xref: /openbmc/u-boot/drivers/net/e1000.c (revision 5b8031cc)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12  * SPDX-License-Identifier:	GPL-2.0+
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include <common.h>
33 #include <dm.h>
34 #include <errno.h>
35 #include <memalign.h>
36 #include <pci.h>
37 #include "e1000.h"
38 
39 #define TOUT_LOOP   100000
40 
41 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
42 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
43 
44 #define E1000_DEFAULT_PCI_PBA	0x00000030
45 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
46 
47 /* NIC specific static variables go here */
48 
49 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
50 #define E1000_BUFFER_ALIGN	128
51 
52 /*
53  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
54  * Concurrent receiving on multiple active Ethernet devices will not work.
55  * Normally U-Boot does not support this anyway. To fix it in this driver,
56  * move these buffers and the tx/rx pointers to struct e1000_hw.
57  */
58 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
59 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
60 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
61 
62 static int tx_tail;
63 static int rx_tail, rx_last;
64 #ifdef CONFIG_DM_ETH
65 static int num_cards;	/* Number of E1000 devices seen so far */
66 #endif
67 
68 static struct pci_device_id e1000_supported[] = {
69 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
70 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
71 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
72 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
73 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
74 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
75 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
76 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
77 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
78 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
79 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
80 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
81 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
82 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
83 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
84 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
85 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
86 	/* E1000 PCIe card */
87 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
88 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
89 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
90 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
91 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
92 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
93 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
94 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
95 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
96 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
97 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
98 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
99 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
100 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
101 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
102 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
103 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
104 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
105 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
106 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
107 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
108 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
109 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
110 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
111 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
112 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
113 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
114 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
115 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
116 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
117 
118 	{}
119 };
120 
121 /* Function forward declarations */
122 static int e1000_setup_link(struct e1000_hw *hw);
123 static int e1000_setup_fiber_link(struct e1000_hw *hw);
124 static int e1000_setup_copper_link(struct e1000_hw *hw);
125 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
126 static void e1000_config_collision_dist(struct e1000_hw *hw);
127 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
128 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
129 static int e1000_check_for_link(struct e1000_hw *hw);
130 static int e1000_wait_autoneg(struct e1000_hw *hw);
131 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
132 				       uint16_t * duplex);
133 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
134 			      uint16_t * phy_data);
135 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
136 			       uint16_t phy_data);
137 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
138 static int e1000_phy_reset(struct e1000_hw *hw);
139 static int e1000_detect_gig_phy(struct e1000_hw *hw);
140 static void e1000_set_media_type(struct e1000_hw *hw);
141 
142 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
143 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
144 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
145 
146 #ifndef CONFIG_E1000_NO_NVM
147 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
148 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
149 		uint16_t words,
150 		uint16_t *data);
151 /******************************************************************************
152  * Raises the EEPROM's clock input.
153  *
154  * hw - Struct containing variables accessed by shared code
155  * eecd - EECD's current value
156  *****************************************************************************/
157 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
158 {
159 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
160 	 * wait 50 microseconds.
161 	 */
162 	*eecd = *eecd | E1000_EECD_SK;
163 	E1000_WRITE_REG(hw, EECD, *eecd);
164 	E1000_WRITE_FLUSH(hw);
165 	udelay(50);
166 }
167 
168 /******************************************************************************
169  * Lowers the EEPROM's clock input.
170  *
171  * hw - Struct containing variables accessed by shared code
172  * eecd - EECD's current value
173  *****************************************************************************/
174 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
175 {
176 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
177 	 * wait 50 microseconds.
178 	 */
179 	*eecd = *eecd & ~E1000_EECD_SK;
180 	E1000_WRITE_REG(hw, EECD, *eecd);
181 	E1000_WRITE_FLUSH(hw);
182 	udelay(50);
183 }
184 
185 /******************************************************************************
186  * Shift data bits out to the EEPROM.
