1646 	switch (hw->mac_type) {
1647 	case e1000_82545_rev_3:
1648 	case e1000_82546_rev_3:
1649 		break;
1650 	default:
1651 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1652 	if (hw->bus_type == e1000_bus_type_pcix) {
1653 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1654 				     &pcix_cmd_word);
1655 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1656 				     &pcix_stat_hi_word);
1657 		cmd_mmrbc =
1658 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1659 		    PCIX_COMMAND_MMRBC_SHIFT;
1660 		stat_mmrbc =
1661 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1662 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1663 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1664 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1665 		if (cmd_mmrbc > stat_mmrbc) {
1666 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1667 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1668 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1669 					      pcix_cmd_word);
1670 		}
1671 	}
1672 		break;
1673 	}
1674 
1675 	/* More time needed for PHY to initialize */
1676 	if (hw->mac_type == e1000_ich8lan)
1677 		mdelay(15);
1678 
1679 	/* Call a subroutine to configure the link and setup flow control. */
1680 	ret_val = e1000_setup_link(nic);
1681 
1682 	/* Set the transmit descriptor write-back policy */
1683 	if (hw->mac_type > e1000_82544) {
1684 		ctrl = E1000_READ_REG(hw, TXDCTL);
1685 		ctrl =
1686 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1687 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1688 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1689 	}
1690 
1691 	/* Set the receive descriptor write back policy */
1692 
1693 	if (hw->mac_type >= e1000_82571) {
1694 		ctrl = E1000_READ_REG(hw, RXDCTL);
1695 		ctrl =
1696 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1697 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1698 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1699 	}
1700 
1701 	switch (hw->mac_type) {
1702 	default:
1703 		break;
1704 	case e1000_80003es2lan:
1705 		/* Enable retransmit on late collisions */
1706 		reg_data = E1000_READ_REG(hw, TCTL);
1707 		reg_data |= E1000_TCTL_RTLC;
1708 		E1000_WRITE_REG(hw, TCTL, reg_data);
1709 
1710 		/* Configure Gigabit Carry Extend Padding */
1711 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1712 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1713 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1714 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1715 
1716 		/* Configure Transmit Inter-Packet Gap */
1717 		reg_data = E1000_READ_REG(hw, TIPG);
1718 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1719 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1720 		E1000_WRITE_REG(hw, TIPG, reg_data);
1721 
1722 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1723 		reg_data &= ~0x00100000;
1724 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1725 		/* Fall through */
1726 	case e1000_82571:
1727 	case e1000_82572:
1728 	case e1000_ich8lan:
1729 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1730 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1731 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1732 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1733 		break;
1734 	case e1000_82573:
1735 	case e1000_82574:
1736 		reg_data = E1000_READ_REG(hw, GCR);
1737 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1738 		E1000_WRITE_REG(hw, GCR, reg_data);
1739 	}
1740 
1741 #if 0
1742 	/* Clear all of the statistics registers (clear on read).  It is
1743 	 * important that we do this after we have tried to establish link
1744 	 * because the symbol error count will increment wildly if there
1745 	 * is no link.
1746 	 */
1747 	e1000_clear_hw_cntrs(hw);
1748 
1749 	/* ICH8 No-snoop bits are opposite polarity.
1750 	 * Set to snoop by default after reset. */
1751 	if (hw->mac_type == e1000_ich8lan)
1752 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1753 #endif
1754 
1755 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1756 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1757 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1758 		/* Relaxed ordering must be disabled to avoid a parity
1759 		 * error crash in a PCI slot. */
1760 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1761 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1762 	}
1763 
1764 	return ret_val;
1765 }
1766 
1767 /******************************************************************************
1768  * Configures flow control and link settings.
1769  *
1770  * hw - Struct containing variables accessed by shared code
1771  *
1772  * Determines which flow control settings to use. Calls the apropriate media-
1773  * specific link configuration function. Configures the flow control settings.
1774  * Assuming the adapter has a valid link partner, a valid link should be
1775  * established. Assumes the hardware has previously been reset and the
1776  * transmitter and receiver are not enabled.
1777  *****************************************************************************/
1778 static int
1779 e1000_setup_link(struct eth_device *nic)
1780 {
1781 	struct e1000_hw *hw = nic->priv;
1782 	uint32_t ctrl_ext;
1783 	int32_t ret_val;
1784 	uint16_t eeprom_data;
1785 
1786 	DEBUGFUNC();
1787 
1788 	/* In the case of the phy reset being blocked, we already have a link.
1789 	 * We do not have to set it up again. */
1790 	if (e1000_check_phy_reset_block(hw))
1791 		return E1000_SUCCESS;
1792 
1793 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1794 	 * that determine the hardware's default PAUSE (flow control) mode,
1795 	 * a bit that determines whether the HW defaults to enabling or
1796 	 * disabling auto-negotiation, and the direction of the
1797 	 * SW defined pins. If there is no SW over-ride of the flow
1798 	 * control setting, then the variable hw->fc will
1799 	 * be initialized based on a value in the EEPROM.
1800 	 */
1801 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1802 				&eeprom_data) < 0) {
1803 		DEBUGOUT("EEPROM Read Error\n");
1804 		return -E1000_ERR_EEPROM;
1805 	}
1806 
1807 	if (hw->fc == e1000_fc_default) {
1808 		switch (hw->mac_type) {
1809 		case e1000_ich8lan:
1810 		case e1000_82573:
1811 		case e1000_82574:
1812 			hw->fc = e1000_fc_full;
1813 			break;
1814 		default:
1815 			ret_val = e1000_read_eeprom(hw,
1816 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1817 			if (ret_val) {
1818 				DEBUGOUT("EEPROM Read Error\n");
1819 				return -E1000_ERR_EEPROM;
1820 			}
1821 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1822 				hw->fc = e1000_fc_none;
1823 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1824 				    EEPROM_WORD0F_ASM_DIR)
1825 				hw->fc = e1000_fc_tx_pause;
1826 			else
1827 				hw->fc = e1000_fc_full;
1828 			break;
1829 		}
1830 	}
1831 
1832 	/* We want to save off the original Flow Control configuration just
1833 	 * in case we get disconnected and then reconnected into a different
1834 	 * hub or switch with different Flow Control capabilities.
1835 	 */
1836 	if (hw->mac_type == e1000_82542_rev2_0)
1837 		hw->fc &= (~e1000_fc_tx_pause);
1838 
1839 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1840 		hw->fc &= (~e1000_fc_rx_pause);
1841 
1842 	hw->original_fc = hw->fc;
1843 
1844 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1845 
1846 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1847 	 * polarity value for the SW controlled pins, and setup the
1848 	 * Extended Device Control reg with that info.
1849 	 * This is needed because one of the SW controlled pins is used for
1850 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1851 	 * or e1000_phy_setup() is called.
1852 	 */
1853 	if (hw->mac_type == e1000_82543) {
1854 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1855 			    SWDPIO__EXT_SHIFT);
1856 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1857 	}
1858 
1859 	/* Call the necessary subroutine to configure the link. */
1860 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1861 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1862 	if (ret_val < 0) {
1863 		return ret_val;
1864 	}
1865 
1866 	/* Initialize the flow control address, type, and PAUSE timer
1867 	 * registers to their default values.  This is done even if flow
1868 	 * control is disabled, because it does not hurt anything to
1869 	 * initialize these registers.
1870 	 */
1871 	DEBUGOUT("Initializing the Flow Control address, type"
1872 			"and timer regs\n");
1873 
1874 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1875 	if (hw->mac_type != e1000_ich8lan) {
1876 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1877 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1878 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1879 	}
1880 
1881 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1882 
1883 	/* Set the flow control receive threshold registers.  Normally,
1884 	 * these registers will be set to a default threshold that may be
1885 	 * adjusted later by the driver's runtime code.  However, if the
1886 	 * ability to transmit pause frames in not enabled, then these
1887 	 * registers will be set to 0.
1888 	 */
1889 	if (!(hw->fc & e1000_fc_tx_pause)) {
1890 		E1000_WRITE_REG(hw, FCRTL, 0);
1891 		E1000_WRITE_REG(hw, FCRTH, 0);
1892 	} else {
1893 		/* We need to set up the Receive Threshold high and low water marks
1894 		 * as well as (optionally) enabling the transmission of XON frames.
1895 		 */
1896 		if (hw->fc_send_xon) {
1897 			E1000_WRITE_REG(hw, FCRTL,
1898 					(hw->fc_low_water | E1000_FCRTL_XONE));
1899 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1900 		} else {
1901 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1902 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1903 		}
1904 	}
1905 	return ret_val;
1906 }
1907 
1908 /******************************************************************************
1909  * Sets up link for a fiber based adapter
1910  *
1911  * hw - Struct containing variables accessed by shared code
1912  *
1913  * Manipulates Physical Coding Sublayer functions in order to configure
1914  * link. Assumes the hardware has been previously reset and the transmitter
1915  * and receiver are not enabled.
1916  *****************************************************************************/
1917 static int
1918 e1000_setup_fiber_link(struct eth_device *nic)
1919 {
1920 	struct e1000_hw *hw = nic->priv;
1921 	uint32_t ctrl;
1922 	uint32_t status;
1923 	uint32_t txcw = 0;
1924 	uint32_t i;
1925 	uint32_t signal;
1926 	int32_t ret_val;
1927 
1928 	DEBUGFUNC();
1929 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1930 	 * set when the optics detect a signal. On older adapters, it will be
1931 	 * cleared when there is a signal
1932 	 */
1933 	ctrl = E1000_READ_REG(hw, CTRL);
1934 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1935 		signal = E1000_CTRL_SWDPIN1;
1936 	else
1937 		signal = 0;
1938 
1939 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1940 	       ctrl);
1941 	/* Take the link out of reset */
1942 	ctrl &= ~(E1000_CTRL_LRST);
1943 
1944 	e1000_config_collision_dist(hw);
1945 
1946 	/* Check for a software override of the flow control settings, and setup
1947 	 * the device accordingly.  If auto-negotiation is enabled, then software
1948 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1949 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1950 	 * auto-negotiation is disabled, then software will have to manually
1951 	 * configure the two flow control enable bits in the CTRL register.
1952 	 *
1953 	 * The possible values of the "fc" parameter are:
1954 	 *	0:  Flow control is completely disabled
1955 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
1956 	 *	    not send pause frames).
1957 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
1958 	 *	    not support receiving pause frames).
1959 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1960 	 */
1961 	switch (hw->fc) {
1962 	case e1000_fc_none:
1963 		/* Flow control is completely disabled by a software over-ride. */
1964 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1965 		break;
1966 	case e1000_fc_rx_pause:
1967 		/* RX Flow control is enabled and TX Flow control is disabled by a
1968 		 * software over-ride. Since there really isn't a way to advertise
1969 		 * that we are capable of RX Pause ONLY, we will advertise that we
1970 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
1971 		 *  disable the adapter's ability to send PAUSE frames.
1972 		 */
1973 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1974 		break;
1975 	case e1000_fc_tx_pause:
1976 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
1977 		 * software over-ride.
1978 		 */
1979 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1980 		break;
1981 	case e1000_fc_full:
1982 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
1983 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1984 		break;
1985 	default:
1986 		DEBUGOUT("Flow control param set incorrectly\n");
1987 		return -E1000_ERR_CONFIG;
1988 		break;
1989 	}
1990 
1991 	/* Since auto-negotiation is enabled, take the link out of reset (the link
1992 	 * will be in reset, because we previously reset the chip). This will
1993 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
1994 	 * link-up status bit will be set and the flow control enable bits (RFCE
1995 	 * and TFCE) will be set according to their negotiated value.
1996 	 */
1997 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1998 
1999 	E1000_WRITE_REG(hw, TXCW, txcw);
2000 	E1000_WRITE_REG(hw, CTRL, ctrl);
2001 	E1000_WRITE_FLUSH(hw);
2002 
2003 	hw->txcw = txcw;
2004 	mdelay(1);
2005 
2006 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2007 	 * indication in the Device Status Register.  Time-out if a link isn't
2008 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2009 	 * less than 500 milliseconds even if the other end is doing it in SW).
2010 	 */
2011 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2012 		DEBUGOUT("Looking for Link\n");
2013 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2014 			mdelay(10);
2015 			status = E1000_READ_REG(hw, STATUS);
2016 			if (status & E1000_STATUS_LU)
2017 				break;
2018 		}
2019 		if (i == (LINK_UP_TIMEOUT / 10)) {
2020 			/* AutoNeg failed to achieve a link, so we'll call
2021 			 * e1000_check_for_link. This routine will force the link up if we
2022 			 * detect a signal. This will allow us to communicate with
2023 			 * non-autonegotiating link partners.
2024 			 */
2025 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2026 			hw->autoneg_failed = 1;
2027 			ret_val = e1000_check_for_link(nic);
2028 			if (ret_val < 0) {
2029 				DEBUGOUT("Error while checking for link\n");
2030 				return ret_val;
2031 			}
2032 			hw->autoneg_failed = 0;
2033 		} else {
2034 			hw->autoneg_failed = 0;
2035 			DEBUGOUT("Valid Link Found\n");
2036 		}
2037 	} else {
2038 		DEBUGOUT("No Signal Detected\n");
2039 		return -E1000_ERR_NOLINK;
2040 	}
2041 	return 0;
2042 }
2043 
2044 /******************************************************************************
2045 * Make sure we have a valid PHY and change PHY mode before link setup.
2046 *
2047 * hw - Struct containing variables accessed by shared code
2048 ******************************************************************************/
2049 static int32_t
2050 e1000_copper_link_preconfig(struct e1000_hw *hw)
2051 {
2052 	uint32_t ctrl;
2053 	int32_t ret_val;
2054 	uint16_t phy_data;
2055 
2056 	DEBUGFUNC();
2057 
2058 	ctrl = E1000_READ_REG(hw, CTRL);
2059 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2060 	 * the PHY speed and duplex configuration is. In addition, we need to
2061 	 * perform a hardware reset on the PHY to take it out of reset.
2062 	 */
2063 	if (hw->mac_type > e1000_82543) {
2064 		ctrl |= E1000_CTRL_SLU;
2065 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2066 		E1000_WRITE_REG(hw, CTRL, ctrl);
2067 	} else {
2068 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2069 				| E1000_CTRL_SLU);
2070 		E1000_WRITE_REG(hw, CTRL, ctrl);
2071 		ret_val = e1000_phy_hw_reset(hw);
2072 		if (ret_val)
2073 			return ret_val;
2074 	}
2075 
2076 	/* Make sure we have a valid PHY */
2077 	ret_val = e1000_detect_gig_phy(hw);
2078 	if (ret_val) {
2079 		DEBUGOUT("Error, did not detect valid phy.\n");
2080 		return ret_val;
2081 	}
2082 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2083 
2084 	/* Set PHY to class A mode (if necessary) */
2085 	ret_val = e1000_set_phy_mode(hw);
2086 	if (ret_val)
2087 		return ret_val;
2088 	if ((hw->mac_type == e1000_82545_rev_3) ||
2089 		(hw->mac_type == e1000_82546_rev_3)) {
2090 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2091 				&phy_data);
2092 		phy_data |= 0x00000008;
2093 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2094 				phy_data);
2095 	}
2096 
2097 	if (hw->mac_type <= e1000_82543 ||
2098 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2099 		hw->mac_type == e1000_82541_rev_2
2100 		|| hw->mac_type == e1000_82547_rev_2)
2101 			hw->phy_reset_disable = false;
2102 
2103 	return E1000_SUCCESS;
2104 }
2105 
2106 /*****************************************************************************
2107  *
2108  * This function sets the lplu state according to the active flag.  When
2109  * activating lplu this function also disables smart speed and vise versa.
