xref: /openbmc/u-boot/drivers/net/e1000.c (revision 61fb15c5)
1 /**************************************************************************
2 Inter Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16 
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21 
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
25 
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28 
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32 
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  */
44 
45 #include "e1000.h"
46 
47 #if defined(CONFIG_CMD_NET) \
48 	&& defined(CONFIG_NET_MULTI) && defined(CONFIG_E1000)
49 
50 #define TOUT_LOOP   100000
51 
52 #undef	virt_to_bus
53 #define	virt_to_bus(x)	((unsigned long)x)
54 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
55 #define mdelay(n)       udelay((n)*1000)
56 
57 #define E1000_DEFAULT_PBA    0x00000030
58 
59 /* NIC specific static variables go here */
60 
61 static char tx_pool[128 + 16];
62 static char rx_pool[128 + 16];
63 static char packet[2096];
64 
65 static struct e1000_tx_desc *tx_base;
66 static struct e1000_rx_desc *rx_base;
67 
68 static int tx_tail;
69 static int rx_tail, rx_last;
70 
71 static struct pci_device_id supported[] = {
72 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
85 };
86 
87 /* Function forward declarations */
88 static int e1000_setup_link(struct eth_device *nic);
89 static int e1000_setup_fiber_link(struct eth_device *nic);
90 static int e1000_setup_copper_link(struct eth_device *nic);
91 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
92 static void e1000_config_collision_dist(struct e1000_hw *hw);
93 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
94 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
95 static int e1000_check_for_link(struct eth_device *nic);
96 static int e1000_wait_autoneg(struct e1000_hw *hw);
97 static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
98 				       uint16_t * duplex);
99 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
100 			      uint16_t * phy_data);
101 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
102 			       uint16_t phy_data);
103 static void e1000_phy_hw_reset(struct e1000_hw *hw);
104 static int e1000_phy_reset(struct e1000_hw *hw);
105 static int e1000_detect_gig_phy(struct e1000_hw *hw);
106 
107 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
108 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
109 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
110 			writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
111 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
112 	readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
113 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
114 
115 #ifndef CONFIG_AP1000 /* remove for warnings */
116 /******************************************************************************
117  * Raises the EEPROM's clock input.
118  *
119  * hw - Struct containing variables accessed by shared code
120  * eecd - EECD's current value
121  *****************************************************************************/
122 static void
123 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
124 {
125 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
126 	 * wait 50 microseconds.
127 	 */
128 	*eecd = *eecd | E1000_EECD_SK;
129 	E1000_WRITE_REG(hw, EECD, *eecd);
130 	E1000_WRITE_FLUSH(hw);
131 	udelay(50);
132 }
133 
134 /******************************************************************************
135  * Lowers the EEPROM's clock input.
136  *
137  * hw - Struct containing variables accessed by shared code
138  * eecd - EECD's current value
139  *****************************************************************************/
140 static void
141 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
142 {
143 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
144 	 * wait 50 microseconds.
145 	 */
146 	*eecd = *eecd & ~E1000_EECD_SK;
147 	E1000_WRITE_REG(hw, EECD, *eecd);
148 	E1000_WRITE_FLUSH(hw);
149 	udelay(50);
150 }
151 
152 /******************************************************************************
153  * Shift data bits out to the EEPROM.
154  *
155  * hw - Struct containing variables accessed by shared code
156  * data - data to send to the EEPROM
157  * count - number of bits to shift out
158  *****************************************************************************/
159 static void
160 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
161 {
162 	uint32_t eecd;
163 	uint32_t mask;
164 
165 	/* We need to shift "count" bits out to the EEPROM. So, value in the
166 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
167 	 * In order to do this, "data" must be broken down into bits.
168 	 */
169 	mask = 0x01 << (count - 1);
170 	eecd = E1000_READ_REG(hw, EECD);
171 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
172 	do {
173 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
174 		 * and then raising and then lowering the clock (the SK bit controls
175 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
176 		 * by setting "DI" to "0" and then raising and then lowering the clock.
177 		 */
178 		eecd &= ~E1000_EECD_DI;
179 
180 		if (data & mask)
181 			eecd |= E1000_EECD_DI;
182 
183 		E1000_WRITE_REG(hw, EECD, eecd);
184 		E1000_WRITE_FLUSH(hw);
185 
186 		udelay(50);
187 
188 		e1000_raise_ee_clk(hw, &eecd);
189 		e1000_lower_ee_clk(hw, &eecd);
190 
191 		mask = mask >> 1;
192 
193 	} while (mask);
194 
195 	/* We leave the "DI" bit set to "0" when we leave this routine. */
196 	eecd &= ~E1000_EECD_DI;
197 	E1000_WRITE_REG(hw, EECD, eecd);
198 }
199 
200 /******************************************************************************
201  * Shift data bits in from the EEPROM
202  *
203  * hw - Struct containing variables accessed by shared code
204  *****************************************************************************/
205 static uint16_t
206 e1000_shift_in_ee_bits(struct e1000_hw *hw)
207 {
208 	uint32_t eecd;
209 	uint32_t i;
210 	uint16_t data;
211 
212 	/* In order to read a register from the EEPROM, we need to shift 16 bits
213 	 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
214 	 * the EEPROM (setting the SK bit), and then reading the value of the "DO"
215 	 * bit.  During this "shifting in" process the "DI" bit should always be
216 	 * clear..
217 	 */
218 
219 	eecd = E1000_READ_REG(hw, EECD);
220 
221 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
222 	data = 0;
223 
224 	for (i = 0; i < 16; i++) {
225 		data = data << 1;
226 		e1000_raise_ee_clk(hw, &eecd);
227 
228 		eecd = E1000_READ_REG(hw, EECD);
229 
230 		eecd &= ~(E1000_EECD_DI);
231 		if (eecd & E1000_EECD_DO)
232 			data |= 1;
233 
234 		e1000_lower_ee_clk(hw, &eecd);
235 	}
236 
237 	return data;
238 }
239 
240 /******************************************************************************
241  * Prepares EEPROM for access
242  *
243  * hw - Struct containing variables accessed by shared code
244  *
245  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
246  * function should be called before issuing a command to the EEPROM.
247  *****************************************************************************/
248 static void
249 e1000_setup_eeprom(struct e1000_hw *hw)
250 {
251 	uint32_t eecd;
252 
253 	eecd = E1000_READ_REG(hw, EECD);
254 
255 	/* Clear SK and DI */
256 	eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
257 	E1000_WRITE_REG(hw, EECD, eecd);
258 
259 	/* Set CS */
260 	eecd |= E1000_EECD_CS;
261 	E1000_WRITE_REG(hw, EECD, eecd);
262 }
263 
264 /******************************************************************************
265  * Returns EEPROM to a "standby" state
266  *
267  * hw - Struct containing variables accessed by shared code
268  *****************************************************************************/
269 static void
270 e1000_standby_eeprom(struct e1000_hw *hw)
271 {
272 	uint32_t eecd;
273 
274 	eecd = E1000_READ_REG(hw, EECD);
275 
276 	/* Deselct EEPROM */
277 	eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 	E1000_WRITE_REG(hw, EECD, eecd);
279 	E1000_WRITE_FLUSH(hw);
280 	udelay(50);
281 
282 	/* Clock high */
283 	eecd |= E1000_EECD_SK;
284 	E1000_WRITE_REG(hw, EECD, eecd);
285 	E1000_WRITE_FLUSH(hw);
286 	udelay(50);
287 
288 	/* Select EEPROM */
289 	eecd |= E1000_EECD_CS;
290 	E1000_WRITE_REG(hw, EECD, eecd);
291 	E1000_WRITE_FLUSH(hw);
292 	udelay(50);
293 
294 	/* Clock low */
295 	eecd &= ~E1000_EECD_SK;
296 	E1000_WRITE_REG(hw, EECD, eecd);
297 	E1000_WRITE_FLUSH(hw);
298 	udelay(50);
299 }
300 
301 /******************************************************************************
302  * Reads a 16 bit word from the EEPROM.
303  *
304  * hw - Struct containing variables accessed by shared code
305  * offset - offset of  word in the EEPROM to read
306  * data - word read from the EEPROM
307  *****************************************************************************/
308 static int
309 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
310 {
311 	uint32_t eecd;
312 	uint32_t i = 0;
313 	int large_eeprom = FALSE;
314 
315 	/* Request EEPROM Access */
316 	if (hw->mac_type > e1000_82544) {
317 		eecd = E1000_READ_REG(hw, EECD);
318 		if (eecd & E1000_EECD_SIZE)
319 			large_eeprom = TRUE;
320 		eecd |= E1000_EECD_REQ;
321 		E1000_WRITE_REG(hw, EECD, eecd);
322 		eecd = E1000_READ_REG(hw, EECD);
323 		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
324 			i++;
325 			udelay(10);
326 			eecd = E1000_READ_REG(hw, EECD);
327 		}
328 		if (!(eecd & E1000_EECD_GNT)) {
329 			eecd &= ~E1000_EECD_REQ;
330 			E1000_WRITE_REG(hw, EECD, eecd);
331 			DEBUGOUT("Could not acquire EEPROM grant\n");
332 			return -E1000_ERR_EEPROM;
333 		}
334 	}
335 
336 	/*  Prepare the EEPROM for reading  */
337 	e1000_setup_eeprom(hw);
338 
339 	/*  Send the READ command (opcode + addr)  */
340 	e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
341 	e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
342 
343 	/* Read the data */
344 	*data = e1000_shift_in_ee_bits(hw);
345 
346 	/* End this read operation */
347 	e1000_standby_eeprom(hw);
348 
349 	/* Stop requesting EEPROM access */
350 	if (hw->mac_type > e1000_82544) {
351 		eecd = E1000_READ_REG(hw, EECD);
352 		eecd &= ~E1000_EECD_REQ;
353 		E1000_WRITE_REG(hw, EECD, eecd);
354 	}
355 
356 	return 0;
357 }
358 
359 #if 0
360 static void
361 e1000_eeprom_cleanup(struct e1000_hw *hw)
362 {
363 	uint32_t eecd;
364 
365 	eecd = E1000_READ_REG(hw, EECD);
366 	eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
367 	E1000_WRITE_REG(hw, EECD, eecd);
368 	e1000_raise_ee_clk(hw, &eecd);
369 	e1000_lower_ee_clk(hw, &eecd);
370 }
371 
372 static uint16_t
373 e1000_wait_eeprom_done(struct e1000_hw *hw)
374 {
375 	uint32_t eecd;
376 	uint32_t i;
377 
378 	e1000_standby_eeprom(hw);
379 	for (i = 0; i < 200; i++) {
380 		eecd = E1000_READ_REG(hw, EECD);
381 		if (eecd & E1000_EECD_DO)
382 			return (TRUE);
383 		udelay(5);
384 	}
385 	return (FALSE);
386 }
387 
388 static int
389 e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
390 {
391 	uint32_t eecd;
392 	int large_eeprom = FALSE;
393 	int i = 0;
394 
395 	/* Request EEPROM Access */
396 	if (hw->mac_type > e1000_82544) {
397 		eecd = E1000_READ_REG(hw, EECD);
398 		if (eecd & E1000_EECD_SIZE)
399 			large_eeprom = TRUE;
400 		eecd |= E1000_EECD_REQ;
401 		E1000_WRITE_REG(hw, EECD, eecd);
402 		eecd = E1000_READ_REG(hw, EECD);
403 		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
404 			i++;
405 			udelay(5);
406 			eecd = E1000_READ_REG(hw, EECD);
407 		}
408 		if (!(eecd & E1000_EECD_GNT)) {
409 			eecd &= ~E1000_EECD_REQ;
410 			E1000_WRITE_REG(hw, EECD, eecd);
411 			DEBUGOUT("Could not acquire EEPROM grant\n");
412 			return FALSE;
413 		}
414 	}
415 	e1000_setup_eeprom(hw);
416 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
417 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
418 	e1000_standby_eeprom(hw);
419 	e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
420 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
421 	e1000_shift_out_ee_bits(hw, Data, 16);
422 	if (!e1000_wait_eeprom_done(hw)) {
423 		return FALSE;
424 	}
425 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
426 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
427 	e1000_eeprom_cleanup(hw);
428 
429 	/* Stop requesting EEPROM access */
430 	if (hw->mac_type > e1000_82544) {
431 		eecd = E1000_READ_REG(hw, EECD);
432 		eecd &= ~E1000_EECD_REQ;
433 		E1000_WRITE_REG(hw, EECD, eecd);
434 	}
435 	i = 0;
436 	eecd = E1000_READ_REG(hw, EECD);
437 	while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
438 		i++;
439 		udelay(10);
440 		eecd = E1000_READ_REG(hw, EECD);
441 	}
442 	if ((eecd & E1000_EECD_GNT)) {
443 		DEBUGOUT("Could not release EEPROM grant\n");
444 	}
445 	return TRUE;
446 }
447 #endif
448 
449 /******************************************************************************
450  * Verifies that the EEPROM has a valid checksum
451  *
452  * hw - Struct containing variables accessed by shared code
453  *
454  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
455  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
456  * valid.