187  *
188  * hw - Struct containing variables accessed by shared code
189  * data - data to send to the EEPROM
190  * count - number of bits to shift out
191  *****************************************************************************/
192 static void
193 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
194 {
195 	uint32_t eecd;
196 	uint32_t mask;
197 
198 	/* We need to shift "count" bits out to the EEPROM. So, value in the
199 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
200 	 * In order to do this, "data" must be broken down into bits.
201 	 */
202 	mask = 0x01 << (count - 1);
203 	eecd = E1000_READ_REG(hw, EECD);
204 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
205 	do {
206 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
207 		 * and then raising and then lowering the clock (the SK bit controls
208 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
209 		 * by setting "DI" to "0" and then raising and then lowering the clock.
210 		 */
211 		eecd &= ~E1000_EECD_DI;
212 
213 		if (data & mask)
214 			eecd |= E1000_EECD_DI;
215 
216 		E1000_WRITE_REG(hw, EECD, eecd);
217 		E1000_WRITE_FLUSH(hw);
218 
219 		udelay(50);
220 
221 		e1000_raise_ee_clk(hw, &eecd);
222 		e1000_lower_ee_clk(hw, &eecd);
223 
224 		mask = mask >> 1;
225 
226 	} while (mask);
227 
228 	/* We leave the "DI" bit set to "0" when we leave this routine. */
229 	eecd &= ~E1000_EECD_DI;
230 	E1000_WRITE_REG(hw, EECD, eecd);
231 }
232 
233 /******************************************************************************
234  * Shift data bits in from the EEPROM
235  *
236  * hw - Struct containing variables accessed by shared code
237  *****************************************************************************/
238 static uint16_t
239 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
240 {
241 	uint32_t eecd;
242 	uint32_t i;
243 	uint16_t data;
244 
245 	/* In order to read a register from the EEPROM, we need to shift 'count'
246 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
247 	 * input to the EEPROM (setting the SK bit), and then reading the
248 	 * value of the "DO" bit.  During this "shifting in" process the
249 	 * "DI" bit should always be clear.
250 	 */
251 
252 	eecd = E1000_READ_REG(hw, EECD);
253 
254 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
255 	data = 0;
256 
257 	for (i = 0; i < count; i++) {
258 		data = data << 1;
259 		e1000_raise_ee_clk(hw, &eecd);
260 
261 		eecd = E1000_READ_REG(hw, EECD);
262 
263 		eecd &= ~(E1000_EECD_DI);
264 		if (eecd & E1000_EECD_DO)
265 			data |= 1;
266 
267 		e1000_lower_ee_clk(hw, &eecd);
268 	}
269 
270 	return data;
271 }
272 
273 /******************************************************************************
274  * Returns EEPROM to a "standby" state
275  *
276  * hw - Struct containing variables accessed by shared code
277  *****************************************************************************/
278 void e1000_standby_eeprom(struct e1000_hw *hw)
279 {
280 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
281 	uint32_t eecd;
282 
283 	eecd = E1000_READ_REG(hw, EECD);
284 
285 	if (eeprom->type == e1000_eeprom_microwire) {
286 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
287 		E1000_WRITE_REG(hw, EECD, eecd);
288 		E1000_WRITE_FLUSH(hw);
289 		udelay(eeprom->delay_usec);
290 
291 		/* Clock high */
292 		eecd |= E1000_EECD_SK;
293 		E1000_WRITE_REG(hw, EECD, eecd);
294 		E1000_WRITE_FLUSH(hw);
295 		udelay(eeprom->delay_usec);
296 
297 		/* Select EEPROM */
298 		eecd |= E1000_EECD_CS;
299 		E1000_WRITE_REG(hw, EECD, eecd);