2110  * lplu will not be activated unless the device autonegotiation advertisment
2111  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2112  * hw: Struct containing variables accessed by shared code
2113  * active - true to enable lplu false to disable lplu.
2114  *
2115  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2116  *            E1000_SUCCESS at any other case.
2117  *
2118  ****************************************************************************/
2119 
2120 static int32_t
2121 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2122 {
2123 	uint32_t phy_ctrl = 0;
2124 	int32_t ret_val;
2125 	uint16_t phy_data;
2126 	DEBUGFUNC();
2127 
2128 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2129 	    && hw->phy_type != e1000_phy_igp_3)
2130 		return E1000_SUCCESS;
2131 
2132 	/* During driver activity LPLU should not be used or it will attain link
2133 	 * from the lowest speeds starting from 10Mbps. The capability is used
2134 	 * for Dx transitions and states */
2135 	if (hw->mac_type == e1000_82541_rev_2
2136 			|| hw->mac_type == e1000_82547_rev_2) {
2137 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2138 				&phy_data);
2139 		if (ret_val)
2140 			return ret_val;
2141 	} else if (hw->mac_type == e1000_ich8lan) {
2142 		/* MAC writes into PHY register based on the state transition
2143 		 * and start auto-negotiation. SW driver can overwrite the
2144 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2145 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2146 	} else {
2147 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2148 				&phy_data);
2149 		if (ret_val)
2150 			return ret_val;
2151 	}
2152 
2153 	if (!active) {
2154 		if (hw->mac_type == e1000_82541_rev_2 ||
2155 			hw->mac_type == e1000_82547_rev_2) {
2156 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2157 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2158 					phy_data);
2159 			if (ret_val)
2160 				return ret_val;
2161 		} else {
2162 			if (hw->mac_type == e1000_ich8lan) {
2163 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2164 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2165 			} else {
2166 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2167 				ret_val = e1000_write_phy_reg(hw,
2168 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2169 				if (ret_val)
2170 					return ret_val;
2171 			}
2172 		}
2173 
2174 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2175 	 * Dx states where the power conservation is most important.  During
2176 	 * driver activity we should enable SmartSpeed, so performance is
2177 	 * maintained. */
2178 		if (hw->smart_speed == e1000_smart_speed_on) {
2179 			ret_val = e1000_read_phy_reg(hw,
2180 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2181 			if (ret_val)
2182 				return ret_val;
2183 
2184 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2185 			ret_val = e1000_write_phy_reg(hw,
2186 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2187 			if (ret_val)
2188 				return ret_val;
2189 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2190 			ret_val = e1000_read_phy_reg(hw,
2191 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2192 			if (ret_val)
2193 				return ret_val;
2194 
2195 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2196 			ret_val = e1000_write_phy_reg(hw,
2197 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2198 			if (ret_val)
2199 				return ret_val;
2200 		}
2201 
2202 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2203 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2204 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2205 
2206 		if (hw->mac_type == e1000_82541_rev_2 ||
2207 		    hw->mac_type == e1000_82547_rev_2) {
2208 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2209 			ret_val = e1000_write_phy_reg(hw,
2210 					IGP01E1000_GMII_FIFO, phy_data);
2211 			if (ret_val)
2212 				return ret_val;
2213 		} else {
2214 			if (hw->mac_type == e1000_ich8lan) {
2215 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2216 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2217 			} else {
2218 				phy_data |= IGP02E1000_PM_D3_LPLU;
2219 				ret_val = e1000_write_phy_reg(hw,
2220 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2221 				if (ret_val)
2222 					return ret_val;
2223 			}
2224 		}
2225 
2226 		/* When LPLU is enabled we should disable SmartSpeed */
2227 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2228 				&phy_data);
2229 		if (ret_val)
2230 			return ret_val;
2231 
2232 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2233 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2234 				phy_data);
2235 		if (ret_val)
2236 			return ret_val;
2237 	}
2238 	return E1000_SUCCESS;
2239 }
2240 
2241 /*****************************************************************************
2242  *
2243  * This function sets the lplu d0 state according to the active flag.  When
2244  * activating lplu this function also disables smart speed and vise versa.
2245  * lplu will not be activated unless the device autonegotiation advertisment
2246  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2247  * hw: Struct containing variables accessed by shared code
2248  * active - true to enable lplu false to disable lplu.
2249  *
2250  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2251  *            E1000_SUCCESS at any other case.
2252  *
2253  ****************************************************************************/
2254 
2255 static int32_t
2256 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2257 {
2258 	uint32_t phy_ctrl = 0;
2259 	int32_t ret_val;
2260 	uint16_t phy_data;
2261 	DEBUGFUNC();
2262 
2263 	if (hw->mac_type <= e1000_82547_rev_2)
2264 		return E1000_SUCCESS;
2265 
2266 	if (hw->mac_type == e1000_ich8lan) {
2267 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2268 	} else {
2269 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2270 				&phy_data);
2271 		if (ret_val)
2272 			return ret_val;
2273 	}
2274 
2275 	if (!active) {
2276 		if (hw->mac_type == e1000_ich8lan) {
2277 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2278 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2279 		} else {
2280 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2281 			ret_val = e1000_write_phy_reg(hw,
2282 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2283 			if (ret_val)
2284 				return ret_val;
2285 		}
2286 
2287 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2288 	 * Dx states where the power conservation is most important.  During
2289 	 * driver activity we should enable SmartSpeed, so performance is
2290 	 * maintained. */
2291 		if (hw->smart_speed == e1000_smart_speed_on) {
2292 			ret_val = e1000_read_phy_reg(hw,
2293 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2294 			if (ret_val)
2295 				return ret_val;
2296 
2297 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2298 			ret_val = e1000_write_phy_reg(hw,
2299 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2300 			if (ret_val)
2301 				return ret_val;
2302 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2303 			ret_val = e1000_read_phy_reg(hw,
2304 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2305 			if (ret_val)
2306 				return ret_val;
2307 
2308 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2309 			ret_val = e1000_write_phy_reg(hw,
2310 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2311 			if (ret_val)
2312 				return ret_val;
2313 		}
2314 
2315 
2316 	} else {
2317 
2318 		if (hw->mac_type == e1000_ich8lan) {
2319 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2320 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2321 		} else {
2322 			phy_data |= IGP02E1000_PM_D0_LPLU;
2323 			ret_val = e1000_write_phy_reg(hw,
2324 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2325 			if (ret_val)
2326 				return ret_val;
2327 		}
2328 
2329 		/* When LPLU is enabled we should disable SmartSpeed */
2330 		ret_val = e1000_read_phy_reg(hw,
2331 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2332 		if (ret_val)
2333 			return ret_val;
2334 
2335 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2336 		ret_val = e1000_write_phy_reg(hw,
2337 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2338 		if (ret_val)
2339 			return ret_val;
2340 
2341 	}
2342 	return E1000_SUCCESS;
2343 }
2344 
2345 /********************************************************************
2346 * Copper link setup for e1000_phy_igp series.
2347 *
2348 * hw - Struct containing variables accessed by shared code
2349 *********************************************************************/
2350 static int32_t
2351 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2352 {
2353 	uint32_t led_ctrl;
2354 	int32_t ret_val;
2355 	uint16_t phy_data;
2356 
2357 	DEBUGFUNC();
2358 
2359 	if (hw->phy_reset_disable)
2360 		return E1000_SUCCESS;
2361 
2362 	ret_val = e1000_phy_reset(hw);
2363 	if (ret_val) {
2364 		DEBUGOUT("Error Resetting the PHY\n");
2365 		return ret_val;
2366 	}
2367 
2368 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2369 	mdelay(15);
2370 	if (hw->mac_type != e1000_ich8lan) {
2371 		/* Configure activity LED after PHY reset */
2372 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2373 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2374 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2375 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2376 	}
2377 
2378 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2379 	if (hw->phy_type == e1000_phy_igp) {
2380 		/* disable lplu d3 during driver init */
2381 		ret_val = e1000_set_d3_lplu_state(hw, false);
2382 		if (ret_val) {
2383 			DEBUGOUT("Error Disabling LPLU D3\n");
2384 			return ret_val;
2385 		}
2386 	}
2387 
2388 	/* disable lplu d0 during driver init */
2389 	ret_val = e1000_set_d0_lplu_state(hw, false);
2390 	if (ret_val) {
2391 		DEBUGOUT("Error Disabling LPLU D0\n");
2392 		return ret_val;
2393 	}
2394 	/* Configure mdi-mdix settings */
2395 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2396 	if (ret_val)
2397 		return ret_val;
2398 
2399 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2400 		hw->dsp_config_state = e1000_dsp_config_disabled;
2401 		/* Force MDI for earlier revs of the IGP PHY */
2402 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2403 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2404 		hw->mdix = 1;
2405 
2406 	} else {
2407 		hw->dsp_config_state = e1000_dsp_config_enabled;
2408 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2409 
2410 		switch (hw->mdix) {
2411 		case 1:
2412 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2413 			break;
2414 		case 2:
2415 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2416 			break;
2417 		case 0:
2418 		default:
2419 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2420 			break;
2421 		}
2422 	}
2423 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2424 	if (ret_val)
2425 		return ret_val;
2426 
2427 	/* set auto-master slave resolution settings */
2428 	if (hw->autoneg) {
2429 		e1000_ms_type phy_ms_setting = hw->master_slave;
2430 
2431 		if (hw->ffe_config_state == e1000_ffe_config_active)
2432 			hw->ffe_config_state = e1000_ffe_config_enabled;
2433 
2434 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2435 			hw->dsp_config_state = e1000_dsp_config_enabled;
2436 
2437 		/* when autonegotiation advertisment is only 1000Mbps then we
2438 		  * should disable SmartSpeed and enable Auto MasterSlave
2439 		  * resolution as hardware default. */
2440 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2441 			/* Disable SmartSpeed */
2442 			ret_val = e1000_read_phy_reg(hw,
2443 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2444 			if (ret_val)
2445 				return ret_val;
2446 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2447 			ret_val = e1000_write_phy_reg(hw,
2448 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2449 			if (ret_val)
2450 				return ret_val;
2451 			/* Set auto Master/Slave resolution process */
2452 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2453 					&phy_data);
2454 			if (ret_val)
2455 				return ret_val;
2456 			phy_data &= ~CR_1000T_MS_ENABLE;
2457 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2458 					phy_data);
2459 			if (ret_val)
2460 				return ret_val;
2461 		}
2462 
2463 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2464 		if (ret_val)
2465 			return ret_val;
2466 
2467 		/* load defaults for future use */
2468 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2469 				((phy_data & CR_1000T_MS_VALUE) ?
2470 				e1000_ms_force_master :
2471 				e1000_ms_force_slave) :
2472 				e1000_ms_auto;
2473 
2474 		switch (phy_ms_setting) {
2475 		case e1000_ms_force_master:
2476 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2477 			break;
2478 		case e1000_ms_force_slave:
2479 			phy_data |= CR_1000T_MS_ENABLE;
2480 			phy_data &= ~(CR_1000T_MS_VALUE);
2481 			break;
2482 		case e1000_ms_auto:
2483 			phy_data &= ~CR_1000T_MS_ENABLE;
2484 		default:
2485 			break;
2486 		}
2487 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2488 		if (ret_val)
2489 			return ret_val;
2490 	}
2491 
2492 	return E1000_SUCCESS;
2493 }
2494 
2495 /*****************************************************************************
2496  * This function checks the mode of the firmware.
2497  *
2498  * returns  - true when the mode is IAMT or false.
2499  ****************************************************************************/
2500 bool
2501 e1000_check_mng_mode(struct e1000_hw *hw)
2502 {
2503 	uint32_t fwsm;
2504 	DEBUGFUNC();
2505 
2506 	fwsm = E1000_READ_REG(hw, FWSM);
2507 
2508 	if (hw->mac_type == e1000_ich8lan) {
2509 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2510 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2511 			return true;
2512 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2513 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2514 			return true;
2515 
2516 	return false;
2517 }
2518 
2519 static int32_t
2520 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2521 {
2522 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2523 	uint32_t reg_val;
2524 	DEBUGFUNC();
2525 
2526 	if (e1000_is_second_port(hw))
2527 		swfw = E1000_SWFW_PHY1_SM;
2528 
2529 	if (e1000_swfw_sync_acquire(hw, swfw))
2530 		return -E1000_ERR_SWFW_SYNC;
2531 
2532 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2533 			& E1000_KUMCTRLSTA_OFFSET) | data;
2534 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2535 	udelay(2);
2536 
2537 	return E1000_SUCCESS;
2538 }
2539 
2540 static int32_t
2541 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2542 {
2543 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2544 	uint32_t reg_val;
2545 	DEBUGFUNC();
2546 
2547 	if (e1000_is_second_port(hw))
2548 		swfw = E1000_SWFW_PHY1_SM;
2549 
2550 	if (e1000_swfw_sync_acquire(hw, swfw))
2551 		return -E1000_ERR_SWFW_SYNC;
2552 
2553 	/* Write register address */
2554 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2555 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2556 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2557 	udelay(2);
2558 
2559 	/* Read the data returned */
2560 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2561 	*data = (uint16_t)reg_val;
2562 
2563 	return E1000_SUCCESS;
2564 }
2565 
2566 /********************************************************************
2567 * Copper link setup for e1000_phy_gg82563 series.
