xref: /openbmc/u-boot/drivers/net/e1000.c (revision 9038cd531382e94cc6d4daa9e81f70491030aa38)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12  * SPDX-License-Identifier:	GPL-2.0+
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include "e1000.h"
33 
34 #define TOUT_LOOP   100000
35 
36 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
37 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
38 
39 #define E1000_DEFAULT_PCI_PBA	0x00000030
40 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
41 
42 /* NIC specific static variables go here */
43 
44 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
45 #define E1000_BUFFER_ALIGN	128
46 
47 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
48 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
49 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
50 
51 static int tx_tail;
52 static int rx_tail, rx_last;
53 
54 static struct pci_device_id e1000_supported[] = {
55 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
64 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
65 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
68 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
69 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
72 	/* E1000 PCIe card */
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
89 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
90 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
95 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED},
96 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED},
97 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER},
98 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER},
99 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS},
100 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES},
101 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS},
102 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX},
103 
104 	{}
105 };
106 
107 /* Function forward declarations */
108 static int e1000_setup_link(struct eth_device *nic);
109 static int e1000_setup_fiber_link(struct eth_device *nic);
110 static int e1000_setup_copper_link(struct eth_device *nic);
111 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
112 static void e1000_config_collision_dist(struct e1000_hw *hw);
113 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
114 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
115 static int e1000_check_for_link(struct eth_device *nic);
116 static int e1000_wait_autoneg(struct e1000_hw *hw);
117 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
118 				       uint16_t * duplex);
119 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
120 			      uint16_t * phy_data);
121 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
122 			       uint16_t phy_data);
123 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
124 static int e1000_phy_reset(struct e1000_hw *hw);
125 static int e1000_detect_gig_phy(struct e1000_hw *hw);
126 static void e1000_set_media_type(struct e1000_hw *hw);
127 
128 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
129 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
130 
131 #ifndef CONFIG_E1000_NO_NVM
132 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
134 		uint16_t words,
135 		uint16_t *data);
136 /******************************************************************************
137  * Raises the EEPROM's clock input.
138  *
139  * hw - Struct containing variables accessed by shared code
140  * eecd - EECD's current value
141  *****************************************************************************/
142 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
143 {
144 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
145 	 * wait 50 microseconds.
146 	 */
147 	*eecd = *eecd | E1000_EECD_SK;
148 	E1000_WRITE_REG(hw, EECD, *eecd);
149 	E1000_WRITE_FLUSH(hw);
150 	udelay(50);
151 }
152 
153 /******************************************************************************
154  * Lowers the EEPROM's clock input.
155  *
156  * hw - Struct containing variables accessed by shared code
157  * eecd - EECD's current value
158  *****************************************************************************/
159 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
160 {
161 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
162 	 * wait 50 microseconds.
163 	 */
164 	*eecd = *eecd & ~E1000_EECD_SK;
165 	E1000_WRITE_REG(hw, EECD, *eecd);
166 	E1000_WRITE_FLUSH(hw);
167 	udelay(50);
168 }
169 
170 /******************************************************************************
171  * Shift data bits out to the EEPROM.
172  *
173  * hw - Struct containing variables accessed by shared code
174  * data - data to send to the EEPROM
175  * count - number of bits to shift out
176  *****************************************************************************/
177 static void
178 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
179 {
180 	uint32_t eecd;
181 	uint32_t mask;
182 
183 	/* We need to shift "count" bits out to the EEPROM. So, value in the
184 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
185 	 * In order to do this, "data" must be broken down into bits.
186 	 */
187 	mask = 0x01 << (count - 1);
188 	eecd = E1000_READ_REG(hw, EECD);
189 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
190 	do {
191 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
192 		 * and then raising and then lowering the clock (the SK bit controls
193 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
194 		 * by setting "DI" to "0" and then raising and then lowering the clock.
195 		 */
196 		eecd &= ~E1000_EECD_DI;
197 
198 		if (data & mask)
199 			eecd |= E1000_EECD_DI;
200 
201 		E1000_WRITE_REG(hw, EECD, eecd);
202 		E1000_WRITE_FLUSH(hw);
203 
204 		udelay(50);
205 
206 		e1000_raise_ee_clk(hw, &eecd);
207 		e1000_lower_ee_clk(hw, &eecd);
208 
209 		mask = mask >> 1;
210 
211 	} while (mask);
212 
213 	/* We leave the "DI" bit set to "0" when we leave this routine. */
214 	eecd &= ~E1000_EECD_DI;
215 	E1000_WRITE_REG(hw, EECD, eecd);
216 }
217 
218 /******************************************************************************
219  * Shift data bits in from the EEPROM
220  *
221  * hw - Struct containing variables accessed by shared code
222  *****************************************************************************/
223 static uint16_t
224 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
225 {
226 	uint32_t eecd;
227 	uint32_t i;
228 	uint16_t data;
229 
230 	/* In order to read a register from the EEPROM, we need to shift 'count'
231 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
232 	 * input to the EEPROM (setting the SK bit), and then reading the
233 	 * value of the "DO" bit.  During this "shifting in" process the
234 	 * "DI" bit should always be clear.
235 	 */
236 
237 	eecd = E1000_READ_REG(hw, EECD);
238 
239 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
240 	data = 0;
241 
242 	for (i = 0; i < count; i++) {
243 		data = data << 1;
244 		e1000_raise_ee_clk(hw, &eecd);
245 
246 		eecd = E1000_READ_REG(hw, EECD);
247 
248 		eecd &= ~(E1000_EECD_DI);
249 		if (eecd & E1000_EECD_DO)
250 			data |= 1;
251 
252 		e1000_lower_ee_clk(hw, &eecd);
253 	}
254 
255 	return data;
256 }
257 
258 /******************************************************************************
259  * Returns EEPROM to a "standby" state
260  *
261  * hw - Struct containing variables accessed by shared code
262  *****************************************************************************/
263 void e1000_standby_eeprom(struct e1000_hw *hw)
264 {
265 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
266 	uint32_t eecd;
267 
268 	eecd = E1000_READ_REG(hw, EECD);
269 
270 	if (eeprom->type == e1000_eeprom_microwire) {
271 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
272 		E1000_WRITE_REG(hw, EECD, eecd);
273 		E1000_WRITE_FLUSH(hw);
274 		udelay(eeprom->delay_usec);
275 
276 		/* Clock high */
277 		eecd |= E1000_EECD_SK;
278 		E1000_WRITE_REG(hw, EECD, eecd);
279 		E1000_WRITE_FLUSH(hw);
280 		udelay(eeprom->delay_usec);
281 
282 		/* Select EEPROM */
283 		eecd |= E1000_EECD_CS;
284 		E1000_WRITE_REG(hw, EECD, eecd);
285 		E1000_WRITE_FLUSH(hw);
286 		udelay(eeprom->delay_usec);
287 
288 		/* Clock low */
289 		eecd &= ~E1000_EECD_SK;
290 		E1000_WRITE_REG(hw, EECD, eecd);
291 		E1000_WRITE_FLUSH(hw);
292 		udelay(eeprom->delay_usec);
293 	} else if (eeprom->type == e1000_eeprom_spi) {
294 		/* Toggle CS to flush commands */
295 		eecd |= E1000_EECD_CS;
296 		E1000_WRITE_REG(hw, EECD, eecd);
297 		E1000_WRITE_FLUSH(hw);
298 		udelay(eeprom->delay_usec);
299 		eecd &= ~E1000_EECD_CS;
300 		E1000_WRITE_REG(hw, EECD, eecd);
301 		E1000_WRITE_FLUSH(hw);
302 		udelay(eeprom->delay_usec);
303 	}
304 }
305 
306 /***************************************************************************
307 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
308 *
309 * hw - Struct containing variables accessed by shared code
310 ****************************************************************************/
311 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
312 {
313 	uint32_t eecd = 0;
314 
315 	DEBUGFUNC();
316 
317 	if (hw->mac_type == e1000_ich8lan)
318 		return false;
319 
320 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
321 		eecd = E1000_READ_REG(hw, EECD);
322 
323 		/* Isolate bits 15 & 16 */
324 		eecd = ((eecd >> 15) & 0x03);
325 
326 		/* If both bits are set, device is Flash type */
327 		if (eecd == 0x03)
328 			return false;
329 	}
330 	return true;
331 }
332 
333 /******************************************************************************
334  * Prepares EEPROM for access
335  *
336  * hw - Struct containing variables accessed by shared code
337  *
338  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
339  * function should be called before issuing a command to the EEPROM.
340  *****************************************************************************/
341 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
342 {
343 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
344 	uint32_t eecd, i = 0;
345 
346 	DEBUGFUNC();
347 
348 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
349 		return -E1000_ERR_SWFW_SYNC;
350 	eecd = E1000_READ_REG(hw, EECD);
351 
352 	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
353 		/* Request EEPROM Access */
354 		if (hw->mac_type > e1000_82544) {
355 			eecd |= E1000_EECD_REQ;
356 			E1000_WRITE_REG(hw, EECD, eecd);
357 			eecd = E1000_READ_REG(hw, EECD);
358 			while ((!(eecd & E1000_EECD_GNT)) &&
359 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
360 				i++;
361 				udelay(5);
362 				eecd = E1000_READ_REG(hw, EECD);
363 			}
364 			if (!(eecd & E1000_EECD_GNT)) {
365 				eecd &= ~E1000_EECD_REQ;
366 				E1000_WRITE_REG(hw, EECD, eecd);
367 				DEBUGOUT("Could not acquire EEPROM grant\n");
368 				return -E1000_ERR_EEPROM;
369 			}
370 		}
371 	}
372 
373 	/* Setup EEPROM for Read/Write */
374 
375 	if (eeprom->type == e1000_eeprom_microwire) {
376 		/* Clear SK and DI */
377 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
378 		E1000_WRITE_REG(hw, EECD, eecd);
379 
380 		/* Set CS */
381 		eecd |= E1000_EECD_CS;
382 		E1000_WRITE_REG(hw, EECD, eecd);
383 	} else if (eeprom->type == e1000_eeprom_spi) {
384 		/* Clear SK and CS */
385 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
386 		E1000_WRITE_REG(hw, EECD, eecd);
387 		udelay(1);
388 	}
389 
390 	return E1000_SUCCESS;
391 }
392 
393 /******************************************************************************
394  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
395  * is configured.  Additionally, if this is ICH8, the flash controller GbE
396  * registers must be mapped, or this will crash.
397  *
398  * hw - Struct containing variables accessed by shared code
399  *****************************************************************************/
400 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
401 {
402 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
403 	uint32_t eecd;
404 	int32_t ret_val = E1000_SUCCESS;
405 	uint16_t eeprom_size;
406 
407 	if (hw->mac_type == e1000_igb)
408 		eecd = E1000_READ_REG(hw, I210_EECD);
409 	else
410 		eecd = E1000_READ_REG(hw, EECD);
411 
412 	DEBUGFUNC();
413 
414 	switch (hw->mac_type) {
415 	case e1000_82542_rev2_0:
416 	case e1000_82542_rev2_1:
417 	case e1000_82543:
418 	case e1000_82544:
419 		eeprom->type = e1000_eeprom_microwire;
420 		eeprom->word_size = 64;
421 		eeprom->opcode_bits = 3;
422 		eeprom->address_bits = 6;
423 		eeprom->delay_usec = 50;
424 		eeprom->use_eerd = false;
425 		eeprom->use_eewr = false;
426 	break;
427 	case e1000_82540:
428 	case e1000_82545:
429 	case e1000_82545_rev_3:
430 	case e1000_82546:
431 	case e1000_82546_rev_3:
432 		eeprom->type = e1000_eeprom_microwire;
433 		eeprom->opcode_bits = 3;
434 		eeprom->delay_usec = 50;
435 		if (eecd & E1000_EECD_SIZE) {
436 			eeprom->word_size = 256;
437 			eeprom->address_bits = 8;
438 		} else {
439 			eeprom->word_size = 64;
440 			eeprom->address_bits = 6;
441 		}
442 		eeprom->use_eerd = false;
443 		eeprom->use_eewr = false;
444 		break;
445 	case e1000_82541:
446 	case e1000_82541_rev_2:
447 	case e1000_82547:
448 	case e1000_82547_rev_2:
449 		if (eecd & E1000_EECD_TYPE) {
450 			eeprom->type = e1000_eeprom_spi;
451 			eeprom->opcode_bits = 8;
452 			eeprom->delay_usec = 1;
453 			if (eecd & E1000_EECD_ADDR_BITS) {
454 				eeprom->page_size = 32;
455 				eeprom->address_bits = 16;
456 			} else {
457 				eeprom->page_size = 8;
458 				eeprom->address_bits = 8;
459 			}
460 		} else {
461 			eeprom->type = e1000_eeprom_microwire;
462 			eeprom->opcode_bits = 3;
463 			eeprom->delay_usec = 50;
464 			if (eecd & E1000_EECD_ADDR_BITS) {
465 				eeprom->word_size = 256;
466 				eeprom->address_bits = 8;
467 			} else {
468 				eeprom->word_size = 64;
469 				eeprom->address_bits = 6;
470 			}
471 		}
472 		eeprom->use_eerd = false;
473 		eeprom->use_eewr = false;
474 		break;
475 	case e1000_82571:
476 	case e1000_82572:
477 		eeprom->type = e1000_eeprom_spi;
478 		eeprom->opcode_bits = 8;
479 		eeprom->delay_usec = 1;
480 		if (eecd & E1000_EECD_ADDR_BITS) {
481 			eeprom->page_size = 32;
482 			eeprom->address_bits = 16;
483 		} else {
484 			eeprom->page_size = 8;
485 			eeprom->address_bits = 8;
486 		}
487 		eeprom->use_eerd = false;
488 		eeprom->use_eewr = false;
489 		break;
490 	case e1000_82573:
491 	case e1000_82574:
492 		eeprom->type = e1000_eeprom_spi;
493 		eeprom->opcode_bits = 8;
494 		eeprom->delay_usec = 1;
495 		if (eecd & E1000_EECD_ADDR_BITS) {
496 			eeprom->page_size = 32;
497 			eeprom->address_bits = 16;
498 		} else {
499 			eeprom->page_size = 8;
500 			eeprom->address_bits = 8;
501 		}
502 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
503 			eeprom->use_eerd = true;
504 			eeprom->use_eewr = true;
505 
506 			eeprom->type = e1000_eeprom_flash;
507 			eeprom->word_size = 2048;
508 
509 		/* Ensure that the Autonomous FLASH update bit is cleared due to
510 		 * Flash update issue on parts which use a FLASH for NVM. */
511 			eecd &= ~E1000_EECD_AUPDEN;
512 			E1000_WRITE_REG(hw, EECD, eecd);
513 		}
514 		break;
515 	case e1000_80003es2lan:
516 		eeprom->type = e1000_eeprom_spi;
517 		eeprom->opcode_bits = 8;
518 		eeprom->delay_usec = 1;
519 		if (eecd & E1000_EECD_ADDR_BITS) {
520 			eeprom->page_size = 32;
521 			eeprom->address_bits = 16;
522 		} else {
523 			eeprom->page_size = 8;
524 			eeprom->address_bits = 8;
525 		}
526 		eeprom->use_eerd = true;
527 		eeprom->use_eewr = false;
528 		break;
529 	case e1000_igb:
530 		/* i210 has 4k of iNVM mapped as EEPROM */
531 		eeprom->type = e1000_eeprom_invm;
532 		eeprom->opcode_bits = 8;
533 		eeprom->delay_usec = 1;
534 		eeprom->page_size = 32;
535 		eeprom->address_bits = 16;
536 		eeprom->use_eerd = true;
537 		eeprom->use_eewr = false;
538 		break;
539 
540 	/* ich8lan does not support currently. if needed, please
541 	 * add corresponding code and functions.
542 	 */
543 #if 0
544 	case e1000_ich8lan:
545 		{
546 		int32_t  i = 0;
547 
548 		eeprom->type = e1000_eeprom_ich8;
549 		eeprom->use_eerd = false;
550 		eeprom->use_eewr = false;
551 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
552 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
553 				ICH_FLASH_GFPREG);
554 		/* Zero the shadow RAM structure. But don't load it from NVM
555 		 * so as to save time for driver init */
556 		if (hw->eeprom_shadow_ram != NULL) {
557 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
558 				hw->eeprom_shadow_ram[i].modified = false;
559 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
560 			}
561 		}
562 
563 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
564 				ICH_FLASH_SECTOR_SIZE;
565 
566 		hw->flash_bank_size = ((flash_size >> 16)
567 				& ICH_GFPREG_BASE_MASK) + 1;
568 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
569 
570 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
571 
572 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
573 		break;
574 		}
575 #endif
576 	default:
577 		break;
578 	}
579 
580 	if (eeprom->type == e1000_eeprom_spi ||
581 	    eeprom->type == e1000_eeprom_invm) {
582 		/* eeprom_size will be an enum [0..8] that maps
583 		 * to eeprom sizes 128B to
584 		 * 32KB (incremented by powers of 2).
585 		 */
586 		if (hw->mac_type <= e1000_82547_rev_2) {
587 			/* Set to default value for initial eeprom read. */
588 			eeprom->word_size = 64;
589 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
590 					&eeprom_size);
591 			if (ret_val)
592 				return ret_val;
593 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
594 				>> EEPROM_SIZE_SHIFT;
595 			/* 256B eeprom size was not supported in earlier
596 			 * hardware, so we bump eeprom_size up one to
597 			 * ensure that "1" (which maps to 256B) is never
598 			 * the result used in the shifting logic below. */
599 			if (eeprom_size)
600 				eeprom_size++;
601 		} else {
602 			eeprom_size = (uint16_t)((eecd &
603 				E1000_EECD_SIZE_EX_MASK) >>
604 				E1000_EECD_SIZE_EX_SHIFT);
605 		}
606 
607 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
608 	}
609 	return ret_val;
610 }
611 
612 /******************************************************************************
613  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
614  *
615  * hw - Struct containing variables accessed by shared code
616  *****************************************************************************/
617 static int32_t
618 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
619 {
620 	uint32_t attempts = 100000;
621 	uint32_t i, reg = 0;
622 	int32_t done = E1000_ERR_EEPROM;
623 
624 	for (i = 0; i < attempts; i++) {
625 		if (eerd == E1000_EEPROM_POLL_READ) {
626 			if (hw->mac_type == e1000_igb)
627 				reg = E1000_READ_REG(hw, I210_EERD);
628 			else
629 				reg = E1000_READ_REG(hw, EERD);
630 		} else {
631 			if (hw->mac_type == e1000_igb)
632 				reg = E1000_READ_REG(hw, I210_EEWR);
633 			else
634 				reg = E1000_READ_REG(hw, EEWR);
635 		}
636 
637 		if (reg & E1000_EEPROM_RW_REG_DONE) {
638 			done = E1000_SUCCESS;
639 			break;
640 		}
641 		udelay(5);
642 	}
643 
644 	return done;
645 }
646 
647 /******************************************************************************
648  * Reads a 16 bit word from the EEPROM using the EERD register.
649  *
650  * hw - Struct containing variables accessed by shared code
651  * offset - offset of  word in the EEPROM to read
652  * data - word read from the EEPROM
653  * words - number of words to read
654  *****************************************************************************/
655 static int32_t
656 e1000_read_eeprom_eerd(struct e1000_hw *hw,
657 			uint16_t offset,
658 			uint16_t words,
659 			uint16_t *data)
660 {
661 	uint32_t i, eerd = 0;
662 	int32_t error = 0;
663 
664 	for (i = 0; i < words; i++) {
665 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
666 			E1000_EEPROM_RW_REG_START;
667 
668 		if (hw->mac_type == e1000_igb)
669 			E1000_WRITE_REG(hw, I210_EERD, eerd);
670 		else
671 			E1000_WRITE_REG(hw, EERD, eerd);
672 
673 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
674 
675 		if (error)
676 			break;
677 
678 		if (hw->mac_type == e1000_igb) {
679 			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
680 				E1000_EEPROM_RW_REG_DATA);
681 		} else {
682 			data[i] = (E1000_READ_REG(hw, EERD) >>
683 				E1000_EEPROM_RW_REG_DATA);
684 		}
685 
686 	}
687 
688 	return error;
689 }
690 
691 void e1000_release_eeprom(struct e1000_hw *hw)
692 {
693 	uint32_t eecd;
694 
695 	DEBUGFUNC();
696 
697 	eecd = E1000_READ_REG(hw, EECD);
698 
699 	if (hw->eeprom.type == e1000_eeprom_spi) {
700 		eecd |= E1000_EECD_CS;  /* Pull CS high */
701 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
702 
703 		E1000_WRITE_REG(hw, EECD, eecd);
704 
705 		udelay(hw->eeprom.delay_usec);
706 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
707 		/* cleanup eeprom */
708 
709 		/* CS on Microwire is active-high */
710 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
711 
712 		E1000_WRITE_REG(hw, EECD, eecd);
713 
714 		/* Rising edge of clock */
715 		eecd |= E1000_EECD_SK;
716 		E1000_WRITE_REG(hw, EECD, eecd);
717 		E1000_WRITE_FLUSH(hw);
718 		udelay(hw->eeprom.delay_usec);
719 
720 		/* Falling edge of clock */
721 		eecd &= ~E1000_EECD_SK;
722 		E1000_WRITE_REG(hw, EECD, eecd);
723 		E1000_WRITE_FLUSH(hw);
724 		udelay(hw->eeprom.delay_usec);
725 	}
726 
727 	/* Stop requesting EEPROM access */
728 	if (hw->mac_type > e1000_82544) {
729 		eecd &= ~E1000_EECD_REQ;
730 		E1000_WRITE_REG(hw, EECD, eecd);
731 	}
732 }
733 /******************************************************************************
734  * Reads a 16 bit word from the EEPROM.
735  *
736  * hw - Struct containing variables accessed by shared code
737  *****************************************************************************/
738 static int32_t
739 e1000_spi_eeprom_ready(struct e1000_hw *hw)
740 {
741 	uint16_t retry_count = 0;
742 	uint8_t spi_stat_reg;
743 
744 	DEBUGFUNC();
745 
746 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
747 	 * EEPROM will signal that the command has been completed by clearing
748 	 * bit 0 of the internal status register.  If it's not cleared within
749 	 * 5 milliseconds, then error out.