300 		E1000_WRITE_FLUSH(hw);
301 		udelay(eeprom->delay_usec);
302 
303 		/* Clock low */
304 		eecd &= ~E1000_EECD_SK;
305 		E1000_WRITE_REG(hw, EECD, eecd);
306 		E1000_WRITE_FLUSH(hw);
307 		udelay(eeprom->delay_usec);
308 	} else if (eeprom->type == e1000_eeprom_spi) {
309 		/* Toggle CS to flush commands */
310 		eecd |= E1000_EECD_CS;
311 		E1000_WRITE_REG(hw, EECD, eecd);
312 		E1000_WRITE_FLUSH(hw);
313 		udelay(eeprom->delay_usec);
314 		eecd &= ~E1000_EECD_CS;
315 		E1000_WRITE_REG(hw, EECD, eecd);
316 		E1000_WRITE_FLUSH(hw);
317 		udelay(eeprom->delay_usec);
318 	}
319 }
320 
321 /***************************************************************************
322 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
323 *
324 * hw - Struct containing variables accessed by shared code
325 ****************************************************************************/
326 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
327 {
328 	uint32_t eecd = 0;
329 
330 	DEBUGFUNC();
331 
332 	if (hw->mac_type == e1000_ich8lan)
333 		return false;
334 
335 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
336 		eecd = E1000_READ_REG(hw, EECD);
337 
338 		/* Isolate bits 15 & 16 */
339 		eecd = ((eecd >> 15) & 0x03);
340 
341 		/* If both bits are set, device is Flash type */
342 		if (eecd == 0x03)
343 			return false;
344 	}
345 	return true;
346 }
347 
348 /******************************************************************************
349  * Prepares EEPROM for access
350  *
351  * hw - Struct containing variables accessed by shared code
352  *
353  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
354  * function should be called before issuing a command to the EEPROM.
355  *****************************************************************************/
356 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
357 {
358 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
359 	uint32_t eecd, i = 0;
360 
361 	DEBUGFUNC();
362 
363 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
364 		return -E1000_ERR_SWFW_SYNC;
365 	eecd = E1000_READ_REG(hw, EECD);
366 
367 	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
368 		/* Request EEPROM Access */
369 		if (hw->mac_type > e1000_82544) {
370 			eecd |= E1000_EECD_REQ;
371 			E1000_WRITE_REG(hw, EECD, eecd);
372 			eecd = E1000_READ_REG(hw, EECD);
373 			while ((!(eecd & E1000_EECD_GNT)) &&
374 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
375 				i++;
376 				udelay(5);
377 				eecd = E1000_READ_REG(hw, EECD);
378 			}
379 			if (!(eecd & E1000_EECD_GNT)) {
380 				eecd &= ~E1000_EECD_REQ;
381 				E1000_WRITE_REG(hw, EECD, eecd);
382 				DEBUGOUT("Could not acquire EEPROM grant\n");
383 				return -E1000_ERR_EEPROM;
384 			}
385 		}
386 	}
387 
388 	/* Setup EEPROM for Read/Write */
389 
390 	if (eeprom->type == e1000_eeprom_microwire) {
391 		/* Clear SK and DI */
392 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
393 		E1000_WRITE_REG(hw, EECD, eecd);
394 
395 		/* Set CS */
396 		eecd |= E1000_EECD_CS;
397 		E1000_WRITE_REG(hw, EECD, eecd);
398 	} else if (eeprom->type == e1000_eeprom_spi) {
399 		/* Clear SK and CS */
400 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
401 		E1000_WRITE_REG(hw, EECD, eecd);
402 		udelay(1);
403 	}
404 
405 	return E1000_SUCCESS;
406 }
407 
408 /******************************************************************************
409  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
410  * is configured.  Additionally, if this is ICH8, the flash controller GbE
411  * registers must be mapped, or this will crash.