2568 *
2569 * hw - Struct containing variables accessed by shared code
2570 *********************************************************************/
2571 static int32_t
2572 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2573 {
2574 	int32_t ret_val;
2575 	uint16_t phy_data;
2576 	uint32_t reg_data;
2577 
2578 	DEBUGFUNC();
2579 
2580 	if (!hw->phy_reset_disable) {
2581 		/* Enable CRS on TX for half-duplex operation. */
2582 		ret_val = e1000_read_phy_reg(hw,
2583 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2584 		if (ret_val)
2585 			return ret_val;
2586 
2587 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2588 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2589 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2590 
2591 		ret_val = e1000_write_phy_reg(hw,
2592 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2593 		if (ret_val)
2594 			return ret_val;
2595 
2596 		/* Options:
2597 		 *   MDI/MDI-X = 0 (default)
2598 		 *   0 - Auto for all speeds
2599 		 *   1 - MDI mode
2600 		 *   2 - MDI-X mode
2601 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2602 		 */
2603 		ret_val = e1000_read_phy_reg(hw,
2604 				GG82563_PHY_SPEC_CTRL, &phy_data);
2605 		if (ret_val)
2606 			return ret_val;
2607 
2608 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2609 
2610 		switch (hw->mdix) {
2611 		case 1:
2612 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2613 			break;
2614 		case 2:
2615 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2616 			break;
2617 		case 0:
2618 		default:
2619 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2620 			break;
2621 		}
2622 
2623 		/* Options:
2624 		 *   disable_polarity_correction = 0 (default)
2625 		 *       Automatic Correction for Reversed Cable Polarity
2626 		 *   0 - Disabled
2627 		 *   1 - Enabled
2628 		 */
2629 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2630 		ret_val = e1000_write_phy_reg(hw,
2631 				GG82563_PHY_SPEC_CTRL, phy_data);
2632 
2633 		if (ret_val)
2634 			return ret_val;
2635 
2636 		/* SW Reset the PHY so all changes take effect */
2637 		ret_val = e1000_phy_reset(hw);
2638 		if (ret_val) {
2639 			DEBUGOUT("Error Resetting the PHY\n");
2640 			return ret_val;
2641 		}
2642 	} /* phy_reset_disable */
2643 
2644 	if (hw->mac_type == e1000_80003es2lan) {
2645 		/* Bypass RX and TX FIFO's */
2646 		ret_val = e1000_write_kmrn_reg(hw,
2647 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2648 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2649 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2650 		if (ret_val)
2651 			return ret_val;
2652 
2653 		ret_val = e1000_read_phy_reg(hw,
2654 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2655 		if (ret_val)
2656 			return ret_val;
2657 
2658 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2659 		ret_val = e1000_write_phy_reg(hw,
2660 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2661 
2662 		if (ret_val)
2663 			return ret_val;
2664 
2665 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2666 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2667 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2668 
2669 		ret_val = e1000_read_phy_reg(hw,
2670 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2671 		if (ret_val)
2672 			return ret_val;
2673 
2674 	/* Do not init these registers when the HW is in IAMT mode, since the
2675 	 * firmware will have already initialized them.  We only initialize
2676 	 * them if the HW is not in IAMT mode.
2677 	 */
2678 		if (e1000_check_mng_mode(hw) == false) {
2679 			/* Enable Electrical Idle on the PHY */
2680 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2681 			ret_val = e1000_write_phy_reg(hw,
2682 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2683 			if (ret_val)
2684 				return ret_val;
2685 
2686 			ret_val = e1000_read_phy_reg(hw,
2687 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2688 			if (ret_val)
2689 				return ret_val;
2690 
2691 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2692 			ret_val = e1000_write_phy_reg(hw,
2693 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2694 
2695 			if (ret_val)
2696 				return ret_val;
2697 		}
2698 
2699 		/* Workaround: Disable padding in Kumeran interface in the MAC
2700 		 * and in the PHY to avoid CRC errors.
2701 		 */
2702 		ret_val = e1000_read_phy_reg(hw,
2703 				GG82563_PHY_INBAND_CTRL, &phy_data);
2704 		if (ret_val)
2705 			return ret_val;
2706 		phy_data |= GG82563_ICR_DIS_PADDING;
2707 		ret_val = e1000_write_phy_reg(hw,
2708 				GG82563_PHY_INBAND_CTRL, phy_data);
2709 		if (ret_val)
2710 			return ret_val;
2711 	}
2712 	return E1000_SUCCESS;
2713 }
2714 
2715 /********************************************************************
2716 * Copper link setup for e1000_phy_m88 series.
2717 *
2718 * hw - Struct containing variables accessed by shared code
2719 *********************************************************************/
2720 static int32_t
2721 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2722 {
2723 	int32_t ret_val;
2724 	uint16_t phy_data;
2725 
2726 	DEBUGFUNC();
2727 
2728 	if (hw->phy_reset_disable)
2729 		return E1000_SUCCESS;
2730 
2731 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2732 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2733 	if (ret_val)
2734 		return ret_val;
2735 
2736 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2737 
2738 	/* Options:
2739 	 *   MDI/MDI-X = 0 (default)
2740 	 *   0 - Auto for all speeds
2741 	 *   1 - MDI mode
2742 	 *   2 - MDI-X mode
2743 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2744 	 */
2745 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2746 
2747 	switch (hw->mdix) {
2748 	case 1:
2749 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2750 		break;
2751 	case 2:
2752 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2753 		break;
2754 	case 3:
2755 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2756 		break;
2757 	case 0:
2758 	default:
2759 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2760 		break;
2761 	}
2762 
2763 	/* Options:
2764 	 *   disable_polarity_correction = 0 (default)
2765 	 *       Automatic Correction for Reversed Cable Polarity
2766 	 *   0 - Disabled
2767 	 *   1 - Enabled
2768 	 */
2769 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2770 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2771 	if (ret_val)
2772 		return ret_val;
2773 
2774 	if (hw->phy_revision < M88E1011_I_REV_4) {
2775 		/* Force TX_CLK in the Extended PHY Specific Control Register
2776 		 * to 25MHz clock.
2777 		 */
2778 		ret_val = e1000_read_phy_reg(hw,
2779 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2780 		if (ret_val)
2781 			return ret_val;
2782 
2783 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2784 
2785 		if ((hw->phy_revision == E1000_REVISION_2) &&
2786 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2787 			/* Vidalia Phy, set the downshift counter to 5x */
2788 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2789 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2790 			ret_val = e1000_write_phy_reg(hw,
2791 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2792 			if (ret_val)
2793 				return ret_val;
2794 		} else {
2795 			/* Configure Master and Slave downshift values */
2796 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2797 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2798 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2799 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2800 			ret_val = e1000_write_phy_reg(hw,
2801 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2802 			if (ret_val)
2803 				return ret_val;
2804 		}
2805 	}
2806 
2807 	/* SW Reset the PHY so all changes take effect */
2808 	ret_val = e1000_phy_reset(hw);
2809 	if (ret_val) {
2810 		DEBUGOUT("Error Resetting the PHY\n");
2811 		return ret_val;
2812 	}
2813 
2814 	return E1000_SUCCESS;
2815 }
2816 
2817 /********************************************************************
2818 * Setup auto-negotiation and flow control advertisements,
2819 * and then perform auto-negotiation.
2820 *
2821 * hw - Struct containing variables accessed by shared code
2822 *********************************************************************/
2823 static int32_t
2824 e1000_copper_link_autoneg(struct e1000_hw *hw)
2825 {
2826 	int32_t ret_val;
2827 	uint16_t phy_data;
2828 
2829 	DEBUGFUNC();
2830 
2831 	/* Perform some bounds checking on the hw->autoneg_advertised
2832 	 * parameter.  If this variable is zero, then set it to the default.
2833 	 */
2834 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2835 
2836 	/* If autoneg_advertised is zero, we assume it was not defaulted
2837 	 * by the calling code so we set to advertise full capability.
2838 	 */
2839 	if (hw->autoneg_advertised == 0)
2840 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2841 
2842 	/* IFE phy only supports 10/100 */
2843 	if (hw->phy_type == e1000_phy_ife)
2844 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2845 
2846 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2847 	ret_val = e1000_phy_setup_autoneg(hw);
2848 	if (ret_val) {
2849 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2850 		return ret_val;
2851 	}
2852 	DEBUGOUT("Restarting Auto-Neg\n");
2853 
2854 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2855 	 * the Auto Neg Restart bit in the PHY control register.
2856 	 */
2857 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2858 	if (ret_val)
2859 		return ret_val;
2860 
2861 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2862 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2863 	if (ret_val)
2864 		return ret_val;
2865 
2866 	/* Does the user want to wait for Auto-Neg to complete here, or
2867 	 * check at a later time (for example, callback routine).
2868 	 */
2869 	/* If we do not wait for autonegtation to complete I
2870 	 * do not see a valid link status.
2871 	 * wait_autoneg_complete = 1 .
2872 	 */
2873 	if (hw->wait_autoneg_complete) {
2874 		ret_val = e1000_wait_autoneg(hw);
2875 		if (ret_val) {
2876 			DEBUGOUT("Error while waiting for autoneg"
2877 					"to complete\n");
2878 			return ret_val;
2879 		}
2880 	}
2881 
2882 	hw->get_link_status = true;
2883 
2884 	return E1000_SUCCESS;
2885 }
2886 
2887 /******************************************************************************
2888 * Config the MAC and the PHY after link is up.
2889 *   1) Set up the MAC to the current PHY speed/duplex
2890 *      if we are on 82543.  If we
2891 *      are on newer silicon, we only need to configure
2892 *      collision distance in the Transmit Control Register.
2893 *   2) Set up flow control on the MAC to that established with
2894 *      the link partner.
2895 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2896 *
2897 * hw - Struct containing variables accessed by shared code
2898 ******************************************************************************/
2899 static int32_t
2900 e1000_copper_link_postconfig(struct e1000_hw *hw)
2901 {
2902 	int32_t ret_val;
2903 	DEBUGFUNC();
2904 
2905 	if (hw->mac_type >= e1000_82544) {
2906 		e1000_config_collision_dist(hw);
2907 	} else {
2908 		ret_val = e1000_config_mac_to_phy(hw);
2909 		if (ret_val) {
2910 			DEBUGOUT("Error configuring MAC to PHY settings\n");
2911 			return ret_val;
2912 		}
2913 	}
2914 	ret_val = e1000_config_fc_after_link_up(hw);
2915 	if (ret_val) {
2916 		DEBUGOUT("Error Configuring Flow Control\n");
2917 		return ret_val;
2918 	}
2919 	return E1000_SUCCESS;
2920 }
2921 
2922 /******************************************************************************
2923 * Detects which PHY is present and setup the speed and duplex
2924 *
2925 * hw - Struct containing variables accessed by shared code
2926 ******************************************************************************/
2927 static int
2928 e1000_setup_copper_link(struct eth_device *nic)
2929 {
2930 	struct e1000_hw *hw = nic->priv;
2931 	int32_t ret_val;
2932 	uint16_t i;
2933 	uint16_t phy_data;
2934 	uint16_t reg_data;
2935 
2936 	DEBUGFUNC();
2937 
2938 	switch (hw->mac_type) {
2939 	case e1000_80003es2lan:
2940 	case e1000_ich8lan:
2941 		/* Set the mac to wait the maximum time between each
2942 		 * iteration and increase the max iterations when
2943 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2944 		ret_val = e1000_write_kmrn_reg(hw,
2945 				GG82563_REG(0x34, 4), 0xFFFF);
2946 		if (ret_val)
2947 			return ret_val;
2948 		ret_val = e1000_read_kmrn_reg(hw,
2949 				GG82563_REG(0x34, 9), &reg_data);
2950 		if (ret_val)
2951 			return ret_val;
2952 		reg_data |= 0x3F;
2953 		ret_val = e1000_write_kmrn_reg(hw,
2954 				GG82563_REG(0x34, 9), reg_data);
2955 		if (ret_val)
2956 			return ret_val;
2957 	default:
2958 		break;
2959 	}
2960 
2961 	/* Check if it is a valid PHY and set PHY mode if necessary. */
2962 	ret_val = e1000_copper_link_preconfig(hw);
2963 	if (ret_val)
2964 		return ret_val;
2965 	switch (hw->mac_type) {
2966 	case e1000_80003es2lan:
2967 		/* Kumeran registers are written-only */
2968 		reg_data =
2969 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2970 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2971 		ret_val = e1000_write_kmrn_reg(hw,
2972 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2973 		if (ret_val)
2974 			return ret_val;
2975 		break;
2976 	default:
2977 		break;
2978 	}
2979 
2980 	if (hw->phy_type == e1000_phy_igp ||
2981 		hw->phy_type == e1000_phy_igp_3 ||
2982 		hw->phy_type == e1000_phy_igp_2) {
2983 		ret_val = e1000_copper_link_igp_setup(hw);
2984 		if (ret_val)
2985 			return ret_val;
2986 	} else if (hw->phy_type == e1000_phy_m88) {
2987 		ret_val = e1000_copper_link_mgp_setup(hw);
2988 		if (ret_val)
2989 			return ret_val;
2990 	} else if (hw->phy_type == e1000_phy_gg82563) {
2991 		ret_val = e1000_copper_link_ggp_setup(hw);
2992 		if (ret_val)
2993 			return ret_val;
2994 	}
2995 
2996 	/* always auto */
2997 	/* Setup autoneg and flow control advertisement
2998 	  * and perform autonegotiation */
2999 	ret_val = e1000_copper_link_autoneg(hw);
3000 	if (ret_val)
3001 		return ret_val;
3002 
3003 	/* Check link status. Wait up to 100 microseconds for link to become
3004 	 * valid.
3005 	 */
3006 	for (i = 0; i < 10; i++) {
3007 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3008 		if (ret_val)
3009 			return ret_val;
3010 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3011 		if (ret_val)
3012 			return ret_val;
3013 
3014 		if (phy_data & MII_SR_LINK_STATUS) {
3015 			/* Config the MAC and PHY after link is up */
3016 			ret_val = e1000_copper_link_postconfig(hw);
3017 			if (ret_val)
3018 				return ret_val;
3019 
3020 			DEBUGOUT("Valid link established!!!\n");
3021 			return E1000_SUCCESS;
3022 		}
3023 		udelay(10);
3024 	}
3025 
3026 	DEBUGOUT("Unable to establish link!!!\n");
3027 	return E1000_SUCCESS;
3028 }
3029 
3030 /******************************************************************************
3031 * Configures PHY autoneg and flow control advertisement settings
3032 *
3033 * hw - Struct containing variables accessed by shared code
3034 ******************************************************************************/
3035 int32_t
3036 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3037 {
3038 	int32_t ret_val;
3039 	uint16_t mii_autoneg_adv_reg;
3040 	uint16_t mii_1000t_ctrl_reg;
3041 
3042 	DEBUGFUNC();
3043 
3044 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3045 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3046 	if (ret_val)
3047 		return ret_val;
3048 
3049 	if (hw->phy_type != e1000_phy_ife) {
3050 		/* Read the MII 1000Base-T Control Register (Address 9). */
3051 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3052 				&mii_1000t_ctrl_reg);
3053 		if (ret_val)
3054 			return ret_val;
3055 	} else
3056 		mii_1000t_ctrl_reg = 0;
3057 
3058 	/* Need to parse both autoneg_advertised and fc and set up
3059 	 * the appropriate PHY registers.  First we will parse for
3060 	 * autoneg_advertised software override.  Since we can advertise
3061 	 * a plethora of combinations, we need to check each bit
3062 	 * individually.