750 	 */
751 	retry_count = 0;
752 	do {
753 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
754 			hw->eeprom.opcode_bits);
755 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
756 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
757 			break;
758 
759 		udelay(5);
760 		retry_count += 5;
761 
762 		e1000_standby_eeprom(hw);
763 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
764 
765 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
766 	 * only 0-5mSec on 5V devices)
767 	 */
768 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
769 		DEBUGOUT("SPI EEPROM Status error\n");
770 		return -E1000_ERR_EEPROM;
771 	}
772 
773 	return E1000_SUCCESS;
774 }
775 
776 /******************************************************************************
777  * Reads a 16 bit word from the EEPROM.
778  *
779  * hw - Struct containing variables accessed by shared code
780  * offset - offset of  word in the EEPROM to read
781  * data - word read from the EEPROM
782  *****************************************************************************/
783 static int32_t
784 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
785 		uint16_t words, uint16_t *data)
786 {
787 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
788 	uint32_t i = 0;
789 
790 	DEBUGFUNC();
791 
792 	/* If eeprom is not yet detected, do so now */
793 	if (eeprom->word_size == 0)
794 		e1000_init_eeprom_params(hw);
795 
796 	/* A check for invalid values:  offset too large, too many words,
797 	 * and not enough words.
798 	 */
799 	if ((offset >= eeprom->word_size) ||
800 		(words > eeprom->word_size - offset) ||
801 		(words == 0)) {
802 		DEBUGOUT("\"words\" parameter out of bounds."
803 			"Words = %d, size = %d\n", offset, eeprom->word_size);
804 		return -E1000_ERR_EEPROM;
805 	}
806 
807 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
808 	 * directly. In this case, we need to acquire the EEPROM so that
809 	 * FW or other port software does not interrupt.
810 	 */
811 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
812 		hw->eeprom.use_eerd == false) {
813 
814 		/* Prepare the EEPROM for bit-bang reading */
815 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
816 			return -E1000_ERR_EEPROM;
817 	}
818 
819 	/* Eerd register EEPROM access requires no eeprom aquire/release */
820 	if (eeprom->use_eerd == true)
821 		return e1000_read_eeprom_eerd(hw, offset, words, data);
822 
823 	/* ich8lan does not support currently. if needed, please
824 	 * add corresponding code and functions.
825 	 */
826 #if 0
827 	/* ICH EEPROM access is done via the ICH flash controller */
828 	if (eeprom->type == e1000_eeprom_ich8)
829 		return e1000_read_eeprom_ich8(hw, offset, words, data);
830 #endif
831 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
832 	 * acquired the EEPROM at this point, so any returns should relase it */
833 	if (eeprom->type == e1000_eeprom_spi) {
834 		uint16_t word_in;
835 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
836 
837 		if (e1000_spi_eeprom_ready(hw)) {
838 			e1000_release_eeprom(hw);
839 			return -E1000_ERR_EEPROM;
840 		}
841 
842 		e1000_standby_eeprom(hw);
843 
844 		/* Some SPI eeproms use the 8th address bit embedded in
845 		 * the opcode */
846 		if ((eeprom->address_bits == 8) && (offset >= 128))
847 			read_opcode |= EEPROM_A8_OPCODE_SPI;
848 
849 		/* Send the READ command (opcode + addr)  */
850 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
851 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
852 				eeprom->address_bits);
853 
854 		/* Read the data.  The address of the eeprom internally
855 		 * increments with each byte (spi) being read, saving on the
856 		 * overhead of eeprom setup and tear-down.  The address
857 		 * counter will roll over if reading beyond the size of
858 		 * the eeprom, thus allowing the entire memory to be read
859 		 * starting from any offset. */
860 		for (i = 0; i < words; i++) {
861 			word_in = e1000_shift_in_ee_bits(hw, 16);
862 			data[i] = (word_in >> 8) | (word_in << 8);
863 		}
864 	} else if (eeprom->type == e1000_eeprom_microwire) {
865 		for (i = 0; i < words; i++) {
866 			/* Send the READ command (opcode + addr)  */
867 			e1000_shift_out_ee_bits(hw,
868 				EEPROM_READ_OPCODE_MICROWIRE,
869 				eeprom->opcode_bits);
870 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
871 				eeprom->address_bits);
872 
873 			/* Read the data.  For microwire, each word requires
874 			 * the overhead of eeprom setup and tear-down. */
875 			data[i] = e1000_shift_in_ee_bits(hw, 16);
876 			e1000_standby_eeprom(hw);
877 		}
878 	}
879 
880 	/* End this read operation */
881 	e1000_release_eeprom(hw);
882 
883 	return E1000_SUCCESS;
884 }
885 
886 /******************************************************************************
887  * Verifies that the EEPROM has a valid checksum
888  *
889  * hw - Struct containing variables accessed by shared code
890  *
891  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
892  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
893  * valid.
894  *****************************************************************************/
895 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
896 {
897 	uint16_t i, checksum, checksum_reg, *buf;
898 
899 	DEBUGFUNC();
900 
901 	/* Allocate a temporary buffer */
902 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
903 	if (!buf) {
904 		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
905 		return -E1000_ERR_EEPROM;
906 	}
907 
908 	/* Read the EEPROM */
909 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
910 		E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
911 		return -E1000_ERR_EEPROM;
912 	}
913 
914 	/* Compute the checksum */
915 	checksum = 0;
916 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
917 		checksum += buf[i];
918 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
919 	checksum_reg = buf[i];
920 
921 	/* Verify it! */
922 	if (checksum == checksum_reg)
923 		return 0;
924 
925 	/* Hrm, verification failed, print an error */
926 	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
927 	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
928 			checksum_reg, checksum);
929 
930 	return -E1000_ERR_EEPROM;
931 }
932 #endif /* CONFIG_E1000_NO_NVM */
933 
934 /*****************************************************************************
935  * Set PHY to class A mode
936  * Assumes the following operations will follow to enable the new class mode.
937  *  1. Do a PHY soft reset
938  *  2. Restart auto-negotiation or force link.
939  *
940  * hw - Struct containing variables accessed by shared code
941  ****************************************************************************/
942 static int32_t
943 e1000_set_phy_mode(struct e1000_hw *hw)
944 {
945 #ifndef CONFIG_E1000_NO_NVM
946 	int32_t ret_val;
947 	uint16_t eeprom_data;
948 
949 	DEBUGFUNC();
950 
951 	if ((hw->mac_type == e1000_82545_rev_3) &&
952 		(hw->media_type == e1000_media_type_copper)) {
953 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
954 				1, &eeprom_data);
955 		if (ret_val)
956 			return ret_val;
957 
958 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
959 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
960 			ret_val = e1000_write_phy_reg(hw,
961 					M88E1000_PHY_PAGE_SELECT, 0x000B);
962 			if (ret_val)
963 				return ret_val;
964 			ret_val = e1000_write_phy_reg(hw,
965 					M88E1000_PHY_GEN_CONTROL, 0x8104);
966 			if (ret_val)
967 				return ret_val;
968 
969 			hw->phy_reset_disable = false;
970 		}
971 	}
972 #endif
973 	return E1000_SUCCESS;
974 }
975 
976 #ifndef CONFIG_E1000_NO_NVM
977 /***************************************************************************
978  *
979  * Obtaining software semaphore bit (SMBI) before resetting PHY.
980  *
981  * hw: Struct containing variables accessed by shared code
982  *
983  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
984  *            E1000_SUCCESS at any other case.
985  *
986  ***************************************************************************/
987 static int32_t
988 e1000_get_software_semaphore(struct e1000_hw *hw)
989 {
990 	 int32_t timeout = hw->eeprom.word_size + 1;
991 	 uint32_t swsm;
992 
993 	DEBUGFUNC();
994 
995 		swsm = E1000_READ_REG(hw, SWSM);
996 		swsm &= ~E1000_SWSM_SMBI;
997 		E1000_WRITE_REG(hw, SWSM, swsm);
998 
999 	if (hw->mac_type != e1000_80003es2lan)
1000 		return E1000_SUCCESS;
1001 
1002 	while (timeout) {
1003 		swsm = E1000_READ_REG(hw, SWSM);
1004 		/* If SMBI bit cleared, it is now set and we hold
1005 		 * the semaphore */
1006 		if (!(swsm & E1000_SWSM_SMBI))
1007 			break;
1008 		mdelay(1);
1009 		timeout--;
1010 	}
1011 
1012 	if (!timeout) {
1013 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1014 		return -E1000_ERR_RESET;
1015 	}
1016 
1017 	return E1000_SUCCESS;
1018 }
1019 #endif
1020 
1021 /***************************************************************************
1022  * This function clears HW semaphore bits.
1023  *
1024  * hw: Struct containing variables accessed by shared code
1025  *
1026  * returns: - None.
1027  *
1028  ***************************************************************************/
1029 static void
1030 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1031 {
1032 #ifndef CONFIG_E1000_NO_NVM
1033 	 uint32_t swsm;
1034 
1035 	DEBUGFUNC();
1036 
1037 	if (!hw->eeprom_semaphore_present)
1038 		return;
1039 
1040 	swsm = E1000_READ_REG(hw, SWSM);
1041 	if (hw->mac_type == e1000_80003es2lan) {
1042 		/* Release both semaphores. */
1043 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1044 	} else
1045 		swsm &= ~(E1000_SWSM_SWESMBI);
1046 	E1000_WRITE_REG(hw, SWSM, swsm);
1047 #endif
1048 }
1049 
1050 /***************************************************************************
1051  *
1052  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1053  * adapter or Eeprom access.
1054  *
1055  * hw: Struct containing variables accessed by shared code
1056  *
1057  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1058  *            E1000_SUCCESS at any other case.
1059  *
1060  ***************************************************************************/
1061 static int32_t
1062 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1063 {
1064 #ifndef CONFIG_E1000_NO_NVM
1065 	int32_t timeout;
1066 	uint32_t swsm;
1067 
1068 	DEBUGFUNC();
1069 
1070 	if (!hw->eeprom_semaphore_present)
1071 		return E1000_SUCCESS;
1072 
1073 	if (hw->mac_type == e1000_80003es2lan) {
1074 		/* Get the SW semaphore. */
1075 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1076 			return -E1000_ERR_EEPROM;
1077 	}
1078 
1079 	/* Get the FW semaphore. */
1080 	timeout = hw->eeprom.word_size + 1;
1081 	while (timeout) {
1082 		swsm = E1000_READ_REG(hw, SWSM);
1083 		swsm |= E1000_SWSM_SWESMBI;
1084 		E1000_WRITE_REG(hw, SWSM, swsm);
1085 		/* if we managed to set the bit we got the semaphore. */
1086 		swsm = E1000_READ_REG(hw, SWSM);
1087 		if (swsm & E1000_SWSM_SWESMBI)
1088 			break;
1089 
1090 		udelay(50);
1091 		timeout--;
1092 	}
1093 
1094 	if (!timeout) {
1095 		/* Release semaphores */
1096 		e1000_put_hw_eeprom_semaphore(hw);
1097 		DEBUGOUT("Driver can't access the Eeprom - "
1098 				"SWESMBI bit is set.\n");
1099 		return -E1000_ERR_EEPROM;
1100 	}
1101 #endif
1102 	return E1000_SUCCESS;
1103 }
1104 
1105 static int32_t
1106 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1107 {
1108 	uint32_t swfw_sync = 0;
1109 	uint32_t swmask = mask;
1110 	uint32_t fwmask = mask << 16;
1111 	int32_t timeout = 200;
1112 
1113 	DEBUGFUNC();
1114 	while (timeout) {
1115 		if (e1000_get_hw_eeprom_semaphore(hw))
1116 			return -E1000_ERR_SWFW_SYNC;
1117 
1118 		if (hw->mac_type == e1000_igb)
1119 			swfw_sync = E1000_READ_REG(hw, I210_SW_FW_SYNC);
1120 		else
1121 			swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1122 		if (!(swfw_sync & (fwmask | swmask)))
1123 			break;
1124 
1125 		/* firmware currently using resource (fwmask) */
1126 		/* or other software thread currently using resource (swmask) */
1127 		e1000_put_hw_eeprom_semaphore(hw);
1128 		mdelay(5);
1129 		timeout--;
1130 	}
1131 
1132 	if (!timeout) {
1133 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1134 		return -E1000_ERR_SWFW_SYNC;
1135 	}
1136 
1137 	swfw_sync |= swmask;
1138 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1139 
1140 	e1000_put_hw_eeprom_semaphore(hw);
1141 	return E1000_SUCCESS;
1142 }
1143 
1144 static bool e1000_is_second_port(struct e1000_hw *hw)
1145 {
1146 	switch (hw->mac_type) {
1147 	case e1000_80003es2lan:
1148 	case e1000_82546:
1149 	case e1000_82571:
1150 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1151 			return true;
1152 		/* Fallthrough */
1153 	default:
1154 		return false;
1155 	}
1156 }
1157 
1158 #ifndef CONFIG_E1000_NO_NVM
1159 /******************************************************************************
1160  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1161  * second function of dual function devices
1162  *
1163  * nic - Struct containing variables accessed by shared code
1164  *****************************************************************************/
1165 static int
1166 e1000_read_mac_addr(struct eth_device *nic)
1167 {
1168 	struct e1000_hw *hw = nic->priv;
1169 	uint16_t offset;
1170 	uint16_t eeprom_data;
1171 	uint32_t reg_data = 0;
1172 	int i;
1173 
1174 	DEBUGFUNC();
1175 
1176 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1177 		offset = i >> 1;
1178 		if (hw->mac_type == e1000_igb) {
1179 			/* i210 preloads MAC address into RAL/RAH registers */
1180 			if (offset == 0)
1181 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1182 			else if (offset == 1)
1183 				reg_data >>= 16;
1184 			else if (offset == 2)
1185 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1186 			eeprom_data = reg_data & 0xffff;
1187 		} else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1188 			DEBUGOUT("EEPROM Read Error\n");
1189 			return -E1000_ERR_EEPROM;
1190 		}
1191 		nic->enetaddr[i] = eeprom_data & 0xff;
1192 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1193 	}
1194 
1195 	/* Invert the last bit if this is the second device */
1196 	if (e1000_is_second_port(hw))
1197 		nic->enetaddr[5] ^= 1;
1198 
1199 #ifdef CONFIG_E1000_FALLBACK_MAC
1200 	if (!is_valid_ethaddr(nic->enetaddr)) {
1201 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1202 
1203 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1204 	}
1205 #endif
1206 	return 0;
1207 }
1208 #endif
1209 
1210 /******************************************************************************
1211  * Initializes receive address filters.
1212  *
1213  * hw - Struct containing variables accessed by shared code
1214  *
1215  * Places the MAC address in receive address register 0 and clears the rest
1216  * of the receive addresss registers. Clears the multicast table. Assumes
1217  * the receiver is in reset when the routine is called.
1218  *****************************************************************************/
1219 static void
1220 e1000_init_rx_addrs(struct eth_device *nic)
1221 {
1222 	struct e1000_hw *hw = nic->priv;
1223 	uint32_t i;
1224 	uint32_t addr_low;
1225 	uint32_t addr_high;
1226 
1227 	DEBUGFUNC();
1228 
1229 	/* Setup the receive address. */
1230 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1231 	addr_low = (nic->enetaddr[0] |
1232 		    (nic->enetaddr[1] << 8) |
1233 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1234 
1235 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1236 
1237 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1238 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1239 
1240 	/* Zero out the other 15 receive addresses. */
1241 	DEBUGOUT("Clearing RAR[1-15]\n");
1242 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1243 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1244 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1245 	}
1246 }
1247 
1248 /******************************************************************************
1249  * Clears the VLAN filer table
1250  *
1251  * hw - Struct containing variables accessed by shared code
1252  *****************************************************************************/
1253 static void
1254 e1000_clear_vfta(struct e1000_hw *hw)
1255 {
1256 	uint32_t offset;
1257 
1258 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1259 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1260 }
1261 
1262 /******************************************************************************
1263  * Set the mac type member in the hw struct.
1264  *
1265  * hw - Struct containing variables accessed by shared code
1266  *****************************************************************************/
1267 int32_t
1268 e1000_set_mac_type(struct e1000_hw *hw)
1269 {
1270 	DEBUGFUNC();
1271 
1272 	switch (hw->device_id) {
1273 	case E1000_DEV_ID_82542:
1274 		switch (hw->revision_id) {
1275 		case E1000_82542_2_0_REV_ID:
1276 			hw->mac_type = e1000_82542_rev2_0;
1277 			break;
1278 		case E1000_82542_2_1_REV_ID:
1279 			hw->mac_type = e1000_82542_rev2_1;
1280 			break;
1281 		default:
1282 			/* Invalid 82542 revision ID */
1283 			return -E1000_ERR_MAC_TYPE;
1284 		}
1285 		break;
1286 	case E1000_DEV_ID_82543GC_FIBER:
1287 	case E1000_DEV_ID_82543GC_COPPER:
1288 		hw->mac_type = e1000_82543;
1289 		break;
1290 	case E1000_DEV_ID_82544EI_COPPER:
1291 	case E1000_DEV_ID_82544EI_FIBER:
1292 	case E1000_DEV_ID_82544GC_COPPER:
1293 	case E1000_DEV_ID_82544GC_LOM:
1294 		hw->mac_type = e1000_82544;
1295 		break;
1296 	case E1000_DEV_ID_82540EM:
1297 	case E1000_DEV_ID_82540EM_LOM:
1298 	case E1000_DEV_ID_82540EP:
1299 	case E1000_DEV_ID_82540EP_LOM:
1300 	case E1000_DEV_ID_82540EP_LP:
1301 		hw->mac_type = e1000_82540;
1302 		break;
1303 	case E1000_DEV_ID_82545EM_COPPER:
1304 	case E1000_DEV_ID_82545EM_FIBER:
1305 		hw->mac_type = e1000_82545;
1306 		break;
1307 	case E1000_DEV_ID_82545GM_COPPER:
1308 	case E1000_DEV_ID_82545GM_FIBER:
1309 	case E1000_DEV_ID_82545GM_SERDES:
1310 		hw->mac_type = e1000_82545_rev_3;
1311 		break;
1312 	case E1000_DEV_ID_82546EB_COPPER:
1313 	case E1000_DEV_ID_82546EB_FIBER:
1314 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1315 		hw->mac_type = e1000_82546;
1316 		break;
1317 	case E1000_DEV_ID_82546GB_COPPER:
1318 	case E1000_DEV_ID_82546GB_FIBER:
1319 	case E1000_DEV_ID_82546GB_SERDES:
1320 	case E1000_DEV_ID_82546GB_PCIE:
1321 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1322 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1323 		hw->mac_type = e1000_82546_rev_3;
1324 		break;
1325 	case E1000_DEV_ID_82541EI:
1326 	case E1000_DEV_ID_82541EI_MOBILE:
1327 	case E1000_DEV_ID_82541ER_LOM:
1328 		hw->mac_type = e1000_82541;
1329 		break;
1330 	case E1000_DEV_ID_82541ER:
1331 	case E1000_DEV_ID_82541GI:
1332 	case E1000_DEV_ID_82541GI_LF:
1333 	case E1000_DEV_ID_82541GI_MOBILE:
1334 		hw->mac_type = e1000_82541_rev_2;
1335 		break;
1336 	case E1000_DEV_ID_82547EI:
1337 	case E1000_DEV_ID_82547EI_MOBILE:
1338 		hw->mac_type = e1000_82547;
1339 		break;
1340 	case E1000_DEV_ID_82547GI:
1341 		hw->mac_type = e1000_82547_rev_2;
1342 		break;
1343 	case E1000_DEV_ID_82571EB_COPPER:
1344 	case E1000_DEV_ID_82571EB_FIBER:
1345 	case E1000_DEV_ID_82571EB_SERDES:
1346 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1347 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1348 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1349 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1350 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1351 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1352 		hw->mac_type = e1000_82571;
1353 		break;
1354 	case E1000_DEV_ID_82572EI_COPPER:
1355 	case E1000_DEV_ID_82572EI_FIBER:
1356 	case E1000_DEV_ID_82572EI_SERDES:
1357 	case E1000_DEV_ID_82572EI:
1358 		hw->mac_type = e1000_82572;
1359 		break;
1360 	case E1000_DEV_ID_82573E:
1361 	case E1000_DEV_ID_82573E_IAMT:
1362 	case E1000_DEV_ID_82573L:
1363 		hw->mac_type = e1000_82573;
1364 		break;
1365 	case E1000_DEV_ID_82574L:
1366 		hw->mac_type = e1000_82574;
1367 		break;
1368 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1369 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1370 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1371 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1372 		hw->mac_type = e1000_80003es2lan;
1373 		break;
1374 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1375 	case E1000_DEV_ID_ICH8_IGP_AMT:
1376 	case E1000_DEV_ID_ICH8_IGP_C:
1377 	case E1000_DEV_ID_ICH8_IFE:
1378 	case E1000_DEV_ID_ICH8_IFE_GT:
1379 	case E1000_DEV_ID_ICH8_IFE_G:
1380 	case E1000_DEV_ID_ICH8_IGP_M:
1381 		hw->mac_type = e1000_ich8lan;
1382 		break;
1383 	case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1384 	case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1385 	case PCI_DEVICE_ID_INTEL_I210_COPPER:
1386 	case PCI_DEVICE_ID_INTEL_I211_COPPER:
1387 	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1388 	case PCI_DEVICE_ID_INTEL_I210_SERDES:
1389 	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1390 	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1391 		hw->mac_type = e1000_igb;
1392 		break;
1393 	default:
1394 		/* Should never have loaded on this device */
1395 		return -E1000_ERR_MAC_TYPE;
1396 	}
1397 	return E1000_SUCCESS;
1398 }
1399 
1400 /******************************************************************************
1401  * Reset the transmit and receive units; mask and clear all interrupts.