457  *****************************************************************************/
458 static int
459 e1000_validate_eeprom_checksum(struct eth_device *nic)
460 {
461 	struct e1000_hw *hw = nic->priv;
462 	uint16_t checksum = 0;
463 	uint16_t i, eeprom_data;
464 
465 	DEBUGFUNC();
466 
467 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
468 		if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
469 			DEBUGOUT("EEPROM Read Error\n");
470 			return -E1000_ERR_EEPROM;
471 		}
472 		checksum += eeprom_data;
473 	}
474 
475 	if (checksum == (uint16_t) EEPROM_SUM) {
476 		return 0;
477 	} else {
478 		DEBUGOUT("EEPROM Checksum Invalid\n");
479 		return -E1000_ERR_EEPROM;
480 	}
481 }
482 #endif /* #ifndef CONFIG_AP1000 */
483 
484 /******************************************************************************
485  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
486  * second function of dual function devices
487  *
488  * nic - Struct containing variables accessed by shared code
489  *****************************************************************************/
490 static int
491 e1000_read_mac_addr(struct eth_device *nic)
492 {
493 #ifndef CONFIG_AP1000
494 	struct e1000_hw *hw = nic->priv;
495 	uint16_t offset;
496 	uint16_t eeprom_data;
497 	int i;
498 
499 	DEBUGFUNC();
500 
501 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
502 		offset = i >> 1;
503 		if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
504 			DEBUGOUT("EEPROM Read Error\n");
505 			return -E1000_ERR_EEPROM;
506 		}
507 		nic->enetaddr[i] = eeprom_data & 0xff;
508 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
509 	}
510 	if ((hw->mac_type == e1000_82546) &&
511 	    (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
512 		/* Invert the last bit if this is the second device */
513 		nic->enetaddr[5] += 1;
514 	}
515 #else
516 	/*
517 	 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
518 	 * environment variables.  Currently this does not support the addition
519 	 * of a PMC e1000 card, which is certainly a possibility, so this should
520 	 * be updated to properly use the env variable only for the onboard e1000
521 	 */
522 
523 	int ii;
524 	char *s, *e;
525 
526 	DEBUGFUNC();
527 
528 	s = getenv ("ethaddr");
529 	if (s == NULL){
530 		return -E1000_ERR_EEPROM;
531 	}
532 	else{
533 		for(ii = 0; ii < 6; ii++) {
534 			nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
535 			if (s){
536 				s = (*e) ? e + 1 : e;
537 			}
538 		}
539 	}
540 #endif
541 	return 0;
542 }
543 
544 /******************************************************************************
545  * Initializes receive address filters.
546  *
547  * hw - Struct containing variables accessed by shared code
548  *
549  * Places the MAC address in receive address register 0 and clears the rest
550  * of the receive addresss registers. Clears the multicast table. Assumes
551  * the receiver is in reset when the routine is called.
552  *****************************************************************************/
553 static void
554 e1000_init_rx_addrs(struct eth_device *nic)
555 {
556 	struct e1000_hw *hw = nic->priv;
557 	uint32_t i;
558 	uint32_t addr_low;
559 	uint32_t addr_high;
560 
561 	DEBUGFUNC();
562 
563 	/* Setup the receive address. */
564 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
565 	addr_low = (nic->enetaddr[0] |
566 		    (nic->enetaddr[1] << 8) |
567 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
568 
569 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
570 
571 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
572 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
573 
574 	/* Zero out the other 15 receive addresses. */
575 	DEBUGOUT("Clearing RAR[1-15]\n");
576 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
577 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
578 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
579 	}
580 }
581 
582 /******************************************************************************
583  * Clears the VLAN filer table
584  *
585  * hw - Struct containing variables accessed by shared code
586  *****************************************************************************/
587 static void
588 e1000_clear_vfta(struct e1000_hw *hw)
589 {
590 	uint32_t offset;
591 
592 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
593 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
594 }
595 
596 /******************************************************************************
597  * Set the mac type member in the hw struct.
598  *
599  * hw - Struct containing variables accessed by shared code
600  *****************************************************************************/
601 static int
602 e1000_set_mac_type(struct e1000_hw *hw)
603 {
604 	DEBUGFUNC();
605 
606 	switch (hw->device_id) {
607 	case E1000_DEV_ID_82542:
608 		switch (hw->revision_id) {
609 		case E1000_82542_2_0_REV_ID:
610 			hw->mac_type = e1000_82542_rev2_0;
611 			break;
612 		case E1000_82542_2_1_REV_ID:
613 			hw->mac_type = e1000_82542_rev2_1;
614 			break;
615 		default:
616 			/* Invalid 82542 revision ID */
617 			return -E1000_ERR_MAC_TYPE;
618 		}
619 		break;
620 	case E1000_DEV_ID_82543GC_FIBER:
621 	case E1000_DEV_ID_82543GC_COPPER:
622 		hw->mac_type = e1000_82543;
623 		break;
624 	case E1000_DEV_ID_82544EI_COPPER:
625 	case E1000_DEV_ID_82544EI_FIBER:
626 	case E1000_DEV_ID_82544GC_COPPER:
627 	case E1000_DEV_ID_82544GC_LOM:
628 		hw->mac_type = e1000_82544;
629 		break;
630 	case E1000_DEV_ID_82540EM:
631 	case E1000_DEV_ID_82540EM_LOM:
632 		hw->mac_type = e1000_82540;
633 		break;
634 	case E1000_DEV_ID_82545EM_COPPER:
635 	case E1000_DEV_ID_82545EM_FIBER:
636 		hw->mac_type = e1000_82545;
637 		break;
638 	case E1000_DEV_ID_82546EB_COPPER:
639 	case E1000_DEV_ID_82546EB_FIBER:
640 		hw->mac_type = e1000_82546;
641 		break;
642 	default:
643 		/* Should never have loaded on this device */
644 		return -E1000_ERR_MAC_TYPE;
645 	}
646 	return E1000_SUCCESS;
647 }
648 
649 /******************************************************************************
650  * Reset the transmit and receive units; mask and clear all interrupts.
651  *
652  * hw - Struct containing variables accessed by shared code
653  *****************************************************************************/
654 void
655 e1000_reset_hw(struct e1000_hw *hw)
656 {
657 	uint32_t ctrl;
658 	uint32_t ctrl_ext;
659 	uint32_t icr;
660 	uint32_t manc;
661 
662 	DEBUGFUNC();
663 
664 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
665 	if (hw->mac_type == e1000_82542_rev2_0) {
666 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
667 		pci_write_config_word(hw->pdev, PCI_COMMAND,
668 				      hw->
669 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
670 	}
671 
672 	/* Clear interrupt mask to stop board from generating interrupts */
673 	DEBUGOUT("Masking off all interrupts\n");
674 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
675 
676 	/* Disable the Transmit and Receive units.  Then delay to allow
677 	 * any pending transactions to complete before we hit the MAC with
678 	 * the global reset.
679 	 */
680 	E1000_WRITE_REG(hw, RCTL, 0);
681 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
682 	E1000_WRITE_FLUSH(hw);
683 
684 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
685 	hw->tbi_compatibility_on = FALSE;
686 
687 	/* Delay to allow any outstanding PCI transactions to complete before
688 	 * resetting the device
689 	 */
690 	mdelay(10);
691 
692 	/* Issue a global reset to the MAC.  This will reset the chip's
693 	 * transmit, receive, DMA, and link units.  It will not effect
694 	 * the current PCI configuration.  The global reset bit is self-
695 	 * clearing, and should clear within a microsecond.
696 	 */
697 	DEBUGOUT("Issuing a global reset to MAC\n");
698 	ctrl = E1000_READ_REG(hw, CTRL);
699 
700 #if 0
701 	if (hw->mac_type > e1000_82543)
702 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
703 	else
704 #endif
705 		E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
706 
707 	/* Force a reload from the EEPROM if necessary */
708 	if (hw->mac_type < e1000_82540) {
709 		/* Wait for reset to complete */
710 		udelay(10);
711 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
712 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
713 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
714 		E1000_WRITE_FLUSH(hw);
715 		/* Wait for EEPROM reload */
716 		mdelay(2);
717 	} else {
718 		/* Wait for EEPROM reload (it happens automatically) */
719 		mdelay(4);
720 		/* Dissable HW ARPs on ASF enabled adapters */
721 		manc = E1000_READ_REG(hw, MANC);
722 		manc &= ~(E1000_MANC_ARP_EN);
723 		E1000_WRITE_REG(hw, MANC, manc);
724 	}
725 
726 	/* Clear interrupt mask to stop board from generating interrupts */
727 	DEBUGOUT("Masking off all interrupts\n");
728 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
729 
730 	/* Clear any pending interrupt events. */
731 	icr = E1000_READ_REG(hw, ICR);
732 
733 	/* If MWI was previously enabled, reenable it. */
734 	if (hw->mac_type == e1000_82542_rev2_0) {
735 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
736 	}
737 }
738 
739 /******************************************************************************
740  * Performs basic configuration of the adapter.
741  *
742  * hw - Struct containing variables accessed by shared code
743  *
744  * Assumes that the controller has previously been reset and is in a
745  * post-reset uninitialized state. Initializes the receive address registers,
746  * multicast table, and VLAN filter table. Calls routines to setup link
747  * configuration and flow control settings. Clears all on-chip counters. Leaves
748  * the transmit and receive units disabled and uninitialized.
749  *****************************************************************************/
750 static int
751 e1000_init_hw(struct eth_device *nic)
752 {
753 	struct e1000_hw *hw = nic->priv;
754 	uint32_t ctrl, status;
755 	uint32_t i;
756 	int32_t ret_val;
757 	uint16_t pcix_cmd_word;
758 	uint16_t pcix_stat_hi_word;
759 	uint16_t cmd_mmrbc;
760 	uint16_t stat_mmrbc;
761 	e1000_bus_type bus_type = e1000_bus_type_unknown;
762 
763 	DEBUGFUNC();
764 #if 0
765 	/* Initialize Identification LED */
766 	ret_val = e1000_id_led_init(hw);
767 	if (ret_val < 0) {
768 		DEBUGOUT("Error Initializing Identification LED\n");
769 		return ret_val;
770 	}
771 #endif
772 	/* Set the Media Type and exit with error if it is not valid. */
773 	if (hw->mac_type != e1000_82543) {
774 		/* tbi_compatibility is only valid on 82543 */
775 		hw->tbi_compatibility_en = FALSE;
776 	}
777 
778 	if (hw->mac_type >= e1000_82543) {
779 		status = E1000_READ_REG(hw, STATUS);
780 		if (status & E1000_STATUS_TBIMODE) {
781 			hw->media_type = e1000_media_type_fiber;
782 			/* tbi_compatibility not valid on fiber */
783 			hw->tbi_compatibility_en = FALSE;
784 		} else {
785 			hw->media_type = e1000_media_type_copper;
786 		}
787 	} else {
788 		/* This is an 82542 (fiber only) */
789 		hw->media_type = e1000_media_type_fiber;
790 	}
791 
792 	/* Disabling VLAN filtering. */
793 	DEBUGOUT("Initializing the IEEE VLAN\n");
794 	E1000_WRITE_REG(hw, VET, 0);
795 
796 	e1000_clear_vfta(hw);
797 
798 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
799 	if (hw->mac_type == e1000_82542_rev2_0) {
800 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
801 		pci_write_config_word(hw->pdev, PCI_COMMAND,
802 				      hw->
803 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
804 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
805 		E1000_WRITE_FLUSH(hw);
806 		mdelay(5);
807 	}
808 
809 	/* Setup the receive address. This involves initializing all of the Receive
810 	 * Address Registers (RARs 0 - 15).
811 	 */
812 	e1000_init_rx_addrs(nic);
813 
814 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
815 	if (hw->mac_type == e1000_82542_rev2_0) {
816 		E1000_WRITE_REG(hw, RCTL, 0);
817 		E1000_WRITE_FLUSH(hw);
818 		mdelay(1);
819 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
820 	}
821 
822 	/* Zero out the Multicast HASH table */
823 	DEBUGOUT("Zeroing the MTA\n");
824 	for (i = 0; i < E1000_MC_TBL_SIZE; i++)
825 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
826 
827 #if 0
828 	/* Set the PCI priority bit correctly in the CTRL register.  This
829 	 * determines if the adapter gives priority to receives, or if it
830 	 * gives equal priority to transmits and receives.