3063 	 */
3064 
3065 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3066 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3067 	 * the  1000Base-T Control Register (Address 9).
3068 	 */
3069 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3070 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3071 
3072 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3073 
3074 	/* Do we want to advertise 10 Mb Half Duplex? */
3075 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3076 		DEBUGOUT("Advertise 10mb Half duplex\n");
3077 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3078 	}
3079 
3080 	/* Do we want to advertise 10 Mb Full Duplex? */
3081 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3082 		DEBUGOUT("Advertise 10mb Full duplex\n");
3083 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3084 	}
3085 
3086 	/* Do we want to advertise 100 Mb Half Duplex? */
3087 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3088 		DEBUGOUT("Advertise 100mb Half duplex\n");
3089 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3090 	}
3091 
3092 	/* Do we want to advertise 100 Mb Full Duplex? */
3093 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3094 		DEBUGOUT("Advertise 100mb Full duplex\n");
3095 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3096 	}
3097 
3098 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3099 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3100 		DEBUGOUT
3101 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3102 	}
3103 
3104 	/* Do we want to advertise 1000 Mb Full Duplex? */
3105 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3106 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3107 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3108 	}
3109 
3110 	/* Check for a software override of the flow control settings, and
3111 	 * setup the PHY advertisement registers accordingly.  If
3112 	 * auto-negotiation is enabled, then software will have to set the
3113 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3114 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3115 	 *
3116 	 * The possible values of the "fc" parameter are:
3117 	 *	0:  Flow control is completely disabled
3118 	 *	1:  Rx flow control is enabled (we can receive pause frames
3119 	 *	    but not send pause frames).
3120 	 *	2:  Tx flow control is enabled (we can send pause frames
3121 	 *	    but we do not support receiving pause frames).
3122 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3123 	 *  other:  No software override.  The flow control configuration
3124 	 *	    in the EEPROM is used.
3125 	 */
3126 	switch (hw->fc) {
3127 	case e1000_fc_none:	/* 0 */
3128 		/* Flow control (RX & TX) is completely disabled by a
3129 		 * software over-ride.
3130 		 */
3131 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3132 		break;
3133 	case e1000_fc_rx_pause:	/* 1 */
3134 		/* RX Flow control is enabled, and TX Flow control is
3135 		 * disabled, by a software over-ride.
3136 		 */
3137 		/* Since there really isn't a way to advertise that we are
3138 		 * capable of RX Pause ONLY, we will advertise that we
3139 		 * support both symmetric and asymmetric RX PAUSE.  Later
3140 		 * (in e1000_config_fc_after_link_up) we will disable the
3141 		 *hw's ability to send PAUSE frames.
3142 		 */
3143 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3144 		break;
3145 	case e1000_fc_tx_pause:	/* 2 */
3146 		/* TX Flow control is enabled, and RX Flow control is
3147 		 * disabled, by a software over-ride.
3148 		 */
3149 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3150 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3151 		break;
3152 	case e1000_fc_full:	/* 3 */
3153 		/* Flow control (both RX and TX) is enabled by a software
3154 		 * over-ride.
3155 		 */
3156 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3157 		break;
3158 	default:
3159 		DEBUGOUT("Flow control param set incorrectly\n");
3160 		return -E1000_ERR_CONFIG;
3161 	}
3162 
3163 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3164 	if (ret_val)
3165 		return ret_val;
3166 
3167 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3168 
3169 	if (hw->phy_type != e1000_phy_ife) {
3170 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3171 				mii_1000t_ctrl_reg);
3172 		if (ret_val)
3173 			return ret_val;
3174 	}
3175 
3176 	return E1000_SUCCESS;
3177 }
3178 
3179 /******************************************************************************
3180 * Sets the collision distance in the Transmit Control register
3181 *
3182 * hw - Struct containing variables accessed by shared code
3183 *
3184 * Link should have been established previously. Reads the speed and duplex
3185 * information from the Device Status register.
3186 ******************************************************************************/
3187 static void
3188 e1000_config_collision_dist(struct e1000_hw *hw)
3189 {
3190 	uint32_t tctl, coll_dist;
3191 
3192 	DEBUGFUNC();
3193 
3194 	if (hw->mac_type < e1000_82543)
3195 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3196 	else
3197 		coll_dist = E1000_COLLISION_DISTANCE;
3198 
3199 	tctl = E1000_READ_REG(hw, TCTL);
3200 
3201 	tctl &= ~E1000_TCTL_COLD;
3202 	tctl |= coll_dist << E1000_COLD_SHIFT;
3203 
3204 	E1000_WRITE_REG(hw, TCTL, tctl);
3205 	E1000_WRITE_FLUSH(hw);
3206 }
3207 
3208 /******************************************************************************
3209 * Sets MAC speed and duplex settings to reflect the those in the PHY
3210 *
3211 * hw - Struct containing variables accessed by shared code
3212 * mii_reg - data to write to the MII control register
3213 *
3214 * The contents of the PHY register containing the needed information need to
3215 * be passed in.
3216 ******************************************************************************/
3217 static int
3218 e1000_config_mac_to_phy(struct e1000_hw *hw)
3219 {
3220 	uint32_t ctrl;
3221 	uint16_t phy_data;
3222 
3223 	DEBUGFUNC();
3224 
3225 	/* Read the Device Control Register and set the bits to Force Speed
3226 	 * and Duplex.
3227 	 */
3228 	ctrl = E1000_READ_REG(hw, CTRL);
3229 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3230 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3231 
3232 	/* Set up duplex in the Device Control and Transmit Control
3233 	 * registers depending on negotiated values.
3234 	 */
3235 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3236 		DEBUGOUT("PHY Read Error\n");
3237 		return -E1000_ERR_PHY;
3238 	}
3239 	if (phy_data & M88E1000_PSSR_DPLX)
3240 		ctrl |= E1000_CTRL_FD;
3241 	else
3242 		ctrl &= ~E1000_CTRL_FD;
3243 
3244 	e1000_config_collision_dist(hw);
3245 
3246 	/* Set up speed in the Device Control register depending on
3247 	 * negotiated values.
3248 	 */
3249 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3250 		ctrl |= E1000_CTRL_SPD_1000;
3251 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3252 		ctrl |= E1000_CTRL_SPD_100;
3253 	/* Write the configured values back to the Device Control Reg. */
3254 	E1000_WRITE_REG(hw, CTRL, ctrl);
3255 	return 0;
3256 }
3257 
3258 /******************************************************************************
3259  * Forces the MAC's flow control settings.
3260  *
3261  * hw - Struct containing variables accessed by shared code
3262  *
3263  * Sets the TFCE and RFCE bits in the device control register to reflect
3264  * the adapter settings. TFCE and RFCE need to be explicitly set by
3265  * software when a Copper PHY is used because autonegotiation is managed
3266  * by the PHY rather than the MAC. Software must also configure these
3267  * bits when link is forced on a fiber connection.
3268  *****************************************************************************/
3269 static int
3270 e1000_force_mac_fc(struct e1000_hw *hw)
3271 {
3272 	uint32_t ctrl;
3273 
3274 	DEBUGFUNC();
3275 
3276 	/* Get the current configuration of the Device Control Register */
3277 	ctrl = E1000_READ_REG(hw, CTRL);
3278 
3279 	/* Because we didn't get link via the internal auto-negotiation
3280 	 * mechanism (we either forced link or we got link via PHY
3281 	 * auto-neg), we have to manually enable/disable transmit an
3282 	 * receive flow control.
3283 	 *
3284 	 * The "Case" statement below enables/disable flow control
3285 	 * according to the "hw->fc" parameter.
3286 	 *
3287 	 * The possible values of the "fc" parameter are:
3288 	 *	0:  Flow control is completely disabled
3289 	 *	1:  Rx flow control is enabled (we can receive pause
3290 	 *	    frames but not send pause frames).
3291 	 *	2:  Tx flow control is enabled (we can send pause frames
3292 	 *	    frames but we do not receive pause frames).
3293 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3294 	 *  other:  No other values should be possible at this point.
3295 	 */
3296 
3297 	switch (hw->fc) {
3298 	case e1000_fc_none:
3299 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3300 		break;
3301 	case e1000_fc_rx_pause:
3302 		ctrl &= (~E1000_CTRL_TFCE);
3303 		ctrl |= E1000_CTRL_RFCE;
3304 		break;
3305 	case e1000_fc_tx_pause:
3306 		ctrl &= (~E1000_CTRL_RFCE);
3307 		ctrl |= E1000_CTRL_TFCE;
3308 		break;
3309 	case e1000_fc_full:
3310 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3311 		break;
3312 	default:
3313 		DEBUGOUT("Flow control param set incorrectly\n");
3314 		return -E1000_ERR_CONFIG;
3315 	}
3316 
3317 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3318 	if (hw->mac_type == e1000_82542_rev2_0)
3319 		ctrl &= (~E1000_CTRL_TFCE);
3320 
3321 	E1000_WRITE_REG(hw, CTRL, ctrl);
3322 	return 0;
3323 }
3324 
3325 /******************************************************************************
3326  * Configures flow control settings after link is established
3327  *
3328  * hw - Struct containing variables accessed by shared code
3329  *
3330  * Should be called immediately after a valid link has been established.
3331  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3332  * and autonegotiation is enabled, the MAC flow control settings will be set
3333  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3334  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3335  *****************************************************************************/
3336 static int32_t
3337 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3338 {
3339 	int32_t ret_val;
3340 	uint16_t mii_status_reg;
3341 	uint16_t mii_nway_adv_reg;
3342 	uint16_t mii_nway_lp_ability_reg;
3343 	uint16_t speed;
3344 	uint16_t duplex;
3345 
3346 	DEBUGFUNC();
3347 
3348 	/* Check for the case where we have fiber media and auto-neg failed
3349 	 * so we had to force link.  In this case, we need to force the
3350 	 * configuration of the MAC to match the "fc" parameter.
3351 	 */
3352 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3353 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3354 		&& (hw->autoneg_failed))
3355 		|| ((hw->media_type == e1000_media_type_copper)
3356 		&& (!hw->autoneg))) {
3357 		ret_val = e1000_force_mac_fc(hw);
3358 		if (ret_val < 0) {
3359 			DEBUGOUT("Error forcing flow control settings\n");
3360 			return ret_val;
3361 		}
3362 	}
3363 
3364 	/* Check for the case where we have copper media and auto-neg is
3365 	 * enabled.  In this case, we need to check and see if Auto-Neg
3366 	 * has completed, and if so, how the PHY and link partner has
3367 	 * flow control configured.
3368 	 */
3369 	if (hw->media_type == e1000_media_type_copper) {
3370 		/* Read the MII Status Register and check to see if AutoNeg
3371 		 * has completed.  We read this twice because this reg has
3372 		 * some "sticky" (latched) bits.
3373 		 */
3374 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3375 			DEBUGOUT("PHY Read Error \n");
3376 			return -E1000_ERR_PHY;
3377 		}
3378 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3379 			DEBUGOUT("PHY Read Error \n");
3380 			return -E1000_ERR_PHY;
3381 		}
3382 
3383 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3384 			/* The AutoNeg process has completed, so we now need to
3385 			 * read both the Auto Negotiation Advertisement Register
3386 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3387 			 * Register (Address 5) to determine how flow control was
3388 			 * negotiated.
3389 			 */
3390 			if (e1000_read_phy_reg
3391 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3392 				DEBUGOUT("PHY Read Error\n");
3393 				return -E1000_ERR_PHY;
3394 			}
3395 			if (e1000_read_phy_reg
3396 			    (hw, PHY_LP_ABILITY,
3397 			     &mii_nway_lp_ability_reg) < 0) {
3398 				DEBUGOUT("PHY Read Error\n");
3399 				return -E1000_ERR_PHY;
3400 			}
3401 
3402 			/* Two bits in the Auto Negotiation Advertisement Register
3403 			 * (Address 4) and two bits in the Auto Negotiation Base
3404 			 * Page Ability Register (Address 5) determine flow control
3405 			 * for both the PHY and the link partner.  The following
3406 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3407 			 * 1999, describes these PAUSE resolution bits and how flow
3408 			 * control is determined based upon these settings.
3409 			 * NOTE:  DC = Don't Care
3410 			 *
3411 			 *   LOCAL DEVICE  |   LINK PARTNER
3412 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3413 			 *-------|---------|-------|---------|--------------------
3414 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3415 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3416 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3417 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3418 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3419 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3420 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3421 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3422 			 *
3423 			 */
3424 			/* Are both PAUSE bits set to 1?  If so, this implies
3425 			 * Symmetric Flow Control is enabled at both ends.  The
3426 			 * ASM_DIR bits are irrelevant per the spec.
3427 			 *
3428 			 * For Symmetric Flow Control:
3429 			 *
3430 			 *   LOCAL DEVICE  |   LINK PARTNER
3431 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3432 			 *-------|---------|-------|---------|--------------------
3433 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3434 			 *
3435 			 */
3436 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3437 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3438 				/* Now we need to check if the user selected RX ONLY
3439 				 * of pause frames.  In this case, we had to advertise
3440 				 * FULL flow control because we could not advertise RX
3441 				 * ONLY. Hence, we must now check to see if we need to
3442 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3443 				 */
3444 				if (hw->original_fc == e1000_fc_full) {
3445 					hw->fc = e1000_fc_full;
3446 					DEBUGOUT("Flow Control = FULL.\r\n");
3447 				} else {
3448 					hw->fc = e1000_fc_rx_pause;
3449 					DEBUGOUT
3450 					    ("Flow Control = RX PAUSE frames only.\r\n");
3451 				}
3452 			}
3453 			/* For receiving PAUSE frames ONLY.
3454 			 *
3455 			 *   LOCAL DEVICE  |   LINK PARTNER
3456 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3457 			 *-------|---------|-------|---------|--------------------
3458 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3459 			 *
3460 			 */
3461 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3462 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3463 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3464 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3465 			{
3466 				hw->fc = e1000_fc_tx_pause;
3467 				DEBUGOUT
3468 				    ("Flow Control = TX PAUSE frames only.\r\n");
3469 			}
3470 			/* For transmitting PAUSE frames ONLY.
3471 			 *
3472 			 *   LOCAL DEVICE  |   LINK PARTNER
3473 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3474 			 *-------|---------|-------|---------|--------------------
3475 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3476 			 *
3477 			 */
3478 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3479 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3480 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3481 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3482 			{
3483 				hw->fc = e1000_fc_rx_pause;
3484 				DEBUGOUT
3485 				    ("Flow Control = RX PAUSE frames only.\r\n");
3486 			}
3487 			/* Per the IEEE spec, at this point flow control should be
3488 			 * disabled.  However, we want to consider that we could
3489 			 * be connected to a legacy switch that doesn't advertise
3490 			 * desired flow control, but can be forced on the link
3491 			 * partner.  So if we advertised no flow control, that is
3492 			 * what we will resolve to.  If we advertised some kind of
3493 			 * receive capability (Rx Pause Only or Full Flow Control)
3494 			 * and the link partner advertised none, we will configure
3495 			 * ourselves to enable Rx Flow Control only.  We can do
3496 			 * this safely for two reasons:  If the link partner really
3497 			 * didn't want flow control enabled, and we enable Rx, no
3498 			 * harm done since we won't be receiving any PAUSE frames
3499 			 * anyway.  If the intent on the link partner was to have
3500 			 * flow control enabled, then by us enabling RX only, we
3501 			 * can at least receive pause frames and process them.