412  *
413  * hw - Struct containing variables accessed by shared code
414  *****************************************************************************/
415 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
416 {
417 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
418 	uint32_t eecd;
419 	int32_t ret_val = E1000_SUCCESS;
420 	uint16_t eeprom_size;
421 
422 	if (hw->mac_type == e1000_igb)
423 		eecd = E1000_READ_REG(hw, I210_EECD);
424 	else
425 		eecd = E1000_READ_REG(hw, EECD);
426 
427 	DEBUGFUNC();
428 
429 	switch (hw->mac_type) {
430 	case e1000_82542_rev2_0:
431 	case e1000_82542_rev2_1:
432 	case e1000_82543:
433 	case e1000_82544:
434 		eeprom->type = e1000_eeprom_microwire;
435 		eeprom->word_size = 64;
436 		eeprom->opcode_bits = 3;
437 		eeprom->address_bits = 6;
438 		eeprom->delay_usec = 50;
439 		eeprom->use_eerd = false;
440 		eeprom->use_eewr = false;
441 	break;
442 	case e1000_82540:
443 	case e1000_82545:
444 	case e1000_82545_rev_3:
445 	case e1000_82546:
446 	case e1000_82546_rev_3:
447 		eeprom->type = e1000_eeprom_microwire;
448 		eeprom->opcode_bits = 3;
449 		eeprom->delay_usec = 50;
450 		if (eecd & E1000_EECD_SIZE) {
451 			eeprom->word_size = 256;
452 			eeprom->address_bits = 8;
453 		} else {
454 			eeprom->word_size = 64;
455 			eeprom->address_bits = 6;
456 		}
457 		eeprom->use_eerd = false;
458 		eeprom->use_eewr = false;
459 		break;
460 	case e1000_82541:
461 	case e1000_82541_rev_2:
462 	case e1000_82547:
463 	case e1000_82547_rev_2:
464 		if (eecd & E1000_EECD_TYPE) {
465 			eeprom->type = e1000_eeprom_spi;
466 			eeprom->opcode_bits = 8;
467 			eeprom->delay_usec = 1;
468 			if (eecd & E1000_EECD_ADDR_BITS) {
469 				eeprom->page_size = 32;
470 				eeprom->address_bits = 16;
471 			} else {
472 				eeprom->page_size = 8;
473 				eeprom->address_bits = 8;
474 			}
475 		} else {
476 			eeprom->type = e1000_eeprom_microwire;
477 			eeprom->opcode_bits = 3;
478 			eeprom->delay_usec = 50;
479 			if (eecd & E1000_EECD_ADDR_BITS) {
480 				eeprom->word_size = 256;
481 				eeprom->address_bits = 8;
482 			} else {
483 				eeprom->word_size = 64;
484 				eeprom->address_bits = 6;
485 			}
486 		}
487 		eeprom->use_eerd = false;
488 		eeprom->use_eewr = false;
489 		break;
490 	case e1000_82571:
491 	case e1000_82572:
492 		eeprom->type = e1000_eeprom_spi;
493 		eeprom->opcode_bits = 8;
494 		eeprom->delay_usec = 1;
495 		if (eecd & E1000_EECD_ADDR_BITS) {
496 			eeprom->page_size = 32;
497 			eeprom->address_bits = 16;
498 		} else {
499 			eeprom->page_size = 8;
500 			eeprom->address_bits = 8;
501 		}
502 		eeprom->use_eerd = false;
503 		eeprom->use_eewr = false;
504 		break;
505 	case e1000_82573:
506 	case e1000_82574:
507 		eeprom->type = e1000_eeprom_spi;
508 		eeprom->opcode_bits = 8;
509 		eeprom->delay_usec = 1;
510 		if (eecd & E1000_EECD_ADDR_BITS) {
511 			eeprom->page_size = 32;
512 			eeprom->address_bits = 16;
513 		} else {
514 			eeprom->page_size = 8;
515 			eeprom->address_bits = 8;
516 		}
517 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
518 			eeprom->use_eerd = true;
519 			eeprom->use_eewr = true;
520 
521 			eeprom->type = e1000_eeprom_flash;
522 			eeprom->word_size = 2048;
523 
524 		/* Ensure that the Autonomous FLASH update bit is cleared due to
525 		 * Flash update issue on parts which use a FLASH for NVM. */
526 			eecd &= ~E1000_EECD_AUPDEN;
527 			E1000_WRITE_REG(hw, EECD, eecd);
528 		}
529 		break;
530 	case e1000_80003es2lan:
531 		eeprom->type = e1000_eeprom_spi;
532 		eeprom->opcode_bits = 8;
533 		eeprom->delay_usec = 1;
534 		if (eecd & E1000_EECD_ADDR_BITS) {
535 			eeprom->page_size = 32;
536 			eeprom->address_bits = 16;
537 		} else {
538 			eeprom->page_size = 8;
539 			eeprom->address_bits = 8;
540 		}
541 		eeprom->use_eerd = true;
542 		eeprom->use_eewr = false;
543 		break;
544 	case e1000_igb:
545 		/* i210 has 4k of iNVM mapped as EEPROM */
546 		eeprom->type = e1000_eeprom_invm;
547 		eeprom->opcode_bits = 8;
548 		eeprom->delay_usec = 1;
549 		eeprom->page_size = 32;
550 		eeprom->address_bits = 16;
551 		eeprom->use_eerd = true;
552 		eeprom->use_eewr = false;
553 		break;
554 	default:
555 		break;
556 	}
557 
558 	if (eeprom->type == e1000_eeprom_spi ||
559 	    eeprom->type == e1000_eeprom_invm) {
560 		/* eeprom_size will be an enum [0..8] that maps
561 		 * to eeprom sizes 128B to
562 		 * 32KB (incremented by powers of 2).