831 	 */
832 	if (hw->dma_fairness) {
833 		ctrl = E1000_READ_REG(hw, CTRL);
834 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
835 	}
836 #endif
837 	if (hw->mac_type >= e1000_82543) {
838 		status = E1000_READ_REG(hw, STATUS);
839 		bus_type = (status & E1000_STATUS_PCIX_MODE) ?
840 		    e1000_bus_type_pcix : e1000_bus_type_pci;
841 	}
842 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
843 	if (bus_type == e1000_bus_type_pcix) {
844 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
845 				     &pcix_cmd_word);
846 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
847 				     &pcix_stat_hi_word);
848 		cmd_mmrbc =
849 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
850 		    PCIX_COMMAND_MMRBC_SHIFT;
851 		stat_mmrbc =
852 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
853 		    PCIX_STATUS_HI_MMRBC_SHIFT;
854 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
855 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
856 		if (cmd_mmrbc > stat_mmrbc) {
857 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
858 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
859 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
860 					      pcix_cmd_word);
861 		}
862 	}
863 
864 	/* Call a subroutine to configure the link and setup flow control. */
865 	ret_val = e1000_setup_link(nic);
866 
867 	/* Set the transmit descriptor write-back policy */
868 	if (hw->mac_type > e1000_82544) {
869 		ctrl = E1000_READ_REG(hw, TXDCTL);
870 		ctrl =
871 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
872 		    E1000_TXDCTL_FULL_TX_DESC_WB;
873 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
874 	}
875 #if 0
876 	/* Clear all of the statistics registers (clear on read).  It is
877 	 * important that we do this after we have tried to establish link
878 	 * because the symbol error count will increment wildly if there
879 	 * is no link.
880 	 */
881 	e1000_clear_hw_cntrs(hw);
882 #endif
883 
884 	return ret_val;
885 }
886 
887 /******************************************************************************
888  * Configures flow control and link settings.
889  *
890  * hw - Struct containing variables accessed by shared code
891  *
892  * Determines which flow control settings to use. Calls the apropriate media-
893  * specific link configuration function. Configures the flow control settings.
894  * Assuming the adapter has a valid link partner, a valid link should be
895  * established. Assumes the hardware has previously been reset and the
896  * transmitter and receiver are not enabled.
897  *****************************************************************************/
898 static int
899 e1000_setup_link(struct eth_device *nic)
900 {
901 	struct e1000_hw *hw = nic->priv;
902 	uint32_t ctrl_ext;
903 	int32_t ret_val;
904 	uint16_t eeprom_data;
905 
906 	DEBUGFUNC();
907 
908 #ifndef CONFIG_AP1000
909 	/* Read and store word 0x0F of the EEPROM. This word contains bits
910 	 * that determine the hardware's default PAUSE (flow control) mode,
911 	 * a bit that determines whether the HW defaults to enabling or
912 	 * disabling auto-negotiation, and the direction of the
913 	 * SW defined pins. If there is no SW over-ride of the flow
914 	 * control setting, then the variable hw->fc will
915 	 * be initialized based on a value in the EEPROM.
916 	 */
917 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
918 		DEBUGOUT("EEPROM Read Error\n");
919 		return -E1000_ERR_EEPROM;
920 	}
921 #else
922 	/* we have to hardcode the proper value for our hardware. */
923 	/* this value is for the 82540EM pci card used for prototyping, and it works. */
924 	eeprom_data = 0xb220;
925 #endif
926 
927 	if (hw->fc == e1000_fc_default) {
928 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
929 			hw->fc = e1000_fc_none;
930 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
931 			 EEPROM_WORD0F_ASM_DIR)
932 			hw->fc = e1000_fc_tx_pause;
933 		else
934 			hw->fc = e1000_fc_full;
935 	}
936 
937 	/* We want to save off the original Flow Control configuration just
938 	 * in case we get disconnected and then reconnected into a different
939 	 * hub or switch with different Flow Control capabilities.
940 	 */
941 	if (hw->mac_type == e1000_82542_rev2_0)
942 		hw->fc &= (~e1000_fc_tx_pause);
943 
944 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
945 		hw->fc &= (~e1000_fc_rx_pause);
946 
947 	hw->original_fc = hw->fc;
948 
949 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
950 
951 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
952 	 * polarity value for the SW controlled pins, and setup the
953 	 * Extended Device Control reg with that info.
954 	 * This is needed because one of the SW controlled pins is used for
955 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
956 	 * or e1000_phy_setup() is called.
957 	 */
958 	if (hw->mac_type == e1000_82543) {
959 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
960 			    SWDPIO__EXT_SHIFT);
961 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
962 	}
963 
964 	/* Call the necessary subroutine to configure the link. */
965 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
966 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
967 	if (ret_val < 0) {
968 		return ret_val;
969 	}
970 
971 	/* Initialize the flow control address, type, and PAUSE timer
972 	 * registers to their default values.  This is done even if flow
973 	 * control is disabled, because it does not hurt anything to
974 	 * initialize these registers.
975 	 */
976 	DEBUGOUT
977 	    ("Initializing the Flow Control address, type and timer regs\n");
978 
979 	E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
980 	E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
981 	E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
982 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
983 
984 	/* Set the flow control receive threshold registers.  Normally,
985 	 * these registers will be set to a default threshold that may be
986 	 * adjusted later by the driver's runtime code.  However, if the
987 	 * ability to transmit pause frames in not enabled, then these
988 	 * registers will be set to 0.
989 	 */
990 	if (!(hw->fc & e1000_fc_tx_pause)) {
991 		E1000_WRITE_REG(hw, FCRTL, 0);
992 		E1000_WRITE_REG(hw, FCRTH, 0);
993 	} else {
994 		/* We need to set up the Receive Threshold high and low water marks
995 		 * as well as (optionally) enabling the transmission of XON frames.
996 		 */
997 		if (hw->fc_send_xon) {
998 			E1000_WRITE_REG(hw, FCRTL,
999 					(hw->fc_low_water | E1000_FCRTL_XONE));
1000 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1001 		} else {
1002 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1003 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1004 		}
1005 	}
1006 	return ret_val;
1007 }
1008 
1009 /******************************************************************************
1010  * Sets up link for a fiber based adapter
1011  *
1012  * hw - Struct containing variables accessed by shared code
1013  *
1014  * Manipulates Physical Coding Sublayer functions in order to configure
1015  * link. Assumes the hardware has been previously reset and the transmitter
1016  * and receiver are not enabled.
1017  *****************************************************************************/
1018 static int
1019 e1000_setup_fiber_link(struct eth_device *nic)
1020 {
1021 	struct e1000_hw *hw = nic->priv;
1022 	uint32_t ctrl;
1023 	uint32_t status;
1024 	uint32_t txcw = 0;
1025 	uint32_t i;
1026 	uint32_t signal;
1027 	int32_t ret_val;
1028 
1029 	DEBUGFUNC();
1030 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1031 	 * set when the optics detect a signal. On older adapters, it will be
1032 	 * cleared when there is a signal
1033 	 */
1034 	ctrl = E1000_READ_REG(hw, CTRL);
1035 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1036 		signal = E1000_CTRL_SWDPIN1;
1037 	else
1038 		signal = 0;
1039 
1040 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1041 	       ctrl);
1042 	/* Take the link out of reset */
1043 	ctrl &= ~(E1000_CTRL_LRST);
1044 
1045 	e1000_config_collision_dist(hw);
1046 
1047 	/* Check for a software override of the flow control settings, and setup
1048 	 * the device accordingly.  If auto-negotiation is enabled, then software
1049 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1050 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1051 	 * auto-negotiation is disabled, then software will have to manually
1052 	 * configure the two flow control enable bits in the CTRL register.
1053 	 *
1054 	 * The possible values of the "fc" parameter are:
1055 	 *      0:  Flow control is completely disabled
1056 	 *      1:  Rx flow control is enabled (we can receive pause frames, but
1057 	 *          not send pause frames).
1058 	 *      2:  Tx flow control is enabled (we can send pause frames but we do
1059 	 *          not support receiving pause frames).
1060 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1061 	 */
1062 	switch (hw->fc) {
1063 	case e1000_fc_none:
1064 		/* Flow control is completely disabled by a software over-ride. */
1065 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1066 		break;
1067 	case e1000_fc_rx_pause:
1068 		/* RX Flow control is enabled and TX Flow control is disabled by a
1069 		 * software over-ride. Since there really isn't a way to advertise
1070 		 * that we are capable of RX Pause ONLY, we will advertise that we
1071 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
1072 		 *  disable the adapter's ability to send PAUSE frames.
1073 		 */
1074 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1075 		break;
1076 	case e1000_fc_tx_pause:
1077 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
1078 		 * software over-ride.
1079 		 */
1080 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1081 		break;
1082 	case e1000_fc_full:
1083 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
1084 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1085 		break;
1086 	default:
1087 		DEBUGOUT("Flow control param set incorrectly\n");
1088 		return -E1000_ERR_CONFIG;
1089 		break;
1090 	}
1091 
1092 	/* Since auto-negotiation is enabled, take the link out of reset (the link
1093 	 * will be in reset, because we previously reset the chip). This will
1094 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
1095 	 * link-up status bit will be set and the flow control enable bits (RFCE
1096 	 * and TFCE) will be set according to their negotiated value.
1097 	 */
1098 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1099 
1100 	E1000_WRITE_REG(hw, TXCW, txcw);
1101 	E1000_WRITE_REG(hw, CTRL, ctrl);
1102 	E1000_WRITE_FLUSH(hw);
1103 
1104 	hw->txcw = txcw;
1105 	mdelay(1);
1106 
1107 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1108 	 * indication in the Device Status Register.  Time-out if a link isn't
1109 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1110 	 * less than 500 milliseconds even if the other end is doing it in SW).
1111 	 */
1112 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1113 		DEBUGOUT("Looking for Link\n");
1114 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1115 			mdelay(10);
1116 			status = E1000_READ_REG(hw, STATUS);
1117 			if (status & E1000_STATUS_LU)
1118 				break;
1119 		}
1120 		if (i == (LINK_UP_TIMEOUT / 10)) {
1121 			/* AutoNeg failed to achieve a link, so we'll call
1122 			 * e1000_check_for_link. This routine will force the link up if we
1123 			 * detect a signal. This will allow us to communicate with
1124 			 * non-autonegotiating link partners.
1125 			 */
1126 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1127 			hw->autoneg_failed = 1;
1128 			ret_val = e1000_check_for_link(nic);
1129 			if (ret_val < 0) {
1130 				DEBUGOUT("Error while checking for link\n");
1131 				return ret_val;
1132 			}
1133 			hw->autoneg_failed = 0;
1134 		} else {
1135 			hw->autoneg_failed = 0;
1136 			DEBUGOUT("Valid Link Found\n");
1137 		}
1138 	} else {
1139 		DEBUGOUT("No Signal Detected\n");
1140 		return -E1000_ERR_NOLINK;
1141 	}
1142 	return 0;
1143 }
1144 
1145 /******************************************************************************
1146 * Detects which PHY is present and the speed and duplex
1147 *
1148 * hw - Struct containing variables accessed by shared code
1149 ******************************************************************************/
1150 static int
1151 e1000_setup_copper_link(struct eth_device *nic)
1152 {
1153 	struct e1000_hw *hw = nic->priv;
1154 	uint32_t ctrl;
1155 	int32_t ret_val;
1156 	uint16_t i;
1157 	uint16_t phy_data;
1158 
1159 	DEBUGFUNC();
1160 
1161 	ctrl = E1000_READ_REG(hw, CTRL);
1162 	/* With 82543, we need to force speed and duplex on the MAC equal to what
1163 	 * the PHY speed and duplex configuration is. In addition, we need to
1164 	 * perform a hardware reset on the PHY to take it out of reset.