3502 			 * This is a good idea because in most cases, since we are
3503 			 * predominantly a server NIC, more times than not we will
3504 			 * be asked to delay transmission of packets than asking
3505 			 * our link partner to pause transmission of frames.
3506 			 */
3507 			else if (hw->original_fc == e1000_fc_none ||
3508 				 hw->original_fc == e1000_fc_tx_pause) {
3509 				hw->fc = e1000_fc_none;
3510 				DEBUGOUT("Flow Control = NONE.\r\n");
3511 			} else {
3512 				hw->fc = e1000_fc_rx_pause;
3513 				DEBUGOUT
3514 				    ("Flow Control = RX PAUSE frames only.\r\n");
3515 			}
3516 
3517 			/* Now we need to do one last check...	If we auto-
3518 			 * negotiated to HALF DUPLEX, flow control should not be
3519 			 * enabled per IEEE 802.3 spec.
3520 			 */
3521 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3522 
3523 			if (duplex == HALF_DUPLEX)
3524 				hw->fc = e1000_fc_none;
3525 
3526 			/* Now we call a subroutine to actually force the MAC
3527 			 * controller to use the correct flow control settings.
3528 			 */
3529 			ret_val = e1000_force_mac_fc(hw);
3530 			if (ret_val < 0) {
3531 				DEBUGOUT
3532 				    ("Error forcing flow control settings\n");
3533 				return ret_val;
3534 			}
3535 		} else {
3536 			DEBUGOUT
3537 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3538 		}
3539 	}
3540 	return E1000_SUCCESS;
3541 }
3542 
3543 /******************************************************************************
3544  * Checks to see if the link status of the hardware has changed.
3545  *
3546  * hw - Struct containing variables accessed by shared code
3547  *
3548  * Called by any function that needs to check the link status of the adapter.
3549  *****************************************************************************/
3550 static int
3551 e1000_check_for_link(struct eth_device *nic)
3552 {
3553 	struct e1000_hw *hw = nic->priv;
3554 	uint32_t rxcw;
3555 	uint32_t ctrl;
3556 	uint32_t status;
3557 	uint32_t rctl;
3558 	uint32_t signal;
3559 	int32_t ret_val;
3560 	uint16_t phy_data;
3561 	uint16_t lp_capability;
3562 
3563 	DEBUGFUNC();
3564 
3565 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3566 	 * set when the optics detect a signal. On older adapters, it will be
3567 	 * cleared when there is a signal
3568 	 */
3569 	ctrl = E1000_READ_REG(hw, CTRL);
3570 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3571 		signal = E1000_CTRL_SWDPIN1;
3572 	else
3573 		signal = 0;
3574 
3575 	status = E1000_READ_REG(hw, STATUS);
3576 	rxcw = E1000_READ_REG(hw, RXCW);
3577 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3578 
3579 	/* If we have a copper PHY then we only want to go out to the PHY
3580 	 * registers to see if Auto-Neg has completed and/or if our link
3581 	 * status has changed.	The get_link_status flag will be set if we
3582 	 * receive a Link Status Change interrupt or we have Rx Sequence
3583 	 * Errors.
3584 	 */
3585 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3586 		/* First we want to see if the MII Status Register reports
3587 		 * link.  If so, then we want to get the current speed/duplex
3588 		 * of the PHY.
3589 		 * Read the register twice since the link bit is sticky.
3590 		 */
3591 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3592 			DEBUGOUT("PHY Read Error\n");
3593 			return -E1000_ERR_PHY;
3594 		}
3595 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3596 			DEBUGOUT("PHY Read Error\n");
3597 			return -E1000_ERR_PHY;
3598 		}
3599 
3600 		if (phy_data & MII_SR_LINK_STATUS) {
3601 			hw->get_link_status = false;
3602 		} else {
3603 			/* No link detected */
3604 			return -E1000_ERR_NOLINK;
3605 		}
3606 
3607 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3608 		 * have Si on board that is 82544 or newer, Auto
3609 		 * Speed Detection takes care of MAC speed/duplex
3610 		 * configuration.  So we only need to configure Collision
3611 		 * Distance in the MAC.  Otherwise, we need to force
3612 		 * speed/duplex on the MAC to the current PHY speed/duplex
3613 		 * settings.
3614 		 */
3615 		if (hw->mac_type >= e1000_82544)
3616 			e1000_config_collision_dist(hw);
3617 		else {
3618 			ret_val = e1000_config_mac_to_phy(hw);
3619 			if (ret_val < 0) {
3620 				DEBUGOUT
3621 				    ("Error configuring MAC to PHY settings\n");
3622 				return ret_val;
3623 			}
3624 		}
3625 
3626 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3627 		 * need to restore the desired flow control settings because we may
3628 		 * have had to re-autoneg with a different link partner.
3629 		 */
3630 		ret_val = e1000_config_fc_after_link_up(hw);
3631 		if (ret_val < 0) {
3632 			DEBUGOUT("Error configuring flow control\n");
3633 			return ret_val;
3634 		}
3635 
3636 		/* At this point we know that we are on copper and we have
3637 		 * auto-negotiated link.  These are conditions for checking the link
3638 		 * parter capability register.	We use the link partner capability to
3639 		 * determine if TBI Compatibility needs to be turned on or off.  If
3640 		 * the link partner advertises any speed in addition to Gigabit, then
3641 		 * we assume that they are GMII-based, and TBI compatibility is not
3642 		 * needed. If no other speeds are advertised, we assume the link
3643 		 * partner is TBI-based, and we turn on TBI Compatibility.
3644 		 */
3645 		if (hw->tbi_compatibility_en) {
3646 			if (e1000_read_phy_reg
3647 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3648 				DEBUGOUT("PHY Read Error\n");
3649 				return -E1000_ERR_PHY;
3650 			}
3651 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3652 					     NWAY_LPAR_10T_FD_CAPS |
3653 					     NWAY_LPAR_100TX_HD_CAPS |
3654 					     NWAY_LPAR_100TX_FD_CAPS |
3655 					     NWAY_LPAR_100T4_CAPS)) {
3656 				/* If our link partner advertises anything in addition to
3657 				 * gigabit, we do not need to enable TBI compatibility.
3658 				 */
3659 				if (hw->tbi_compatibility_on) {
3660 					/* If we previously were in the mode, turn it off. */
3661 					rctl = E1000_READ_REG(hw, RCTL);
3662 					rctl &= ~E1000_RCTL_SBP;
3663 					E1000_WRITE_REG(hw, RCTL, rctl);
3664 					hw->tbi_compatibility_on = false;
3665 				}
3666 			} else {
3667 				/* If TBI compatibility is was previously off, turn it on. For
3668 				 * compatibility with a TBI link partner, we will store bad
3669 				 * packets. Some frames have an additional byte on the end and
3670 				 * will look like CRC errors to to the hardware.
3671 				 */
3672 				if (!hw->tbi_compatibility_on) {
3673 					hw->tbi_compatibility_on = true;
3674 					rctl = E1000_READ_REG(hw, RCTL);
3675 					rctl |= E1000_RCTL_SBP;
3676 					E1000_WRITE_REG(hw, RCTL, rctl);
3677 				}
3678 			}
3679 		}
3680 	}
3681 	/* If we don't have link (auto-negotiation failed or link partner cannot
3682 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3683 	 * link partner is not trying to auto-negotiate with us (we are receiving
3684 	 * idles or data), we need to force link up. We also need to give
3685 	 * auto-negotiation time to complete, in case the cable was just plugged
3686 	 * in. The autoneg_failed flag does this.
3687 	 */
3688 	else if ((hw->media_type == e1000_media_type_fiber) &&
3689 		 (!(status & E1000_STATUS_LU)) &&
3690 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3691 		 (!(rxcw & E1000_RXCW_C))) {
3692 		if (hw->autoneg_failed == 0) {
3693 			hw->autoneg_failed = 1;
3694 			return 0;
3695 		}
3696 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3697 
3698 		/* Disable auto-negotiation in the TXCW register */
3699 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3700 
3701 		/* Force link-up and also force full-duplex. */
3702 		ctrl = E1000_READ_REG(hw, CTRL);
3703 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3704 		E1000_WRITE_REG(hw, CTRL, ctrl);
3705 
3706 		/* Configure Flow Control after forcing link up. */
3707 		ret_val = e1000_config_fc_after_link_up(hw);
3708 		if (ret_val < 0) {
3709 			DEBUGOUT("Error configuring flow control\n");
3710 			return ret_val;
3711 		}
3712 	}
3713 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3714 	 * auto-negotiation in the TXCW register and disable forced link in the
3715 	 * Device Control register in an attempt to auto-negotiate with our link
3716 	 * partner.
3717 	 */
3718 	else if ((hw->media_type == e1000_media_type_fiber) &&
3719 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3720 		DEBUGOUT
3721 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3722 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3723 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3724 	}
3725 	return 0;
3726 }
3727 
3728 /******************************************************************************
3729 * Configure the MAC-to-PHY interface for 10/100Mbps
3730 *
3731 * hw - Struct containing variables accessed by shared code
3732 ******************************************************************************/
3733 static int32_t
3734 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3735 {
3736 	int32_t ret_val = E1000_SUCCESS;
3737 	uint32_t tipg;
3738 	uint16_t reg_data;
3739 
3740 	DEBUGFUNC();
3741 
3742 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3743 	ret_val = e1000_write_kmrn_reg(hw,
3744 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3745 	if (ret_val)
3746 		return ret_val;
3747 
3748 	/* Configure Transmit Inter-Packet Gap */
3749 	tipg = E1000_READ_REG(hw, TIPG);
3750 	tipg &= ~E1000_TIPG_IPGT_MASK;
3751 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3752 	E1000_WRITE_REG(hw, TIPG, tipg);
3753 
3754 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3755 
3756 	if (ret_val)
3757 		return ret_val;
3758 
3759 	if (duplex == HALF_DUPLEX)
3760 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3761 	else
3762 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3763 
3764 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3765 
3766 	return ret_val;
3767 }
3768 
3769 static int32_t
3770 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3771 {
3772 	int32_t ret_val = E1000_SUCCESS;
3773 	uint16_t reg_data;
3774 	uint32_t tipg;
3775 
3776 	DEBUGFUNC();
3777 
3778 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3779 	ret_val = e1000_write_kmrn_reg(hw,
3780 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3781 	if (ret_val)
3782 		return ret_val;
3783 
3784 	/* Configure Transmit Inter-Packet Gap */
3785 	tipg = E1000_READ_REG(hw, TIPG);
3786 	tipg &= ~E1000_TIPG_IPGT_MASK;
3787 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3788 	E1000_WRITE_REG(hw, TIPG, tipg);
3789 
3790 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3791 
3792 	if (ret_val)
3793 		return ret_val;
3794 
3795 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3796 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3797 
3798 	return ret_val;
3799 }
3800 
3801 /******************************************************************************
3802  * Detects the current speed and duplex settings of the hardware.
3803  *
3804  * hw - Struct containing variables accessed by shared code
3805  * speed - Speed of the connection
3806  * duplex - Duplex setting of the connection
3807  *****************************************************************************/
3808 static int
3809 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3810 		uint16_t *duplex)
3811 {
3812 	uint32_t status;
3813 	int32_t ret_val;
3814 	uint16_t phy_data;
3815 
3816 	DEBUGFUNC();
3817 
3818 	if (hw->mac_type >= e1000_82543) {
3819 		status = E1000_READ_REG(hw, STATUS);
3820 		if (status & E1000_STATUS_SPEED_1000) {
3821 			*speed = SPEED_1000;
3822 			DEBUGOUT("1000 Mbs, ");
3823 		} else if (status & E1000_STATUS_SPEED_100) {
3824 			*speed = SPEED_100;
3825 			DEBUGOUT("100 Mbs, ");
3826 		} else {
3827 			*speed = SPEED_10;
3828 			DEBUGOUT("10 Mbs, ");
3829 		}
3830 
3831 		if (status & E1000_STATUS_FD) {
3832 			*duplex = FULL_DUPLEX;
3833 			DEBUGOUT("Full Duplex\r\n");
3834 		} else {
3835 			*duplex = HALF_DUPLEX;
3836 			DEBUGOUT(" Half Duplex\r\n");
3837 		}
3838 	} else {
3839 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3840 		*speed = SPEED_1000;
3841 		*duplex = FULL_DUPLEX;
3842 	}
3843 
3844 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3845 	 * even if it is operating at half duplex.  Here we set the duplex
3846 	 * settings to match the duplex in the link partner's capabilities.
3847 	 */
3848 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3849 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3850 		if (ret_val)
3851 			return ret_val;
3852 
3853 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3854 			*duplex = HALF_DUPLEX;
3855 		else {
3856 			ret_val = e1000_read_phy_reg(hw,
3857 					PHY_LP_ABILITY, &phy_data);
3858 			if (ret_val)
3859 				return ret_val;
3860 			if ((*speed == SPEED_100 &&
3861 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3862 				|| (*speed == SPEED_10
3863 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3864 				*duplex = HALF_DUPLEX;
3865 		}
3866 	}
3867 
3868 	if ((hw->mac_type == e1000_80003es2lan) &&
3869 		(hw->media_type == e1000_media_type_copper)) {
3870 		if (*speed == SPEED_1000)
3871 			ret_val = e1000_configure_kmrn_for_1000(hw);
3872 		else
3873 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3874 		if (ret_val)
3875 			return ret_val;
3876 	}
3877 	return E1000_SUCCESS;
3878 }
3879 
3880 /******************************************************************************
3881 * Blocks until autoneg completes or times out (~4.5 seconds)
3882 *
3883 * hw - Struct containing variables accessed by shared code
3884 ******************************************************************************/
3885 static int
3886 e1000_wait_autoneg(struct e1000_hw *hw)
3887 {
3888 	uint16_t i;
3889 	uint16_t phy_data;
3890 
3891 	DEBUGFUNC();
3892 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3893 
3894 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
3895 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3896 		/* Read the MII Status Register and wait for Auto-Neg
3897 		 * Complete bit to be set.