1402  *
1403  * hw - Struct containing variables accessed by shared code
1404  *****************************************************************************/
1405 void
1406 e1000_reset_hw(struct e1000_hw *hw)
1407 {
1408 	uint32_t ctrl;
1409 	uint32_t ctrl_ext;
1410 	uint32_t manc;
1411 	uint32_t pba = 0;
1412 	uint32_t reg;
1413 
1414 	DEBUGFUNC();
1415 
1416 	/* get the correct pba value for both PCI and PCIe*/
1417 	if (hw->mac_type <  e1000_82571)
1418 		pba = E1000_DEFAULT_PCI_PBA;
1419 	else
1420 		pba = E1000_DEFAULT_PCIE_PBA;
1421 
1422 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1423 	if (hw->mac_type == e1000_82542_rev2_0) {
1424 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1425 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1426 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1427 	}
1428 
1429 	/* Clear interrupt mask to stop board from generating interrupts */
1430 	DEBUGOUT("Masking off all interrupts\n");
1431 	if (hw->mac_type == e1000_igb)
1432 		E1000_WRITE_REG(hw, I210_IAM, 0);
1433 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1434 
1435 	/* Disable the Transmit and Receive units.  Then delay to allow
1436 	 * any pending transactions to complete before we hit the MAC with
1437 	 * the global reset.
1438 	 */
1439 	E1000_WRITE_REG(hw, RCTL, 0);
1440 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1441 	E1000_WRITE_FLUSH(hw);
1442 
1443 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1444 	hw->tbi_compatibility_on = false;
1445 
1446 	/* Delay to allow any outstanding PCI transactions to complete before
1447 	 * resetting the device
1448 	 */
1449 	mdelay(10);
1450 
1451 	/* Issue a global reset to the MAC.  This will reset the chip's
1452 	 * transmit, receive, DMA, and link units.  It will not effect
1453 	 * the current PCI configuration.  The global reset bit is self-
1454 	 * clearing, and should clear within a microsecond.
1455 	 */
1456 	DEBUGOUT("Issuing a global reset to MAC\n");
1457 	ctrl = E1000_READ_REG(hw, CTRL);
1458 
1459 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1460 
1461 	/* Force a reload from the EEPROM if necessary */
1462 	if (hw->mac_type == e1000_igb) {
1463 		mdelay(20);
1464 		reg = E1000_READ_REG(hw, STATUS);
1465 		if (reg & E1000_STATUS_PF_RST_DONE)
1466 			DEBUGOUT("PF OK\n");
1467 		reg = E1000_READ_REG(hw, I210_EECD);
1468 		if (reg & E1000_EECD_AUTO_RD)
1469 			DEBUGOUT("EEC OK\n");
1470 	} else if (hw->mac_type < e1000_82540) {
1471 		/* Wait for reset to complete */
1472 		udelay(10);
1473 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1474 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1475 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1476 		E1000_WRITE_FLUSH(hw);
1477 		/* Wait for EEPROM reload */
1478 		mdelay(2);
1479 	} else {
1480 		/* Wait for EEPROM reload (it happens automatically) */
1481 		mdelay(4);
1482 		/* Dissable HW ARPs on ASF enabled adapters */
1483 		manc = E1000_READ_REG(hw, MANC);
1484 		manc &= ~(E1000_MANC_ARP_EN);
1485 		E1000_WRITE_REG(hw, MANC, manc);
1486 	}
1487 
1488 	/* Clear interrupt mask to stop board from generating interrupts */
1489 	DEBUGOUT("Masking off all interrupts\n");
1490 	if (hw->mac_type == e1000_igb)
1491 		E1000_WRITE_REG(hw, I210_IAM, 0);
1492 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1493 
1494 	/* Clear any pending interrupt events. */
1495 	E1000_READ_REG(hw, ICR);
1496 
1497 	/* If MWI was previously enabled, reenable it. */
1498 	if (hw->mac_type == e1000_82542_rev2_0) {
1499 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1500 	}
1501 	if (hw->mac_type != e1000_igb)
1502 		E1000_WRITE_REG(hw, PBA, pba);
1503 }
1504 
1505 /******************************************************************************
1506  *
1507  * Initialize a number of hardware-dependent bits
1508  *
1509  * hw: Struct containing variables accessed by shared code
1510  *
1511  * This function contains hardware limitation workarounds for PCI-E adapters
1512  *
1513  *****************************************************************************/
1514 static void
1515 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1516 {
1517 	if ((hw->mac_type >= e1000_82571) &&
1518 			(!hw->initialize_hw_bits_disable)) {
1519 		/* Settings common to all PCI-express silicon */
1520 		uint32_t reg_ctrl, reg_ctrl_ext;
1521 		uint32_t reg_tarc0, reg_tarc1;
1522 		uint32_t reg_tctl;
1523 		uint32_t reg_txdctl, reg_txdctl1;
1524 
1525 		/* link autonegotiation/sync workarounds */
1526 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1527 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1528 
1529 		/* Enable not-done TX descriptor counting */
1530 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1531 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1532 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1533 
1534 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1535 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1536 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1537 
1538 	/* IGB is cool */
1539 	if (hw->mac_type == e1000_igb)
1540 		return;
1541 
1542 		switch (hw->mac_type) {
1543 		case e1000_82571:
1544 		case e1000_82572:
1545 			/* Clear PHY TX compatible mode bits */
1546 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1547 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1548 
1549 			/* link autonegotiation/sync workarounds */
1550 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1551 
1552 			/* TX ring control fixes */
1553 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1554 
1555 			/* Multiple read bit is reversed polarity */
1556 			reg_tctl = E1000_READ_REG(hw, TCTL);
1557 			if (reg_tctl & E1000_TCTL_MULR)
1558 				reg_tarc1 &= ~(1 << 28);
1559 			else
1560 				reg_tarc1 |= (1 << 28);
1561 
1562 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1563 			break;
1564 		case e1000_82573:
1565 		case e1000_82574:
1566 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1567 			reg_ctrl_ext &= ~(1 << 23);
1568 			reg_ctrl_ext |= (1 << 22);
1569 
1570 			/* TX byte count fix */
1571 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1572 			reg_ctrl &= ~(1 << 29);
1573 
1574 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1575 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1576 			break;
1577 		case e1000_80003es2lan:
1578 	/* improve small packet performace for fiber/serdes */
1579 			if ((hw->media_type == e1000_media_type_fiber)
1580 			|| (hw->media_type ==
1581 				e1000_media_type_internal_serdes)) {
1582 				reg_tarc0 &= ~(1 << 20);
1583 			}
1584 
1585 		/* Multiple read bit is reversed polarity */
1586 			reg_tctl = E1000_READ_REG(hw, TCTL);
1587 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1588 			if (reg_tctl & E1000_TCTL_MULR)
1589 				reg_tarc1 &= ~(1 << 28);
1590 			else
1591 				reg_tarc1 |= (1 << 28);
1592 
1593 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1594 			break;
1595 		case e1000_ich8lan:
1596 			/* Reduce concurrent DMA requests to 3 from 4 */
1597 			if ((hw->revision_id < 3) ||
1598 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1599 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1600 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1601 
1602 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1603 			reg_ctrl_ext |= (1 << 22);
1604 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1605 
1606 			/* workaround TX hang with TSO=on */
1607 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1608 
1609 			/* Multiple read bit is reversed polarity */
1610 			reg_tctl = E1000_READ_REG(hw, TCTL);
1611 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1612 			if (reg_tctl & E1000_TCTL_MULR)
1613 				reg_tarc1 &= ~(1 << 28);
1614 			else
1615 				reg_tarc1 |= (1 << 28);
1616 
1617 			/* workaround TX hang with TSO=on */
1618 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1619 
1620 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1621 			break;
1622 		default:
1623 			break;
1624 		}
1625 
1626 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1627 	}
1628 }
1629 
1630 /******************************************************************************
1631  * Performs basic configuration of the adapter.
1632  *
1633  * hw - Struct containing variables accessed by shared code
1634  *
1635  * Assumes that the controller has previously been reset and is in a
1636  * post-reset uninitialized state. Initializes the receive address registers,
1637  * multicast table, and VLAN filter table. Calls routines to setup link
1638  * configuration and flow control settings. Clears all on-chip counters. Leaves
1639  * the transmit and receive units disabled and uninitialized.
1640  *****************************************************************************/
1641 static int
1642 e1000_init_hw(struct eth_device *nic)
1643 {
1644 	struct e1000_hw *hw = nic->priv;
1645 	uint32_t ctrl;
1646 	uint32_t i;
1647 	int32_t ret_val;
1648 	uint16_t pcix_cmd_word;
1649 	uint16_t pcix_stat_hi_word;
1650 	uint16_t cmd_mmrbc;
1651 	uint16_t stat_mmrbc;
1652 	uint32_t mta_size;
1653 	uint32_t reg_data;
1654 	uint32_t ctrl_ext;
1655 	DEBUGFUNC();
1656 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1657 	if ((hw->mac_type == e1000_ich8lan) &&
1658 		((hw->revision_id < 3) ||
1659 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1660 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1661 			reg_data = E1000_READ_REG(hw, STATUS);
1662 			reg_data &= ~0x80000000;
1663 			E1000_WRITE_REG(hw, STATUS, reg_data);
1664 	}
1665 	/* Do not need initialize Identification LED */
1666 
1667 	/* Set the media type and TBI compatibility */
1668 	e1000_set_media_type(hw);
1669 
1670 	/* Must be called after e1000_set_media_type
1671 	 * because media_type is used */
1672 	e1000_initialize_hardware_bits(hw);
1673 
1674 	/* Disabling VLAN filtering. */
1675 	DEBUGOUT("Initializing the IEEE VLAN\n");
1676 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1677 	if (hw->mac_type != e1000_ich8lan) {
1678 		if (hw->mac_type < e1000_82545_rev_3)
1679 			E1000_WRITE_REG(hw, VET, 0);
1680 		e1000_clear_vfta(hw);
1681 	}
1682 
1683 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1684 	if (hw->mac_type == e1000_82542_rev2_0) {
1685 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1686 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1687 				      hw->
1688 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1689 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1690 		E1000_WRITE_FLUSH(hw);
1691 		mdelay(5);
1692 	}
1693 
1694 	/* Setup the receive address. This involves initializing all of the Receive
1695 	 * Address Registers (RARs 0 - 15).
1696 	 */
1697 	e1000_init_rx_addrs(nic);
1698 
1699 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1700 	if (hw->mac_type == e1000_82542_rev2_0) {
1701 		E1000_WRITE_REG(hw, RCTL, 0);
1702 		E1000_WRITE_FLUSH(hw);
1703 		mdelay(1);
1704 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1705 	}
1706 
1707 	/* Zero out the Multicast HASH table */
1708 	DEBUGOUT("Zeroing the MTA\n");
1709 	mta_size = E1000_MC_TBL_SIZE;
1710 	if (hw->mac_type == e1000_ich8lan)
1711 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1712 	for (i = 0; i < mta_size; i++) {
1713 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1714 		/* use write flush to prevent Memory Write Block (MWB) from
1715 		 * occuring when accessing our register space */
1716 		E1000_WRITE_FLUSH(hw);
1717 	}
1718 #if 0
1719 	/* Set the PCI priority bit correctly in the CTRL register.  This
1720 	 * determines if the adapter gives priority to receives, or if it
1721 	 * gives equal priority to transmits and receives.  Valid only on
1722 	 * 82542 and 82543 silicon.
1723 	 */
1724 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1725 		ctrl = E1000_READ_REG(hw, CTRL);
1726 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1727 	}
1728 #endif
1729 	switch (hw->mac_type) {
1730 	case e1000_82545_rev_3:
1731 	case e1000_82546_rev_3:
1732 	case e1000_igb:
1733 		break;
1734 	default:
1735 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1736 	if (hw->bus_type == e1000_bus_type_pcix) {
1737 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1738 				     &pcix_cmd_word);
1739 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1740 				     &pcix_stat_hi_word);
1741 		cmd_mmrbc =
1742 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1743 		    PCIX_COMMAND_MMRBC_SHIFT;
1744 		stat_mmrbc =
1745 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1746 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1747 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1748 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1749 		if (cmd_mmrbc > stat_mmrbc) {
1750 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1751 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1752 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1753 					      pcix_cmd_word);
1754 		}
1755 	}
1756 		break;
1757 	}
1758 
1759 	/* More time needed for PHY to initialize */
1760 	if (hw->mac_type == e1000_ich8lan)
1761 		mdelay(15);
1762 	if (hw->mac_type == e1000_igb)
1763 		mdelay(15);
1764 
1765 	/* Call a subroutine to configure the link and setup flow control. */
1766 	ret_val = e1000_setup_link(nic);
1767 
1768 	/* Set the transmit descriptor write-back policy */
1769 	if (hw->mac_type > e1000_82544) {
1770 		ctrl = E1000_READ_REG(hw, TXDCTL);
1771 		ctrl =
1772 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1773 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1774 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1775 	}
1776 
1777 	/* Set the receive descriptor write back policy */
1778 	if (hw->mac_type >= e1000_82571) {
1779 		ctrl = E1000_READ_REG(hw, RXDCTL);
1780 		ctrl =
1781 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1782 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1783 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1784 	}
1785 
1786 	switch (hw->mac_type) {
1787 	default:
1788 		break;
1789 	case e1000_80003es2lan:
1790 		/* Enable retransmit on late collisions */
1791 		reg_data = E1000_READ_REG(hw, TCTL);
1792 		reg_data |= E1000_TCTL_RTLC;
1793 		E1000_WRITE_REG(hw, TCTL, reg_data);
1794 
1795 		/* Configure Gigabit Carry Extend Padding */
1796 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1797 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1798 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1799 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1800 
1801 		/* Configure Transmit Inter-Packet Gap */
1802 		reg_data = E1000_READ_REG(hw, TIPG);
1803 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1804 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1805 		E1000_WRITE_REG(hw, TIPG, reg_data);
1806 
1807 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1808 		reg_data &= ~0x00100000;
1809 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1810 		/* Fall through */
1811 	case e1000_82571:
1812 	case e1000_82572:
1813 	case e1000_ich8lan:
1814 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1815 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1816 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1817 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1818 		break;
1819 	case e1000_82573:
1820 	case e1000_82574:
1821 		reg_data = E1000_READ_REG(hw, GCR);
1822 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1823 		E1000_WRITE_REG(hw, GCR, reg_data);
1824 	case e1000_igb:
1825 		break;
1826 	}
1827 
1828 #if 0
1829 	/* Clear all of the statistics registers (clear on read).  It is
1830 	 * important that we do this after we have tried to establish link
1831 	 * because the symbol error count will increment wildly if there
1832 	 * is no link.
1833 	 */
1834 	e1000_clear_hw_cntrs(hw);
1835 
1836 	/* ICH8 No-snoop bits are opposite polarity.
1837 	 * Set to snoop by default after reset. */
1838 	if (hw->mac_type == e1000_ich8lan)
1839 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1840 #endif
1841 
1842 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1843 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1844 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1845 		/* Relaxed ordering must be disabled to avoid a parity
1846 		 * error crash in a PCI slot. */
1847 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1848 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1849 	}
1850 
1851 	return ret_val;
1852 }
1853 
1854 /******************************************************************************
1855  * Configures flow control and link settings.
1856  *
1857  * hw - Struct containing variables accessed by shared code
1858  *
1859  * Determines which flow control settings to use. Calls the apropriate media-
1860  * specific link configuration function. Configures the flow control settings.
1861  * Assuming the adapter has a valid link partner, a valid link should be
1862  * established. Assumes the hardware has previously been reset and the
1863  * transmitter and receiver are not enabled.
1864  *****************************************************************************/
1865 static int
1866 e1000_setup_link(struct eth_device *nic)
1867 {
1868 	struct e1000_hw *hw = nic->priv;
1869 	int32_t ret_val;
1870 #ifndef CONFIG_E1000_NO_NVM
1871 	uint32_t ctrl_ext;
1872 	uint16_t eeprom_data;
1873 #endif
1874 
1875 	DEBUGFUNC();
1876 
1877 	/* In the case of the phy reset being blocked, we already have a link.
1878 	 * We do not have to set it up again. */
1879 	if (e1000_check_phy_reset_block(hw))
1880 		return E1000_SUCCESS;
1881 
1882 #ifndef CONFIG_E1000_NO_NVM
1883 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1884 	 * that determine the hardware's default PAUSE (flow control) mode,
1885 	 * a bit that determines whether the HW defaults to enabling or
1886 	 * disabling auto-negotiation, and the direction of the
1887 	 * SW defined pins. If there is no SW over-ride of the flow
1888 	 * control setting, then the variable hw->fc will
1889 	 * be initialized based on a value in the EEPROM.
1890 	 */
1891 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1892 				&eeprom_data) < 0) {
1893 		DEBUGOUT("EEPROM Read Error\n");
1894 		return -E1000_ERR_EEPROM;
1895 	}
1896 #endif
1897 	if (hw->fc == e1000_fc_default) {
1898 		switch (hw->mac_type) {
1899 		case e1000_ich8lan:
1900 		case e1000_82573:
1901 		case e1000_82574:
1902 		case e1000_igb:
1903 			hw->fc = e1000_fc_full;
1904 			break;
1905 		default:
1906 #ifndef CONFIG_E1000_NO_NVM
1907 			ret_val = e1000_read_eeprom(hw,
1908 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1909 			if (ret_val) {
1910 				DEBUGOUT("EEPROM Read Error\n");
1911 				return -E1000_ERR_EEPROM;
1912 			}
1913 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1914 				hw->fc = e1000_fc_none;
1915 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1916 				    EEPROM_WORD0F_ASM_DIR)
1917 				hw->fc = e1000_fc_tx_pause;
1918 			else
1919 #endif
1920 				hw->fc = e1000_fc_full;
1921 			break;
1922 		}
1923 	}
1924 
1925 	/* We want to save off the original Flow Control configuration just
1926 	 * in case we get disconnected and then reconnected into a different
1927 	 * hub or switch with different Flow Control capabilities.
1928 	 */
1929 	if (hw->mac_type == e1000_82542_rev2_0)
1930 		hw->fc &= (~e1000_fc_tx_pause);
1931 
1932 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1933 		hw->fc &= (~e1000_fc_rx_pause);
1934 
1935 	hw->original_fc = hw->fc;
1936 
1937 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1938 
1939 #ifndef CONFIG_E1000_NO_NVM
1940 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1941 	 * polarity value for the SW controlled pins, and setup the
1942 	 * Extended Device Control reg with that info.
1943 	 * This is needed because one of the SW controlled pins is used for
1944 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1945 	 * or e1000_phy_setup() is called.
1946 	 */
1947 	if (hw->mac_type == e1000_82543) {
1948 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1949 			    SWDPIO__EXT_SHIFT);
1950 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1951 	}
1952 #endif
1953 
1954 	/* Call the necessary subroutine to configure the link. */
1955 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1956 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1957 	if (ret_val < 0) {
1958 		return ret_val;
1959 	}
1960 
1961 	/* Initialize the flow control address, type, and PAUSE timer
1962 	 * registers to their default values.  This is done even if flow
1963 	 * control is disabled, because it does not hurt anything to
1964 	 * initialize these registers.
1965 	 */
1966 	DEBUGOUT("Initializing the Flow Control address, type"
1967 			"and timer regs\n");
1968 
1969 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1970 	if (hw->mac_type != e1000_ich8lan) {
1971 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1972 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1973 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1974 	}
1975 
1976 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1977 
1978 	/* Set the flow control receive threshold registers.  Normally,
1979 	 * these registers will be set to a default threshold that may be
1980 	 * adjusted later by the driver's runtime code.  However, if the
1981 	 * ability to transmit pause frames in not enabled, then these
1982 	 * registers will be set to 0.
1983 	 */
1984 	if (!(hw->fc & e1000_fc_tx_pause)) {
1985 		E1000_WRITE_REG(hw, FCRTL, 0);
1986 		E1000_WRITE_REG(hw, FCRTH, 0);
1987 	} else {
1988 		/* We need to set up the Receive Threshold high and low water marks
1989 		 * as well as (optionally) enabling the transmission of XON frames.
1990 		 */
1991 		if (hw->fc_send_xon) {
1992 			E1000_WRITE_REG(hw, FCRTL,
1993 					(hw->fc_low_water | E1000_FCRTL_XONE));
1994 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1995 		} else {
1996 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1997 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1998 		}
1999 	}
2000 	return ret_val;
2001 }
2002 
2003 /******************************************************************************
2004  * Sets up link for a fiber based adapter
2005  *
2006  * hw - Struct containing variables accessed by shared code
2007  *
2008  * Manipulates Physical Coding Sublayer functions in order to configure
2009  * link. Assumes the hardware has been previously reset and the transmitter
2010  * and receiver are not enabled.
2011  *****************************************************************************/
2012 static int
2013 e1000_setup_fiber_link(struct eth_device *nic)
2014 {
2015 	struct e1000_hw *hw = nic->priv;
2016 	uint32_t ctrl;
2017 	uint32_t status;
2018 	uint32_t txcw = 0;
2019 	uint32_t i;
2020 	uint32_t signal;
2021 	int32_t ret_val;
2022 
2023 	DEBUGFUNC();
2024 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2025 	 * set when the optics detect a signal. On older adapters, it will be
2026 	 * cleared when there is a signal
2027 	 */
2028 	ctrl = E1000_READ_REG(hw, CTRL);
2029 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2030 		signal = E1000_CTRL_SWDPIN1;
2031 	else
2032 		signal = 0;
2033 
2034 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
2035 	       ctrl);
2036 	/* Take the link out of reset */
2037 	ctrl &= ~(E1000_CTRL_LRST);
2038 
2039 	e1000_config_collision_dist(hw);
2040 
2041 	/* Check for a software override of the flow control settings, and setup
2042 	 * the device accordingly.  If auto-negotiation is enabled, then software
2043 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2044 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2045 	 * auto-negotiation is disabled, then software will have to manually
2046 	 * configure the two flow control enable bits in the CTRL register.
2047 	 *
2048 	 * The possible values of the "fc" parameter are:
2049 	 *	0:  Flow control is completely disabled
2050 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
2051 	 *	    not send pause frames).
2052 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
2053 	 *	    not support receiving pause frames).