1165 	 */
1166 	if (hw->mac_type > e1000_82543) {
1167 		ctrl |= E1000_CTRL_SLU;
1168 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1169 		E1000_WRITE_REG(hw, CTRL, ctrl);
1170 	} else {
1171 		ctrl |=
1172 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1173 		E1000_WRITE_REG(hw, CTRL, ctrl);
1174 		e1000_phy_hw_reset(hw);
1175 	}
1176 
1177 	/* Make sure we have a valid PHY */
1178 	ret_val = e1000_detect_gig_phy(hw);
1179 	if (ret_val < 0) {
1180 		DEBUGOUT("Error, did not detect valid phy.\n");
1181 		return ret_val;
1182 	}
1183 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
1184 
1185 	/* Enable CRS on TX. This must be set for half-duplex operation. */
1186 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
1187 		DEBUGOUT("PHY Read Error\n");
1188 		return -E1000_ERR_PHY;
1189 	}
1190 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1191 
1192 #if 0
1193 	/* Options:
1194 	 *   MDI/MDI-X = 0 (default)
1195 	 *   0 - Auto for all speeds
1196 	 *   1 - MDI mode
1197 	 *   2 - MDI-X mode
1198 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1199 	 */
1200 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1201 	switch (hw->mdix) {
1202 	case 1:
1203 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1204 		break;
1205 	case 2:
1206 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1207 		break;
1208 	case 3:
1209 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1210 		break;
1211 	case 0:
1212 	default:
1213 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1214 		break;
1215 	}
1216 #else
1217 	phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1218 #endif
1219 
1220 #if 0
1221 	/* Options:
1222 	 *   disable_polarity_correction = 0 (default)
1223 	 *       Automatic Correction for Reversed Cable Polarity
1224 	 *   0 - Disabled
1225 	 *   1 - Enabled
1226 	 */
1227 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1228 	if (hw->disable_polarity_correction == 1)
1229 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1230 #else
1231 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1232 #endif
1233 	if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
1234 		DEBUGOUT("PHY Write Error\n");
1235 		return -E1000_ERR_PHY;
1236 	}
1237 
1238 	/* Force TX_CLK in the Extended PHY Specific Control Register
1239 	 * to 25MHz clock.
1240 	 */
1241 	if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
1242 		DEBUGOUT("PHY Read Error\n");
1243 		return -E1000_ERR_PHY;
1244 	}
1245 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1246 	/* Configure Master and Slave downshift values */
1247 	phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1248 		      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1249 	phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1250 		     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1251 	if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
1252 		DEBUGOUT("PHY Write Error\n");
1253 		return -E1000_ERR_PHY;
1254 	}
1255 
1256 	/* SW Reset the PHY so all changes take effect */
1257 	ret_val = e1000_phy_reset(hw);
1258 	if (ret_val < 0) {
1259 		DEBUGOUT("Error Resetting the PHY\n");
1260 		return ret_val;
1261 	}
1262 
1263 	/* Options:
1264 	 *   autoneg = 1 (default)
1265 	 *      PHY will advertise value(s) parsed from
1266 	 *      autoneg_advertised and fc
1267 	 *   autoneg = 0
1268 	 *      PHY will be set to 10H, 10F, 100H, or 100F
1269 	 *      depending on value parsed from forced_speed_duplex.
1270 	 */
1271 
1272 	/* Is autoneg enabled?  This is enabled by default or by software override.
1273 	 * If so, call e1000_phy_setup_autoneg routine to parse the
1274 	 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
1275 	 * user should have provided a speed/duplex override.  If so, then call
1276 	 * e1000_phy_force_speed_duplex to parse and set this up.
1277 	 */
1278 	/* Perform some bounds checking on the hw->autoneg_advertised
1279 	 * parameter.  If this variable is zero, then set it to the default.
1280 	 */
1281 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1282 
1283 	/* If autoneg_advertised is zero, we assume it was not defaulted
1284 	 * by the calling code so we set to advertise full capability.
1285 	 */
1286 	if (hw->autoneg_advertised == 0)
1287 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1288 
1289 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1290 	ret_val = e1000_phy_setup_autoneg(hw);
1291 	if (ret_val < 0) {
1292 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
1293 		return ret_val;
1294 	}
1295 	DEBUGOUT("Restarting Auto-Neg\n");
1296 
1297 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1298 	 * the Auto Neg Restart bit in the PHY control register.
1299 	 */
1300 	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
1301 		DEBUGOUT("PHY Read Error\n");
1302 		return -E1000_ERR_PHY;
1303 	}
1304 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1305 	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
1306 		DEBUGOUT("PHY Write Error\n");
1307 		return -E1000_ERR_PHY;
1308 	}
1309 #if 0
1310 	/* Does the user want to wait for Auto-Neg to complete here, or
1311 	 * check at a later time (for example, callback routine).
1312 	 */
1313 	if (hw->wait_autoneg_complete) {
1314 		ret_val = e1000_wait_autoneg(hw);
1315 		if (ret_val < 0) {
1316 			DEBUGOUT
1317 			    ("Error while waiting for autoneg to complete\n");
1318 			return ret_val;
1319 		}
1320 	}
1321 #else
1322 	/* If we do not wait for autonegtation to complete I
1323 	 * do not see a valid link status.
1324 	 */
1325 	ret_val = e1000_wait_autoneg(hw);
1326 	if (ret_val < 0) {
1327 		DEBUGOUT("Error while waiting for autoneg to complete\n");
1328 		return ret_val;
1329 	}
1330 #endif
1331 
1332 	/* Check link status. Wait up to 100 microseconds for link to become
1333 	 * valid.
1334 	 */
1335 	for (i = 0; i < 10; i++) {
1336 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1337 			DEBUGOUT("PHY Read Error\n");
1338 			return -E1000_ERR_PHY;
1339 		}
1340 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1341 			DEBUGOUT("PHY Read Error\n");
1342 			return -E1000_ERR_PHY;
1343 		}
1344 		if (phy_data & MII_SR_LINK_STATUS) {
1345 			/* We have link, so we need to finish the config process:
1346 			 *   1) Set up the MAC to the current PHY speed/duplex
1347 			 *      if we are on 82543.  If we
1348 			 *      are on newer silicon, we only need to configure
1349 			 *      collision distance in the Transmit Control Register.
1350 			 *   2) Set up flow control on the MAC to that established with
1351 			 *      the link partner.
1352 			 */
1353 			if (hw->mac_type >= e1000_82544) {
1354 				e1000_config_collision_dist(hw);
1355 			} else {
1356 				ret_val = e1000_config_mac_to_phy(hw);
1357 				if (ret_val < 0) {
1358 					DEBUGOUT
1359 					    ("Error configuring MAC to PHY settings\n");
1360 					return ret_val;
1361 				}
1362 			}
1363 			ret_val = e1000_config_fc_after_link_up(hw);
1364 			if (ret_val < 0) {
1365 				DEBUGOUT("Error Configuring Flow Control\n");
1366 				return ret_val;
1367 			}
1368 			DEBUGOUT("Valid link established!!!\n");
1369 			return 0;
1370 		}
1371 		udelay(10);
1372 	}
1373 
1374 	DEBUGOUT("Unable to establish link!!!\n");
1375 	return -E1000_ERR_NOLINK;
1376 }
1377 
1378 /******************************************************************************
1379 * Configures PHY autoneg and flow control advertisement settings
1380 *
1381 * hw - Struct containing variables accessed by shared code
1382 ******************************************************************************/
1383 static int
1384 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1385 {
1386 	uint16_t mii_autoneg_adv_reg;
1387 	uint16_t mii_1000t_ctrl_reg;
1388 
1389 	DEBUGFUNC();
1390 
1391 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1392 	if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
1393 		DEBUGOUT("PHY Read Error\n");
1394 		return -E1000_ERR_PHY;
1395 	}
1396 
1397 	/* Read the MII 1000Base-T Control Register (Address 9). */
1398 	if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
1399 		DEBUGOUT("PHY Read Error\n");
1400 		return -E1000_ERR_PHY;
1401 	}
1402 
1403 	/* Need to parse both autoneg_advertised and fc and set up
1404 	 * the appropriate PHY registers.  First we will parse for
1405 	 * autoneg_advertised software override.  Since we can advertise
1406 	 * a plethora of combinations, we need to check each bit
1407 	 * individually.
1408 	 */
1409 
1410 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1411 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1412 	 * the  1000Base-T Control Register (Address 9).
1413 	 */
1414 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1415 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1416 
1417 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
1418 
1419 	/* Do we want to advertise 10 Mb Half Duplex? */
1420 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1421 		DEBUGOUT("Advertise 10mb Half duplex\n");
1422 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1423 	}
1424 
1425 	/* Do we want to advertise 10 Mb Full Duplex? */
1426 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1427 		DEBUGOUT("Advertise 10mb Full duplex\n");
1428 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1429 	}
1430 
1431 	/* Do we want to advertise 100 Mb Half Duplex? */
1432 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1433 		DEBUGOUT("Advertise 100mb Half duplex\n");
1434 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1435 	}
1436 
1437 	/* Do we want to advertise 100 Mb Full Duplex? */
1438 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1439 		DEBUGOUT("Advertise 100mb Full duplex\n");
1440 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1441 	}
1442 
1443 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1444 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1445 		DEBUGOUT
1446 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1447 	}
1448 
1449 	/* Do we want to advertise 1000 Mb Full Duplex? */
1450 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1451 		DEBUGOUT("Advertise 1000mb Full duplex\n");
1452 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1453 	}
1454 
1455 	/* Check for a software override of the flow control settings, and
1456 	 * setup the PHY advertisement registers accordingly.  If
1457 	 * auto-negotiation is enabled, then software will have to set the
1458 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1459 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1460 	 *
1461 	 * The possible values of the "fc" parameter are:
1462 	 *      0:  Flow control is completely disabled
1463 	 *      1:  Rx flow control is enabled (we can receive pause frames
1464 	 *          but not send pause frames).
1465 	 *      2:  Tx flow control is enabled (we can send pause frames
1466 	 *          but we do not support receiving pause frames).
1467 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1468 	 *  other:  No software override.  The flow control configuration
1469 	 *          in the EEPROM is used.
1470 	 */
1471 	switch (hw->fc) {
1472 	case e1000_fc_none:	/* 0 */
1473 		/* Flow control (RX & TX) is completely disabled by a
1474 		 * software over-ride.
1475 		 */
1476 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1477 		break;
1478 	case e1000_fc_rx_pause:	/* 1 */
1479 		/* RX Flow control is enabled, and TX Flow control is
1480 		 * disabled, by a software over-ride.
1481 		 */
1482 		/* Since there really isn't a way to advertise that we are
1483 		 * capable of RX Pause ONLY, we will advertise that we
1484 		 * support both symmetric and asymmetric RX PAUSE.  Later
1485 		 * (in e1000_config_fc_after_link_up) we will disable the
1486 		 *hw's ability to send PAUSE frames.
1487 		 */
1488 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1489 		break;
1490 	case e1000_fc_tx_pause:	/* 2 */
1491 		/* TX Flow control is enabled, and RX Flow control is
1492 		 * disabled, by a software over-ride.
1493 		 */
1494 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1495 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1496 		break;
1497 	case e1000_fc_full:	/* 3 */
1498 		/* Flow control (both RX and TX) is enabled by a software
1499 		 * over-ride.
1500 		 */
1501 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1502 		break;
1503 	default:
1504 		DEBUGOUT("Flow control param set incorrectly\n");
1505 		return -E1000_ERR_CONFIG;
1506 	}
1507 
1508 	if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
1509 		DEBUGOUT("PHY Write Error\n");
1510 		return -E1000_ERR_PHY;
1511 	}
1512 
1513 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1514 
1515 	if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
1516 		DEBUGOUT("PHY Write Error\n");
1517 		return -E1000_ERR_PHY;
1518 	}
1519 	return 0;
1520 }
1521 
1522 /******************************************************************************
1523 * Sets the collision distance in the Transmit Control register
1524 *
1525 * hw - Struct containing variables accessed by shared code
1526 *
1527 * Link should have been established previously. Reads the speed and duplex
1528 * information from the Device Status register.
1529 ******************************************************************************/
1530 static void
1531 e1000_config_collision_dist(struct e1000_hw *hw)
1532 {
1533 	uint32_t tctl;
1534 
1535 	tctl = E1000_READ_REG(hw, TCTL);
1536 
1537 	tctl &= ~E1000_TCTL_COLD;
1538 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1539 
1540 	E1000_WRITE_REG(hw, TCTL, tctl);
1541 	E1000_WRITE_FLUSH(hw);
1542 }
1543 
1544 /******************************************************************************
1545 * Sets MAC speed and duplex settings to reflect the those in the PHY
1546 *
1547 * hw - Struct containing variables accessed by shared code
1548 * mii_reg - data to write to the MII control register
1549 *
1550 * The contents of the PHY register containing the needed information need to
1551 * be passed in.
1552 ******************************************************************************/
1553 static int
1554 e1000_config_mac_to_phy(struct e1000_hw *hw)
1555 {
1556 	uint32_t ctrl;
1557 	uint16_t phy_data;
1558 
1559 	DEBUGFUNC();
1560 
1561 	/* Read the Device Control Register and set the bits to Force Speed
1562 	 * and Duplex.
1563 	 */
1564 	ctrl = E1000_READ_REG(hw, CTRL);
1565 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1566 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1567 
1568 	/* Set up duplex in the Device Control and Transmit Control
1569 	 * registers depending on negotiated values.
1570 	 */
1571 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
1572 		DEBUGOUT("PHY Read Error\n");
1573 		return -E1000_ERR_PHY;
1574 	}
1575 	if (phy_data & M88E1000_PSSR_DPLX)
1576 		ctrl |= E1000_CTRL_FD;
1577 	else
1578 		ctrl &= ~E1000_CTRL_FD;
1579 
1580 	e1000_config_collision_dist(hw);
1581 
1582 	/* Set up speed in the Device Control register depending on
1583 	 * negotiated values.