563 		 */
564 		if (hw->mac_type <= e1000_82547_rev_2) {
565 			/* Set to default value for initial eeprom read. */
566 			eeprom->word_size = 64;
567 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
568 					&eeprom_size);
569 			if (ret_val)
570 				return ret_val;
571 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
572 				>> EEPROM_SIZE_SHIFT;
573 			/* 256B eeprom size was not supported in earlier
574 			 * hardware, so we bump eeprom_size up one to
575 			 * ensure that "1" (which maps to 256B) is never
576 			 * the result used in the shifting logic below. */
577 			if (eeprom_size)
578 				eeprom_size++;
579 		} else {
580 			eeprom_size = (uint16_t)((eecd &
581 				E1000_EECD_SIZE_EX_MASK) >>
582 				E1000_EECD_SIZE_EX_SHIFT);
583 		}
584 
585 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
586 	}
587 	return ret_val;
588 }
589 
590 /******************************************************************************
591  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
592  *
593  * hw - Struct containing variables accessed by shared code
594  *****************************************************************************/
595 static int32_t
596 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
597 {
598 	uint32_t attempts = 100000;
599 	uint32_t i, reg = 0;
600 	int32_t done = E1000_ERR_EEPROM;
601 
602 	for (i = 0; i < attempts; i++) {
603 		if (eerd == E1000_EEPROM_POLL_READ) {
604 			if (hw->mac_type == e1000_igb)
605 				reg = E1000_READ_REG(hw, I210_EERD);
606 			else
607 				reg = E1000_READ_REG(hw, EERD);
608 		} else {
609 			if (hw->mac_type == e1000_igb)
610 				reg = E1000_READ_REG(hw, I210_EEWR);
611 			else
612 				reg = E1000_READ_REG(hw, EEWR);
613 		}
614 
615 		if (reg & E1000_EEPROM_RW_REG_DONE) {
616 			done = E1000_SUCCESS;
617 			break;
618 		}
619 		udelay(5);
620 	}
621 
622 	return done;
623 }
624 
625 /******************************************************************************
626  * Reads a 16 bit word from the EEPROM using the EERD register.