2054 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
2055 	 */
2056 	switch (hw->fc) {
2057 	case e1000_fc_none:
2058 		/* Flow control is completely disabled by a software over-ride. */
2059 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2060 		break;
2061 	case e1000_fc_rx_pause:
2062 		/* RX Flow control is enabled and TX Flow control is disabled by a
2063 		 * software over-ride. Since there really isn't a way to advertise
2064 		 * that we are capable of RX Pause ONLY, we will advertise that we
2065 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
2066 		 *  disable the adapter's ability to send PAUSE frames.
2067 		 */
2068 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2069 		break;
2070 	case e1000_fc_tx_pause:
2071 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
2072 		 * software over-ride.
2073 		 */
2074 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2075 		break;
2076 	case e1000_fc_full:
2077 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
2078 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2079 		break;
2080 	default:
2081 		DEBUGOUT("Flow control param set incorrectly\n");
2082 		return -E1000_ERR_CONFIG;
2083 		break;
2084 	}
2085 
2086 	/* Since auto-negotiation is enabled, take the link out of reset (the link
2087 	 * will be in reset, because we previously reset the chip). This will
2088 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2089 	 * link-up status bit will be set and the flow control enable bits (RFCE
2090 	 * and TFCE) will be set according to their negotiated value.
2091 	 */
2092 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2093 
2094 	E1000_WRITE_REG(hw, TXCW, txcw);
2095 	E1000_WRITE_REG(hw, CTRL, ctrl);
2096 	E1000_WRITE_FLUSH(hw);
2097 
2098 	hw->txcw = txcw;
2099 	mdelay(1);
2100 
2101 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2102 	 * indication in the Device Status Register.  Time-out if a link isn't
2103 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2104 	 * less than 500 milliseconds even if the other end is doing it in SW).
2105 	 */
2106 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2107 		DEBUGOUT("Looking for Link\n");
2108 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2109 			mdelay(10);
2110 			status = E1000_READ_REG(hw, STATUS);
2111 			if (status & E1000_STATUS_LU)
2112 				break;
2113 		}
2114 		if (i == (LINK_UP_TIMEOUT / 10)) {
2115 			/* AutoNeg failed to achieve a link, so we'll call
2116 			 * e1000_check_for_link. This routine will force the link up if we
2117 			 * detect a signal. This will allow us to communicate with
2118 			 * non-autonegotiating link partners.
2119 			 */
2120 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2121 			hw->autoneg_failed = 1;
2122 			ret_val = e1000_check_for_link(nic);
2123 			if (ret_val < 0) {
2124 				DEBUGOUT("Error while checking for link\n");
2125 				return ret_val;
2126 			}
2127 			hw->autoneg_failed = 0;
2128 		} else {
2129 			hw->autoneg_failed = 0;
2130 			DEBUGOUT("Valid Link Found\n");
2131 		}
2132 	} else {
2133 		DEBUGOUT("No Signal Detected\n");
2134 		return -E1000_ERR_NOLINK;
2135 	}
2136 	return 0;
2137 }
2138 
2139 /******************************************************************************
2140 * Make sure we have a valid PHY and change PHY mode before link setup.
2141 *
2142 * hw - Struct containing variables accessed by shared code
2143 ******************************************************************************/
2144 static int32_t
2145 e1000_copper_link_preconfig(struct e1000_hw *hw)
2146 {
2147 	uint32_t ctrl;
2148 	int32_t ret_val;
2149 	uint16_t phy_data;
2150 
2151 	DEBUGFUNC();
2152 
2153 	ctrl = E1000_READ_REG(hw, CTRL);
2154 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2155 	 * the PHY speed and duplex configuration is. In addition, we need to
2156 	 * perform a hardware reset on the PHY to take it out of reset.
2157 	 */
2158 	if (hw->mac_type > e1000_82543) {
2159 		ctrl |= E1000_CTRL_SLU;
2160 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2161 		E1000_WRITE_REG(hw, CTRL, ctrl);
2162 	} else {
2163 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2164 				| E1000_CTRL_SLU);
2165 		E1000_WRITE_REG(hw, CTRL, ctrl);
2166 		ret_val = e1000_phy_hw_reset(hw);
2167 		if (ret_val)
2168 			return ret_val;
2169 	}
2170 
2171 	/* Make sure we have a valid PHY */
2172 	ret_val = e1000_detect_gig_phy(hw);
2173 	if (ret_val) {
2174 		DEBUGOUT("Error, did not detect valid phy.\n");
2175 		return ret_val;
2176 	}
2177 	DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2178 
2179 	/* Set PHY to class A mode (if necessary) */
2180 	ret_val = e1000_set_phy_mode(hw);
2181 	if (ret_val)
2182 		return ret_val;
2183 	if ((hw->mac_type == e1000_82545_rev_3) ||
2184 		(hw->mac_type == e1000_82546_rev_3)) {
2185 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2186 				&phy_data);
2187 		phy_data |= 0x00000008;
2188 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2189 				phy_data);
2190 	}
2191 
2192 	if (hw->mac_type <= e1000_82543 ||
2193 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2194 		hw->mac_type == e1000_82541_rev_2
2195 		|| hw->mac_type == e1000_82547_rev_2)
2196 			hw->phy_reset_disable = false;
2197 
2198 	return E1000_SUCCESS;
2199 }
2200 
2201 /*****************************************************************************
2202  *
2203  * This function sets the lplu state according to the active flag.  When
2204  * activating lplu this function also disables smart speed and vise versa.
2205  * lplu will not be activated unless the device autonegotiation advertisment
2206  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2207  * hw: Struct containing variables accessed by shared code
2208  * active - true to enable lplu false to disable lplu.
2209  *
2210  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2211  *            E1000_SUCCESS at any other case.
2212  *
2213  ****************************************************************************/
2214 
2215 static int32_t
2216 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2217 {
2218 	uint32_t phy_ctrl = 0;
2219 	int32_t ret_val;
2220 	uint16_t phy_data;
2221 	DEBUGFUNC();
2222 
2223 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2224 	    && hw->phy_type != e1000_phy_igp_3)
2225 		return E1000_SUCCESS;
2226 
2227 	/* During driver activity LPLU should not be used or it will attain link
2228 	 * from the lowest speeds starting from 10Mbps. The capability is used
2229 	 * for Dx transitions and states */
2230 	if (hw->mac_type == e1000_82541_rev_2
2231 			|| hw->mac_type == e1000_82547_rev_2) {
2232 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2233 				&phy_data);
2234 		if (ret_val)
2235 			return ret_val;
2236 	} else if (hw->mac_type == e1000_ich8lan) {
2237 		/* MAC writes into PHY register based on the state transition
2238 		 * and start auto-negotiation. SW driver can overwrite the
2239 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2240 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2241 	} else {
2242 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2243 				&phy_data);
2244 		if (ret_val)
2245 			return ret_val;
2246 	}
2247 
2248 	if (!active) {
2249 		if (hw->mac_type == e1000_82541_rev_2 ||
2250 			hw->mac_type == e1000_82547_rev_2) {
2251 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2252 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2253 					phy_data);
2254 			if (ret_val)
2255 				return ret_val;
2256 		} else {
2257 			if (hw->mac_type == e1000_ich8lan) {
2258 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2259 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2260 			} else {
2261 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2262 				ret_val = e1000_write_phy_reg(hw,
2263 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2264 				if (ret_val)
2265 					return ret_val;
2266 			}
2267 		}
2268 
2269 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2270 	 * Dx states where the power conservation is most important.  During
2271 	 * driver activity we should enable SmartSpeed, so performance is
2272 	 * maintained. */
2273 		if (hw->smart_speed == e1000_smart_speed_on) {
2274 			ret_val = e1000_read_phy_reg(hw,
2275 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2276 			if (ret_val)
2277 				return ret_val;
2278 
2279 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2280 			ret_val = e1000_write_phy_reg(hw,
2281 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2282 			if (ret_val)
2283 				return ret_val;
2284 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2285 			ret_val = e1000_read_phy_reg(hw,
2286 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2287 			if (ret_val)
2288 				return ret_val;
2289 
2290 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2291 			ret_val = e1000_write_phy_reg(hw,
2292 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2293 			if (ret_val)
2294 				return ret_val;
2295 		}
2296 
2297 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2298 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2299 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2300 
2301 		if (hw->mac_type == e1000_82541_rev_2 ||
2302 		    hw->mac_type == e1000_82547_rev_2) {
2303 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2304 			ret_val = e1000_write_phy_reg(hw,
2305 					IGP01E1000_GMII_FIFO, phy_data);
2306 			if (ret_val)
2307 				return ret_val;
2308 		} else {
2309 			if (hw->mac_type == e1000_ich8lan) {
2310 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2311 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2312 			} else {
2313 				phy_data |= IGP02E1000_PM_D3_LPLU;
2314 				ret_val = e1000_write_phy_reg(hw,
2315 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2316 				if (ret_val)
2317 					return ret_val;
2318 			}
2319 		}
2320 
2321 		/* When LPLU is enabled we should disable SmartSpeed */
2322 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2323 				&phy_data);
2324 		if (ret_val)
2325 			return ret_val;
2326 
2327 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2328 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2329 				phy_data);
2330 		if (ret_val)
2331 			return ret_val;
2332 	}
2333 	return E1000_SUCCESS;
2334 }
2335 
2336 /*****************************************************************************
2337  *
2338  * This function sets the lplu d0 state according to the active flag.  When
2339  * activating lplu this function also disables smart speed and vise versa.
2340  * lplu will not be activated unless the device autonegotiation advertisment
2341  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2342  * hw: Struct containing variables accessed by shared code
2343  * active - true to enable lplu false to disable lplu.
2344  *
2345  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2346  *            E1000_SUCCESS at any other case.
2347  *
2348  ****************************************************************************/
2349 
2350 static int32_t
2351 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2352 {
2353 	uint32_t phy_ctrl = 0;
2354 	int32_t ret_val;
2355 	uint16_t phy_data;
2356 	DEBUGFUNC();
2357 
2358 	if (hw->mac_type <= e1000_82547_rev_2)
2359 		return E1000_SUCCESS;
2360 
2361 	if (hw->mac_type == e1000_ich8lan) {
2362 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2363 	} else if (hw->mac_type == e1000_igb) {
2364 		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2365 	} else {
2366 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2367 				&phy_data);
2368 		if (ret_val)
2369 			return ret_val;
2370 	}
2371 
2372 	if (!active) {
2373 		if (hw->mac_type == e1000_ich8lan) {
2374 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2375 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2376 		} else if (hw->mac_type == e1000_igb) {
2377 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2378 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2379 		} else {
2380 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2381 			ret_val = e1000_write_phy_reg(hw,
2382 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2383 			if (ret_val)
2384 				return ret_val;
2385 		}
2386 
2387 		if (hw->mac_type == e1000_igb)
2388 			return E1000_SUCCESS;
2389 
2390 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2391 	 * Dx states where the power conservation is most important.  During
2392 	 * driver activity we should enable SmartSpeed, so performance is
2393 	 * maintained. */
2394 		if (hw->smart_speed == e1000_smart_speed_on) {
2395 			ret_val = e1000_read_phy_reg(hw,
2396 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2397 			if (ret_val)
2398 				return ret_val;
2399 
2400 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2401 			ret_val = e1000_write_phy_reg(hw,
2402 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2403 			if (ret_val)
2404 				return ret_val;
2405 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2406 			ret_val = e1000_read_phy_reg(hw,
2407 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2408 			if (ret_val)
2409 				return ret_val;
2410 
2411 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2412 			ret_val = e1000_write_phy_reg(hw,
2413 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2414 			if (ret_val)
2415 				return ret_val;
2416 		}
2417 
2418 
2419 	} else {
2420 
2421 		if (hw->mac_type == e1000_ich8lan) {
2422 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2423 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2424 		} else if (hw->mac_type == e1000_igb) {
2425 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2426 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2427 		} else {
2428 			phy_data |= IGP02E1000_PM_D0_LPLU;
2429 			ret_val = e1000_write_phy_reg(hw,
2430 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2431 			if (ret_val)
2432 				return ret_val;
2433 		}
2434 
2435 		if (hw->mac_type == e1000_igb)
2436 			return E1000_SUCCESS;
2437 
2438 		/* When LPLU is enabled we should disable SmartSpeed */
2439 		ret_val = e1000_read_phy_reg(hw,
2440 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2441 		if (ret_val)
2442 			return ret_val;
2443 
2444 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2445 		ret_val = e1000_write_phy_reg(hw,
2446 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2447 		if (ret_val)
2448 			return ret_val;
2449 
2450 	}
2451 	return E1000_SUCCESS;
2452 }
2453 
2454 /********************************************************************
2455 * Copper link setup for e1000_phy_igp series.
2456 *
2457 * hw - Struct containing variables accessed by shared code
2458 *********************************************************************/
2459 static int32_t
2460 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2461 {
2462 	uint32_t led_ctrl;
2463 	int32_t ret_val;
2464 	uint16_t phy_data;
2465 
2466 	DEBUGFUNC();
2467 
2468 	if (hw->phy_reset_disable)
2469 		return E1000_SUCCESS;
2470 
2471 	ret_val = e1000_phy_reset(hw);
2472 	if (ret_val) {
2473 		DEBUGOUT("Error Resetting the PHY\n");
2474 		return ret_val;
2475 	}
2476 
2477 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2478 	mdelay(15);
2479 	if (hw->mac_type != e1000_ich8lan) {
2480 		/* Configure activity LED after PHY reset */
2481 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2482 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2483 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2484 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2485 	}
2486 
2487 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2488 	if (hw->phy_type == e1000_phy_igp) {
2489 		/* disable lplu d3 during driver init */
2490 		ret_val = e1000_set_d3_lplu_state(hw, false);
2491 		if (ret_val) {
2492 			DEBUGOUT("Error Disabling LPLU D3\n");
2493 			return ret_val;
2494 		}
2495 	}
2496 
2497 	/* disable lplu d0 during driver init */
2498 	ret_val = e1000_set_d0_lplu_state(hw, false);
2499 	if (ret_val) {
2500 		DEBUGOUT("Error Disabling LPLU D0\n");
2501 		return ret_val;
2502 	}
2503 	/* Configure mdi-mdix settings */
2504 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2505 	if (ret_val)
2506 		return ret_val;
2507 
2508 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2509 		hw->dsp_config_state = e1000_dsp_config_disabled;
2510 		/* Force MDI for earlier revs of the IGP PHY */
2511 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2512 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2513 		hw->mdix = 1;
2514 
2515 	} else {
2516 		hw->dsp_config_state = e1000_dsp_config_enabled;
2517 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2518 
2519 		switch (hw->mdix) {
2520 		case 1:
2521 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2522 			break;
2523 		case 2:
2524 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2525 			break;
2526 		case 0:
2527 		default:
2528 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2529 			break;
2530 		}
2531 	}
2532 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2533 	if (ret_val)
2534 		return ret_val;
2535 
2536 	/* set auto-master slave resolution settings */
2537 	if (hw->autoneg) {
2538 		e1000_ms_type phy_ms_setting = hw->master_slave;
2539 
2540 		if (hw->ffe_config_state == e1000_ffe_config_active)
2541 			hw->ffe_config_state = e1000_ffe_config_enabled;
2542 
2543 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2544 			hw->dsp_config_state = e1000_dsp_config_enabled;
2545 
2546 		/* when autonegotiation advertisment is only 1000Mbps then we
2547 		  * should disable SmartSpeed and enable Auto MasterSlave
2548 		  * resolution as hardware default. */
2549 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2550 			/* Disable SmartSpeed */
2551 			ret_val = e1000_read_phy_reg(hw,
2552 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2553 			if (ret_val)
2554 				return ret_val;
2555 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2556 			ret_val = e1000_write_phy_reg(hw,
2557 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2558 			if (ret_val)
2559 				return ret_val;
2560 			/* Set auto Master/Slave resolution process */
2561 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2562 					&phy_data);
2563 			if (ret_val)
2564 				return ret_val;
2565 			phy_data &= ~CR_1000T_MS_ENABLE;
2566 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2567 					phy_data);
2568 			if (ret_val)
2569 				return ret_val;
2570 		}
2571 
2572 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2573 		if (ret_val)
2574 			return ret_val;
2575 
2576 		/* load defaults for future use */
2577 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2578 				((phy_data & CR_1000T_MS_VALUE) ?
2579 				e1000_ms_force_master :
2580 				e1000_ms_force_slave) :
2581 				e1000_ms_auto;
2582 
2583 		switch (phy_ms_setting) {
2584 		case e1000_ms_force_master:
2585 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2586 			break;
2587 		case e1000_ms_force_slave:
2588 			phy_data |= CR_1000T_MS_ENABLE;
2589 			phy_data &= ~(CR_1000T_MS_VALUE);
2590 			break;
2591 		case e1000_ms_auto:
2592 			phy_data &= ~CR_1000T_MS_ENABLE;
2593 		default:
2594 			break;
2595 		}
2596 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2597 		if (ret_val)
2598 			return ret_val;
2599 	}
2600 
2601 	return E1000_SUCCESS;
2602 }
2603 
2604 /*****************************************************************************
2605  * This function checks the mode of the firmware.
2606  *
2607  * returns  - true when the mode is IAMT or false.
2608  ****************************************************************************/
2609 bool
2610 e1000_check_mng_mode(struct e1000_hw *hw)
2611 {
2612 	uint32_t fwsm;
2613 	DEBUGFUNC();
2614 
2615 	fwsm = E1000_READ_REG(hw, FWSM);
2616 
2617 	if (hw->mac_type == e1000_ich8lan) {
2618 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2619 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2620 			return true;
2621 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2622 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2623 			return true;
2624 
2625 	return false;
2626 }
2627 
2628 static int32_t
2629 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2630 {
2631 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2632 	uint32_t reg_val;
2633 	DEBUGFUNC();
2634 
2635 	if (e1000_is_second_port(hw))
2636 		swfw = E1000_SWFW_PHY1_SM;
2637 
2638 	if (e1000_swfw_sync_acquire(hw, swfw))
2639 		return -E1000_ERR_SWFW_SYNC;
2640 
2641 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2642 			& E1000_KUMCTRLSTA_OFFSET) | data;
2643 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2644 	udelay(2);
2645 
2646 	return E1000_SUCCESS;
2647 }
2648 
2649 static int32_t
2650 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2651 {
2652 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2653 	uint32_t reg_val;
2654 	DEBUGFUNC();
2655 
2656 	if (e1000_is_second_port(hw))
2657 		swfw = E1000_SWFW_PHY1_SM;
2658 
2659 	if (e1000_swfw_sync_acquire(hw, swfw)) {
2660 		debug("%s[%i]\n", __func__, __LINE__);
2661 		return -E1000_ERR_SWFW_SYNC;
2662 	}
2663 
2664 	/* Write register address */
2665 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2666 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2667 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2668 	udelay(2);
2669 
2670 	/* Read the data returned */
2671 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2672 	*data = (uint16_t)reg_val;
2673 
2674 	return E1000_SUCCESS;
2675 }
2676 
2677 /********************************************************************
2678 * Copper link setup for e1000_phy_gg82563 series.
2679 *
2680 * hw - Struct containing variables accessed by shared code
2681 *********************************************************************/
2682 static int32_t
2683 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2684 {
2685 	int32_t ret_val;
2686 	uint16_t phy_data;
2687 	uint32_t reg_data;
2688 
2689 	DEBUGFUNC();
2690 
2691 	if (!hw->phy_reset_disable) {
2692 		/* Enable CRS on TX for half-duplex operation. */
2693 		ret_val = e1000_read_phy_reg(hw,
2694 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2695 		if (ret_val)
2696 			return ret_val;
2697 
2698 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2699 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2700 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2701 
2702 		ret_val = e1000_write_phy_reg(hw,
2703 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2704 		if (ret_val)
2705 			return ret_val;
2706 
2707 		/* Options:
2708 		 *   MDI/MDI-X = 0 (default)
2709 		 *   0 - Auto for all speeds
2710 		 *   1 - MDI mode
2711 		 *   2 - MDI-X mode
2712 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2713 		 */
2714 		ret_val = e1000_read_phy_reg(hw,
2715 				GG82563_PHY_SPEC_CTRL, &phy_data);
2716 		if (ret_val)
2717 			return ret_val;
2718 
2719 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2720 
2721 		switch (hw->mdix) {
2722 		case 1:
2723 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2724 			break;
2725 		case 2:
2726 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2727 			break;
2728 		case 0:
2729 		default:
2730 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2731 			break;
2732 		}
2733 
2734 		/* Options:
2735 		 *   disable_polarity_correction = 0 (default)
2736 		 *       Automatic Correction for Reversed Cable Polarity
2737 		 *   0 - Disabled
2738 		 *   1 - Enabled
2739 		 */
2740 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2741 		ret_val = e1000_write_phy_reg(hw,
2742 				GG82563_PHY_SPEC_CTRL, phy_data);
2743 
2744 		if (ret_val)
2745 			return ret_val;
2746 
2747 		/* SW Reset the PHY so all changes take effect */
2748 		ret_val = e1000_phy_reset(hw);
2749 		if (ret_val) {
2750 			DEBUGOUT("Error Resetting the PHY\n");
2751 			return ret_val;
2752 		}
2753 	} /* phy_reset_disable */
2754 
2755 	if (hw->mac_type == e1000_80003es2lan) {
2756 		/* Bypass RX and TX FIFO's */
2757 		ret_val = e1000_write_kmrn_reg(hw,
2758 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2759 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2760 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2761 		if (ret_val)
2762 			return ret_val;
2763 
2764 		ret_val = e1000_read_phy_reg(hw,
2765 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2766 		if (ret_val)
2767 			return ret_val;
2768 
2769 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2770 		ret_val = e1000_write_phy_reg(hw,
2771 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2772 
2773 		if (ret_val)
2774 			return ret_val;
2775 
2776 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2777 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2778 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2779 
2780 		ret_val = e1000_read_phy_reg(hw,
2781 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2782 		if (ret_val)
2783 			return ret_val;
2784 
2785 	/* Do not init these registers when the HW is in IAMT mode, since the
2786 	 * firmware will have already initialized them.  We only initialize
2787 	 * them if the HW is not in IAMT mode.