1584 	 */
1585 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1586 		ctrl |= E1000_CTRL_SPD_1000;
1587 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1588 		ctrl |= E1000_CTRL_SPD_100;
1589 	/* Write the configured values back to the Device Control Reg. */
1590 	E1000_WRITE_REG(hw, CTRL, ctrl);
1591 	return 0;
1592 }
1593 
1594 /******************************************************************************
1595  * Forces the MAC's flow control settings.
1596  *
1597  * hw - Struct containing variables accessed by shared code
1598  *
1599  * Sets the TFCE and RFCE bits in the device control register to reflect
1600  * the adapter settings. TFCE and RFCE need to be explicitly set by
1601  * software when a Copper PHY is used because autonegotiation is managed
1602  * by the PHY rather than the MAC. Software must also configure these
1603  * bits when link is forced on a fiber connection.
1604  *****************************************************************************/
1605 static int
1606 e1000_force_mac_fc(struct e1000_hw *hw)
1607 {
1608 	uint32_t ctrl;
1609 
1610 	DEBUGFUNC();
1611 
1612 	/* Get the current configuration of the Device Control Register */
1613 	ctrl = E1000_READ_REG(hw, CTRL);
1614 
1615 	/* Because we didn't get link via the internal auto-negotiation
1616 	 * mechanism (we either forced link or we got link via PHY
1617 	 * auto-neg), we have to manually enable/disable transmit an
1618 	 * receive flow control.
1619 	 *
1620 	 * The "Case" statement below enables/disable flow control
1621 	 * according to the "hw->fc" parameter.
1622 	 *
1623 	 * The possible values of the "fc" parameter are:
1624 	 *      0:  Flow control is completely disabled
1625 	 *      1:  Rx flow control is enabled (we can receive pause
1626 	 *          frames but not send pause frames).
1627 	 *      2:  Tx flow control is enabled (we can send pause frames
1628 	 *          frames but we do not receive pause frames).
1629 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
1630 	 *  other:  No other values should be possible at this point.
1631 	 */
1632 
1633 	switch (hw->fc) {
1634 	case e1000_fc_none:
1635 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1636 		break;
1637 	case e1000_fc_rx_pause:
1638 		ctrl &= (~E1000_CTRL_TFCE);
1639 		ctrl |= E1000_CTRL_RFCE;
1640 		break;
1641 	case e1000_fc_tx_pause:
1642 		ctrl &= (~E1000_CTRL_RFCE);
1643 		ctrl |= E1000_CTRL_TFCE;
1644 		break;
1645 	case e1000_fc_full:
1646 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1647 		break;
1648 	default:
1649 		DEBUGOUT("Flow control param set incorrectly\n");
1650 		return -E1000_ERR_CONFIG;
1651 	}
1652 
1653 	/* Disable TX Flow Control for 82542 (rev 2.0) */
1654 	if (hw->mac_type == e1000_82542_rev2_0)
1655 		ctrl &= (~E1000_CTRL_TFCE);
1656 
1657 	E1000_WRITE_REG(hw, CTRL, ctrl);
1658 	return 0;
1659 }
1660 
1661 /******************************************************************************
1662  * Configures flow control settings after link is established
1663  *
1664  * hw - Struct containing variables accessed by shared code
1665  *
1666  * Should be called immediately after a valid link has been established.
1667  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1668  * and autonegotiation is enabled, the MAC flow control settings will be set
1669  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1670  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1671  *****************************************************************************/
1672 static int
1673 e1000_config_fc_after_link_up(struct e1000_hw *hw)
1674 {
1675 	int32_t ret_val;
1676 	uint16_t mii_status_reg;
1677 	uint16_t mii_nway_adv_reg;
1678 	uint16_t mii_nway_lp_ability_reg;
1679 	uint16_t speed;
1680 	uint16_t duplex;
1681 
1682 	DEBUGFUNC();
1683 
1684 	/* Check for the case where we have fiber media and auto-neg failed
1685 	 * so we had to force link.  In this case, we need to force the
1686 	 * configuration of the MAC to match the "fc" parameter.
1687 	 */
1688 	if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
1689 		ret_val = e1000_force_mac_fc(hw);
1690 		if (ret_val < 0) {
1691 			DEBUGOUT("Error forcing flow control settings\n");
1692 			return ret_val;
1693 		}
1694 	}
1695 
1696 	/* Check for the case where we have copper media and auto-neg is
1697 	 * enabled.  In this case, we need to check and see if Auto-Neg
1698 	 * has completed, and if so, how the PHY and link partner has
1699 	 * flow control configured.
1700 	 */
1701 	if (hw->media_type == e1000_media_type_copper) {
1702 		/* Read the MII Status Register and check to see if AutoNeg
1703 		 * has completed.  We read this twice because this reg has
1704 		 * some "sticky" (latched) bits.
1705 		 */
1706 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1707 			DEBUGOUT("PHY Read Error \n");
1708 			return -E1000_ERR_PHY;
1709 		}
1710 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1711 			DEBUGOUT("PHY Read Error \n");
1712 			return -E1000_ERR_PHY;
1713 		}
1714 
1715 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
1716 			/* The AutoNeg process has completed, so we now need to
1717 			 * read both the Auto Negotiation Advertisement Register
1718 			 * (Address 4) and the Auto_Negotiation Base Page Ability
1719 			 * Register (Address 5) to determine how flow control was
1720 			 * negotiated.
1721 			 */
1722 			if (e1000_read_phy_reg
1723 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
1724 				DEBUGOUT("PHY Read Error\n");
1725 				return -E1000_ERR_PHY;
1726 			}
1727 			if (e1000_read_phy_reg
1728 			    (hw, PHY_LP_ABILITY,
1729 			     &mii_nway_lp_ability_reg) < 0) {
1730 				DEBUGOUT("PHY Read Error\n");
1731 				return -E1000_ERR_PHY;
1732 			}
1733 
1734 			/* Two bits in the Auto Negotiation Advertisement Register
1735 			 * (Address 4) and two bits in the Auto Negotiation Base
1736 			 * Page Ability Register (Address 5) determine flow control
1737 			 * for both the PHY and the link partner.  The following
1738 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1739 			 * 1999, describes these PAUSE resolution bits and how flow
1740 			 * control is determined based upon these settings.
1741 			 * NOTE:  DC = Don't Care
1742 			 *
1743 			 *   LOCAL DEVICE  |   LINK PARTNER
1744 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1745 			 *-------|---------|-------|---------|--------------------
1746 			 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1747 			 *   0   |    1    |   0   |   DC    | e1000_fc_none
1748 			 *   0   |    1    |   1   |    0    | e1000_fc_none
1749 			 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1750 			 *   1   |    0    |   0   |   DC    | e1000_fc_none
1751 			 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1752 			 *   1   |    1    |   0   |    0    | e1000_fc_none
1753 			 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1754 			 *
1755 			 */
1756 			/* Are both PAUSE bits set to 1?  If so, this implies
1757 			 * Symmetric Flow Control is enabled at both ends.  The
1758 			 * ASM_DIR bits are irrelevant per the spec.
1759 			 *
1760 			 * For Symmetric Flow Control:
1761 			 *
1762 			 *   LOCAL DEVICE  |   LINK PARTNER
1763 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1764 			 *-------|---------|-------|---------|--------------------
1765 			 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1766 			 *
1767 			 */
1768 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1769 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1770 				/* Now we need to check if the user selected RX ONLY
1771 				 * of pause frames.  In this case, we had to advertise
1772 				 * FULL flow control because we could not advertise RX
1773 				 * ONLY. Hence, we must now check to see if we need to
1774 				 * turn OFF  the TRANSMISSION of PAUSE frames.
1775 				 */
1776 				if (hw->original_fc == e1000_fc_full) {
1777 					hw->fc = e1000_fc_full;
1778 					DEBUGOUT("Flow Control = FULL.\r\n");
1779 				} else {
1780 					hw->fc = e1000_fc_rx_pause;
1781 					DEBUGOUT
1782 					    ("Flow Control = RX PAUSE frames only.\r\n");
1783 				}
1784 			}
1785 			/* For receiving PAUSE frames ONLY.
1786 			 *
1787 			 *   LOCAL DEVICE  |   LINK PARTNER
1788 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1789 			 *-------|---------|-------|---------|--------------------
1790 			 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1791 			 *
1792 			 */
1793 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1794 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1795 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1796 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1797 			{
1798 				hw->fc = e1000_fc_tx_pause;
1799 				DEBUGOUT
1800 				    ("Flow Control = TX PAUSE frames only.\r\n");
1801 			}
1802 			/* For transmitting PAUSE frames ONLY.
1803 			 *
1804 			 *   LOCAL DEVICE  |   LINK PARTNER
1805 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1806 			 *-------|---------|-------|---------|--------------------
1807 			 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1808 			 *
1809 			 */
1810 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1811 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1812 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1813 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1814 			{
1815 				hw->fc = e1000_fc_rx_pause;
1816 				DEBUGOUT
1817 				    ("Flow Control = RX PAUSE frames only.\r\n");
1818 			}
1819 			/* Per the IEEE spec, at this point flow control should be
1820 			 * disabled.  However, we want to consider that we could
1821 			 * be connected to a legacy switch that doesn't advertise
1822 			 * desired flow control, but can be forced on the link
1823 			 * partner.  So if we advertised no flow control, that is
1824 			 * what we will resolve to.  If we advertised some kind of
1825 			 * receive capability (Rx Pause Only or Full Flow Control)
1826 			 * and the link partner advertised none, we will configure
1827 			 * ourselves to enable Rx Flow Control only.  We can do
1828 			 * this safely for two reasons:  If the link partner really
1829 			 * didn't want flow control enabled, and we enable Rx, no
1830 			 * harm done since we won't be receiving any PAUSE frames
1831 			 * anyway.  If the intent on the link partner was to have
1832 			 * flow control enabled, then by us enabling RX only, we
1833 			 * can at least receive pause frames and process them.
1834 			 * This is a good idea because in most cases, since we are
1835 			 * predominantly a server NIC, more times than not we will
1836 			 * be asked to delay transmission of packets than asking
1837 			 * our link partner to pause transmission of frames.
1838 			 */
1839 			else if (hw->original_fc == e1000_fc_none ||
1840 				 hw->original_fc == e1000_fc_tx_pause) {
1841 				hw->fc = e1000_fc_none;
1842 				DEBUGOUT("Flow Control = NONE.\r\n");
1843 			} else {
1844 				hw->fc = e1000_fc_rx_pause;
1845 				DEBUGOUT
1846 				    ("Flow Control = RX PAUSE frames only.\r\n");
1847 			}
1848 
1849 			/* Now we need to do one last check...  If we auto-
1850 			 * negotiated to HALF DUPLEX, flow control should not be
1851 			 * enabled per IEEE 802.3 spec.
1852 			 */
1853 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
1854 
1855 			if (duplex == HALF_DUPLEX)
1856 				hw->fc = e1000_fc_none;
1857 
1858 			/* Now we call a subroutine to actually force the MAC
1859 			 * controller to use the correct flow control settings.
1860 			 */
1861 			ret_val = e1000_force_mac_fc(hw);
1862 			if (ret_val < 0) {
1863 				DEBUGOUT
1864 				    ("Error forcing flow control settings\n");
1865 				return ret_val;
1866 			}
1867 		} else {
1868 			DEBUGOUT
1869 			    ("Copper PHY and Auto Neg has not completed.\r\n");
1870 		}
1871 	}
1872 	return 0;
1873 }
1874 
1875 /******************************************************************************
1876  * Checks to see if the link status of the hardware has changed.
1877  *
1878  * hw - Struct containing variables accessed by shared code
1879  *
1880  * Called by any function that needs to check the link status of the adapter.
1881  *****************************************************************************/
1882 static int
1883 e1000_check_for_link(struct eth_device *nic)
1884 {
1885 	struct e1000_hw *hw = nic->priv;
1886 	uint32_t rxcw;
1887 	uint32_t ctrl;
1888 	uint32_t status;
1889 	uint32_t rctl;
1890 	uint32_t signal;
1891 	int32_t ret_val;
1892 	uint16_t phy_data;
1893 	uint16_t lp_capability;
1894 
1895 	DEBUGFUNC();
1896 
1897 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1898 	 * set when the optics detect a signal. On older adapters, it will be
1899 	 * cleared when there is a signal
1900 	 */
1901 	ctrl = E1000_READ_REG(hw, CTRL);
1902 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1903 		signal = E1000_CTRL_SWDPIN1;
1904 	else
1905 		signal = 0;
1906 
1907 	status = E1000_READ_REG(hw, STATUS);
1908 	rxcw = E1000_READ_REG(hw, RXCW);
1909 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
1910 
1911 	/* If we have a copper PHY then we only want to go out to the PHY
1912 	 * registers to see if Auto-Neg has completed and/or if our link
1913 	 * status has changed.  The get_link_status flag will be set if we
1914 	 * receive a Link Status Change interrupt or we have Rx Sequence
1915 	 * Errors.