3898 		 */
3899 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3900 			DEBUGOUT("PHY Read Error\n");
3901 			return -E1000_ERR_PHY;
3902 		}
3903 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3904 			DEBUGOUT("PHY Read Error\n");
3905 			return -E1000_ERR_PHY;
3906 		}
3907 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3908 			DEBUGOUT("Auto-Neg complete.\n");
3909 			return 0;
3910 		}
3911 		mdelay(100);
3912 	}
3913 	DEBUGOUT("Auto-Neg timedout.\n");
3914 	return -E1000_ERR_TIMEOUT;
3915 }
3916 
3917 /******************************************************************************
3918 * Raises the Management Data Clock
3919 *
3920 * hw - Struct containing variables accessed by shared code
3921 * ctrl - Device control register's current value
3922 ******************************************************************************/
3923 static void
3924 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3925 {
3926 	/* Raise the clock input to the Management Data Clock (by setting the MDC
3927 	 * bit), and then delay 2 microseconds.
3928 	 */
3929 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3930 	E1000_WRITE_FLUSH(hw);
3931 	udelay(2);
3932 }
3933 
3934 /******************************************************************************
3935 * Lowers the Management Data Clock
3936 *
3937 * hw - Struct containing variables accessed by shared code
3938 * ctrl - Device control register's current value
3939 ******************************************************************************/
3940 static void
3941 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3942 {
3943 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
3944 	 * bit), and then delay 2 microseconds.
3945 	 */
3946 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3947 	E1000_WRITE_FLUSH(hw);
3948 	udelay(2);
3949 }
3950 
3951 /******************************************************************************
3952 * Shifts data bits out to the PHY
3953 *
3954 * hw - Struct containing variables accessed by shared code
3955 * data - Data to send out to the PHY
3956 * count - Number of bits to shift out
3957 *
3958 * Bits are shifted out in MSB to LSB order.
3959 ******************************************************************************/
3960 static void
3961 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3962 {
3963 	uint32_t ctrl;
3964 	uint32_t mask;
3965 
3966 	/* We need to shift "count" number of bits out to the PHY. So, the value
3967 	 * in the "data" parameter will be shifted out to the PHY one bit at a
3968 	 * time. In order to do this, "data" must be broken down into bits.
3969 	 */
3970 	mask = 0x01;
3971 	mask <<= (count - 1);
3972 
3973 	ctrl = E1000_READ_REG(hw, CTRL);
3974 
3975 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3976 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3977 
3978 	while (mask) {
3979 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3980 		 * then raising and lowering the Management Data Clock. A "0" is
3981 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
3982 		 * raising and lowering the clock.
3983 		 */
3984 		if (data & mask)
3985 			ctrl |= E1000_CTRL_MDIO;
3986 		else
3987 			ctrl &= ~E1000_CTRL_MDIO;
3988 
3989 		E1000_WRITE_REG(hw, CTRL, ctrl);
3990 		E1000_WRITE_FLUSH(hw);
3991 
3992 		udelay(2);
3993 
3994 		e1000_raise_mdi_clk(hw, &ctrl);
3995 		e1000_lower_mdi_clk(hw, &ctrl);
3996 
3997 		mask = mask >> 1;
3998 	}
3999 }
4000 
4001 /******************************************************************************
4002 * Shifts data bits in from the PHY
4003 *
4004 * hw - Struct containing variables accessed by shared code
4005 *
4006 * Bits are shifted in in MSB to LSB order.
4007 ******************************************************************************/
4008 static uint16_t
4009 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4010 {
4011 	uint32_t ctrl;
4012 	uint16_t data = 0;
4013 	uint8_t i;
4014 
4015 	/* In order to read a register from the PHY, we need to shift in a total
4016 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4017 	 * to avoid contention on the MDIO pin when a read operation is performed.
4018 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4019 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4020 	 * and then reading the value of the MDIO bit.
4021 	 */
4022 	ctrl = E1000_READ_REG(hw, CTRL);
4023 
4024 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4025 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4026 	ctrl &= ~E1000_CTRL_MDIO;
4027 
4028 	E1000_WRITE_REG(hw, CTRL, ctrl);
4029 	E1000_WRITE_FLUSH(hw);
4030 
4031 	/* Raise and Lower the clock before reading in the data. This accounts for
4032 	 * the turnaround bits. The first clock occurred when we clocked out the
4033 	 * last bit of the Register Address.
4034 	 */
4035 	e1000_raise_mdi_clk(hw, &ctrl);
4036 	e1000_lower_mdi_clk(hw, &ctrl);
4037 
4038 	for (data = 0, i = 0; i < 16; i++) {
4039 		data = data << 1;
4040 		e1000_raise_mdi_clk(hw, &ctrl);
4041 		ctrl = E1000_READ_REG(hw, CTRL);
4042 		/* Check to see if we shifted in a "1". */
4043 		if (ctrl & E1000_CTRL_MDIO)
4044 			data |= 1;
4045 		e1000_lower_mdi_clk(hw, &ctrl);
4046 	}
4047 
4048 	e1000_raise_mdi_clk(hw, &ctrl);
4049 	e1000_lower_mdi_clk(hw, &ctrl);
4050 
4051 	return data;
4052 }
4053 
4054 /*****************************************************************************
4055 * Reads the value from a PHY register
4056 *
4057 * hw - Struct containing variables accessed by shared code
4058 * reg_addr - address of the PHY register to read
4059 ******************************************************************************/
4060 static int
4061 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4062 {
4063 	uint32_t i;
4064 	uint32_t mdic = 0;
4065 	const uint32_t phy_addr = 1;
4066 
4067 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4068 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4069 		return -E1000_ERR_PARAM;
4070 	}
4071 
4072 	if (hw->mac_type > e1000_82543) {
4073 		/* Set up Op-code, Phy Address, and register address in the MDI
4074 		 * Control register.  The MAC will take care of interfacing with the
4075 		 * PHY to retrieve the desired data.
4076 		 */
4077 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4078 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4079 			(E1000_MDIC_OP_READ));
4080 
4081 		E1000_WRITE_REG(hw, MDIC, mdic);
4082 
4083 		/* Poll the ready bit to see if the MDI read completed */
4084 		for (i = 0; i < 64; i++) {
4085 			udelay(10);
4086 			mdic = E1000_READ_REG(hw, MDIC);
4087 			if (mdic & E1000_MDIC_READY)
4088 				break;
4089 		}
4090 		if (!(mdic & E1000_MDIC_READY)) {
4091 			DEBUGOUT("MDI Read did not complete\n");
4092 			return -E1000_ERR_PHY;
4093 		}
4094 		if (mdic & E1000_MDIC_ERROR) {
4095 			DEBUGOUT("MDI Error\n");
4096 			return -E1000_ERR_PHY;
4097 		}
4098 		*phy_data = (uint16_t) mdic;
4099 	} else {
4100 		/* We must first send a preamble through the MDIO pin to signal the
4101 		 * beginning of an MII instruction.  This is done by sending 32
4102 		 * consecutive "1" bits.
4103 		 */
4104 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4105 
4106 		/* Now combine the next few fields that are required for a read
4107 		 * operation.  We use this method instead of calling the
4108 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4109 		 * a MII read instruction consists of a shift out of 14 bits and is
4110 		 * defined as follows:
4111 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4112 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4113 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4114 		 * READ operation is performed.  These two bits are thrown away
4115 		 * followed by a shift in of 16 bits which contains the desired data.
4116 		 */
4117 		mdic = ((reg_addr) | (phy_addr << 5) |
4118 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4119 
4120 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4121 
4122 		/* Now that we've shifted out the read command to the MII, we need to
4123 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4124 		 * register address.
4125 		 */
4126 		*phy_data = e1000_shift_in_mdi_bits(hw);
4127 	}
4128 	return 0;
4129 }
4130 
4131 /******************************************************************************
4132 * Writes a value to a PHY register
4133 *
4134 * hw - Struct containing variables accessed by shared code
4135 * reg_addr - address of the PHY register to write
4136 * data - data to write to the PHY
4137 ******************************************************************************/
4138 static int
4139 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4140 {
4141 	uint32_t i;
4142 	uint32_t mdic = 0;
4143 	const uint32_t phy_addr = 1;
4144 
4145 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4146 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4147 		return -E1000_ERR_PARAM;
4148 	}
4149 
4150 	if (hw->mac_type > e1000_82543) {
4151 		/* Set up Op-code, Phy Address, register address, and data intended
4152 		 * for the PHY register in the MDI Control register.  The MAC will take
4153 		 * care of interfacing with the PHY to send the desired data.
4154 		 */
4155 		mdic = (((uint32_t) phy_data) |
4156 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4157 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4158 			(E1000_MDIC_OP_WRITE));
4159 
4160 		E1000_WRITE_REG(hw, MDIC, mdic);
4161 
4162 		/* Poll the ready bit to see if the MDI read completed */
4163 		for (i = 0; i < 64; i++) {
4164 			udelay(10);
4165 			mdic = E1000_READ_REG(hw, MDIC);
4166 			if (mdic & E1000_MDIC_READY)
4167 				break;
4168 		}
4169 		if (!(mdic & E1000_MDIC_READY)) {
4170 			DEBUGOUT("MDI Write did not complete\n");
4171 			return -E1000_ERR_PHY;
4172 		}
4173 	} else {
4174 		/* We'll need to use the SW defined pins to shift the write command
4175 		 * out to the PHY. We first send a preamble to the PHY to signal the
4176 		 * beginning of the MII instruction.  This is done by sending 32
4177 		 * consecutive "1" bits.
4178 		 */
4179 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4180 
4181 		/* Now combine the remaining required fields that will indicate a
4182 		 * write operation. We use this method instead of calling the
4183 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4184 		 * format of a MII write instruction is as follows:
4185 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4186 		 */
4187 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4188 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4189 		mdic <<= 16;
4190 		mdic |= (uint32_t) phy_data;
4191 
4192 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4193 	}
4194 	return 0;
4195 }
4196 
4197 /******************************************************************************
4198  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4199  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4200  * the caller to figure out how to deal with it.
4201  *
4202  * hw - Struct containing variables accessed by shared code
4203  *
4204  * returns: - E1000_BLK_PHY_RESET
4205  *            E1000_SUCCESS
4206  *
4207  *****************************************************************************/
4208 int32_t
4209 e1000_check_phy_reset_block(struct e1000_hw *hw)
4210 {
4211 	uint32_t manc = 0;
4212 	uint32_t fwsm = 0;
4213 
4214 	if (hw->mac_type == e1000_ich8lan) {
4215 		fwsm = E1000_READ_REG(hw, FWSM);
4216 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4217 						: E1000_BLK_PHY_RESET;
4218 	}
4219 
4220 	if (hw->mac_type > e1000_82547_rev_2)
4221 		manc = E1000_READ_REG(hw, MANC);
4222 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4223 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4224 }
4225 
4226 /***************************************************************************
4227  * Checks if the PHY configuration is done
4228  *
4229  * hw: Struct containing variables accessed by shared code
4230  *
4231  * returns: - E1000_ERR_RESET if fail to reset MAC
4232  *            E1000_SUCCESS at any other case.
4233  *
4234  ***************************************************************************/
4235 static int32_t
4236 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4237 {
4238 	int32_t timeout = PHY_CFG_TIMEOUT;
4239 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4240 
4241 	DEBUGFUNC();
4242 
4243 	switch (hw->mac_type) {
4244 	default:
4245 		mdelay(10);
4246 		break;
4247 
4248 	case e1000_80003es2lan:
4249 		/* Separate *_CFG_DONE_* bit for each port */
4250 		if (e1000_is_second_port(hw))
4251 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4252 		/* Fall Through */
4253 
4254 	case e1000_82571:
4255 	case e1000_82572:
4256 		while (timeout) {
4257 			if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4258 				break;
4259 			else
4260 				mdelay(1);
4261 			timeout--;
4262 		}
4263 		if (!timeout) {
4264 			DEBUGOUT("MNG configuration cycle has not "
4265 					"completed.\n");
4266 			return -E1000_ERR_RESET;
4267 		}
4268 		break;
4269 	}
4270 
4271 	return E1000_SUCCESS;
4272 }
4273 
4274 /******************************************************************************
4275 * Returns the PHY to the power-on reset state
4276 *
4277 * hw - Struct containing variables accessed by shared code
4278 ******************************************************************************/
4279 int32_t
4280 e1000_phy_hw_reset(struct e1000_hw *hw)
4281 {
4282 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4283 	uint32_t ctrl, ctrl_ext;
4284 	uint32_t led_ctrl;
4285 	int32_t ret_val;
4286 
4287 	DEBUGFUNC();
4288 
4289 	/* In the case of the phy reset being blocked, it's not an error, we
4290 	 * simply return success without performing the reset. */
4291 	ret_val = e1000_check_phy_reset_block(hw);
4292 	if (ret_val)
4293 		return E1000_SUCCESS;
4294 
4295 	DEBUGOUT("Resetting Phy...\n");
4296 
4297 	if (hw->mac_type > e1000_82543) {
4298 		if (e1000_is_second_port(hw))
4299 			swfw = E1000_SWFW_PHY1_SM;
4300 
4301 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4302 			DEBUGOUT("Unable to acquire swfw sync\n");
4303 			return -E1000_ERR_SWFW_SYNC;
4304 		}
4305 
4306 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4307 		 * bit. Then, take it out of reset.
4308 		 */
4309 		ctrl = E1000_READ_REG(hw, CTRL);
4310 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4311 		E1000_WRITE_FLUSH(hw);
4312 
4313 		if (hw->mac_type < e1000_82571)
4314 			udelay(10);
4315 		else
4316 			udelay(100);
4317 
4318 		E1000_WRITE_REG(hw, CTRL, ctrl);
4319 		E1000_WRITE_FLUSH(hw);
4320 
4321 		if (hw->mac_type >= e1000_82571)
4322 			mdelay(10);
4323 
4324 	} else {
4325 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4326 		 * bit to put the PHY into reset. Then, take it out of reset.