2788 	 */
2789 		if (e1000_check_mng_mode(hw) == false) {
2790 			/* Enable Electrical Idle on the PHY */
2791 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2792 			ret_val = e1000_write_phy_reg(hw,
2793 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2794 			if (ret_val)
2795 				return ret_val;
2796 
2797 			ret_val = e1000_read_phy_reg(hw,
2798 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2799 			if (ret_val)
2800 				return ret_val;
2801 
2802 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2803 			ret_val = e1000_write_phy_reg(hw,
2804 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2805 
2806 			if (ret_val)
2807 				return ret_val;
2808 		}
2809 
2810 		/* Workaround: Disable padding in Kumeran interface in the MAC
2811 		 * and in the PHY to avoid CRC errors.
2812 		 */
2813 		ret_val = e1000_read_phy_reg(hw,
2814 				GG82563_PHY_INBAND_CTRL, &phy_data);
2815 		if (ret_val)
2816 			return ret_val;
2817 		phy_data |= GG82563_ICR_DIS_PADDING;
2818 		ret_val = e1000_write_phy_reg(hw,
2819 				GG82563_PHY_INBAND_CTRL, phy_data);
2820 		if (ret_val)
2821 			return ret_val;
2822 	}
2823 	return E1000_SUCCESS;
2824 }
2825 
2826 /********************************************************************
2827 * Copper link setup for e1000_phy_m88 series.
2828 *
2829 * hw - Struct containing variables accessed by shared code
2830 *********************************************************************/
2831 static int32_t
2832 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2833 {
2834 	int32_t ret_val;
2835 	uint16_t phy_data;
2836 
2837 	DEBUGFUNC();
2838 
2839 	if (hw->phy_reset_disable)
2840 		return E1000_SUCCESS;
2841 
2842 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2843 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2844 	if (ret_val)
2845 		return ret_val;
2846 
2847 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2848 
2849 	/* Options:
2850 	 *   MDI/MDI-X = 0 (default)
2851 	 *   0 - Auto for all speeds
2852 	 *   1 - MDI mode
2853 	 *   2 - MDI-X mode
2854 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2855 	 */
2856 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2857 
2858 	switch (hw->mdix) {
2859 	case 1:
2860 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2861 		break;
2862 	case 2:
2863 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2864 		break;
2865 	case 3:
2866 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2867 		break;
2868 	case 0:
2869 	default:
2870 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2871 		break;
2872 	}
2873 
2874 	/* Options:
2875 	 *   disable_polarity_correction = 0 (default)
2876 	 *       Automatic Correction for Reversed Cable Polarity
2877 	 *   0 - Disabled
2878 	 *   1 - Enabled
2879 	 */
2880 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2881 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2882 	if (ret_val)
2883 		return ret_val;
2884 
2885 	if (hw->phy_revision < M88E1011_I_REV_4) {
2886 		/* Force TX_CLK in the Extended PHY Specific Control Register
2887 		 * to 25MHz clock.
2888 		 */
2889 		ret_val = e1000_read_phy_reg(hw,
2890 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2891 		if (ret_val)
2892 			return ret_val;
2893 
2894 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2895 
2896 		if ((hw->phy_revision == E1000_REVISION_2) &&
2897 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2898 			/* Vidalia Phy, set the downshift counter to 5x */
2899 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2900 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2901 			ret_val = e1000_write_phy_reg(hw,
2902 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2903 			if (ret_val)
2904 				return ret_val;
2905 		} else {
2906 			/* Configure Master and Slave downshift values */
2907 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2908 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2909 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2910 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2911 			ret_val = e1000_write_phy_reg(hw,
2912 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2913 			if (ret_val)
2914 				return ret_val;
2915 		}
2916 	}
2917 
2918 	/* SW Reset the PHY so all changes take effect */
2919 	ret_val = e1000_phy_reset(hw);
2920 	if (ret_val) {
2921 		DEBUGOUT("Error Resetting the PHY\n");
2922 		return ret_val;
2923 	}
2924 
2925 	return E1000_SUCCESS;
2926 }
2927 
2928 /********************************************************************
2929 * Setup auto-negotiation and flow control advertisements,
2930 * and then perform auto-negotiation.
2931 *
2932 * hw - Struct containing variables accessed by shared code
2933 *********************************************************************/
2934 static int32_t
2935 e1000_copper_link_autoneg(struct e1000_hw *hw)
2936 {
2937 	int32_t ret_val;
2938 	uint16_t phy_data;
2939 
2940 	DEBUGFUNC();
2941 
2942 	/* Perform some bounds checking on the hw->autoneg_advertised
2943 	 * parameter.  If this variable is zero, then set it to the default.
2944 	 */
2945 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2946 
2947 	/* If autoneg_advertised is zero, we assume it was not defaulted
2948 	 * by the calling code so we set to advertise full capability.
2949 	 */
2950 	if (hw->autoneg_advertised == 0)
2951 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2952 
2953 	/* IFE phy only supports 10/100 */
2954 	if (hw->phy_type == e1000_phy_ife)
2955 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2956 
2957 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2958 	ret_val = e1000_phy_setup_autoneg(hw);
2959 	if (ret_val) {
2960 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2961 		return ret_val;
2962 	}
2963 	DEBUGOUT("Restarting Auto-Neg\n");
2964 
2965 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2966 	 * the Auto Neg Restart bit in the PHY control register.
2967 	 */
2968 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2969 	if (ret_val)
2970 		return ret_val;
2971 
2972 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2973 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2974 	if (ret_val)
2975 		return ret_val;
2976 
2977 	/* Does the user want to wait for Auto-Neg to complete here, or
2978 	 * check at a later time (for example, callback routine).
2979 	 */
2980 	/* If we do not wait for autonegtation to complete I
2981 	 * do not see a valid link status.
2982 	 * wait_autoneg_complete = 1 .
2983 	 */
2984 	if (hw->wait_autoneg_complete) {
2985 		ret_val = e1000_wait_autoneg(hw);
2986 		if (ret_val) {
2987 			DEBUGOUT("Error while waiting for autoneg"
2988 					"to complete\n");
2989 			return ret_val;
2990 		}
2991 	}
2992 
2993 	hw->get_link_status = true;
2994 
2995 	return E1000_SUCCESS;
2996 }
2997 
2998 /******************************************************************************
2999 * Config the MAC and the PHY after link is up.
3000 *   1) Set up the MAC to the current PHY speed/duplex
3001 *      if we are on 82543.  If we
3002 *      are on newer silicon, we only need to configure
3003 *      collision distance in the Transmit Control Register.
3004 *   2) Set up flow control on the MAC to that established with
3005 *      the link partner.
3006 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3007 *
3008 * hw - Struct containing variables accessed by shared code
3009 ******************************************************************************/
3010 static int32_t
3011 e1000_copper_link_postconfig(struct e1000_hw *hw)
3012 {
3013 	int32_t ret_val;
3014 	DEBUGFUNC();
3015 
3016 	if (hw->mac_type >= e1000_82544) {
3017 		e1000_config_collision_dist(hw);
3018 	} else {
3019 		ret_val = e1000_config_mac_to_phy(hw);
3020 		if (ret_val) {
3021 			DEBUGOUT("Error configuring MAC to PHY settings\n");
3022 			return ret_val;
3023 		}
3024 	}
3025 	ret_val = e1000_config_fc_after_link_up(hw);
3026 	if (ret_val) {
3027 		DEBUGOUT("Error Configuring Flow Control\n");
3028 		return ret_val;
3029 	}
3030 	return E1000_SUCCESS;
3031 }
3032 
3033 /******************************************************************************
3034 * Detects which PHY is present and setup the speed and duplex
3035 *
3036 * hw - Struct containing variables accessed by shared code
3037 ******************************************************************************/
3038 static int
3039 e1000_setup_copper_link(struct eth_device *nic)
3040 {
3041 	struct e1000_hw *hw = nic->priv;
3042 	int32_t ret_val;
3043 	uint16_t i;
3044 	uint16_t phy_data;
3045 	uint16_t reg_data;
3046 
3047 	DEBUGFUNC();
3048 
3049 	switch (hw->mac_type) {
3050 	case e1000_80003es2lan:
3051 	case e1000_ich8lan:
3052 		/* Set the mac to wait the maximum time between each
3053 		 * iteration and increase the max iterations when
3054 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3055 		ret_val = e1000_write_kmrn_reg(hw,
3056 				GG82563_REG(0x34, 4), 0xFFFF);
3057 		if (ret_val)
3058 			return ret_val;
3059 		ret_val = e1000_read_kmrn_reg(hw,
3060 				GG82563_REG(0x34, 9), &reg_data);
3061 		if (ret_val)
3062 			return ret_val;
3063 		reg_data |= 0x3F;
3064 		ret_val = e1000_write_kmrn_reg(hw,
3065 				GG82563_REG(0x34, 9), reg_data);
3066 		if (ret_val)
3067 			return ret_val;
3068 	default:
3069 		break;
3070 	}
3071 
3072 	/* Check if it is a valid PHY and set PHY mode if necessary. */
3073 	ret_val = e1000_copper_link_preconfig(hw);
3074 	if (ret_val)
3075 		return ret_val;
3076 	switch (hw->mac_type) {
3077 	case e1000_80003es2lan:
3078 		/* Kumeran registers are written-only */
3079 		reg_data =
3080 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3081 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3082 		ret_val = e1000_write_kmrn_reg(hw,
3083 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3084 		if (ret_val)
3085 			return ret_val;
3086 		break;
3087 	default:
3088 		break;
3089 	}
3090 
3091 	if (hw->phy_type == e1000_phy_igp ||
3092 		hw->phy_type == e1000_phy_igp_3 ||
3093 		hw->phy_type == e1000_phy_igp_2) {
3094 		ret_val = e1000_copper_link_igp_setup(hw);
3095 		if (ret_val)
3096 			return ret_val;
3097 	} else if (hw->phy_type == e1000_phy_m88 ||
3098 		hw->phy_type == e1000_phy_igb) {
3099 		ret_val = e1000_copper_link_mgp_setup(hw);
3100 		if (ret_val)
3101 			return ret_val;
3102 	} else if (hw->phy_type == e1000_phy_gg82563) {
3103 		ret_val = e1000_copper_link_ggp_setup(hw);
3104 		if (ret_val)
3105 			return ret_val;
3106 	}
3107 
3108 	/* always auto */
3109 	/* Setup autoneg and flow control advertisement
3110 	  * and perform autonegotiation */
3111 	ret_val = e1000_copper_link_autoneg(hw);
3112 	if (ret_val)
3113 		return ret_val;
3114 
3115 	/* Check link status. Wait up to 100 microseconds for link to become
3116 	 * valid.
3117 	 */
3118 	for (i = 0; i < 10; i++) {
3119 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3120 		if (ret_val)
3121 			return ret_val;
3122 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3123 		if (ret_val)
3124 			return ret_val;
3125 
3126 		if (phy_data & MII_SR_LINK_STATUS) {
3127 			/* Config the MAC and PHY after link is up */
3128 			ret_val = e1000_copper_link_postconfig(hw);
3129 			if (ret_val)
3130 				return ret_val;
3131 
3132 			DEBUGOUT("Valid link established!!!\n");
3133 			return E1000_SUCCESS;
3134 		}
3135 		udelay(10);
3136 	}
3137 
3138 	DEBUGOUT("Unable to establish link!!!\n");
3139 	return E1000_SUCCESS;
3140 }
3141 
3142 /******************************************************************************
3143 * Configures PHY autoneg and flow control advertisement settings
3144 *
3145 * hw - Struct containing variables accessed by shared code
3146 ******************************************************************************/
3147 int32_t
3148 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3149 {
3150 	int32_t ret_val;
3151 	uint16_t mii_autoneg_adv_reg;
3152 	uint16_t mii_1000t_ctrl_reg;
3153 
3154 	DEBUGFUNC();
3155 
3156 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3157 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3158 	if (ret_val)
3159 		return ret_val;
3160 
3161 	if (hw->phy_type != e1000_phy_ife) {
3162 		/* Read the MII 1000Base-T Control Register (Address 9). */
3163 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3164 				&mii_1000t_ctrl_reg);
3165 		if (ret_val)
3166 			return ret_val;
3167 	} else
3168 		mii_1000t_ctrl_reg = 0;
3169 
3170 	/* Need to parse both autoneg_advertised and fc and set up
3171 	 * the appropriate PHY registers.  First we will parse for
3172 	 * autoneg_advertised software override.  Since we can advertise
3173 	 * a plethora of combinations, we need to check each bit
3174 	 * individually.
3175 	 */
3176 
3177 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3178 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3179 	 * the  1000Base-T Control Register (Address 9).
3180 	 */
3181 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3182 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3183 
3184 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3185 
3186 	/* Do we want to advertise 10 Mb Half Duplex? */
3187 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3188 		DEBUGOUT("Advertise 10mb Half duplex\n");
3189 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3190 	}
3191 
3192 	/* Do we want to advertise 10 Mb Full Duplex? */
3193 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3194 		DEBUGOUT("Advertise 10mb Full duplex\n");
3195 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3196 	}
3197 
3198 	/* Do we want to advertise 100 Mb Half Duplex? */
3199 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3200 		DEBUGOUT("Advertise 100mb Half duplex\n");
3201 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3202 	}
3203 
3204 	/* Do we want to advertise 100 Mb Full Duplex? */
3205 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3206 		DEBUGOUT("Advertise 100mb Full duplex\n");
3207 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3208 	}
3209 
3210 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3211 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3212 		DEBUGOUT
3213 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3214 	}
3215 
3216 	/* Do we want to advertise 1000 Mb Full Duplex? */
3217 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3218 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3219 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3220 	}
3221 
3222 	/* Check for a software override of the flow control settings, and
3223 	 * setup the PHY advertisement registers accordingly.  If
3224 	 * auto-negotiation is enabled, then software will have to set the
3225 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3226 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3227 	 *
3228 	 * The possible values of the "fc" parameter are:
3229 	 *	0:  Flow control is completely disabled
3230 	 *	1:  Rx flow control is enabled (we can receive pause frames
3231 	 *	    but not send pause frames).
3232 	 *	2:  Tx flow control is enabled (we can send pause frames
3233 	 *	    but we do not support receiving pause frames).
3234 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3235 	 *  other:  No software override.  The flow control configuration
3236 	 *	    in the EEPROM is used.
3237 	 */
3238 	switch (hw->fc) {
3239 	case e1000_fc_none:	/* 0 */
3240 		/* Flow control (RX & TX) is completely disabled by a
3241 		 * software over-ride.
3242 		 */
3243 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3244 		break;
3245 	case e1000_fc_rx_pause:	/* 1 */
3246 		/* RX Flow control is enabled, and TX Flow control is
3247 		 * disabled, by a software over-ride.
3248 		 */
3249 		/* Since there really isn't a way to advertise that we are
3250 		 * capable of RX Pause ONLY, we will advertise that we
3251 		 * support both symmetric and asymmetric RX PAUSE.  Later
3252 		 * (in e1000_config_fc_after_link_up) we will disable the
3253 		 *hw's ability to send PAUSE frames.
3254 		 */
3255 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3256 		break;
3257 	case e1000_fc_tx_pause:	/* 2 */
3258 		/* TX Flow control is enabled, and RX Flow control is
3259 		 * disabled, by a software over-ride.
3260 		 */
3261 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3262 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3263 		break;
3264 	case e1000_fc_full:	/* 3 */
3265 		/* Flow control (both RX and TX) is enabled by a software
3266 		 * over-ride.
3267 		 */
3268 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3269 		break;
3270 	default:
3271 		DEBUGOUT("Flow control param set incorrectly\n");
3272 		return -E1000_ERR_CONFIG;
3273 	}
3274 
3275 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3276 	if (ret_val)
3277 		return ret_val;
3278 
3279 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3280 
3281 	if (hw->phy_type != e1000_phy_ife) {
3282 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3283 				mii_1000t_ctrl_reg);
3284 		if (ret_val)
3285 			return ret_val;
3286 	}
3287 
3288 	return E1000_SUCCESS;
3289 }
3290 
3291 /******************************************************************************
3292 * Sets the collision distance in the Transmit Control register
3293 *
3294 * hw - Struct containing variables accessed by shared code
3295 *
3296 * Link should have been established previously. Reads the speed and duplex
3297 * information from the Device Status register.
3298 ******************************************************************************/
3299 static void
3300 e1000_config_collision_dist(struct e1000_hw *hw)
3301 {
3302 	uint32_t tctl, coll_dist;
3303 
3304 	DEBUGFUNC();
3305 
3306 	if (hw->mac_type < e1000_82543)
3307 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3308 	else
3309 		coll_dist = E1000_COLLISION_DISTANCE;
3310 
3311 	tctl = E1000_READ_REG(hw, TCTL);
3312 
3313 	tctl &= ~E1000_TCTL_COLD;
3314 	tctl |= coll_dist << E1000_COLD_SHIFT;
3315 
3316 	E1000_WRITE_REG(hw, TCTL, tctl);
3317 	E1000_WRITE_FLUSH(hw);
3318 }
3319 
3320 /******************************************************************************
3321 * Sets MAC speed and duplex settings to reflect the those in the PHY
3322 *
3323 * hw - Struct containing variables accessed by shared code
3324 * mii_reg - data to write to the MII control register
3325 *
3326 * The contents of the PHY register containing the needed information need to
3327 * be passed in.
3328 ******************************************************************************/
3329 static int
3330 e1000_config_mac_to_phy(struct e1000_hw *hw)
3331 {
3332 	uint32_t ctrl;
3333 	uint16_t phy_data;
3334 
3335 	DEBUGFUNC();
3336 
3337 	/* Read the Device Control Register and set the bits to Force Speed
3338 	 * and Duplex.
3339 	 */
3340 	ctrl = E1000_READ_REG(hw, CTRL);
3341 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3342 	ctrl &= ~(E1000_CTRL_ILOS);
3343 	ctrl |= (E1000_CTRL_SPD_SEL);
3344 
3345 	/* Set up duplex in the Device Control and Transmit Control
3346 	 * registers depending on negotiated values.
3347 	 */
3348 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3349 		DEBUGOUT("PHY Read Error\n");
3350 		return -E1000_ERR_PHY;
3351 	}
3352 	if (phy_data & M88E1000_PSSR_DPLX)
3353 		ctrl |= E1000_CTRL_FD;
3354 	else
3355 		ctrl &= ~E1000_CTRL_FD;
3356 
3357 	e1000_config_collision_dist(hw);
3358 
3359 	/* Set up speed in the Device Control register depending on
3360 	 * negotiated values.
3361 	 */
3362 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3363 		ctrl |= E1000_CTRL_SPD_1000;
3364 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3365 		ctrl |= E1000_CTRL_SPD_100;
3366 	/* Write the configured values back to the Device Control Reg. */
3367 	E1000_WRITE_REG(hw, CTRL, ctrl);
3368 	return 0;
3369 }
3370 
3371 /******************************************************************************
3372  * Forces the MAC's flow control settings.
3373  *
3374  * hw - Struct containing variables accessed by shared code
3375  *
3376  * Sets the TFCE and RFCE bits in the device control register to reflect
3377  * the adapter settings. TFCE and RFCE need to be explicitly set by
3378  * software when a Copper PHY is used because autonegotiation is managed
3379  * by the PHY rather than the MAC. Software must also configure these
3380  * bits when link is forced on a fiber connection.
3381  *****************************************************************************/
3382 static int
3383 e1000_force_mac_fc(struct e1000_hw *hw)
3384 {
3385 	uint32_t ctrl;
3386 
3387 	DEBUGFUNC();
3388 
3389 	/* Get the current configuration of the Device Control Register */
3390 	ctrl = E1000_READ_REG(hw, CTRL);
3391 
3392 	/* Because we didn't get link via the internal auto-negotiation
3393 	 * mechanism (we either forced link or we got link via PHY
3394 	 * auto-neg), we have to manually enable/disable transmit an
3395 	 * receive flow control.
3396 	 *
3397 	 * The "Case" statement below enables/disable flow control
3398 	 * according to the "hw->fc" parameter.
3399 	 *
3400 	 * The possible values of the "fc" parameter are:
3401 	 *	0:  Flow control is completely disabled
3402 	 *	1:  Rx flow control is enabled (we can receive pause
3403 	 *	    frames but not send pause frames).
3404 	 *	2:  Tx flow control is enabled (we can send pause frames
3405 	 *	    frames but we do not receive pause frames).
3406 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3407 	 *  other:  No other values should be possible at this point.
3408 	 */
3409 
3410 	switch (hw->fc) {
3411 	case e1000_fc_none:
3412 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3413 		break;
3414 	case e1000_fc_rx_pause:
3415 		ctrl &= (~E1000_CTRL_TFCE);
3416 		ctrl |= E1000_CTRL_RFCE;
3417 		break;
3418 	case e1000_fc_tx_pause:
3419 		ctrl &= (~E1000_CTRL_RFCE);
3420 		ctrl |= E1000_CTRL_TFCE;
3421 		break;
3422 	case e1000_fc_full:
3423 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3424 		break;
3425 	default:
3426 		DEBUGOUT("Flow control param set incorrectly\n");
3427 		return -E1000_ERR_CONFIG;
3428 	}
3429 
3430 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3431 	if (hw->mac_type == e1000_82542_rev2_0)
3432 		ctrl &= (~E1000_CTRL_TFCE);
3433 
3434 	E1000_WRITE_REG(hw, CTRL, ctrl);
3435 	return 0;
3436 }
3437 
3438 /******************************************************************************
3439  * Configures flow control settings after link is established
3440  *
3441  * hw - Struct containing variables accessed by shared code
3442  *
3443  * Should be called immediately after a valid link has been established.
3444  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3445  * and autonegotiation is enabled, the MAC flow control settings will be set
3446  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3447  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3448  *****************************************************************************/
3449 static int32_t
3450 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3451 {
3452 	int32_t ret_val;
3453 	uint16_t mii_status_reg;
3454 	uint16_t mii_nway_adv_reg;
3455 	uint16_t mii_nway_lp_ability_reg;
3456 	uint16_t speed;
3457 	uint16_t duplex;
3458 
3459 	DEBUGFUNC();
3460 
3461 	/* Check for the case where we have fiber media and auto-neg failed
3462 	 * so we had to force link.  In this case, we need to force the
3463 	 * configuration of the MAC to match the "fc" parameter.