1916 	 */
1917 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
1918 		/* First we want to see if the MII Status Register reports
1919 		 * link.  If so, then we want to get the current speed/duplex
1920 		 * of the PHY.
1921 		 * Read the register twice since the link bit is sticky.
1922 		 */
1923 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1924 			DEBUGOUT("PHY Read Error\n");
1925 			return -E1000_ERR_PHY;
1926 		}
1927 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1928 			DEBUGOUT("PHY Read Error\n");
1929 			return -E1000_ERR_PHY;
1930 		}
1931 
1932 		if (phy_data & MII_SR_LINK_STATUS) {
1933 			hw->get_link_status = FALSE;
1934 		} else {
1935 			/* No link detected */
1936 			return -E1000_ERR_NOLINK;
1937 		}
1938 
1939 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1940 		 * have Si on board that is 82544 or newer, Auto
1941 		 * Speed Detection takes care of MAC speed/duplex
1942 		 * configuration.  So we only need to configure Collision
1943 		 * Distance in the MAC.  Otherwise, we need to force
1944 		 * speed/duplex on the MAC to the current PHY speed/duplex
1945 		 * settings.
1946 		 */
1947 		if (hw->mac_type >= e1000_82544)
1948 			e1000_config_collision_dist(hw);
1949 		else {
1950 			ret_val = e1000_config_mac_to_phy(hw);
1951 			if (ret_val < 0) {
1952 				DEBUGOUT
1953 				    ("Error configuring MAC to PHY settings\n");
1954 				return ret_val;
1955 			}
1956 		}
1957 
1958 		/* Configure Flow Control now that Auto-Neg has completed. First, we
1959 		 * need to restore the desired flow control settings because we may
1960 		 * have had to re-autoneg with a different link partner.
1961 		 */
1962 		ret_val = e1000_config_fc_after_link_up(hw);
1963 		if (ret_val < 0) {
1964 			DEBUGOUT("Error configuring flow control\n");
1965 			return ret_val;
1966 		}
1967 
1968 		/* At this point we know that we are on copper and we have
1969 		 * auto-negotiated link.  These are conditions for checking the link
1970 		 * parter capability register.  We use the link partner capability to
1971 		 * determine if TBI Compatibility needs to be turned on or off.  If
1972 		 * the link partner advertises any speed in addition to Gigabit, then
1973 		 * we assume that they are GMII-based, and TBI compatibility is not
1974 		 * needed. If no other speeds are advertised, we assume the link
1975 		 * partner is TBI-based, and we turn on TBI Compatibility.
1976 		 */
1977 		if (hw->tbi_compatibility_en) {
1978 			if (e1000_read_phy_reg
1979 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
1980 				DEBUGOUT("PHY Read Error\n");
1981 				return -E1000_ERR_PHY;
1982 			}
1983 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
1984 					     NWAY_LPAR_10T_FD_CAPS |
1985 					     NWAY_LPAR_100TX_HD_CAPS |
1986 					     NWAY_LPAR_100TX_FD_CAPS |
1987 					     NWAY_LPAR_100T4_CAPS)) {
1988 				/* If our link partner advertises anything in addition to
1989 				 * gigabit, we do not need to enable TBI compatibility.
1990 				 */
1991 				if (hw->tbi_compatibility_on) {
1992 					/* If we previously were in the mode, turn it off. */
1993 					rctl = E1000_READ_REG(hw, RCTL);
1994 					rctl &= ~E1000_RCTL_SBP;
1995 					E1000_WRITE_REG(hw, RCTL, rctl);
1996 					hw->tbi_compatibility_on = FALSE;
1997 				}
1998 			} else {
1999 				/* If TBI compatibility is was previously off, turn it on. For
2000 				 * compatibility with a TBI link partner, we will store bad
2001 				 * packets. Some frames have an additional byte on the end and
2002 				 * will look like CRC errors to to the hardware.
2003 				 */
2004 				if (!hw->tbi_compatibility_on) {
2005 					hw->tbi_compatibility_on = TRUE;
2006 					rctl = E1000_READ_REG(hw, RCTL);
2007 					rctl |= E1000_RCTL_SBP;
2008 					E1000_WRITE_REG(hw, RCTL, rctl);
2009 				}
2010 			}
2011 		}
2012 	}
2013 	/* If we don't have link (auto-negotiation failed or link partner cannot
2014 	 * auto-negotiate), the cable is plugged in (we have signal), and our
2015 	 * link partner is not trying to auto-negotiate with us (we are receiving
2016 	 * idles or data), we need to force link up. We also need to give
2017 	 * auto-negotiation time to complete, in case the cable was just plugged
2018 	 * in. The autoneg_failed flag does this.
2019 	 */
2020 	else if ((hw->media_type == e1000_media_type_fiber) &&
2021 		 (!(status & E1000_STATUS_LU)) &&
2022 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
2023 		 (!(rxcw & E1000_RXCW_C))) {
2024 		if (hw->autoneg_failed == 0) {
2025 			hw->autoneg_failed = 1;
2026 			return 0;
2027 		}
2028 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2029 
2030 		/* Disable auto-negotiation in the TXCW register */
2031 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2032 
2033 		/* Force link-up and also force full-duplex. */
2034 		ctrl = E1000_READ_REG(hw, CTRL);
2035 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2036 		E1000_WRITE_REG(hw, CTRL, ctrl);
2037 
2038 		/* Configure Flow Control after forcing link up. */
2039 		ret_val = e1000_config_fc_after_link_up(hw);
2040 		if (ret_val < 0) {
2041 			DEBUGOUT("Error configuring flow control\n");
2042 			return ret_val;
2043 		}
2044 	}
2045 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2046 	 * auto-negotiation in the TXCW register and disable forced link in the
2047 	 * Device Control register in an attempt to auto-negotiate with our link
2048 	 * partner.
2049 	 */
2050 	else if ((hw->media_type == e1000_media_type_fiber) &&
2051 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2052 		DEBUGOUT
2053 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2054 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
2055 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2056 	}
2057 	return 0;
2058 }
2059 
2060 /******************************************************************************
2061  * Detects the current speed and duplex settings of the hardware.
2062  *
2063  * hw - Struct containing variables accessed by shared code
2064  * speed - Speed of the connection
2065  * duplex - Duplex setting of the connection
2066  *****************************************************************************/
2067 static void
2068 e1000_get_speed_and_duplex(struct e1000_hw *hw,
2069 			   uint16_t * speed, uint16_t * duplex)
2070 {
2071 	uint32_t status;
2072 
2073 	DEBUGFUNC();
2074 
2075 	if (hw->mac_type >= e1000_82543) {
2076 		status = E1000_READ_REG(hw, STATUS);
2077 		if (status & E1000_STATUS_SPEED_1000) {
2078 			*speed = SPEED_1000;
2079 			DEBUGOUT("1000 Mbs, ");
2080 		} else if (status & E1000_STATUS_SPEED_100) {
2081 			*speed = SPEED_100;
2082 			DEBUGOUT("100 Mbs, ");
2083 		} else {
2084 			*speed = SPEED_10;
2085 			DEBUGOUT("10 Mbs, ");
2086 		}
2087 
2088 		if (status & E1000_STATUS_FD) {
2089 			*duplex = FULL_DUPLEX;
2090 			DEBUGOUT("Full Duplex\r\n");
2091 		} else {
2092 			*duplex = HALF_DUPLEX;
2093 			DEBUGOUT(" Half Duplex\r\n");
2094 		}
2095 	} else {
2096 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2097 		*speed = SPEED_1000;
2098 		*duplex = FULL_DUPLEX;
2099 	}
2100 }
2101 
2102 /******************************************************************************
2103 * Blocks until autoneg completes or times out (~4.5 seconds)
2104 *
2105 * hw - Struct containing variables accessed by shared code
2106 ******************************************************************************/
2107 static int
2108 e1000_wait_autoneg(struct e1000_hw *hw)
2109 {
2110 	uint16_t i;
2111 	uint16_t phy_data;
2112 
2113 	DEBUGFUNC();
2114 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2115 
2116 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2117 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2118 		/* Read the MII Status Register and wait for Auto-Neg
2119 		 * Complete bit to be set.
2120 		 */
2121 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2122 			DEBUGOUT("PHY Read Error\n");
2123 			return -E1000_ERR_PHY;
2124 		}
2125 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2126 			DEBUGOUT("PHY Read Error\n");
2127 			return -E1000_ERR_PHY;
2128 		}
2129 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2130 			DEBUGOUT("Auto-Neg complete.\n");
2131 			return 0;
2132 		}
2133 		mdelay(100);
2134 	}
2135 	DEBUGOUT("Auto-Neg timedout.\n");
2136 	return -E1000_ERR_TIMEOUT;
2137 }
2138 
2139 /******************************************************************************
2140 * Raises the Management Data Clock
2141 *
2142 * hw - Struct containing variables accessed by shared code
2143 * ctrl - Device control register's current value
2144 ******************************************************************************/
2145 static void
2146 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2147 {
2148 	/* Raise the clock input to the Management Data Clock (by setting the MDC
2149 	 * bit), and then delay 2 microseconds.
2150 	 */
2151 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2152 	E1000_WRITE_FLUSH(hw);
2153 	udelay(2);
2154 }
2155 
2156 /******************************************************************************
2157 * Lowers the Management Data Clock
2158 *
2159 * hw - Struct containing variables accessed by shared code
2160 * ctrl - Device control register's current value
2161 ******************************************************************************/
2162 static void
2163 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2164 {
2165 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
2166 	 * bit), and then delay 2 microseconds.
2167 	 */
2168 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2169 	E1000_WRITE_FLUSH(hw);
2170 	udelay(2);
2171 }
2172 
2173 /******************************************************************************
2174 * Shifts data bits out to the PHY
2175 *
2176 * hw - Struct containing variables accessed by shared code
2177 * data - Data to send out to the PHY
2178 * count - Number of bits to shift out
2179 *
2180 * Bits are shifted out in MSB to LSB order.
2181 ******************************************************************************/
2182 static void
2183 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
2184 {
2185 	uint32_t ctrl;
2186 	uint32_t mask;
2187 
2188 	/* We need to shift "count" number of bits out to the PHY. So, the value
2189 	 * in the "data" parameter will be shifted out to the PHY one bit at a
2190 	 * time. In order to do this, "data" must be broken down into bits.
2191 	 */
2192 	mask = 0x01;
2193 	mask <<= (count - 1);
2194 
2195 	ctrl = E1000_READ_REG(hw, CTRL);
2196 
2197 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2198 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2199 
2200 	while (mask) {
2201 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2202 		 * then raising and lowering the Management Data Clock. A "0" is
2203 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
2204 		 * raising and lowering the clock.
2205 		 */
2206 		if (data & mask)
2207 			ctrl |= E1000_CTRL_MDIO;
2208 		else
2209 			ctrl &= ~E1000_CTRL_MDIO;
2210 
2211 		E1000_WRITE_REG(hw, CTRL, ctrl);
2212 		E1000_WRITE_FLUSH(hw);
2213 
2214 		udelay(2);
2215 
2216 		e1000_raise_mdi_clk(hw, &ctrl);
2217 		e1000_lower_mdi_clk(hw, &ctrl);
2218 
2219 		mask = mask >> 1;
2220 	}
2221 }
2222 
2223 /******************************************************************************
2224 * Shifts data bits in from the PHY
2225 *
2226 * hw - Struct containing variables accessed by shared code
2227 *
2228 * Bits are shifted in in MSB to LSB order.
2229 ******************************************************************************/
2230 static uint16_t
2231 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2232 {
2233 	uint32_t ctrl;
2234 	uint16_t data = 0;
2235 	uint8_t i;
2236 
2237 	/* In order to read a register from the PHY, we need to shift in a total
2238 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2239 	 * to avoid contention on the MDIO pin when a read operation is performed.
2240 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2241 	 * by raising the input to the Management Data Clock (setting the MDC bit),
2242 	 * and then reading the value of the MDIO bit.
2243 	 */
2244 	ctrl = E1000_READ_REG(hw, CTRL);
2245 
2246 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2247 	ctrl &= ~E1000_CTRL_MDIO_DIR;
2248 	ctrl &= ~E1000_CTRL_MDIO;
2249 
2250 	E1000_WRITE_REG(hw, CTRL, ctrl);
2251 	E1000_WRITE_FLUSH(hw);
2252 
2253 	/* Raise and Lower the clock before reading in the data. This accounts for
2254 	 * the turnaround bits. The first clock occurred when we clocked out the
2255 	 * last bit of the Register Address.