4327 		 */
4328 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4329 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4330 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4331 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4332 		E1000_WRITE_FLUSH(hw);
4333 		mdelay(10);
4334 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4335 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4336 		E1000_WRITE_FLUSH(hw);
4337 	}
4338 	udelay(150);
4339 
4340 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4341 		/* Configure activity LED after PHY reset */
4342 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4343 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4344 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4345 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4346 	}
4347 
4348 	/* Wait for FW to finish PHY configuration. */
4349 	ret_val = e1000_get_phy_cfg_done(hw);
4350 	if (ret_val != E1000_SUCCESS)
4351 		return ret_val;
4352 
4353 	return ret_val;
4354 }
4355 
4356 /******************************************************************************
4357  * IGP phy init script - initializes the GbE PHY
4358  *
4359  * hw - Struct containing variables accessed by shared code
4360  *****************************************************************************/
4361 static void
4362 e1000_phy_init_script(struct e1000_hw *hw)
4363 {
4364 	uint32_t ret_val;
4365 	uint16_t phy_saved_data;
4366 	DEBUGFUNC();
4367 
4368 	if (hw->phy_init_script) {
4369 		mdelay(20);
4370 
4371 		/* Save off the current value of register 0x2F5B to be
4372 		 * restored at the end of this routine. */
4373 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4374 
4375 		/* Disabled the PHY transmitter */
4376 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4377 
4378 		mdelay(20);
4379 
4380 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4381 
4382 		mdelay(5);
4383 
4384 		switch (hw->mac_type) {
4385 		case e1000_82541:
4386 		case e1000_82547:
4387 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4388 
4389 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4390 
4391 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4392 
4393 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4394 
4395 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4396 
4397 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4398 
4399 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4400 
4401 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4402 
4403 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4404 			break;
4405 
4406 		case e1000_82541_rev_2:
4407 		case e1000_82547_rev_2:
4408 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4409 			break;
4410 		default:
4411 			break;
4412 		}
4413 
4414 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4415 
4416 		mdelay(20);
4417 
4418 		/* Now enable the transmitter */
4419 		if (!ret_val)
4420 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4421 
4422 		if (hw->mac_type == e1000_82547) {
4423 			uint16_t fused, fine, coarse;
4424 
4425 			/* Move to analog registers page */
4426 			e1000_read_phy_reg(hw,
4427 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4428 
4429 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4430 				e1000_read_phy_reg(hw,
4431 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4432 
4433 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4434 				coarse = fused
4435 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4436 
4437 				if (coarse >
4438 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4439 					coarse -=
4440 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4441 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4442 				} else if (coarse
4443 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4444 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4445 
4446 				fused = (fused
4447 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4448 					(fine
4449 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4450 					(coarse
4451 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4452 
4453 				e1000_write_phy_reg(hw,
4454 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4455 				e1000_write_phy_reg(hw,
4456 					IGP01E1000_ANALOG_FUSE_BYPASS,
4457 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4458 			}
4459 		}
4460 	}
4461 }
4462 
4463 /******************************************************************************
4464 * Resets the PHY
4465 *
4466 * hw - Struct containing variables accessed by shared code
4467 *
4468 * Sets bit 15 of the MII Control register
4469 ******************************************************************************/
4470 int32_t
4471 e1000_phy_reset(struct e1000_hw *hw)
4472 {
4473 	int32_t ret_val;
4474 	uint16_t phy_data;
4475 
4476 	DEBUGFUNC();
4477 
4478 	/* In the case of the phy reset being blocked, it's not an error, we
4479 	 * simply return success without performing the reset. */
4480 	ret_val = e1000_check_phy_reset_block(hw);
4481 	if (ret_val)
4482 		return E1000_SUCCESS;
4483 
4484 	switch (hw->phy_type) {
4485 	case e1000_phy_igp:
4486 	case e1000_phy_igp_2:
4487 	case e1000_phy_igp_3:
4488 	case e1000_phy_ife:
4489 		ret_val = e1000_phy_hw_reset(hw);
4490 		if (ret_val)
4491 			return ret_val;
4492 		break;
4493 	default:
4494 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4495 		if (ret_val)
4496 			return ret_val;
4497 
4498 		phy_data |= MII_CR_RESET;
4499 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4500 		if (ret_val)
4501 			return ret_val;
4502 
4503 		udelay(1);
4504 		break;
4505 	}
4506 
4507 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4508 		e1000_phy_init_script(hw);
4509 
4510 	return E1000_SUCCESS;
4511 }
4512 
4513 static int e1000_set_phy_type (struct e1000_hw *hw)
4514 {
4515 	DEBUGFUNC ();
4516 
4517 	if (hw->mac_type == e1000_undefined)
4518 		return -E1000_ERR_PHY_TYPE;
4519 
4520 	switch (hw->phy_id) {
4521 	case M88E1000_E_PHY_ID:
4522 	case M88E1000_I_PHY_ID:
4523 	case M88E1011_I_PHY_ID:
4524 	case M88E1111_I_PHY_ID:
4525 		hw->phy_type = e1000_phy_m88;
4526 		break;
4527 	case IGP01E1000_I_PHY_ID:
4528 		if (hw->mac_type == e1000_82541 ||
4529 			hw->mac_type == e1000_82541_rev_2 ||
4530 			hw->mac_type == e1000_82547 ||
4531 			hw->mac_type == e1000_82547_rev_2) {
4532 			hw->phy_type = e1000_phy_igp;
4533 			hw->phy_type = e1000_phy_igp;
4534 			break;
4535 		}
4536 	case IGP03E1000_E_PHY_ID:
4537 		hw->phy_type = e1000_phy_igp_3;
4538 		break;
4539 	case IFE_E_PHY_ID:
4540 	case IFE_PLUS_E_PHY_ID:
4541 	case IFE_C_E_PHY_ID:
4542 		hw->phy_type = e1000_phy_ife;
4543 		break;
4544 	case GG82563_E_PHY_ID:
4545 		if (hw->mac_type == e1000_80003es2lan) {
4546 			hw->phy_type = e1000_phy_gg82563;
4547 			break;
4548 		}
4549 	case BME1000_E_PHY_ID:
4550 		hw->phy_type = e1000_phy_bm;
4551 		break;
4552 		/* Fall Through */
4553 	default:
4554 		/* Should never have loaded on this device */
4555 		hw->phy_type = e1000_phy_undefined;
4556 		return -E1000_ERR_PHY_TYPE;
4557 	}
4558 
4559 	return E1000_SUCCESS;
4560 }
4561 
4562 /******************************************************************************
4563 * Probes the expected PHY address for known PHY IDs
4564 *
4565 * hw - Struct containing variables accessed by shared code
4566 ******************************************************************************/
4567 static int32_t
4568 e1000_detect_gig_phy(struct e1000_hw *hw)
4569 {
4570 	int32_t phy_init_status, ret_val;
4571 	uint16_t phy_id_high, phy_id_low;
4572 	bool match = false;
4573 
4574 	DEBUGFUNC();
4575 
4576 	/* The 82571 firmware may still be configuring the PHY.  In this
4577 	 * case, we cannot access the PHY until the configuration is done.  So
4578 	 * we explicitly set the PHY values. */
4579 	if (hw->mac_type == e1000_82571 ||
4580 		hw->mac_type == e1000_82572) {
4581 		hw->phy_id = IGP01E1000_I_PHY_ID;
4582 		hw->phy_type = e1000_phy_igp_2;
4583 		return E1000_SUCCESS;
4584 	}
4585 
4586 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4587 	 * work- around that forces PHY page 0 to be set or the reads fail.
4588 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4589 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4590 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4591 	 * the routines below will figure this out as well. */
4592 	if (hw->mac_type == e1000_80003es2lan)
4593 		hw->phy_type = e1000_phy_gg82563;
4594 
4595 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4596 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4597 	if (ret_val)
4598 		return ret_val;
4599 
4600 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4601 	udelay(20);
4602 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4603 	if (ret_val)
4604 		return ret_val;
4605 
4606 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4607 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4608 
4609 	switch (hw->mac_type) {
4610 	case e1000_82543:
4611 		if (hw->phy_id == M88E1000_E_PHY_ID)
4612 			match = true;
4613 		break;
4614 	case e1000_82544:
4615 		if (hw->phy_id == M88E1000_I_PHY_ID)
4616 			match = true;
4617 		break;
4618 	case e1000_82540:
4619 	case e1000_82545:
4620 	case e1000_82545_rev_3:
4621 	case e1000_82546:
4622 	case e1000_82546_rev_3:
4623 		if (hw->phy_id == M88E1011_I_PHY_ID)
4624 			match = true;
4625 		break;
4626 	case e1000_82541:
4627 	case e1000_82541_rev_2:
4628 	case e1000_82547:
4629 	case e1000_82547_rev_2:
4630 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4631 			match = true;
4632 
4633 		break;
4634 	case e1000_82573:
4635 		if (hw->phy_id == M88E1111_I_PHY_ID)
4636 			match = true;
4637 		break;
4638 	case e1000_82574:
4639 		if (hw->phy_id == BME1000_E_PHY_ID)
4640 			match = true;
4641 		break;
4642 	case e1000_80003es2lan:
4643 		if (hw->phy_id == GG82563_E_PHY_ID)
4644 			match = true;
4645 		break;
4646 	case e1000_ich8lan:
4647 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4648 			match = true;
4649 		if (hw->phy_id == IFE_E_PHY_ID)
4650 			match = true;
4651 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4652 			match = true;
4653 		if (hw->phy_id == IFE_C_E_PHY_ID)
4654 			match = true;
4655 		break;
4656 	default:
4657 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4658 		return -E1000_ERR_CONFIG;
4659 	}
4660 
4661 	phy_init_status = e1000_set_phy_type(hw);
4662 
4663 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4664 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4665 		return 0;
4666 	}
4667 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4668 	return -E1000_ERR_PHY;
4669 }
4670 
4671 /*****************************************************************************
4672  * Set media type and TBI compatibility.
4673  *
4674  * hw - Struct containing variables accessed by shared code
4675  * **************************************************************************/
4676 void
4677 e1000_set_media_type(struct e1000_hw *hw)
4678 {
4679 	uint32_t status;
4680 
4681 	DEBUGFUNC();
4682 
4683 	if (hw->mac_type != e1000_82543) {
4684 		/* tbi_compatibility is only valid on 82543 */
4685 		hw->tbi_compatibility_en = false;
4686 	}
4687 
4688 	switch (hw->device_id) {
4689 	case E1000_DEV_ID_82545GM_SERDES:
4690 	case E1000_DEV_ID_82546GB_SERDES:
4691 	case E1000_DEV_ID_82571EB_SERDES:
4692 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4693 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4694 	case E1000_DEV_ID_82572EI_SERDES:
4695 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4696 		hw->media_type = e1000_media_type_internal_serdes;
4697 		break;
4698 	default:
4699 		switch (hw->mac_type) {
4700 		case e1000_82542_rev2_0:
4701 		case e1000_82542_rev2_1:
4702 			hw->media_type = e1000_media_type_fiber;
4703 			break;
4704 		case e1000_ich8lan:
4705 		case e1000_82573:
4706 		case e1000_82574:
4707 			/* The STATUS_TBIMODE bit is reserved or reused
4708 			 * for the this device.
4709 			 */
4710 			hw->media_type = e1000_media_type_copper;
4711 			break;
4712 		default:
4713 			status = E1000_READ_REG(hw, STATUS);
4714 			if (status & E1000_STATUS_TBIMODE) {
4715 				hw->media_type = e1000_media_type_fiber;
4716 				/* tbi_compatibility not valid on fiber */
4717 				hw->tbi_compatibility_en = false;
4718 			} else {
4719 				hw->media_type = e1000_media_type_copper;
4720 			}
4721 			break;
4722 		}
4723 	}
4724 }
4725 
4726 /**
4727  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4728  *
4729  * e1000_sw_init initializes the Adapter private data structure.
4730  * Fields are initialized based on PCI device information and
4731  * OS network device settings (MTU size).
4732  **/
4733 
4734 static int
4735 e1000_sw_init(struct eth_device *nic)
4736 {
4737 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
4738 	int result;
4739 
4740 	/* PCI config space info */
4741 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4742 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4743 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4744 			     &hw->subsystem_vendor_id);
4745 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4746 
4747 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4748 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4749 
4750 	/* identify the MAC */
4751 	result = e1000_set_mac_type(hw);
4752 	if (result) {
4753 		E1000_ERR(hw->nic, "Unknown MAC Type\n");
4754 		return result;
4755 	}
4756 
4757 	switch (hw->mac_type) {
4758 	default:
4759 		break;
4760 	case e1000_82541:
4761 	case e1000_82547:
4762 	case e1000_82541_rev_2:
4763 	case e1000_82547_rev_2:
4764 		hw->phy_init_script = 1;
4765 		break;
4766 	}
4767 
4768 	/* flow control settings */
4769 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4770 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4771 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4772 	hw->fc_send_xon = 1;
4773 
4774 	/* Media type - copper or fiber */
4775 	e1000_set_media_type(hw);
4776 
4777 	if (hw->mac_type >= e1000_82543) {
4778 		uint32_t status = E1000_READ_REG(hw, STATUS);
4779 
4780 		if (status & E1000_STATUS_TBIMODE) {
4781 			DEBUGOUT("fiber interface\n");
4782 			hw->media_type = e1000_media_type_fiber;
4783 		} else {
4784 			DEBUGOUT("copper interface\n");
4785 			hw->media_type = e1000_media_type_copper;
4786 		}
4787 	} else {
4788 		hw->media_type = e1000_media_type_fiber;
4789 	}
4790 
4791 	hw->tbi_compatibility_en = true;
4792 	hw->wait_autoneg_complete = true;
4793 	if (hw->mac_type < e1000_82543)
4794 		hw->report_tx_early = 0;
4795 	else
4796 		hw->report_tx_early = 1;
4797 
4798 	return E1000_SUCCESS;
4799 }
4800 
4801 void
4802 fill_rx(struct e1000_hw *hw)
4803 {
4804 	struct e1000_rx_desc *rd;
4805 
4806 	rx_last = rx_tail;
4807 	rd = rx_base + rx_tail;
4808 	rx_tail = (rx_tail + 1) % 8;
4809 	memset(rd, 0, 16);
4810 	rd->buffer_addr = cpu_to_le64((u32) & packet);
4811 	E1000_WRITE_REG(hw, RDT, rx_tail);
4812 }
4813 
4814 /**
4815  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4816  * @adapter: board private structure
4817  *
4818  * Configure the Tx unit of the MAC after a reset.