3464 	 */
3465 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3466 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3467 		&& (hw->autoneg_failed))
3468 		|| ((hw->media_type == e1000_media_type_copper)
3469 		&& (!hw->autoneg))) {
3470 		ret_val = e1000_force_mac_fc(hw);
3471 		if (ret_val < 0) {
3472 			DEBUGOUT("Error forcing flow control settings\n");
3473 			return ret_val;
3474 		}
3475 	}
3476 
3477 	/* Check for the case where we have copper media and auto-neg is
3478 	 * enabled.  In this case, we need to check and see if Auto-Neg
3479 	 * has completed, and if so, how the PHY and link partner has
3480 	 * flow control configured.
3481 	 */
3482 	if (hw->media_type == e1000_media_type_copper) {
3483 		/* Read the MII Status Register and check to see if AutoNeg
3484 		 * has completed.  We read this twice because this reg has
3485 		 * some "sticky" (latched) bits.
3486 		 */
3487 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3488 			DEBUGOUT("PHY Read Error\n");
3489 			return -E1000_ERR_PHY;
3490 		}
3491 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3492 			DEBUGOUT("PHY Read Error\n");
3493 			return -E1000_ERR_PHY;
3494 		}
3495 
3496 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3497 			/* The AutoNeg process has completed, so we now need to
3498 			 * read both the Auto Negotiation Advertisement Register
3499 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3500 			 * Register (Address 5) to determine how flow control was
3501 			 * negotiated.
3502 			 */
3503 			if (e1000_read_phy_reg
3504 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3505 				DEBUGOUT("PHY Read Error\n");
3506 				return -E1000_ERR_PHY;
3507 			}
3508 			if (e1000_read_phy_reg
3509 			    (hw, PHY_LP_ABILITY,
3510 			     &mii_nway_lp_ability_reg) < 0) {
3511 				DEBUGOUT("PHY Read Error\n");
3512 				return -E1000_ERR_PHY;
3513 			}
3514 
3515 			/* Two bits in the Auto Negotiation Advertisement Register
3516 			 * (Address 4) and two bits in the Auto Negotiation Base
3517 			 * Page Ability Register (Address 5) determine flow control
3518 			 * for both the PHY and the link partner.  The following
3519 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3520 			 * 1999, describes these PAUSE resolution bits and how flow
3521 			 * control is determined based upon these settings.
3522 			 * NOTE:  DC = Don't Care
3523 			 *
3524 			 *   LOCAL DEVICE  |   LINK PARTNER
3525 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3526 			 *-------|---------|-------|---------|--------------------
3527 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3528 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3529 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3530 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3531 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3532 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3533 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3534 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3535 			 *
3536 			 */
3537 			/* Are both PAUSE bits set to 1?  If so, this implies
3538 			 * Symmetric Flow Control is enabled at both ends.  The
3539 			 * ASM_DIR bits are irrelevant per the spec.
3540 			 *
3541 			 * For Symmetric Flow Control:
3542 			 *
3543 			 *   LOCAL DEVICE  |   LINK PARTNER
3544 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3545 			 *-------|---------|-------|---------|--------------------
3546 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3547 			 *
3548 			 */
3549 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3550 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3551 				/* Now we need to check if the user selected RX ONLY
3552 				 * of pause frames.  In this case, we had to advertise
3553 				 * FULL flow control because we could not advertise RX
3554 				 * ONLY. Hence, we must now check to see if we need to
3555 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3556 				 */
3557 				if (hw->original_fc == e1000_fc_full) {
3558 					hw->fc = e1000_fc_full;
3559 					DEBUGOUT("Flow Control = FULL.\r\n");
3560 				} else {
3561 					hw->fc = e1000_fc_rx_pause;
3562 					DEBUGOUT
3563 					    ("Flow Control = RX PAUSE frames only.\r\n");
3564 				}
3565 			}
3566 			/* For receiving PAUSE frames ONLY.
3567 			 *
3568 			 *   LOCAL DEVICE  |   LINK PARTNER
3569 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3570 			 *-------|---------|-------|---------|--------------------
3571 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3572 			 *
3573 			 */
3574 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3575 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3576 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3577 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3578 			{
3579 				hw->fc = e1000_fc_tx_pause;
3580 				DEBUGOUT
3581 				    ("Flow Control = TX PAUSE frames only.\r\n");
3582 			}
3583 			/* For transmitting PAUSE frames ONLY.
3584 			 *
3585 			 *   LOCAL DEVICE  |   LINK PARTNER
3586 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3587 			 *-------|---------|-------|---------|--------------------
3588 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3589 			 *
3590 			 */
3591 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3592 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3593 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3594 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3595 			{
3596 				hw->fc = e1000_fc_rx_pause;
3597 				DEBUGOUT
3598 				    ("Flow Control = RX PAUSE frames only.\r\n");
3599 			}
3600 			/* Per the IEEE spec, at this point flow control should be
3601 			 * disabled.  However, we want to consider that we could
3602 			 * be connected to a legacy switch that doesn't advertise
3603 			 * desired flow control, but can be forced on the link
3604 			 * partner.  So if we advertised no flow control, that is
3605 			 * what we will resolve to.  If we advertised some kind of
3606 			 * receive capability (Rx Pause Only or Full Flow Control)
3607 			 * and the link partner advertised none, we will configure
3608 			 * ourselves to enable Rx Flow Control only.  We can do
3609 			 * this safely for two reasons:  If the link partner really
3610 			 * didn't want flow control enabled, and we enable Rx, no
3611 			 * harm done since we won't be receiving any PAUSE frames
3612 			 * anyway.  If the intent on the link partner was to have
3613 			 * flow control enabled, then by us enabling RX only, we
3614 			 * can at least receive pause frames and process them.
3615 			 * This is a good idea because in most cases, since we are
3616 			 * predominantly a server NIC, more times than not we will
3617 			 * be asked to delay transmission of packets than asking
3618 			 * our link partner to pause transmission of frames.
3619 			 */
3620 			else if (hw->original_fc == e1000_fc_none ||
3621 				 hw->original_fc == e1000_fc_tx_pause) {
3622 				hw->fc = e1000_fc_none;
3623 				DEBUGOUT("Flow Control = NONE.\r\n");
3624 			} else {
3625 				hw->fc = e1000_fc_rx_pause;
3626 				DEBUGOUT
3627 				    ("Flow Control = RX PAUSE frames only.\r\n");
3628 			}
3629 
3630 			/* Now we need to do one last check...	If we auto-
3631 			 * negotiated to HALF DUPLEX, flow control should not be
3632 			 * enabled per IEEE 802.3 spec.
3633 			 */
3634 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3635 
3636 			if (duplex == HALF_DUPLEX)
3637 				hw->fc = e1000_fc_none;
3638 
3639 			/* Now we call a subroutine to actually force the MAC
3640 			 * controller to use the correct flow control settings.
3641 			 */
3642 			ret_val = e1000_force_mac_fc(hw);
3643 			if (ret_val < 0) {
3644 				DEBUGOUT
3645 				    ("Error forcing flow control settings\n");
3646 				return ret_val;
3647 			}
3648 		} else {
3649 			DEBUGOUT
3650 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3651 		}
3652 	}
3653 	return E1000_SUCCESS;
3654 }
3655 
3656 /******************************************************************************
3657  * Checks to see if the link status of the hardware has changed.
3658  *
3659  * hw - Struct containing variables accessed by shared code
3660  *
3661  * Called by any function that needs to check the link status of the adapter.
3662  *****************************************************************************/
3663 static int
3664 e1000_check_for_link(struct eth_device *nic)
3665 {
3666 	struct e1000_hw *hw = nic->priv;
3667 	uint32_t rxcw;
3668 	uint32_t ctrl;
3669 	uint32_t status;
3670 	uint32_t rctl;
3671 	uint32_t signal;
3672 	int32_t ret_val;
3673 	uint16_t phy_data;
3674 	uint16_t lp_capability;
3675 
3676 	DEBUGFUNC();
3677 
3678 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3679 	 * set when the optics detect a signal. On older adapters, it will be
3680 	 * cleared when there is a signal
3681 	 */
3682 	ctrl = E1000_READ_REG(hw, CTRL);
3683 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3684 		signal = E1000_CTRL_SWDPIN1;
3685 	else
3686 		signal = 0;
3687 
3688 	status = E1000_READ_REG(hw, STATUS);
3689 	rxcw = E1000_READ_REG(hw, RXCW);
3690 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3691 
3692 	/* If we have a copper PHY then we only want to go out to the PHY
3693 	 * registers to see if Auto-Neg has completed and/or if our link
3694 	 * status has changed.	The get_link_status flag will be set if we
3695 	 * receive a Link Status Change interrupt or we have Rx Sequence
3696 	 * Errors.
3697 	 */
3698 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3699 		/* First we want to see if the MII Status Register reports
3700 		 * link.  If so, then we want to get the current speed/duplex
3701 		 * of the PHY.
3702 		 * Read the register twice since the link bit is sticky.
3703 		 */
3704 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3705 			DEBUGOUT("PHY Read Error\n");
3706 			return -E1000_ERR_PHY;
3707 		}
3708 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3709 			DEBUGOUT("PHY Read Error\n");
3710 			return -E1000_ERR_PHY;
3711 		}
3712 
3713 		if (phy_data & MII_SR_LINK_STATUS) {
3714 			hw->get_link_status = false;
3715 		} else {
3716 			/* No link detected */
3717 			return -E1000_ERR_NOLINK;
3718 		}
3719 
3720 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3721 		 * have Si on board that is 82544 or newer, Auto
3722 		 * Speed Detection takes care of MAC speed/duplex
3723 		 * configuration.  So we only need to configure Collision
3724 		 * Distance in the MAC.  Otherwise, we need to force
3725 		 * speed/duplex on the MAC to the current PHY speed/duplex
3726 		 * settings.
3727 		 */
3728 		if (hw->mac_type >= e1000_82544)
3729 			e1000_config_collision_dist(hw);
3730 		else {
3731 			ret_val = e1000_config_mac_to_phy(hw);
3732 			if (ret_val < 0) {
3733 				DEBUGOUT
3734 				    ("Error configuring MAC to PHY settings\n");
3735 				return ret_val;
3736 			}
3737 		}
3738 
3739 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3740 		 * need to restore the desired flow control settings because we may
3741 		 * have had to re-autoneg with a different link partner.
3742 		 */
3743 		ret_val = e1000_config_fc_after_link_up(hw);
3744 		if (ret_val < 0) {
3745 			DEBUGOUT("Error configuring flow control\n");
3746 			return ret_val;
3747 		}
3748 
3749 		/* At this point we know that we are on copper and we have
3750 		 * auto-negotiated link.  These are conditions for checking the link
3751 		 * parter capability register.	We use the link partner capability to
3752 		 * determine if TBI Compatibility needs to be turned on or off.  If
3753 		 * the link partner advertises any speed in addition to Gigabit, then
3754 		 * we assume that they are GMII-based, and TBI compatibility is not
3755 		 * needed. If no other speeds are advertised, we assume the link
3756 		 * partner is TBI-based, and we turn on TBI Compatibility.
3757 		 */
3758 		if (hw->tbi_compatibility_en) {
3759 			if (e1000_read_phy_reg
3760 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3761 				DEBUGOUT("PHY Read Error\n");
3762 				return -E1000_ERR_PHY;
3763 			}
3764 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3765 					     NWAY_LPAR_10T_FD_CAPS |
3766 					     NWAY_LPAR_100TX_HD_CAPS |
3767 					     NWAY_LPAR_100TX_FD_CAPS |
3768 					     NWAY_LPAR_100T4_CAPS)) {
3769 				/* If our link partner advertises anything in addition to
3770 				 * gigabit, we do not need to enable TBI compatibility.
3771 				 */
3772 				if (hw->tbi_compatibility_on) {
3773 					/* If we previously were in the mode, turn it off. */
3774 					rctl = E1000_READ_REG(hw, RCTL);
3775 					rctl &= ~E1000_RCTL_SBP;
3776 					E1000_WRITE_REG(hw, RCTL, rctl);
3777 					hw->tbi_compatibility_on = false;
3778 				}
3779 			} else {
3780 				/* If TBI compatibility is was previously off, turn it on. For
3781 				 * compatibility with a TBI link partner, we will store bad
3782 				 * packets. Some frames have an additional byte on the end and
3783 				 * will look like CRC errors to to the hardware.
3784 				 */
3785 				if (!hw->tbi_compatibility_on) {
3786 					hw->tbi_compatibility_on = true;
3787 					rctl = E1000_READ_REG(hw, RCTL);
3788 					rctl |= E1000_RCTL_SBP;
3789 					E1000_WRITE_REG(hw, RCTL, rctl);
3790 				}
3791 			}
3792 		}
3793 	}
3794 	/* If we don't have link (auto-negotiation failed or link partner cannot
3795 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3796 	 * link partner is not trying to auto-negotiate with us (we are receiving
3797 	 * idles or data), we need to force link up. We also need to give
3798 	 * auto-negotiation time to complete, in case the cable was just plugged
3799 	 * in. The autoneg_failed flag does this.
3800 	 */
3801 	else if ((hw->media_type == e1000_media_type_fiber) &&
3802 		 (!(status & E1000_STATUS_LU)) &&
3803 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3804 		 (!(rxcw & E1000_RXCW_C))) {
3805 		if (hw->autoneg_failed == 0) {
3806 			hw->autoneg_failed = 1;
3807 			return 0;
3808 		}
3809 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3810 
3811 		/* Disable auto-negotiation in the TXCW register */
3812 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3813 
3814 		/* Force link-up and also force full-duplex. */
3815 		ctrl = E1000_READ_REG(hw, CTRL);
3816 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3817 		E1000_WRITE_REG(hw, CTRL, ctrl);
3818 
3819 		/* Configure Flow Control after forcing link up. */
3820 		ret_val = e1000_config_fc_after_link_up(hw);
3821 		if (ret_val < 0) {
3822 			DEBUGOUT("Error configuring flow control\n");
3823 			return ret_val;
3824 		}
3825 	}
3826 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3827 	 * auto-negotiation in the TXCW register and disable forced link in the
3828 	 * Device Control register in an attempt to auto-negotiate with our link
3829 	 * partner.
3830 	 */
3831 	else if ((hw->media_type == e1000_media_type_fiber) &&
3832 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3833 		DEBUGOUT
3834 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3835 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3836 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3837 	}
3838 	return 0;
3839 }
3840 
3841 /******************************************************************************
3842 * Configure the MAC-to-PHY interface for 10/100Mbps
3843 *
3844 * hw - Struct containing variables accessed by shared code
3845 ******************************************************************************/
3846 static int32_t
3847 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3848 {
3849 	int32_t ret_val = E1000_SUCCESS;
3850 	uint32_t tipg;
3851 	uint16_t reg_data;
3852 
3853 	DEBUGFUNC();
3854 
3855 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3856 	ret_val = e1000_write_kmrn_reg(hw,
3857 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3858 	if (ret_val)
3859 		return ret_val;
3860 
3861 	/* Configure Transmit Inter-Packet Gap */
3862 	tipg = E1000_READ_REG(hw, TIPG);
3863 	tipg &= ~E1000_TIPG_IPGT_MASK;
3864 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3865 	E1000_WRITE_REG(hw, TIPG, tipg);
3866 
3867 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3868 
3869 	if (ret_val)
3870 		return ret_val;
3871 
3872 	if (duplex == HALF_DUPLEX)
3873 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3874 	else
3875 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3876 
3877 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3878 
3879 	return ret_val;
3880 }
3881 
3882 static int32_t
3883 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3884 {
3885 	int32_t ret_val = E1000_SUCCESS;
3886 	uint16_t reg_data;
3887 	uint32_t tipg;
3888 
3889 	DEBUGFUNC();
3890 
3891 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3892 	ret_val = e1000_write_kmrn_reg(hw,
3893 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3894 	if (ret_val)
3895 		return ret_val;
3896 
3897 	/* Configure Transmit Inter-Packet Gap */
3898 	tipg = E1000_READ_REG(hw, TIPG);
3899 	tipg &= ~E1000_TIPG_IPGT_MASK;
3900 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3901 	E1000_WRITE_REG(hw, TIPG, tipg);
3902 
3903 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3904 
3905 	if (ret_val)
3906 		return ret_val;
3907 
3908 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3909 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3910 
3911 	return ret_val;
3912 }
3913 
3914 /******************************************************************************
3915  * Detects the current speed and duplex settings of the hardware.
3916  *
3917  * hw - Struct containing variables accessed by shared code
3918  * speed - Speed of the connection
3919  * duplex - Duplex setting of the connection
3920  *****************************************************************************/
3921 static int
3922 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3923 		uint16_t *duplex)
3924 {
3925 	uint32_t status;
3926 	int32_t ret_val;
3927 	uint16_t phy_data;
3928 
3929 	DEBUGFUNC();
3930 
3931 	if (hw->mac_type >= e1000_82543) {
3932 		status = E1000_READ_REG(hw, STATUS);
3933 		if (status & E1000_STATUS_SPEED_1000) {
3934 			*speed = SPEED_1000;
3935 			DEBUGOUT("1000 Mbs, ");
3936 		} else if (status & E1000_STATUS_SPEED_100) {
3937 			*speed = SPEED_100;
3938 			DEBUGOUT("100 Mbs, ");
3939 		} else {
3940 			*speed = SPEED_10;
3941 			DEBUGOUT("10 Mbs, ");
3942 		}
3943 
3944 		if (status & E1000_STATUS_FD) {
3945 			*duplex = FULL_DUPLEX;
3946 			DEBUGOUT("Full Duplex\r\n");
3947 		} else {
3948 			*duplex = HALF_DUPLEX;
3949 			DEBUGOUT(" Half Duplex\r\n");
3950 		}
3951 	} else {
3952 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3953 		*speed = SPEED_1000;
3954 		*duplex = FULL_DUPLEX;
3955 	}
3956 
3957 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3958 	 * even if it is operating at half duplex.  Here we set the duplex
3959 	 * settings to match the duplex in the link partner's capabilities.
3960 	 */
3961 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3962 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3963 		if (ret_val)
3964 			return ret_val;
3965 
3966 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3967 			*duplex = HALF_DUPLEX;
3968 		else {
3969 			ret_val = e1000_read_phy_reg(hw,
3970 					PHY_LP_ABILITY, &phy_data);
3971 			if (ret_val)
3972 				return ret_val;
3973 			if ((*speed == SPEED_100 &&
3974 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3975 				|| (*speed == SPEED_10
3976 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3977 				*duplex = HALF_DUPLEX;
3978 		}
3979 	}
3980 
3981 	if ((hw->mac_type == e1000_80003es2lan) &&
3982 		(hw->media_type == e1000_media_type_copper)) {
3983 		if (*speed == SPEED_1000)
3984 			ret_val = e1000_configure_kmrn_for_1000(hw);
3985 		else
3986 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3987 		if (ret_val)
3988 			return ret_val;
3989 	}
3990 	return E1000_SUCCESS;
3991 }
3992 
3993 /******************************************************************************
3994 * Blocks until autoneg completes or times out (~4.5 seconds)
3995 *
3996 * hw - Struct containing variables accessed by shared code
3997 ******************************************************************************/
3998 static int
3999 e1000_wait_autoneg(struct e1000_hw *hw)
4000 {
4001 	uint16_t i;
4002 	uint16_t phy_data;
4003 
4004 	DEBUGFUNC();
4005 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4006 
4007 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
4008 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4009 		/* Read the MII Status Register and wait for Auto-Neg
4010 		 * Complete bit to be set.
4011 		 */
4012 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4013 			DEBUGOUT("PHY Read Error\n");
4014 			return -E1000_ERR_PHY;
4015 		}
4016 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4017 			DEBUGOUT("PHY Read Error\n");
4018 			return -E1000_ERR_PHY;
4019 		}
4020 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4021 			DEBUGOUT("Auto-Neg complete.\n");
4022 			return 0;
4023 		}
4024 		mdelay(100);
4025 	}
4026 	DEBUGOUT("Auto-Neg timedout.\n");
4027 	return -E1000_ERR_TIMEOUT;
4028 }
4029 
4030 /******************************************************************************
4031 * Raises the Management Data Clock
4032 *
4033 * hw - Struct containing variables accessed by shared code
4034 * ctrl - Device control register's current value
4035 ******************************************************************************/
4036 static void
4037 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4038 {
4039 	/* Raise the clock input to the Management Data Clock (by setting the MDC
4040 	 * bit), and then delay 2 microseconds.
4041 	 */
4042 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4043 	E1000_WRITE_FLUSH(hw);
4044 	udelay(2);
4045 }
4046 
4047 /******************************************************************************
4048 * Lowers the Management Data Clock
4049 *
4050 * hw - Struct containing variables accessed by shared code
4051 * ctrl - Device control register's current value
4052 ******************************************************************************/
4053 static void
4054 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4055 {
4056 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
4057 	 * bit), and then delay 2 microseconds.
4058 	 */
4059 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4060 	E1000_WRITE_FLUSH(hw);
4061 	udelay(2);
4062 }
4063 
4064 /******************************************************************************
4065 * Shifts data bits out to the PHY
4066 *
4067 * hw - Struct containing variables accessed by shared code
4068 * data - Data to send out to the PHY
4069 * count - Number of bits to shift out
4070 *
4071 * Bits are shifted out in MSB to LSB order.
4072 ******************************************************************************/
4073 static void
4074 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4075 {
4076 	uint32_t ctrl;
4077 	uint32_t mask;
4078 
4079 	/* We need to shift "count" number of bits out to the PHY. So, the value
4080 	 * in the "data" parameter will be shifted out to the PHY one bit at a
4081 	 * time. In order to do this, "data" must be broken down into bits.
4082 	 */
4083 	mask = 0x01;
4084 	mask <<= (count - 1);
4085 
4086 	ctrl = E1000_READ_REG(hw, CTRL);
4087 
4088 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4089 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4090 
4091 	while (mask) {
4092 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4093 		 * then raising and lowering the Management Data Clock. A "0" is
4094 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
4095 		 * raising and lowering the clock.