2256 	 */
2257 	e1000_raise_mdi_clk(hw, &ctrl);
2258 	e1000_lower_mdi_clk(hw, &ctrl);
2259 
2260 	for (data = 0, i = 0; i < 16; i++) {
2261 		data = data << 1;
2262 		e1000_raise_mdi_clk(hw, &ctrl);
2263 		ctrl = E1000_READ_REG(hw, CTRL);
2264 		/* Check to see if we shifted in a "1". */
2265 		if (ctrl & E1000_CTRL_MDIO)
2266 			data |= 1;
2267 		e1000_lower_mdi_clk(hw, &ctrl);
2268 	}
2269 
2270 	e1000_raise_mdi_clk(hw, &ctrl);
2271 	e1000_lower_mdi_clk(hw, &ctrl);
2272 
2273 	return data;
2274 }
2275 
2276 /*****************************************************************************
2277 * Reads the value from a PHY register
2278 *
2279 * hw - Struct containing variables accessed by shared code
2280 * reg_addr - address of the PHY register to read
2281 ******************************************************************************/
2282 static int
2283 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
2284 {
2285 	uint32_t i;
2286 	uint32_t mdic = 0;
2287 	const uint32_t phy_addr = 1;
2288 
2289 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2290 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2291 		return -E1000_ERR_PARAM;
2292 	}
2293 
2294 	if (hw->mac_type > e1000_82543) {
2295 		/* Set up Op-code, Phy Address, and register address in the MDI
2296 		 * Control register.  The MAC will take care of interfacing with the
2297 		 * PHY to retrieve the desired data.
2298 		 */
2299 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2300 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
2301 			(E1000_MDIC_OP_READ));
2302 
2303 		E1000_WRITE_REG(hw, MDIC, mdic);
2304 
2305 		/* Poll the ready bit to see if the MDI read completed */
2306 		for (i = 0; i < 64; i++) {
2307 			udelay(10);
2308 			mdic = E1000_READ_REG(hw, MDIC);
2309 			if (mdic & E1000_MDIC_READY)
2310 				break;
2311 		}
2312 		if (!(mdic & E1000_MDIC_READY)) {
2313 			DEBUGOUT("MDI Read did not complete\n");
2314 			return -E1000_ERR_PHY;
2315 		}
2316 		if (mdic & E1000_MDIC_ERROR) {
2317 			DEBUGOUT("MDI Error\n");
2318 			return -E1000_ERR_PHY;
2319 		}
2320 		*phy_data = (uint16_t) mdic;
2321 	} else {
2322 		/* We must first send a preamble through the MDIO pin to signal the
2323 		 * beginning of an MII instruction.  This is done by sending 32
2324 		 * consecutive "1" bits.
2325 		 */
2326 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2327 
2328 		/* Now combine the next few fields that are required for a read
2329 		 * operation.  We use this method instead of calling the
2330 		 * e1000_shift_out_mdi_bits routine five different times. The format of
2331 		 * a MII read instruction consists of a shift out of 14 bits and is
2332 		 * defined as follows:
2333 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2334 		 * followed by a shift in of 18 bits.  This first two bits shifted in
2335 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
2336 		 * READ operation is performed.  These two bits are thrown away
2337 		 * followed by a shift in of 16 bits which contains the desired data.
2338 		 */
2339 		mdic = ((reg_addr) | (phy_addr << 5) |
2340 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2341 
2342 		e1000_shift_out_mdi_bits(hw, mdic, 14);
2343 
2344 		/* Now that we've shifted out the read command to the MII, we need to
2345 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2346 		 * register address.
2347 		 */
2348 		*phy_data = e1000_shift_in_mdi_bits(hw);
2349 	}
2350 	return 0;
2351 }
2352 
2353 /******************************************************************************
2354 * Writes a value to a PHY register
2355 *
2356 * hw - Struct containing variables accessed by shared code
2357 * reg_addr - address of the PHY register to write
2358 * data - data to write to the PHY
2359 ******************************************************************************/
2360 static int
2361 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
2362 {
2363 	uint32_t i;
2364 	uint32_t mdic = 0;
2365 	const uint32_t phy_addr = 1;
2366 
2367 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2368 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2369 		return -E1000_ERR_PARAM;
2370 	}
2371 
2372 	if (hw->mac_type > e1000_82543) {
2373 		/* Set up Op-code, Phy Address, register address, and data intended
2374 		 * for the PHY register in the MDI Control register.  The MAC will take
2375 		 * care of interfacing with the PHY to send the desired data.
2376 		 */
2377 		mdic = (((uint32_t) phy_data) |
2378 			(reg_addr << E1000_MDIC_REG_SHIFT) |
2379 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
2380 			(E1000_MDIC_OP_WRITE));
2381 
2382 		E1000_WRITE_REG(hw, MDIC, mdic);
2383 
2384 		/* Poll the ready bit to see if the MDI read completed */
2385 		for (i = 0; i < 64; i++) {
2386 			udelay(10);
2387 			mdic = E1000_READ_REG(hw, MDIC);
2388 			if (mdic & E1000_MDIC_READY)
2389 				break;
2390 		}
2391 		if (!(mdic & E1000_MDIC_READY)) {
2392 			DEBUGOUT("MDI Write did not complete\n");
2393 			return -E1000_ERR_PHY;
2394 		}
2395 	} else {
2396 		/* We'll need to use the SW defined pins to shift the write command
2397 		 * out to the PHY. We first send a preamble to the PHY to signal the
2398 		 * beginning of the MII instruction.  This is done by sending 32
2399 		 * consecutive "1" bits.
2400 		 */
2401 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2402 
2403 		/* Now combine the remaining required fields that will indicate a
2404 		 * write operation. We use this method instead of calling the
2405 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
2406 		 * format of a MII write instruction is as follows:
2407 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2408 		 */
2409 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2410 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2411 		mdic <<= 16;
2412 		mdic |= (uint32_t) phy_data;
2413 
2414 		e1000_shift_out_mdi_bits(hw, mdic, 32);
2415 	}
2416 	return 0;
2417 }
2418 
2419 /******************************************************************************
2420 * Returns the PHY to the power-on reset state
2421 *
2422 * hw - Struct containing variables accessed by shared code
2423 ******************************************************************************/
2424 static void
2425 e1000_phy_hw_reset(struct e1000_hw *hw)
2426 {
2427 	uint32_t ctrl;
2428 	uint32_t ctrl_ext;
2429 
2430 	DEBUGFUNC();
2431 
2432 	DEBUGOUT("Resetting Phy...\n");
2433 
2434 	if (hw->mac_type > e1000_82543) {
2435 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
2436 		 * bit. Then, take it out of reset.
2437 		 */
2438 		ctrl = E1000_READ_REG(hw, CTRL);
2439 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2440 		E1000_WRITE_FLUSH(hw);
2441 		mdelay(10);
2442 		E1000_WRITE_REG(hw, CTRL, ctrl);
2443 		E1000_WRITE_FLUSH(hw);
2444 	} else {
2445 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2446 		 * bit to put the PHY into reset. Then, take it out of reset.
2447 		 */
2448 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2449 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2450 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2451 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2452 		E1000_WRITE_FLUSH(hw);
2453 		mdelay(10);
2454 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2455 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2456 		E1000_WRITE_FLUSH(hw);
2457 	}
2458 	udelay(150);
2459 }
2460 
2461 /******************************************************************************
2462 * Resets the PHY
2463 *
2464 * hw - Struct containing variables accessed by shared code
2465 *
2466 * Sets bit 15 of the MII Control regiser
2467 ******************************************************************************/
2468 static int
2469 e1000_phy_reset(struct e1000_hw *hw)
2470 {
2471 	uint16_t phy_data;
2472 
2473 	DEBUGFUNC();
2474 
2475 	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
2476 		DEBUGOUT("PHY Read Error\n");
2477 		return -E1000_ERR_PHY;
2478 	}
2479 	phy_data |= MII_CR_RESET;
2480 	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
2481 		DEBUGOUT("PHY Write Error\n");
2482 		return -E1000_ERR_PHY;
2483 	}
2484 	udelay(1);
2485 	return 0;
2486 }
2487 
2488 /******************************************************************************
2489 * Probes the expected PHY address for known PHY IDs
2490 *
2491 * hw - Struct containing variables accessed by shared code
2492 ******************************************************************************/
2493 static int
2494 e1000_detect_gig_phy(struct e1000_hw *hw)
2495 {
2496 	uint16_t phy_id_high, phy_id_low;
2497 	int match = FALSE;
2498 
2499 	DEBUGFUNC();
2500 
2501 	/* Read the PHY ID Registers to identify which PHY is onboard. */
2502 	if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
2503 		DEBUGOUT("PHY Read Error\n");
2504 		return -E1000_ERR_PHY;
2505 	}
2506 	hw->phy_id = (uint32_t) (phy_id_high << 16);
2507 	udelay(2);
2508 	if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
2509 		DEBUGOUT("PHY Read Error\n");
2510 		return -E1000_ERR_PHY;
2511 	}
2512 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2513 
2514 	switch (hw->mac_type) {
2515 	case e1000_82543:
2516 		if (hw->phy_id == M88E1000_E_PHY_ID)
2517 			match = TRUE;
2518 		break;
2519 	case e1000_82544:
2520 		if (hw->phy_id == M88E1000_I_PHY_ID)
2521 			match = TRUE;
2522 		break;
2523 	case e1000_82540:
2524 	case e1000_82545:
2525 	case e1000_82546:
2526 		if (hw->phy_id == M88E1011_I_PHY_ID)
2527 			match = TRUE;
2528 		break;
2529 	default:
2530 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
2531 		return -E1000_ERR_CONFIG;
2532 	}
2533 	if (match) {
2534 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
2535 		return 0;
2536 	}
2537 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
2538 	return -E1000_ERR_PHY;
2539 }
2540 
2541 /**
2542  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2543  *
2544  * e1000_sw_init initializes the Adapter private data structure.
2545  * Fields are initialized based on PCI device information and
2546  * OS network device settings (MTU size).
2547  **/
2548 
2549 static int
2550 e1000_sw_init(struct eth_device *nic, int cardnum)
2551 {
2552 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
2553 	int result;
2554 
2555 	/* PCI config space info */
2556 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
2557 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
2558 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
2559 			     &hw->subsystem_vendor_id);
2560 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
2561 
2562 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
2563 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
2564 
2565 	/* identify the MAC */
2566 	result = e1000_set_mac_type(hw);
2567 	if (result) {
2568 		E1000_ERR("Unknown MAC Type\n");
2569 		return result;
2570 	}
2571 
2572 	/* lan a vs. lan b settings */
2573 	if (hw->mac_type == e1000_82546)
2574 		/*this also works w/ multiple 82546 cards */
2575 		/*but not if they're intermingled /w other e1000s */
2576 		hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
2577 	else
2578 		hw->lan_loc = e1000_lan_a;
2579 
2580 	/* flow control settings */
2581 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
2582 	hw->fc_low_water = E1000_FC_LOW_THRESH;
2583 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
2584 	hw->fc_send_xon = 1;
2585 
2586 	/* Media type - copper or fiber */
2587 
2588 	if (hw->mac_type >= e1000_82543) {
2589 		uint32_t status = E1000_READ_REG(hw, STATUS);
2590 
2591 		if (status & E1000_STATUS_TBIMODE) {
2592 			DEBUGOUT("fiber interface\n");
2593 			hw->media_type = e1000_media_type_fiber;
2594 		} else {
2595 			DEBUGOUT("copper interface\n");
2596 			hw->media_type = e1000_media_type_copper;
2597 		}
2598 	} else {
2599 		hw->media_type = e1000_media_type_fiber;
2600 	}
2601 
2602 	if (hw->mac_type < e1000_82543)
2603 		hw->report_tx_early = 0;
2604 	else
2605 		hw->report_tx_early = 1;
2606 
2607 	hw->tbi_compatibility_en = TRUE;
2608 #if 0
2609 	hw->wait_autoneg_complete = FALSE;
2610 	hw->adaptive_ifs = TRUE;
2611 
2612 	/* Copper options */
2613 	if (hw->media_type == e1000_media_type_copper) {
2614 		hw->mdix = AUTO_ALL_MODES;
2615 		hw->disable_polarity_correction = FALSE;
2616 	}
2617 #endif
2618 	return E1000_SUCCESS;
2619 }
2620 
2621 void
2622 fill_rx(struct e1000_hw *hw)
2623 {
2624 	struct e1000_rx_desc *rd;
2625 
2626 	rx_last = rx_tail;
2627 	rd = rx_base + rx_tail;
2628 	rx_tail = (rx_tail + 1) % 8;
2629 	memset(rd, 0, 16);
2630 	rd->buffer_addr = cpu_to_le64((u32) & packet);
2631 	E1000_WRITE_REG(hw, RDT, rx_tail);
2632 }
2633 
2634 /**
2635  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2636  * @adapter: board private structure
2637  *
2638  * Configure the Tx unit of the MAC after a reset.