627  *
628  * hw - Struct containing variables accessed by shared code
629  * offset - offset of  word in the EEPROM to read
630  * data - word read from the EEPROM
631  * words - number of words to read
632  *****************************************************************************/
633 static int32_t
634 e1000_read_eeprom_eerd(struct e1000_hw *hw,
635 			uint16_t offset,
636 			uint16_t words,
637 			uint16_t *data)
638 {
639 	uint32_t i, eerd = 0;
640 	int32_t error = 0;
641 
642 	for (i = 0; i < words; i++) {
643 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
644 			E1000_EEPROM_RW_REG_START;
645 
646 		if (hw->mac_type == e1000_igb)
647 			E1000_WRITE_REG(hw, I210_EERD, eerd);
648 		else
649 			E1000_WRITE_REG(hw, EERD, eerd);
650 
651 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
652 
653 		if (error)
654 			break;
655 
656 		if (hw->mac_type == e1000_igb) {
657 			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
658 				E1000_EEPROM_RW_REG_DATA);
659 		} else {
660 			data[i] = (E1000_READ_REG(hw, EERD) >>
661 				E1000_EEPROM_RW_REG_DATA);
662 		}
663 
664 	}
665 
666 	return error;
667 }
668 
669 void e1000_release_eeprom(struct e1000_hw *hw)
670 {
671 	uint32_t eecd;
672 
673 	DEBUGFUNC();
674 
675 	eecd = E1000_READ_REG(hw, EECD);
676 
677 	if (hw->eeprom.type == e1000_eeprom_spi) {
678 		eecd |= E1000_EECD_CS;  /* Pull CS high */
679 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
680 
681 		E1000_WRITE_REG(hw, EECD, eecd);
682 
683 		udelay(hw->eeprom.delay_usec);
684 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
685 		/* cleanup eeprom */
686 
687 		/* CS on Microwire is active-high */
688 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
689 
690 		E1000_WRITE_REG(hw, EECD, eecd);
691 
692 		/* Rising edge of clock */
693 		eecd |= E1000_EECD_SK;
694 		E1000_WRITE_REG(hw, EECD, eecd);
695 		E1000_WRITE_FLUSH(hw);
696 		udelay(hw->eeprom.delay_usec);
697 
698 		/* Falling edge of clock */
699 		eecd &= ~E1000_EECD_SK;
700 		E1000_WRITE_REG(hw, EECD, eecd);
701 		E1000_WRITE_FLUSH(hw);
702 		udelay(hw->eeprom.delay_usec);
703 	}
704 
705 	/* Stop requesting EEPROM access */
706 	if (hw->mac_type > e1000_82544) {
707 		eecd &= ~E1000_EECD_REQ;
708 		E1000_WRITE_REG(hw, EECD, eecd);
709 	}
710 
711 	e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
712 }
713 
714 /******************************************************************************
715  * Reads a 16 bit word from the EEPROM.
716  *
717  * hw - Struct containing variables accessed by shared code
718  *****************************************************************************/
719 static int32_t
720 e1000_spi_eeprom_ready(struct e1000_hw *hw)
721 {
722 	uint16_t retry_count = 0;
723 	uint8_t spi_stat_reg;
724 
725 	DEBUGFUNC();
726 
727 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
728 	 * EEPROM will signal that the command has been completed by clearing
729 	 * bit 0 of the internal status register.  If it's not cleared within
730 	 * 5 milliseconds, then error out.
731 	 */
732 	retry_count = 0;
733 	do {
734 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
735 			hw->eeprom.opcode_bits);
736 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
737 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
738 			break;
739 
740 		udelay(5);
741 		retry_count += 5;
742 
743 		e1000_standby_eeprom(hw);
744 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
745 
746 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
747 	 * only 0-5mSec on 5V devices)
748 	 */
749 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
750 		DEBUGOUT("SPI EEPROM Status error\n");
751 		return -E1000_ERR_EEPROM;
752 	}
753 
754 	return E1000_SUCCESS;
755 }
756 
757 /******************************************************************************
758  * Reads a 16 bit word from the EEPROM.
759  *
760  * hw - Struct containing variables accessed by shared code
761  * offset - offset of  word in the EEPROM to read
762  * data - word read from the EEPROM
763  *****************************************************************************/
764 static int32_t
765 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
766 		uint16_t words, uint16_t *data)
767 {
768 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
769 	uint32_t i = 0;
770 
771 	DEBUGFUNC();
772 
773 	/* If eeprom is not yet detected, do so now */
774 	if (eeprom->word_size == 0)
775 		e1000_init_eeprom_params(hw);
776 
777 	/* A check for invalid values:  offset too large, too many words,
778 	 * and not enough words.
779 	 */
780 	if ((offset >= eeprom->word_size) ||
781 		(words > eeprom->word_size - offset) ||
782 		(words == 0)) {
783 		DEBUGOUT("\"words\" parameter out of bounds."
784 			"Words = %d, size = %d\n", offset, eeprom->word_size);
785 		return -E1000_ERR_EEPROM;
786 	}
787 
788 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
789 	 * directly. In this case, we need to acquire the EEPROM so that
790 	 * FW or other port software does not interrupt.