4096 		 */
4097 		if (data & mask)
4098 			ctrl |= E1000_CTRL_MDIO;
4099 		else
4100 			ctrl &= ~E1000_CTRL_MDIO;
4101 
4102 		E1000_WRITE_REG(hw, CTRL, ctrl);
4103 		E1000_WRITE_FLUSH(hw);
4104 
4105 		udelay(2);
4106 
4107 		e1000_raise_mdi_clk(hw, &ctrl);
4108 		e1000_lower_mdi_clk(hw, &ctrl);
4109 
4110 		mask = mask >> 1;
4111 	}
4112 }
4113 
4114 /******************************************************************************
4115 * Shifts data bits in from the PHY
4116 *
4117 * hw - Struct containing variables accessed by shared code
4118 *
4119 * Bits are shifted in in MSB to LSB order.
4120 ******************************************************************************/
4121 static uint16_t
4122 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4123 {
4124 	uint32_t ctrl;
4125 	uint16_t data = 0;
4126 	uint8_t i;
4127 
4128 	/* In order to read a register from the PHY, we need to shift in a total
4129 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4130 	 * to avoid contention on the MDIO pin when a read operation is performed.
4131 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4132 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4133 	 * and then reading the value of the MDIO bit.
4134 	 */
4135 	ctrl = E1000_READ_REG(hw, CTRL);
4136 
4137 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4138 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4139 	ctrl &= ~E1000_CTRL_MDIO;
4140 
4141 	E1000_WRITE_REG(hw, CTRL, ctrl);
4142 	E1000_WRITE_FLUSH(hw);
4143 
4144 	/* Raise and Lower the clock before reading in the data. This accounts for
4145 	 * the turnaround bits. The first clock occurred when we clocked out the
4146 	 * last bit of the Register Address.
4147 	 */
4148 	e1000_raise_mdi_clk(hw, &ctrl);
4149 	e1000_lower_mdi_clk(hw, &ctrl);
4150 
4151 	for (data = 0, i = 0; i < 16; i++) {
4152 		data = data << 1;
4153 		e1000_raise_mdi_clk(hw, &ctrl);
4154 		ctrl = E1000_READ_REG(hw, CTRL);
4155 		/* Check to see if we shifted in a "1". */
4156 		if (ctrl & E1000_CTRL_MDIO)
4157 			data |= 1;
4158 		e1000_lower_mdi_clk(hw, &ctrl);
4159 	}
4160 
4161 	e1000_raise_mdi_clk(hw, &ctrl);
4162 	e1000_lower_mdi_clk(hw, &ctrl);
4163 
4164 	return data;
4165 }
4166 
4167 /*****************************************************************************
4168 * Reads the value from a PHY register
4169 *
4170 * hw - Struct containing variables accessed by shared code
4171 * reg_addr - address of the PHY register to read
4172 ******************************************************************************/
4173 static int
4174 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4175 {
4176 	uint32_t i;
4177 	uint32_t mdic = 0;
4178 	const uint32_t phy_addr = 1;
4179 
4180 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4181 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4182 		return -E1000_ERR_PARAM;
4183 	}
4184 
4185 	if (hw->mac_type > e1000_82543) {
4186 		/* Set up Op-code, Phy Address, and register address in the MDI
4187 		 * Control register.  The MAC will take care of interfacing with the
4188 		 * PHY to retrieve the desired data.
4189 		 */
4190 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4191 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4192 			(E1000_MDIC_OP_READ));
4193 
4194 		E1000_WRITE_REG(hw, MDIC, mdic);
4195 
4196 		/* Poll the ready bit to see if the MDI read completed */
4197 		for (i = 0; i < 64; i++) {
4198 			udelay(10);
4199 			mdic = E1000_READ_REG(hw, MDIC);
4200 			if (mdic & E1000_MDIC_READY)
4201 				break;
4202 		}
4203 		if (!(mdic & E1000_MDIC_READY)) {
4204 			DEBUGOUT("MDI Read did not complete\n");
4205 			return -E1000_ERR_PHY;
4206 		}
4207 		if (mdic & E1000_MDIC_ERROR) {
4208 			DEBUGOUT("MDI Error\n");
4209 			return -E1000_ERR_PHY;
4210 		}
4211 		*phy_data = (uint16_t) mdic;
4212 	} else {
4213 		/* We must first send a preamble through the MDIO pin to signal the
4214 		 * beginning of an MII instruction.  This is done by sending 32
4215 		 * consecutive "1" bits.
4216 		 */
4217 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4218 
4219 		/* Now combine the next few fields that are required for a read
4220 		 * operation.  We use this method instead of calling the
4221 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4222 		 * a MII read instruction consists of a shift out of 14 bits and is
4223 		 * defined as follows:
4224 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4225 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4226 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4227 		 * READ operation is performed.  These two bits are thrown away
4228 		 * followed by a shift in of 16 bits which contains the desired data.
4229 		 */
4230 		mdic = ((reg_addr) | (phy_addr << 5) |
4231 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4232 
4233 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4234 
4235 		/* Now that we've shifted out the read command to the MII, we need to
4236 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4237 		 * register address.
4238 		 */
4239 		*phy_data = e1000_shift_in_mdi_bits(hw);
4240 	}
4241 	return 0;
4242 }
4243 
4244 /******************************************************************************
4245 * Writes a value to a PHY register
4246 *
4247 * hw - Struct containing variables accessed by shared code
4248 * reg_addr - address of the PHY register to write
4249 * data - data to write to the PHY
4250 ******************************************************************************/
4251 static int
4252 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4253 {
4254 	uint32_t i;
4255 	uint32_t mdic = 0;
4256 	const uint32_t phy_addr = 1;
4257 
4258 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4259 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4260 		return -E1000_ERR_PARAM;
4261 	}
4262 
4263 	if (hw->mac_type > e1000_82543) {
4264 		/* Set up Op-code, Phy Address, register address, and data intended
4265 		 * for the PHY register in the MDI Control register.  The MAC will take
4266 		 * care of interfacing with the PHY to send the desired data.
4267 		 */
4268 		mdic = (((uint32_t) phy_data) |
4269 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4270 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4271 			(E1000_MDIC_OP_WRITE));
4272 
4273 		E1000_WRITE_REG(hw, MDIC, mdic);
4274 
4275 		/* Poll the ready bit to see if the MDI read completed */
4276 		for (i = 0; i < 64; i++) {
4277 			udelay(10);
4278 			mdic = E1000_READ_REG(hw, MDIC);
4279 			if (mdic & E1000_MDIC_READY)
4280 				break;
4281 		}
4282 		if (!(mdic & E1000_MDIC_READY)) {
4283 			DEBUGOUT("MDI Write did not complete\n");
4284 			return -E1000_ERR_PHY;
4285 		}
4286 	} else {
4287 		/* We'll need to use the SW defined pins to shift the write command
4288 		 * out to the PHY. We first send a preamble to the PHY to signal the
4289 		 * beginning of the MII instruction.  This is done by sending 32
4290 		 * consecutive "1" bits.
4291 		 */
4292 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4293 
4294 		/* Now combine the remaining required fields that will indicate a
4295 		 * write operation. We use this method instead of calling the
4296 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4297 		 * format of a MII write instruction is as follows:
4298 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4299 		 */
4300 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4301 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4302 		mdic <<= 16;
4303 		mdic |= (uint32_t) phy_data;
4304 
4305 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4306 	}
4307 	return 0;
4308 }
4309 
4310 /******************************************************************************
4311  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4312  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4313  * the caller to figure out how to deal with it.
4314  *
4315  * hw - Struct containing variables accessed by shared code
4316  *
4317  * returns: - E1000_BLK_PHY_RESET
4318  *            E1000_SUCCESS
4319  *
4320  *****************************************************************************/
4321 int32_t
4322 e1000_check_phy_reset_block(struct e1000_hw *hw)
4323 {
4324 	uint32_t manc = 0;
4325 	uint32_t fwsm = 0;
4326 
4327 	if (hw->mac_type == e1000_ich8lan) {
4328 		fwsm = E1000_READ_REG(hw, FWSM);
4329 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4330 						: E1000_BLK_PHY_RESET;
4331 	}
4332 
4333 	if (hw->mac_type > e1000_82547_rev_2)
4334 		manc = E1000_READ_REG(hw, MANC);
4335 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4336 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4337 }
4338 
4339 /***************************************************************************
4340  * Checks if the PHY configuration is done
4341  *
4342  * hw: Struct containing variables accessed by shared code
4343  *
4344  * returns: - E1000_ERR_RESET if fail to reset MAC
4345  *            E1000_SUCCESS at any other case.
4346  *
4347  ***************************************************************************/
4348 static int32_t
4349 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4350 {
4351 	int32_t timeout = PHY_CFG_TIMEOUT;
4352 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4353 
4354 	DEBUGFUNC();
4355 
4356 	switch (hw->mac_type) {
4357 	default:
4358 		mdelay(10);
4359 		break;
4360 
4361 	case e1000_80003es2lan:
4362 		/* Separate *_CFG_DONE_* bit for each port */
4363 		if (e1000_is_second_port(hw))
4364 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4365 		/* Fall Through */
4366 
4367 	case e1000_82571:
4368 	case e1000_82572:
4369 	case e1000_igb:
4370 		while (timeout) {
4371 			if (hw->mac_type == e1000_igb) {
4372 				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4373 					break;
4374 			} else {
4375 				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4376 					break;
4377 			}
4378 			mdelay(1);
4379 			timeout--;
4380 		}
4381 		if (!timeout) {
4382 			DEBUGOUT("MNG configuration cycle has not "
4383 					"completed.\n");
4384 			return -E1000_ERR_RESET;
4385 		}
4386 		break;
4387 	}
4388 
4389 	return E1000_SUCCESS;
4390 }
4391 
4392 /******************************************************************************
4393 * Returns the PHY to the power-on reset state
4394 *
4395 * hw - Struct containing variables accessed by shared code
4396 ******************************************************************************/
4397 int32_t
4398 e1000_phy_hw_reset(struct e1000_hw *hw)
4399 {
4400 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4401 	uint32_t ctrl, ctrl_ext;
4402 	uint32_t led_ctrl;
4403 	int32_t ret_val;
4404 
4405 	DEBUGFUNC();
4406 
4407 	/* In the case of the phy reset being blocked, it's not an error, we
4408 	 * simply return success without performing the reset. */
4409 	ret_val = e1000_check_phy_reset_block(hw);
4410 	if (ret_val)
4411 		return E1000_SUCCESS;
4412 
4413 	DEBUGOUT("Resetting Phy...\n");
4414 
4415 	if (hw->mac_type > e1000_82543) {
4416 		if (e1000_is_second_port(hw))
4417 			swfw = E1000_SWFW_PHY1_SM;
4418 
4419 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4420 			DEBUGOUT("Unable to acquire swfw sync\n");
4421 			return -E1000_ERR_SWFW_SYNC;
4422 		}
4423 
4424 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4425 		 * bit. Then, take it out of reset.
4426 		 */
4427 		ctrl = E1000_READ_REG(hw, CTRL);
4428 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4429 		E1000_WRITE_FLUSH(hw);
4430 
4431 		if (hw->mac_type < e1000_82571)
4432 			udelay(10);
4433 		else
4434 			udelay(100);
4435 
4436 		E1000_WRITE_REG(hw, CTRL, ctrl);
4437 		E1000_WRITE_FLUSH(hw);
4438 
4439 		if (hw->mac_type >= e1000_82571)
4440 			mdelay(10);
4441 	} else {
4442 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4443 		 * bit to put the PHY into reset. Then, take it out of reset.
4444 		 */
4445 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4446 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4447 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4448 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4449 		E1000_WRITE_FLUSH(hw);
4450 		mdelay(10);
4451 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4452 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4453 		E1000_WRITE_FLUSH(hw);
4454 	}
4455 	udelay(150);
4456 
4457 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4458 		/* Configure activity LED after PHY reset */
4459 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4460 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4461 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4462 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4463 	}
4464 
4465 	/* Wait for FW to finish PHY configuration. */
4466 	ret_val = e1000_get_phy_cfg_done(hw);
4467 	if (ret_val != E1000_SUCCESS)
4468 		return ret_val;
4469 
4470 	return ret_val;
4471 }
4472 
4473 /******************************************************************************
4474  * IGP phy init script - initializes the GbE PHY
4475  *
4476  * hw - Struct containing variables accessed by shared code
4477  *****************************************************************************/
4478 static void
4479 e1000_phy_init_script(struct e1000_hw *hw)
4480 {
4481 	uint32_t ret_val;
4482 	uint16_t phy_saved_data;
4483 	DEBUGFUNC();
4484 
4485 	if (hw->phy_init_script) {
4486 		mdelay(20);
4487 
4488 		/* Save off the current value of register 0x2F5B to be
4489 		 * restored at the end of this routine. */
4490 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4491 
4492 		/* Disabled the PHY transmitter */
4493 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4494 
4495 		mdelay(20);
4496 
4497 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4498 
4499 		mdelay(5);
4500 
4501 		switch (hw->mac_type) {
4502 		case e1000_82541:
4503 		case e1000_82547:
4504 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4505 
4506 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4507 
4508 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4509 
4510 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4511 
4512 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4513 
4514 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4515 
4516 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4517 
4518 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4519 
4520 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4521 			break;
4522 
4523 		case e1000_82541_rev_2:
4524 		case e1000_82547_rev_2:
4525 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4526 			break;
4527 		default:
4528 			break;
4529 		}
4530 
4531 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4532 
4533 		mdelay(20);
4534 
4535 		/* Now enable the transmitter */
4536 		if (!ret_val)
4537 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4538 
4539 		if (hw->mac_type == e1000_82547) {
4540 			uint16_t fused, fine, coarse;
4541 
4542 			/* Move to analog registers page */
4543 			e1000_read_phy_reg(hw,
4544 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4545 
4546 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4547 				e1000_read_phy_reg(hw,
4548 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4549 
4550 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4551 				coarse = fused
4552 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4553 
4554 				if (coarse >
4555 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4556 					coarse -=
4557 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4558 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4559 				} else if (coarse
4560 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4561 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4562 
4563 				fused = (fused
4564 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4565 					(fine
4566 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4567 					(coarse
4568 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4569 
4570 				e1000_write_phy_reg(hw,
4571 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4572 				e1000_write_phy_reg(hw,
4573 					IGP01E1000_ANALOG_FUSE_BYPASS,
4574 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4575 			}
4576 		}
4577 	}
4578 }
4579 
4580 /******************************************************************************
4581 * Resets the PHY
4582 *
4583 * hw - Struct containing variables accessed by shared code
4584 *
4585 * Sets bit 15 of the MII Control register
4586 ******************************************************************************/
4587 int32_t
4588 e1000_phy_reset(struct e1000_hw *hw)
4589 {
4590 	int32_t ret_val;
4591 	uint16_t phy_data;
4592 
4593 	DEBUGFUNC();
4594 
4595 	/* In the case of the phy reset being blocked, it's not an error, we
4596 	 * simply return success without performing the reset. */
4597 	ret_val = e1000_check_phy_reset_block(hw);
4598 	if (ret_val)
4599 		return E1000_SUCCESS;
4600 
4601 	switch (hw->phy_type) {
4602 	case e1000_phy_igp:
4603 	case e1000_phy_igp_2:
4604 	case e1000_phy_igp_3:
4605 	case e1000_phy_ife:
4606 	case e1000_phy_igb:
4607 		ret_val = e1000_phy_hw_reset(hw);
4608 		if (ret_val)
4609 			return ret_val;
4610 		break;
4611 	default:
4612 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4613 		if (ret_val)
4614 			return ret_val;
4615 
4616 		phy_data |= MII_CR_RESET;
4617 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4618 		if (ret_val)
4619 			return ret_val;
4620 
4621 		udelay(1);
4622 		break;
4623 	}
4624 
4625 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4626 		e1000_phy_init_script(hw);
4627 
4628 	return E1000_SUCCESS;
4629 }
4630 
4631 static int e1000_set_phy_type (struct e1000_hw *hw)
4632 {
4633 	DEBUGFUNC ();
4634 
4635 	if (hw->mac_type == e1000_undefined)
4636 		return -E1000_ERR_PHY_TYPE;
4637 
4638 	switch (hw->phy_id) {
4639 	case M88E1000_E_PHY_ID:
4640 	case M88E1000_I_PHY_ID:
4641 	case M88E1011_I_PHY_ID:
4642 	case M88E1111_I_PHY_ID:
4643 		hw->phy_type = e1000_phy_m88;
4644 		break;
4645 	case IGP01E1000_I_PHY_ID:
4646 		if (hw->mac_type == e1000_82541 ||
4647 			hw->mac_type == e1000_82541_rev_2 ||
4648 			hw->mac_type == e1000_82547 ||
4649 			hw->mac_type == e1000_82547_rev_2) {
4650 			hw->phy_type = e1000_phy_igp;
4651 			break;
4652 		}
4653 	case IGP03E1000_E_PHY_ID:
4654 		hw->phy_type = e1000_phy_igp_3;
4655 		break;
4656 	case IFE_E_PHY_ID:
4657 	case IFE_PLUS_E_PHY_ID:
4658 	case IFE_C_E_PHY_ID:
4659 		hw->phy_type = e1000_phy_ife;
4660 		break;
4661 	case GG82563_E_PHY_ID:
4662 		if (hw->mac_type == e1000_80003es2lan) {
4663 			hw->phy_type = e1000_phy_gg82563;
4664 			break;
4665 		}
4666 	case BME1000_E_PHY_ID:
4667 		hw->phy_type = e1000_phy_bm;
4668 		break;
4669 	case I210_I_PHY_ID:
4670 		hw->phy_type = e1000_phy_igb;
4671 		break;
4672 		/* Fall Through */
4673 	default:
4674 		/* Should never have loaded on this device */
4675 		hw->phy_type = e1000_phy_undefined;
4676 		return -E1000_ERR_PHY_TYPE;
4677 	}
4678 
4679 	return E1000_SUCCESS;
4680 }
4681 
4682 /******************************************************************************
4683 * Probes the expected PHY address for known PHY IDs
4684 *
4685 * hw - Struct containing variables accessed by shared code
4686 ******************************************************************************/
4687 static int32_t
4688 e1000_detect_gig_phy(struct e1000_hw *hw)
4689 {
4690 	int32_t phy_init_status, ret_val;
4691 	uint16_t phy_id_high, phy_id_low;
4692 	bool match = false;
4693 
4694 	DEBUGFUNC();
4695 
4696 	/* The 82571 firmware may still be configuring the PHY.  In this
4697 	 * case, we cannot access the PHY until the configuration is done.  So
4698 	 * we explicitly set the PHY values. */
4699 	if (hw->mac_type == e1000_82571 ||
4700 		hw->mac_type == e1000_82572) {
4701 		hw->phy_id = IGP01E1000_I_PHY_ID;
4702 		hw->phy_type = e1000_phy_igp_2;
4703 		return E1000_SUCCESS;
4704 	}
4705 
4706 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4707 	 * work- around that forces PHY page 0 to be set or the reads fail.
4708 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4709 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4710 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4711 	 * the routines below will figure this out as well. */
4712 	if (hw->mac_type == e1000_80003es2lan)
4713 		hw->phy_type = e1000_phy_gg82563;
4714 
4715 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4716 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4717 	if (ret_val)
4718 		return ret_val;
4719 
4720 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4721 	udelay(20);
4722 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4723 	if (ret_val)
4724 		return ret_val;
4725 
4726 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4727 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4728 
4729 	switch (hw->mac_type) {
4730 	case e1000_82543:
4731 		if (hw->phy_id == M88E1000_E_PHY_ID)
4732 			match = true;
4733 		break;
4734 	case e1000_82544:
4735 		if (hw->phy_id == M88E1000_I_PHY_ID)
4736 			match = true;
4737 		break;
4738 	case e1000_82540:
4739 	case e1000_82545:
4740 	case e1000_82545_rev_3:
4741 	case e1000_82546:
4742 	case e1000_82546_rev_3:
4743 		if (hw->phy_id == M88E1011_I_PHY_ID)
4744 			match = true;
4745 		break;
4746 	case e1000_82541:
4747 	case e1000_82541_rev_2:
4748 	case e1000_82547:
4749 	case e1000_82547_rev_2:
4750 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4751 			match = true;
4752 
4753 		break;
4754 	case e1000_82573:
4755 		if (hw->phy_id == M88E1111_I_PHY_ID)
4756 			match = true;
4757 		break;
4758 	case e1000_82574:
4759 		if (hw->phy_id == BME1000_E_PHY_ID)
4760 			match = true;
4761 		break;
4762 	case e1000_80003es2lan:
4763 		if (hw->phy_id == GG82563_E_PHY_ID)
4764 			match = true;
4765 		break;
4766 	case e1000_ich8lan:
4767 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4768 			match = true;
4769 		if (hw->phy_id == IFE_E_PHY_ID)
4770 			match = true;
4771 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4772 			match = true;
4773 		if (hw->phy_id == IFE_C_E_PHY_ID)
4774 			match = true;
4775 		break;
4776 	case e1000_igb:
4777 		if (hw->phy_id == I210_I_PHY_ID)
4778 			match = true;
4779 		break;
4780 	default:
4781 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4782 		return -E1000_ERR_CONFIG;
4783 	}
4784 
4785 	phy_init_status = e1000_set_phy_type(hw);
4786 
4787 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4788 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4789 		return 0;
4790 	}
4791 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4792 	return -E1000_ERR_PHY;
4793 }
4794 
4795 /*****************************************************************************
4796  * Set media type and TBI compatibility.
4797  *
4798  * hw - Struct containing variables accessed by shared code
4799  * **************************************************************************/
4800 void
4801 e1000_set_media_type(struct e1000_hw *hw)
4802 {
4803 	uint32_t status;
4804 
4805 	DEBUGFUNC();
4806 
4807 	if (hw->mac_type != e1000_82543) {
4808 		/* tbi_compatibility is only valid on 82543 */
4809 		hw->tbi_compatibility_en = false;
4810 	}
4811 
4812 	switch (hw->device_id) {
4813 	case E1000_DEV_ID_82545GM_SERDES:
4814 	case E1000_DEV_ID_82546GB_SERDES:
4815 	case E1000_DEV_ID_82571EB_SERDES:
4816 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4817 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4818 	case E1000_DEV_ID_82572EI_SERDES:
4819 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4820 		hw->media_type = e1000_media_type_internal_serdes;
4821 		break;
4822 	default:
4823 		switch (hw->mac_type) {
4824 		case e1000_82542_rev2_0:
4825 		case e1000_82542_rev2_1:
4826 			hw->media_type = e1000_media_type_fiber;
4827 			break;
4828 		case e1000_ich8lan:
4829 		case e1000_82573:
4830 		case e1000_82574:
4831 		case e1000_igb:
4832 			/* The STATUS_TBIMODE bit is reserved or reused
4833 			 * for the this device.