4819  **/
4820 
4821 static void
4822 e1000_configure_tx(struct e1000_hw *hw)
4823 {
4824 	unsigned long ptr;
4825 	unsigned long tctl;
4826 	unsigned long tipg, tarc;
4827 	uint32_t ipgr1, ipgr2;
4828 
4829 	ptr = (u32) tx_pool;
4830 	if (ptr & 0xf)
4831 		ptr = (ptr + 0x10) & (~0xf);
4832 
4833 	tx_base = (typeof(tx_base)) ptr;
4834 
4835 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4836 	E1000_WRITE_REG(hw, TDBAH, 0);
4837 
4838 	E1000_WRITE_REG(hw, TDLEN, 128);
4839 
4840 	/* Setup the HW Tx Head and Tail descriptor pointers */
4841 	E1000_WRITE_REG(hw, TDH, 0);
4842 	E1000_WRITE_REG(hw, TDT, 0);
4843 	tx_tail = 0;
4844 
4845 	/* Set the default values for the Tx Inter Packet Gap timer */
4846 	if (hw->mac_type <= e1000_82547_rev_2 &&
4847 	    (hw->media_type == e1000_media_type_fiber ||
4848 	     hw->media_type == e1000_media_type_internal_serdes))
4849 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4850 	else
4851 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4852 
4853 	/* Set the default values for the Tx Inter Packet Gap timer */
4854 	switch (hw->mac_type) {
4855 	case e1000_82542_rev2_0:
4856 	case e1000_82542_rev2_1:
4857 		tipg = DEFAULT_82542_TIPG_IPGT;
4858 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4859 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4860 		break;
4861 	case e1000_80003es2lan:
4862 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4863 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4864 		break;
4865 	default:
4866 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4867 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4868 		break;
4869 	}
4870 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4871 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4872 	E1000_WRITE_REG(hw, TIPG, tipg);
4873 	/* Program the Transmit Control Register */
4874 	tctl = E1000_READ_REG(hw, TCTL);
4875 	tctl &= ~E1000_TCTL_CT;
4876 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4877 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4878 
4879 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4880 		tarc = E1000_READ_REG(hw, TARC0);
4881 		/* set the speed mode bit, we'll clear it if we're not at
4882 		 * gigabit link later */
4883 		/* git bit can be set to 1*/
4884 	} else if (hw->mac_type == e1000_80003es2lan) {
4885 		tarc = E1000_READ_REG(hw, TARC0);
4886 		tarc |= 1;
4887 		E1000_WRITE_REG(hw, TARC0, tarc);
4888 		tarc = E1000_READ_REG(hw, TARC1);
4889 		tarc |= 1;
4890 		E1000_WRITE_REG(hw, TARC1, tarc);
4891 	}
4892 
4893 
4894 	e1000_config_collision_dist(hw);
4895 	/* Setup Transmit Descriptor Settings for eop descriptor */
4896 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4897 
4898 	/* Need to set up RS bit */
4899 	if (hw->mac_type < e1000_82543)
4900 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
4901 	else
4902 		hw->txd_cmd |= E1000_TXD_CMD_RS;
4903 	E1000_WRITE_REG(hw, TCTL, tctl);
4904 }
4905 
4906 /**
4907  * e1000_setup_rctl - configure the receive control register
4908  * @adapter: Board private structure
4909  **/
4910 static void
4911 e1000_setup_rctl(struct e1000_hw *hw)
4912 {
4913 	uint32_t rctl;
4914 
4915 	rctl = E1000_READ_REG(hw, RCTL);
4916 
4917 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4918 
4919 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4920 		| E1000_RCTL_RDMTS_HALF;	/* |
4921 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4922 
4923 	if (hw->tbi_compatibility_on == 1)
4924 		rctl |= E1000_RCTL_SBP;
4925 	else
4926 		rctl &= ~E1000_RCTL_SBP;
4927 
4928 	rctl &= ~(E1000_RCTL_SZ_4096);
4929 		rctl |= E1000_RCTL_SZ_2048;
4930 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4931 	E1000_WRITE_REG(hw, RCTL, rctl);
4932 }
4933 
4934 /**
4935  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4936  * @adapter: board private structure
4937  *
4938  * Configure the Rx unit of the MAC after a reset.
4939  **/
4940 static void
4941 e1000_configure_rx(struct e1000_hw *hw)
4942 {
4943 	unsigned long ptr;
4944 	unsigned long rctl, ctrl_ext;
4945 	rx_tail = 0;
4946 	/* make sure receives are disabled while setting up the descriptors */
4947 	rctl = E1000_READ_REG(hw, RCTL);
4948 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4949 	if (hw->mac_type >= e1000_82540) {
4950 		/* Set the interrupt throttling rate.  Value is calculated
4951 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4952 #define MAX_INTS_PER_SEC	8000
4953 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
4954 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4955 	}
4956 
4957 	if (hw->mac_type >= e1000_82571) {
4958 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4959 		/* Reset delay timers after every interrupt */
4960 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4961 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4962 		E1000_WRITE_FLUSH(hw);
4963 	}
4964 	/* Setup the Base and Length of the Rx Descriptor Ring */
4965 	ptr = (u32) rx_pool;
4966 	if (ptr & 0xf)
4967 		ptr = (ptr + 0x10) & (~0xf);
4968 	rx_base = (typeof(rx_base)) ptr;
4969 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4970 	E1000_WRITE_REG(hw, RDBAH, 0);
4971 
4972 	E1000_WRITE_REG(hw, RDLEN, 128);
4973 
4974 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
4975 	E1000_WRITE_REG(hw, RDH, 0);
4976 	E1000_WRITE_REG(hw, RDT, 0);
4977 	/* Enable Receives */
4978 
4979 	E1000_WRITE_REG(hw, RCTL, rctl);
4980 	fill_rx(hw);
4981 }
4982 
4983 /**************************************************************************
4984 POLL - Wait for a frame
4985 ***************************************************************************/
4986 static int
4987 e1000_poll(struct eth_device *nic)
4988 {
4989 	struct e1000_hw *hw = nic->priv;
4990 	struct e1000_rx_desc *rd;
4991 	/* return true if there's an ethernet packet ready to read */
4992 	rd = rx_base + rx_last;
4993 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4994 		return 0;
4995 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
4996 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
4997 	fill_rx(hw);
4998 	return 1;
4999 }
5000 
5001 /**************************************************************************
5002 TRANSMIT - Transmit a frame
5003 ***************************************************************************/
5004 static int e1000_transmit(struct eth_device *nic, void *packet, int length)
5005 {
5006 	void *nv_packet = (void *)packet;
5007 	struct e1000_hw *hw = nic->priv;
5008 	struct e1000_tx_desc *txp;
5009 	int i = 0;
5010 
5011 	txp = tx_base + tx_tail;
5012 	tx_tail = (tx_tail + 1) % 8;
5013 
5014 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5015 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5016 	txp->upper.data = 0;
5017 	E1000_WRITE_REG(hw, TDT, tx_tail);
5018 
5019 	E1000_WRITE_FLUSH(hw);
5020 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5021 		if (i++ > TOUT_LOOP) {
5022 			DEBUGOUT("e1000: tx timeout\n");
5023 			return 0;
5024 		}
5025 		udelay(10);	/* give the nic a chance to write to the register */
5026 	}
5027 	return 1;
5028 }
5029 
5030 /*reset function*/
5031 static inline int
5032 e1000_reset(struct eth_device *nic)
5033 {
5034 	struct e1000_hw *hw = nic->priv;
5035 
5036 	e1000_reset_hw(hw);
5037 	if (hw->mac_type >= e1000_82544) {
5038 		E1000_WRITE_REG(hw, WUC, 0);
5039 	}
5040 	return e1000_init_hw(nic);
5041 }
5042 
5043 /**************************************************************************
5044 DISABLE - Turn off ethernet interface
5045 ***************************************************************************/
5046 static void
5047 e1000_disable(struct eth_device *nic)
5048 {
5049 	struct e1000_hw *hw = nic->priv;
5050 
5051 	/* Turn off the ethernet interface */
5052 	E1000_WRITE_REG(hw, RCTL, 0);
5053 	E1000_WRITE_REG(hw, TCTL, 0);
5054 
5055 	/* Clear the transmit ring */
5056 	E1000_WRITE_REG(hw, TDH, 0);
5057 	E1000_WRITE_REG(hw, TDT, 0);
5058 
5059 	/* Clear the receive ring */
5060 	E1000_WRITE_REG(hw, RDH, 0);
5061 	E1000_WRITE_REG(hw, RDT, 0);
5062 
5063 	/* put the card in its initial state */
5064 #if 0
5065 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5066 #endif
5067 	mdelay(10);
5068 
5069 }
5070 
5071 /**************************************************************************
5072 INIT - set up ethernet interface(s)
5073 ***************************************************************************/
5074 static int
5075 e1000_init(struct eth_device *nic, bd_t * bis)
5076 {
5077 	struct e1000_hw *hw = nic->priv;
5078 	int ret_val = 0;
5079 
5080 	ret_val = e1000_reset(nic);
5081 	if (ret_val < 0) {
5082 		if ((ret_val == -E1000_ERR_NOLINK) ||
5083 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5084 			E1000_ERR(hw->nic, "Valid Link not detected\n");
5085 		} else {
5086 			E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5087 		}
5088 		return 0;
5089 	}
5090 	e1000_configure_tx(hw);
5091 	e1000_setup_rctl(hw);
5092 	e1000_configure_rx(hw);
5093 	return 1;
5094 }
5095 
5096 /******************************************************************************
5097  * Gets the current PCI bus type of hardware
5098  *
5099  * hw - Struct containing variables accessed by shared code
5100  *****************************************************************************/
5101 void e1000_get_bus_type(struct e1000_hw *hw)
5102 {
5103 	uint32_t status;
5104 
5105 	switch (hw->mac_type) {
5106 	case e1000_82542_rev2_0:
5107 	case e1000_82542_rev2_1:
5108 		hw->bus_type = e1000_bus_type_pci;
5109 		break;
5110 	case e1000_82571:
5111 	case e1000_82572:
5112 	case e1000_82573:
5113 	case e1000_82574:
5114 	case e1000_80003es2lan:
5115 		hw->bus_type = e1000_bus_type_pci_express;
5116 		break;
5117 	case e1000_ich8lan:
5118 		hw->bus_type = e1000_bus_type_pci_express;
5119 		break;
5120 	default:
5121 		status = E1000_READ_REG(hw, STATUS);
5122 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5123 				e1000_bus_type_pcix : e1000_bus_type_pci;
5124 		break;
5125 	}
5126 }
5127 
5128 /* A list of all registered e1000 devices */
5129 static LIST_HEAD(e1000_hw_list);
5130 
5131 /**************************************************************************
5132 PROBE - Look for an adapter, this routine's visible to the outside
5133 You should omit the last argument struct pci_device * for a non-PCI NIC
5134 ***************************************************************************/
5135 int
5136 e1000_initialize(bd_t * bis)
5137 {
5138 	unsigned int i;
5139 	pci_dev_t devno;
5140 
5141 	DEBUGFUNC();
5142 
5143 	/* Find and probe all the matching PCI devices */
5144 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5145 		u32 val;
5146 
5147 		/*
5148 		 * These will never get freed due to errors, this allows us to
5149 		 * perform SPI EEPROM programming from U-boot, for example.
5150 		 */
5151 		struct eth_device *nic = malloc(sizeof(*nic));
5152 		struct e1000_hw *hw = malloc(sizeof(*hw));
5153 		if (!nic || !hw) {
5154 			printf("e1000#%u: Out of Memory!\n", i);
5155 			free(nic);
5156 			free(hw);
5157 			continue;
5158 		}
5159 
5160 		/* Make sure all of the fields are initially zeroed */
5161 		memset(nic, 0, sizeof(*nic));
5162 		memset(hw, 0, sizeof(*hw));
5163 
5164 		/* Assign the passed-in values */
5165 		hw->cardnum = i;
5166 		hw->pdev = devno;
5167 		hw->nic = nic;
5168 		nic->priv = hw;
5169 
5170 		/* Generate a card name */
5171 		sprintf(nic->name, "e1000#%u", hw->cardnum);
5172 
5173 		/* Print a debug message with the IO base address */
5174 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5175 		E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5176 
5177 		/* Try to enable I/O accesses and bus-mastering */
5178 		val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5179 		pci_write_config_dword(devno, PCI_COMMAND, val);
5180 
5181 		/* Make sure it worked */
5182 		pci_read_config_dword(devno, PCI_COMMAND, &val);
5183 		if (!(val & PCI_COMMAND_MEMORY)) {
5184 			E1000_ERR(nic, "Can't enable I/O memory\n");
5185 			continue;
5186 		}
5187 		if (!(val & PCI_COMMAND_MASTER)) {
5188 			E1000_ERR(nic, "Can't enable bus-mastering\n");
5189 			continue;
5190 		}
5191 
5192 		/* Are these variables needed? */
5193 		hw->fc = e1000_fc_default;
5194 		hw->original_fc = e1000_fc_default;
5195 		hw->autoneg_failed = 0;
5196 		hw->autoneg = 1;
5197 		hw->get_link_status = true;
5198 		hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5199 							PCI_REGION_MEM);
5200 		hw->mac_type = e1000_undefined;
5201 
5202 		/* MAC and Phy settings */
5203 		if (e1000_sw_init(nic) < 0) {
5204 			E1000_ERR(nic, "Software init failed\n");
5205 			continue;
5206 		}
5207 		if (e1000_check_phy_reset_block(hw))
5208 			E1000_ERR(nic, "PHY Reset is blocked!\n");
5209 
5210 		/* Basic init was OK, reset the hardware and allow SPI access */
5211 		e1000_reset_hw(hw);
5212 		list_add_tail(&hw->list_node, &e1000_hw_list);
5213 
5214 		/* Validate the EEPROM and get chipset information */
5215 #if !defined(CONFIG_MVBC_1G)
5216 		if (e1000_init_eeprom_params(hw)) {
5217 			E1000_ERR(nic, "EEPROM is invalid!\n");
5218 			continue;
5219 		}
5220 		if (e1000_validate_eeprom_checksum(hw))
5221 			continue;
5222 #endif
5223 		e1000_read_mac_addr(nic);
5224 		e1000_get_bus_type(hw);
5225 
5226 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5227 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5228 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5229 
5230 		/* Set up the function pointers and register the device */
5231 		nic->init = e1000_init;
5232 		nic->recv = e1000_poll;
5233 		nic->send = e1000_transmit;
5234 		nic->halt = e1000_disable;
5235 		eth_register(nic);
5236 	}
5237 
5238 	return i;
5239 }
5240 
5241 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5242 {
5243 	struct e1000_hw *hw;
5244 
5245 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5246 		if (hw->cardnum == cardnum)
5247 			return hw;
5248 
5249 	return NULL;
5250 }
5251 
5252 #ifdef CONFIG_CMD_E1000
5253 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5254 		int argc, char * const argv[])
5255 {
5256 	struct e1000_hw *hw;
5257 
5258 	if (argc < 3) {
5259 		cmd_usage(cmdtp);
5260 		return 1;
5261 	}
5262 
5263 	/* Make sure we can find the requested e1000 card */
5264 	hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5265 	if (!hw) {
5266 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5267 		return 1;
5268 	}
5269 
5270 	if (!strcmp(argv[2], "print-mac-address")) {
5271 		unsigned char *mac = hw->nic->enetaddr;
5272 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5273 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5274 		return 0;
5275 	}
5276 
5277 #ifdef CONFIG_E1000_SPI
5278 	/* Handle the "SPI" subcommand */
5279 	if (!strcmp(argv[2], "spi"))
5280 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5281 #endif
5282 
5283 	cmd_usage(cmdtp);
5284 	return 1;
5285 }
5286 
5287 U_BOOT_CMD(
5288 	e1000, 7, 0, do_e1000,
5289 	"Intel e1000 controller management",
5290 	/*  */"<card#> print-mac-address\n"
5291 #ifdef CONFIG_E1000_SPI
5292 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5293 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5294 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5295 	"e1000 <card#> spi checksum [update]\n"
5296 #endif
5297 	"       - Manage the Intel E1000 PCI device"
5298 );
5299 #endif /* not CONFIG_CMD_E1000 */
5300