791 	 */
792 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
793 		hw->eeprom.use_eerd == false) {
794 
795 		/* Prepare the EEPROM for bit-bang reading */
796 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
797 			return -E1000_ERR_EEPROM;
798 	}
799 
800 	/* Eerd register EEPROM access requires no eeprom aquire/release */
801 	if (eeprom->use_eerd == true)
802 		return e1000_read_eeprom_eerd(hw, offset, words, data);
803 
804 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
805 	 * acquired the EEPROM at this point, so any returns should relase it */
806 	if (eeprom->type == e1000_eeprom_spi) {
807 		uint16_t word_in;
808 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
809 
810 		if (e1000_spi_eeprom_ready(hw)) {
811 			e1000_release_eeprom(hw);
812 			return -E1000_ERR_EEPROM;
813 		}
814 
815 		e1000_standby_eeprom(hw);
816 
817 		/* Some SPI eeproms use the 8th address bit embedded in
818 		 * the opcode */
819 		if ((eeprom->address_bits == 8) && (offset >= 128))
820 			read_opcode |= EEPROM_A8_OPCODE_SPI;
821 
822 		/* Send the READ command (opcode + addr)  */
823 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
824 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
825 				eeprom->address_bits);
826 
827 		/* Read the data.  The address of the eeprom internally
828 		 * increments with each byte (spi) being read, saving on the
829 		 * overhead of eeprom setup and tear-down.  The address
830 		 * counter will roll over if reading beyond the size of
831 		 * the eeprom, thus allowing the entire memory to be read
832 		 * starting from any offset. */
833 		for (i = 0; i < words; i++) {
834 			word_in = e1000_shift_in_ee_bits(hw, 16);
835 			data[i] = (word_in >> 8) | (word_in << 8);
836 		}
837 	} else if (eeprom->type == e1000_eeprom_microwire) {
838 		for (i = 0; i < words; i++) {
839 			/* Send the READ command (opcode + addr)  */
840 			e1000_shift_out_ee_bits(hw,
841 				EEPROM_READ_OPCODE_MICROWIRE,
842 				eeprom->opcode_bits);
843 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
844 				eeprom->address_bits);
845 
846 			/* Read the data.  For microwire, each word requires
847 			 * the overhead of eeprom setup and tear-down. */
848 			data[i] = e1000_shift_in_ee_bits(hw, 16);
849 			e1000_standby_eeprom(hw);
850 		}
851 	}
852 
853 	/* End this read operation */
854 	e1000_release_eeprom(hw);
855 
856 	return E1000_SUCCESS;
857 }
858 
859 /******************************************************************************
860  * Verifies that the EEPROM has a valid checksum
861  *
862  * hw - Struct containing variables accessed by shared code
863  *
864  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
865  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
866  * valid.
867  *****************************************************************************/
868 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
869 {
870 	uint16_t i, checksum, checksum_reg, *buf;
871 
872 	DEBUGFUNC();
873 
874 	/* Allocate a temporary buffer */
875 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
876 	if (!buf) {
877 		E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
878 		return -E1000_ERR_EEPROM;
879 	}
880 
881 	/* Read the EEPROM */
882 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
883 		E1000_ERR(hw, "Unable to read EEPROM!\n");
884 		return -E1000_ERR_EEPROM;
885 	}
886 
887 	/* Compute the checksum */
888 	checksum = 0;
889 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
890 		checksum += buf[i];
891 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
892 	checksum_reg = buf[i];
893 
894 	/* Verify it! */
895 	if (checksum == checksum_reg)
896 		return 0;
897 
898 	/* Hrm, verification failed, print an error */
899 	E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
900 	E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
901 		  checksum_reg, checksum);
902 
903 	return -E1000_ERR_EEPROM;
904 }
905 #endif /* CONFIG_E1000_NO_NVM */
906 
907 /*****************************************************************************
908  * Set PHY to class A mode
909  * Assumes the following operations will follow to enable the new class mode.
910  *  1. Do a PHY soft reset
911  *  2. Restart auto-negotiation or force link.