4834 			 */
4835 			hw->media_type = e1000_media_type_copper;
4836 			break;
4837 		default:
4838 			status = E1000_READ_REG(hw, STATUS);
4839 			if (status & E1000_STATUS_TBIMODE) {
4840 				hw->media_type = e1000_media_type_fiber;
4841 				/* tbi_compatibility not valid on fiber */
4842 				hw->tbi_compatibility_en = false;
4843 			} else {
4844 				hw->media_type = e1000_media_type_copper;
4845 			}
4846 			break;
4847 		}
4848 	}
4849 }
4850 
4851 /**
4852  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4853  *
4854  * e1000_sw_init initializes the Adapter private data structure.
4855  * Fields are initialized based on PCI device information and
4856  * OS network device settings (MTU size).
4857  **/
4858 
4859 static int
4860 e1000_sw_init(struct eth_device *nic)
4861 {
4862 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
4863 	int result;
4864 
4865 	/* PCI config space info */
4866 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4867 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4868 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4869 			     &hw->subsystem_vendor_id);
4870 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4871 
4872 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4873 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4874 
4875 	/* identify the MAC */
4876 	result = e1000_set_mac_type(hw);
4877 	if (result) {
4878 		E1000_ERR(hw->nic, "Unknown MAC Type\n");
4879 		return result;
4880 	}
4881 
4882 	switch (hw->mac_type) {
4883 	default:
4884 		break;
4885 	case e1000_82541:
4886 	case e1000_82547:
4887 	case e1000_82541_rev_2:
4888 	case e1000_82547_rev_2:
4889 		hw->phy_init_script = 1;
4890 		break;
4891 	}
4892 
4893 	/* flow control settings */
4894 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4895 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4896 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4897 	hw->fc_send_xon = 1;
4898 
4899 	/* Media type - copper or fiber */
4900 	hw->tbi_compatibility_en = true;
4901 	e1000_set_media_type(hw);
4902 
4903 	if (hw->mac_type >= e1000_82543) {
4904 		uint32_t status = E1000_READ_REG(hw, STATUS);
4905 
4906 		if (status & E1000_STATUS_TBIMODE) {
4907 			DEBUGOUT("fiber interface\n");
4908 			hw->media_type = e1000_media_type_fiber;
4909 		} else {
4910 			DEBUGOUT("copper interface\n");
4911 			hw->media_type = e1000_media_type_copper;
4912 		}
4913 	} else {
4914 		hw->media_type = e1000_media_type_fiber;
4915 	}
4916 
4917 	hw->wait_autoneg_complete = true;
4918 	if (hw->mac_type < e1000_82543)
4919 		hw->report_tx_early = 0;
4920 	else
4921 		hw->report_tx_early = 1;
4922 
4923 	return E1000_SUCCESS;
4924 }
4925 
4926 void
4927 fill_rx(struct e1000_hw *hw)
4928 {
4929 	struct e1000_rx_desc *rd;
4930 	unsigned long flush_start, flush_end;
4931 
4932 	rx_last = rx_tail;
4933 	rd = rx_base + rx_tail;
4934 	rx_tail = (rx_tail + 1) % 8;
4935 	memset(rd, 0, 16);
4936 	rd->buffer_addr = cpu_to_le64((unsigned long)packet);
4937 
4938 	/*
4939 	 * Make sure there are no stale data in WB over this area, which
4940 	 * might get written into the memory while the e1000 also writes
4941 	 * into the same memory area.
4942 	 */
4943 	invalidate_dcache_range((unsigned long)packet,
4944 				(unsigned long)packet + 4096);
4945 	/* Dump the DMA descriptor into RAM. */
4946 	flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
4947 	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4948 	flush_dcache_range(flush_start, flush_end);
4949 
4950 	E1000_WRITE_REG(hw, RDT, rx_tail);
4951 }
4952 
4953 /**
4954  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4955  * @adapter: board private structure
4956  *
4957  * Configure the Tx unit of the MAC after a reset.
4958  **/
4959 
4960 static void
4961 e1000_configure_tx(struct e1000_hw *hw)
4962 {
4963 	unsigned long tctl;
4964 	unsigned long tipg, tarc;
4965 	uint32_t ipgr1, ipgr2;
4966 
4967 	E1000_WRITE_REG(hw, TDBAL, (unsigned long)tx_base);
4968 	E1000_WRITE_REG(hw, TDBAH, 0);
4969 
4970 	E1000_WRITE_REG(hw, TDLEN, 128);
4971 
4972 	/* Setup the HW Tx Head and Tail descriptor pointers */
4973 	E1000_WRITE_REG(hw, TDH, 0);
4974 	E1000_WRITE_REG(hw, TDT, 0);
4975 	tx_tail = 0;
4976 
4977 	/* Set the default values for the Tx Inter Packet Gap timer */
4978 	if (hw->mac_type <= e1000_82547_rev_2 &&
4979 	    (hw->media_type == e1000_media_type_fiber ||
4980 	     hw->media_type == e1000_media_type_internal_serdes))
4981 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4982 	else
4983 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4984 
4985 	/* Set the default values for the Tx Inter Packet Gap timer */
4986 	switch (hw->mac_type) {
4987 	case e1000_82542_rev2_0:
4988 	case e1000_82542_rev2_1:
4989 		tipg = DEFAULT_82542_TIPG_IPGT;
4990 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4991 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4992 		break;
4993 	case e1000_80003es2lan:
4994 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4995 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4996 		break;
4997 	default:
4998 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4999 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5000 		break;
5001 	}
5002 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5003 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5004 	E1000_WRITE_REG(hw, TIPG, tipg);
5005 	/* Program the Transmit Control Register */
5006 	tctl = E1000_READ_REG(hw, TCTL);
5007 	tctl &= ~E1000_TCTL_CT;
5008 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5009 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5010 
5011 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5012 		tarc = E1000_READ_REG(hw, TARC0);
5013 		/* set the speed mode bit, we'll clear it if we're not at
5014 		 * gigabit link later */
5015 		/* git bit can be set to 1*/
5016 	} else if (hw->mac_type == e1000_80003es2lan) {
5017 		tarc = E1000_READ_REG(hw, TARC0);
5018 		tarc |= 1;
5019 		E1000_WRITE_REG(hw, TARC0, tarc);
5020 		tarc = E1000_READ_REG(hw, TARC1);
5021 		tarc |= 1;
5022 		E1000_WRITE_REG(hw, TARC1, tarc);
5023 	}
5024 
5025 
5026 	e1000_config_collision_dist(hw);
5027 	/* Setup Transmit Descriptor Settings for eop descriptor */
5028 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5029 
5030 	/* Need to set up RS bit */
5031 	if (hw->mac_type < e1000_82543)
5032 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
5033 	else
5034 		hw->txd_cmd |= E1000_TXD_CMD_RS;
5035 
5036 
5037 	if (hw->mac_type == e1000_igb) {
5038 		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5039 
5040 		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5041 		reg_txdctl |= 1 << 25;
5042 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5043 		mdelay(20);
5044 	}
5045 
5046 
5047 
5048 	E1000_WRITE_REG(hw, TCTL, tctl);
5049 
5050 
5051 }
5052 
5053 /**
5054  * e1000_setup_rctl - configure the receive control register
5055  * @adapter: Board private structure
5056  **/
5057 static void
5058 e1000_setup_rctl(struct e1000_hw *hw)
5059 {
5060 	uint32_t rctl;
5061 
5062 	rctl = E1000_READ_REG(hw, RCTL);
5063 
5064 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5065 
5066 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5067 		| E1000_RCTL_RDMTS_HALF;	/* |
5068 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5069 
5070 	if (hw->tbi_compatibility_on == 1)
5071 		rctl |= E1000_RCTL_SBP;
5072 	else
5073 		rctl &= ~E1000_RCTL_SBP;
5074 
5075 	rctl &= ~(E1000_RCTL_SZ_4096);
5076 		rctl |= E1000_RCTL_SZ_2048;
5077 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5078 	E1000_WRITE_REG(hw, RCTL, rctl);
5079 }
5080 
5081 /**
5082  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5083  * @adapter: board private structure
5084  *
5085  * Configure the Rx unit of the MAC after a reset.
5086  **/
5087 static void
5088 e1000_configure_rx(struct e1000_hw *hw)
5089 {
5090 	unsigned long rctl, ctrl_ext;
5091 	rx_tail = 0;
5092 	/* make sure receives are disabled while setting up the descriptors */
5093 	rctl = E1000_READ_REG(hw, RCTL);
5094 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5095 	if (hw->mac_type >= e1000_82540) {
5096 		/* Set the interrupt throttling rate.  Value is calculated
5097 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5098 #define MAX_INTS_PER_SEC	8000
5099 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
5100 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5101 	}
5102 
5103 	if (hw->mac_type >= e1000_82571) {
5104 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5105 		/* Reset delay timers after every interrupt */
5106 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5107 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5108 		E1000_WRITE_FLUSH(hw);
5109 	}
5110 	/* Setup the Base and Length of the Rx Descriptor Ring */
5111 	E1000_WRITE_REG(hw, RDBAL, (unsigned long)rx_base);
5112 	E1000_WRITE_REG(hw, RDBAH, 0);
5113 
5114 	E1000_WRITE_REG(hw, RDLEN, 128);
5115 
5116 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
5117 	E1000_WRITE_REG(hw, RDH, 0);
5118 	E1000_WRITE_REG(hw, RDT, 0);
5119 	/* Enable Receives */
5120 
5121 	if (hw->mac_type == e1000_igb) {
5122 
5123 		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5124 		reg_rxdctl |= 1 << 25;
5125 		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5126 		mdelay(20);
5127 	}
5128 
5129 	E1000_WRITE_REG(hw, RCTL, rctl);
5130 
5131 	fill_rx(hw);
5132 }
5133 
5134 /**************************************************************************
5135 POLL - Wait for a frame
5136 ***************************************************************************/
5137 static int
5138 e1000_poll(struct eth_device *nic)
5139 {
5140 	struct e1000_hw *hw = nic->priv;
5141 	struct e1000_rx_desc *rd;
5142 	unsigned long inval_start, inval_end;
5143 	uint32_t len;
5144 
5145 	/* return true if there's an ethernet packet ready to read */
5146 	rd = rx_base + rx_last;
5147 
5148 	/* Re-load the descriptor from RAM. */
5149 	inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5150 	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5151 	invalidate_dcache_range(inval_start, inval_end);
5152 
5153 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5154 		return 0;
5155 	/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5156 	/* Packet received, make sure the data are re-loaded from RAM. */
5157 	len = le32_to_cpu(rd->length);
5158 	invalidate_dcache_range((unsigned long)packet,
5159 				(unsigned long)packet +
5160 				roundup(len, ARCH_DMA_MINALIGN));
5161 	net_process_received_packet((uchar *)packet, len);
5162 	fill_rx(hw);
5163 	return 1;
5164 }
5165 
5166 /**************************************************************************
5167 TRANSMIT - Transmit a frame
5168 ***************************************************************************/
5169 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5170 {
5171 	void *nv_packet = (void *)txpacket;
5172 	struct e1000_hw *hw = nic->priv;
5173 	struct e1000_tx_desc *txp;
5174 	int i = 0;
5175 	unsigned long flush_start, flush_end;
5176 
5177 	txp = tx_base + tx_tail;
5178 	tx_tail = (tx_tail + 1) % 8;
5179 
5180 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5181 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5182 	txp->upper.data = 0;
5183 
5184 	/* Dump the packet into RAM so e1000 can pick them. */
5185 	flush_dcache_range((unsigned long)nv_packet,
5186 			   (unsigned long)nv_packet +
5187 			   roundup(length, ARCH_DMA_MINALIGN));
5188 	/* Dump the descriptor into RAM as well. */
5189 	flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5190 	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5191 	flush_dcache_range(flush_start, flush_end);
5192 
5193 	E1000_WRITE_REG(hw, TDT, tx_tail);
5194 
5195 	E1000_WRITE_FLUSH(hw);
5196 	while (1) {
5197 		invalidate_dcache_range(flush_start, flush_end);
5198 		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5199 			break;
5200 		if (i++ > TOUT_LOOP) {
5201 			DEBUGOUT("e1000: tx timeout\n");
5202 			return 0;
5203 		}
5204 		udelay(10);	/* give the nic a chance to write to the register */
5205 	}
5206 	return 1;
5207 }
5208 
5209 /*reset function*/
5210 static inline int
5211 e1000_reset(struct eth_device *nic)
5212 {
5213 	struct e1000_hw *hw = nic->priv;
5214 
5215 	e1000_reset_hw(hw);
5216 	if (hw->mac_type >= e1000_82544) {
5217 		E1000_WRITE_REG(hw, WUC, 0);
5218 	}
5219 	return e1000_init_hw(nic);
5220 }
5221 
5222 /**************************************************************************
5223 DISABLE - Turn off ethernet interface
5224 ***************************************************************************/
5225 static void
5226 e1000_disable(struct eth_device *nic)
5227 {
5228 	struct e1000_hw *hw = nic->priv;
5229 
5230 	/* Turn off the ethernet interface */
5231 	E1000_WRITE_REG(hw, RCTL, 0);
5232 	E1000_WRITE_REG(hw, TCTL, 0);
5233 
5234 	/* Clear the transmit ring */
5235 	E1000_WRITE_REG(hw, TDH, 0);
5236 	E1000_WRITE_REG(hw, TDT, 0);
5237 
5238 	/* Clear the receive ring */
5239 	E1000_WRITE_REG(hw, RDH, 0);
5240 	E1000_WRITE_REG(hw, RDT, 0);
5241 
5242 	/* put the card in its initial state */
5243 #if 0
5244 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5245 #endif
5246 	mdelay(10);
5247 
5248 }
5249 
5250 /**************************************************************************
5251 INIT - set up ethernet interface(s)
5252 ***************************************************************************/
5253 static int
5254 e1000_init(struct eth_device *nic, bd_t * bis)
5255 {
5256 	struct e1000_hw *hw = nic->priv;
5257 	int ret_val = 0;
5258 
5259 	ret_val = e1000_reset(nic);
5260 	if (ret_val < 0) {
5261 		if ((ret_val == -E1000_ERR_NOLINK) ||
5262 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5263 			E1000_ERR(hw->nic, "Valid Link not detected\n");
5264 		} else {
5265 			E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5266 		}
5267 		return 0;
5268 	}
5269 	e1000_configure_tx(hw);
5270 	e1000_setup_rctl(hw);
5271 	e1000_configure_rx(hw);
5272 	return 1;
5273 }
5274 
5275 /******************************************************************************
5276  * Gets the current PCI bus type of hardware
5277  *
5278  * hw - Struct containing variables accessed by shared code
5279  *****************************************************************************/
5280 void e1000_get_bus_type(struct e1000_hw *hw)
5281 {
5282 	uint32_t status;
5283 
5284 	switch (hw->mac_type) {
5285 	case e1000_82542_rev2_0:
5286 	case e1000_82542_rev2_1:
5287 		hw->bus_type = e1000_bus_type_pci;
5288 		break;
5289 	case e1000_82571:
5290 	case e1000_82572:
5291 	case e1000_82573:
5292 	case e1000_82574:
5293 	case e1000_80003es2lan:
5294 	case e1000_ich8lan:
5295 	case e1000_igb:
5296 		hw->bus_type = e1000_bus_type_pci_express;
5297 		break;
5298 	default:
5299 		status = E1000_READ_REG(hw, STATUS);
5300 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5301 				e1000_bus_type_pcix : e1000_bus_type_pci;
5302 		break;
5303 	}
5304 }
5305 
5306 /* A list of all registered e1000 devices */
5307 static LIST_HEAD(e1000_hw_list);
5308 
5309 /**************************************************************************
5310 PROBE - Look for an adapter, this routine's visible to the outside
5311 You should omit the last argument struct pci_device * for a non-PCI NIC
5312 ***************************************************************************/
5313 int
5314 e1000_initialize(bd_t * bis)
5315 {
5316 	unsigned int i;
5317 	pci_dev_t devno;
5318 
5319 	DEBUGFUNC();
5320 
5321 	/* Find and probe all the matching PCI devices */
5322 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5323 		u32 val;
5324 
5325 		/*
5326 		 * These will never get freed due to errors, this allows us to
5327 		 * perform SPI EEPROM programming from U-boot, for example.
5328 		 */
5329 		struct eth_device *nic = malloc(sizeof(*nic));
5330 		struct e1000_hw *hw = malloc(sizeof(*hw));
5331 		if (!nic || !hw) {
5332 			printf("e1000#%u: Out of Memory!\n", i);
5333 			free(nic);
5334 			free(hw);
5335 			continue;
5336 		}
5337 
5338 		/* Make sure all of the fields are initially zeroed */
5339 		memset(nic, 0, sizeof(*nic));
5340 		memset(hw, 0, sizeof(*hw));
5341 
5342 		/* Assign the passed-in values */
5343 		hw->cardnum = i;
5344 		hw->pdev = devno;
5345 		hw->nic = nic;
5346 		nic->priv = hw;
5347 
5348 		/* Generate a card name */
5349 		sprintf(nic->name, "e1000#%u", hw->cardnum);
5350 
5351 		/* Print a debug message with the IO base address */
5352 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5353 		E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5354 
5355 		/* Try to enable I/O accesses and bus-mastering */
5356 		val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5357 		pci_write_config_dword(devno, PCI_COMMAND, val);
5358 
5359 		/* Make sure it worked */
5360 		pci_read_config_dword(devno, PCI_COMMAND, &val);
5361 		if (!(val & PCI_COMMAND_MEMORY)) {
5362 			E1000_ERR(nic, "Can't enable I/O memory\n");
5363 			continue;
5364 		}
5365 		if (!(val & PCI_COMMAND_MASTER)) {
5366 			E1000_ERR(nic, "Can't enable bus-mastering\n");
5367 			continue;
5368 		}
5369 
5370 		/* Are these variables needed? */
5371 		hw->fc = e1000_fc_default;
5372 		hw->original_fc = e1000_fc_default;
5373 		hw->autoneg_failed = 0;
5374 		hw->autoneg = 1;
5375 		hw->get_link_status = true;
5376 #ifndef CONFIG_E1000_NO_NVM
5377 		hw->eeprom_semaphore_present = true;
5378 #endif
5379 		hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5380 							PCI_REGION_MEM);
5381 		hw->mac_type = e1000_undefined;
5382 
5383 		/* MAC and Phy settings */
5384 		if (e1000_sw_init(nic) < 0) {
5385 			E1000_ERR(nic, "Software init failed\n");
5386 			continue;
5387 		}
5388 		if (e1000_check_phy_reset_block(hw))
5389 			E1000_ERR(nic, "PHY Reset is blocked!\n");
5390 
5391 		/* Basic init was OK, reset the hardware and allow SPI access */
5392 		e1000_reset_hw(hw);
5393 		list_add_tail(&hw->list_node, &e1000_hw_list);
5394 
5395 #ifndef CONFIG_E1000_NO_NVM
5396 		/* Validate the EEPROM and get chipset information */
5397 #if !defined(CONFIG_MVBC_1G)
5398 		if (e1000_init_eeprom_params(hw)) {
5399 			E1000_ERR(nic, "EEPROM is invalid!\n");
5400 			continue;
5401 		}
5402 		if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5403 		    e1000_validate_eeprom_checksum(hw))
5404 			continue;
5405 #endif
5406 		e1000_read_mac_addr(nic);
5407 #endif
5408 		e1000_get_bus_type(hw);
5409 
5410 #ifndef CONFIG_E1000_NO_NVM
5411 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5412 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5413 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5414 #else
5415 		memset(nic->enetaddr, 0, 6);
5416 		printf("e1000: no NVM\n");
5417 #endif
5418 
5419 		/* Set up the function pointers and register the device */
5420 		nic->init = e1000_init;
5421 		nic->recv = e1000_poll;
5422 		nic->send = e1000_transmit;
5423 		nic->halt = e1000_disable;
5424 		eth_register(nic);
5425 	}
5426 
5427 	return i;
5428 }
5429 
5430 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5431 {
5432 	struct e1000_hw *hw;
5433 
5434 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5435 		if (hw->cardnum == cardnum)
5436 			return hw;
5437 
5438 	return NULL;
5439 }
5440 
5441 #ifdef CONFIG_CMD_E1000
5442 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5443 		int argc, char * const argv[])
5444 {
5445 	struct e1000_hw *hw;
5446 
5447 	if (argc < 3) {
5448 		cmd_usage(cmdtp);
5449 		return 1;
5450 	}
5451 
5452 	/* Make sure we can find the requested e1000 card */
5453 	hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5454 	if (!hw) {
5455 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5456 		return 1;
5457 	}
5458 
5459 	if (!strcmp(argv[2], "print-mac-address")) {
5460 		unsigned char *mac = hw->nic->enetaddr;
5461 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5462 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5463 		return 0;
5464 	}
5465 
5466 #ifdef CONFIG_E1000_SPI
5467 	/* Handle the "SPI" subcommand */
5468 	if (!strcmp(argv[2], "spi"))
5469 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5470 #endif
5471 
5472 	cmd_usage(cmdtp);
5473 	return 1;
5474 }
5475 
5476 U_BOOT_CMD(
5477 	e1000, 7, 0, do_e1000,
5478 	"Intel e1000 controller management",
5479 	/*  */"<card#> print-mac-address\n"
5480 #ifdef CONFIG_E1000_SPI
5481 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5482 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5483 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5484 	"e1000 <card#> spi checksum [update]\n"
5485 #endif
5486 	"       - Manage the Intel E1000 PCI device"
5487 );
5488 #endif /* not CONFIG_CMD_E1000 */
5489