2639  **/
2640 
2641 static void
2642 e1000_configure_tx(struct e1000_hw *hw)
2643 {
2644 	unsigned long ptr;
2645 	unsigned long tctl;
2646 	unsigned long tipg;
2647 
2648 	ptr = (u32) tx_pool;
2649 	if (ptr & 0xf)
2650 		ptr = (ptr + 0x10) & (~0xf);
2651 
2652 	tx_base = (typeof(tx_base)) ptr;
2653 
2654 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
2655 	E1000_WRITE_REG(hw, TDBAH, 0);
2656 
2657 	E1000_WRITE_REG(hw, TDLEN, 128);
2658 
2659 	/* Setup the HW Tx Head and Tail descriptor pointers */
2660 	E1000_WRITE_REG(hw, TDH, 0);
2661 	E1000_WRITE_REG(hw, TDT, 0);
2662 	tx_tail = 0;
2663 
2664 	/* Set the default values for the Tx Inter Packet Gap timer */
2665 	switch (hw->mac_type) {
2666 	case e1000_82542_rev2_0:
2667 	case e1000_82542_rev2_1:
2668 		tipg = DEFAULT_82542_TIPG_IPGT;
2669 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2670 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2671 		break;
2672 	default:
2673 		if (hw->media_type == e1000_media_type_fiber)
2674 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2675 		else
2676 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2677 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2678 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2679 	}
2680 	E1000_WRITE_REG(hw, TIPG, tipg);
2681 #if 0
2682 	/* Set the Tx Interrupt Delay register */
2683 	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
2684 	if (hw->mac_type >= e1000_82540)
2685 		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
2686 #endif
2687 	/* Program the Transmit Control Register */
2688 	tctl = E1000_READ_REG(hw, TCTL);
2689 	tctl &= ~E1000_TCTL_CT;
2690 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
2691 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2692 	E1000_WRITE_REG(hw, TCTL, tctl);
2693 
2694 	e1000_config_collision_dist(hw);
2695 #if 0
2696 	/* Setup Transmit Descriptor Settings for this adapter */
2697 	adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
2698 
2699 	if (adapter->hw.report_tx_early == 1)
2700 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
2701 	else
2702 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
2703 #endif
2704 }
2705 
2706 /**
2707  * e1000_setup_rctl - configure the receive control register
2708  * @adapter: Board private structure
2709  **/
2710 static void
2711 e1000_setup_rctl(struct e1000_hw *hw)
2712 {
2713 	uint32_t rctl;
2714 
2715 	rctl = E1000_READ_REG(hw, RCTL);
2716 
2717 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2718 
2719 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF;	/* |
2720 												   (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
2721 
2722 	if (hw->tbi_compatibility_on == 1)
2723 		rctl |= E1000_RCTL_SBP;
2724 	else
2725 		rctl &= ~E1000_RCTL_SBP;
2726 
2727 	rctl &= ~(E1000_RCTL_SZ_4096);
2728 #if 0
2729 	switch (adapter->rx_buffer_len) {
2730 	case E1000_RXBUFFER_2048:
2731 	default:
2732 #endif
2733 		rctl |= E1000_RCTL_SZ_2048;
2734 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
2735 #if 0
2736 		break;
2737 	case E1000_RXBUFFER_4096:
2738 		rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2739 		break;
2740 	case E1000_RXBUFFER_8192:
2741 		rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2742 		break;
2743 	case E1000_RXBUFFER_16384:
2744 		rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2745 		break;
2746 	}
2747 #endif
2748 	E1000_WRITE_REG(hw, RCTL, rctl);
2749 }
2750 
2751 /**
2752  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2753  * @adapter: board private structure
2754  *
2755  * Configure the Rx unit of the MAC after a reset.
2756  **/
2757 static void
2758 e1000_configure_rx(struct e1000_hw *hw)
2759 {
2760 	unsigned long ptr;
2761 	unsigned long rctl;
2762 #if 0
2763 	unsigned long rxcsum;
2764 #endif
2765 	rx_tail = 0;
2766 	/* make sure receives are disabled while setting up the descriptors */
2767 	rctl = E1000_READ_REG(hw, RCTL);
2768 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2769 #if 0
2770 	/* set the Receive Delay Timer Register */
2771 
2772 	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2773 #endif
2774 	if (hw->mac_type >= e1000_82540) {
2775 #if 0
2776 		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2777 #endif
2778 		/* Set the interrupt throttling rate.  Value is calculated
2779 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
2780 #define MAX_INTS_PER_SEC        8000
2781 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
2782 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
2783 	}
2784 
2785 	/* Setup the Base and Length of the Rx Descriptor Ring */
2786 	ptr = (u32) rx_pool;
2787 	if (ptr & 0xf)
2788 		ptr = (ptr + 0x10) & (~0xf);
2789 	rx_base = (typeof(rx_base)) ptr;
2790 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
2791 	E1000_WRITE_REG(hw, RDBAH, 0);
2792 
2793 	E1000_WRITE_REG(hw, RDLEN, 128);
2794 
2795 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
2796 	E1000_WRITE_REG(hw, RDH, 0);
2797 	E1000_WRITE_REG(hw, RDT, 0);
2798 #if 0
2799 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2800 	if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
2801 		rxcsum = E1000_READ_REG(hw, RXCSUM);
2802 		rxcsum |= E1000_RXCSUM_TUOFL;
2803 		E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2804 	}
2805 #endif
2806 	/* Enable Receives */
2807 
2808 	E1000_WRITE_REG(hw, RCTL, rctl);
2809 	fill_rx(hw);
2810 }
2811 
2812 /**************************************************************************
2813 POLL - Wait for a frame
2814 ***************************************************************************/
2815 static int
2816 e1000_poll(struct eth_device *nic)
2817 {
2818 	struct e1000_hw *hw = nic->priv;
2819 	struct e1000_rx_desc *rd;
2820 	/* return true if there's an ethernet packet ready to read */
2821 	rd = rx_base + rx_last;
2822 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
2823 		return 0;
2824 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
2825 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
2826 	fill_rx(hw);
2827 	return 1;
2828 }
2829 
2830 /**************************************************************************
2831 TRANSMIT - Transmit a frame
2832 ***************************************************************************/
2833 static int
2834 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
2835 {
2836 	struct e1000_hw *hw = nic->priv;
2837 	struct e1000_tx_desc *txp;
2838 	int i = 0;
2839 
2840 	txp = tx_base + tx_tail;
2841 	tx_tail = (tx_tail + 1) % 8;
2842 
2843 	txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
2844 	txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
2845 				      E1000_TXD_CMD_IFCS | length);
2846 	txp->upper.data = 0;
2847 	E1000_WRITE_REG(hw, TDT, tx_tail);
2848 
2849 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
2850 		if (i++ > TOUT_LOOP) {
2851 			DEBUGOUT("e1000: tx timeout\n");
2852 			return 0;
2853 		}
2854 		udelay(10);	/* give the nic a chance to write to the register */
2855 	}
2856 	return 1;
2857 }
2858 
2859 /*reset function*/
2860 static inline int
2861 e1000_reset(struct eth_device *nic)
2862 {
2863 	struct e1000_hw *hw = nic->priv;
2864 
2865 	e1000_reset_hw(hw);
2866 	if (hw->mac_type >= e1000_82544) {
2867 		E1000_WRITE_REG(hw, WUC, 0);
2868 	}
2869 	return e1000_init_hw(nic);
2870 }
2871 
2872 /**************************************************************************
2873 DISABLE - Turn off ethernet interface
2874 ***************************************************************************/
2875 static void
2876 e1000_disable(struct eth_device *nic)
2877 {
2878 	struct e1000_hw *hw = nic->priv;
2879 
2880 	/* Turn off the ethernet interface */
2881 	E1000_WRITE_REG(hw, RCTL, 0);
2882 	E1000_WRITE_REG(hw, TCTL, 0);
2883 
2884 	/* Clear the transmit ring */
2885 	E1000_WRITE_REG(hw, TDH, 0);
2886 	E1000_WRITE_REG(hw, TDT, 0);
2887 
2888 	/* Clear the receive ring */
2889 	E1000_WRITE_REG(hw, RDH, 0);
2890 	E1000_WRITE_REG(hw, RDT, 0);
2891 
2892 	/* put the card in its initial state */
2893 #if 0
2894 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
2895 #endif
2896 	mdelay(10);
2897 
2898 }
2899 
2900 /**************************************************************************
2901 INIT - set up ethernet interface(s)
2902 ***************************************************************************/
2903 static int
2904 e1000_init(struct eth_device *nic, bd_t * bis)
2905 {
2906 	struct e1000_hw *hw = nic->priv;
2907 	int ret_val = 0;
2908 
2909 	ret_val = e1000_reset(nic);
2910 	if (ret_val < 0) {
2911 		if ((ret_val == -E1000_ERR_NOLINK) ||
2912 		    (ret_val == -E1000_ERR_TIMEOUT)) {
2913 			E1000_ERR("Valid Link not detected\n");
2914 		} else {
2915 			E1000_ERR("Hardware Initialization Failed\n");
2916 		}
2917 		return 0;
2918 	}
2919 	e1000_configure_tx(hw);
2920 	e1000_setup_rctl(hw);
2921 	e1000_configure_rx(hw);
2922 	return 1;
2923 }
2924 
2925 /**************************************************************************
2926 PROBE - Look for an adapter, this routine's visible to the outside
2927 You should omit the last argument struct pci_device * for a non-PCI NIC
2928 ***************************************************************************/
2929 int
2930 e1000_initialize(bd_t * bis)
2931 {
2932 	pci_dev_t devno;
2933 	int card_number = 0;
2934 	struct eth_device *nic = NULL;
2935 	struct e1000_hw *hw = NULL;
2936 	u32 iobase;
2937 	int idx = 0;
2938 	u32 PciCommandWord;
2939 
2940 	while (1) {		/* Find PCI device(s) */
2941 		if ((devno = pci_find_devices(supported, idx++)) < 0) {
2942 			break;
2943 		}
2944 
2945 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
2946 		iobase &= ~0xf;	/* Mask the bits that say "this is an io addr" */
2947 		DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
2948 
2949 		pci_write_config_dword(devno, PCI_COMMAND,
2950 				       PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
2951 		/* Check if I/O accesses and Bus Mastering are enabled. */
2952 		pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
2953 		if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
2954 			printf("Error: Can not enable MEM access.\n");
2955 			continue;
2956 		} else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
2957 			printf("Error: Can not enable Bus Mastering.\n");
2958 			continue;
2959 		}
2960 
2961 		nic = (struct eth_device *) malloc(sizeof (*nic));
2962 		hw = (struct e1000_hw *) malloc(sizeof (*hw));
2963 		hw->pdev = devno;
2964 		nic->priv = hw;
2965 		nic->iobase = bus_to_phys(devno, iobase);
2966 
2967 		sprintf(nic->name, "e1000#%d", card_number);
2968 
2969 		/* Are these variables needed? */
2970 #if 0
2971 		hw->fc = e1000_fc_none;
2972 		hw->original_fc = e1000_fc_none;
2973 #else
2974 		hw->fc = e1000_fc_default;
2975 		hw->original_fc = e1000_fc_default;
2976 #endif
2977 		hw->autoneg_failed = 0;
2978 		hw->get_link_status = TRUE;
2979 		hw->hw_addr = (typeof(hw->hw_addr)) iobase;
2980 		hw->mac_type = e1000_undefined;
2981 
2982 		/* MAC and Phy settings */
2983 		if (e1000_sw_init(nic, card_number) < 0) {
2984 			free(hw);
2985 			free(nic);
2986 			return 0;
2987 		}
2988 #ifndef CONFIG_AP1000
2989 		if (e1000_validate_eeprom_checksum(nic) < 0) {
2990 			printf("The EEPROM Checksum Is Not Valid\n");
2991 			free(hw);
2992 			free(nic);
2993 			return 0;
2994 		}
2995 #endif
2996 		e1000_read_mac_addr(nic);
2997 
2998 		E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
2999 
3000 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
3001 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
3002 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
3003 
3004 		nic->init = e1000_init;
3005 		nic->recv = e1000_poll;
3006 		nic->send = e1000_transmit;
3007 		nic->halt = e1000_disable;
3008 
3009 		eth_register(nic);
3010 
3011 		card_number++;
3012 	}
3013 	return 1;
3014 }
3015 
3016 #endif
3017