912  *
913  * hw - Struct containing variables accessed by shared code
914  ****************************************************************************/
915 static int32_t
916 e1000_set_phy_mode(struct e1000_hw *hw)
917 {
918 #ifndef CONFIG_E1000_NO_NVM
919 	int32_t ret_val;
920 	uint16_t eeprom_data;
921 
922 	DEBUGFUNC();
923 
924 	if ((hw->mac_type == e1000_82545_rev_3) &&
925 		(hw->media_type == e1000_media_type_copper)) {
926 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
927 				1, &eeprom_data);
928 		if (ret_val)
929 			return ret_val;
930 
931 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
932 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
933 			ret_val = e1000_write_phy_reg(hw,
934 					M88E1000_PHY_PAGE_SELECT, 0x000B);
935 			if (ret_val)
936 				return ret_val;
937 			ret_val = e1000_write_phy_reg(hw,
938 					M88E1000_PHY_GEN_CONTROL, 0x8104);
939 			if (ret_val)
940 				return ret_val;
941 
942 			hw->phy_reset_disable = false;
943 		}
944 	}
945 #endif
946 	return E1000_SUCCESS;
947 }
948 
949 #ifndef CONFIG_E1000_NO_NVM
950 /***************************************************************************
951  *
952  * Obtaining software semaphore bit (SMBI) before resetting PHY.
953  *
954  * hw: Struct containing variables accessed by shared code
955  *
956  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
957  *            E1000_SUCCESS at any other case.
958  *
959  ***************************************************************************/
960 static int32_t
961 e1000_get_software_semaphore(struct e1000_hw *hw)
962 {
963 	 int32_t timeout = hw->eeprom.word_size + 1;
964 	 uint32_t swsm;
965 
966 	DEBUGFUNC();
967 
968 	if (hw->mac_type != e1000_80003es2lan)
969 		return E1000_SUCCESS;
970 
971 	while (timeout) {
972 		swsm = E1000_READ_REG(hw, SWSM);
973 		/* If SMBI bit cleared, it is now set and we hold
974 		 * the semaphore */
975 		if (!(swsm & E1000_SWSM_SMBI))
976 			break;
977 		mdelay(1);
978 		timeout--;
979 	}
980 
981 	if (!timeout) {
982 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
983 		return -E1000_ERR_RESET;
984 	}
985 
986 	return E1000_SUCCESS;
987 }
988 #endif
989 
990 /***************************************************************************
991  * This function clears HW semaphore bits.
992  *
993  * hw: Struct containing variables accessed by shared code
994  *
995  * returns: - None.
996  *
997  ***************************************************************************/
998 static void
999 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1000 {
1001 #ifndef CONFIG_E1000_NO_NVM
1002 	 uint32_t swsm;
1003 
1004 	DEBUGFUNC();
1005 
1006 	if (!hw->eeprom_semaphore_present)
1007 		return;
1008 
1009 	swsm = E1000_READ_REG(hw, SWSM);
1010 	if (hw->mac_type == e1000_80003es2lan) {
1011 		/* Release both semaphores. */
1012 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1013 	} else
1014 		swsm &= ~(E1000_SWSM_SWESMBI);
1015 	E1000_WRITE_REG(hw, SWSM, swsm);
1016 #endif
1017 }
1018 
1019 /***************************************************************************
1020  *
1021  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1022  * adapter or Eeprom access.
1023  *
1024  * hw: Struct containing variables accessed by shared code
1025  *
1026  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1027  *            E1000_SUCCESS at any other case.
1028  *
1029  ***************************************************************************/
1030 static int32_t
1031 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1032 {
1033 #ifndef CONFIG_E1000_NO_NVM
1034 	int32_t timeout;
1035 	uint32_t swsm;
1036 
1037 	DEBUGFUNC();
1038 
1039 	if (!hw->eeprom_semaphore_present)
1040 		return E1000_SUCCESS;
1041 
1042 	if (hw->mac_type == e1000_80003es2lan) {
1043 		/* Get the SW semaphore. */
1044 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1045 			return -E1000_ERR_EEPROM;
1046 	}
1047 
1048 	/* Get the FW semaphore. */
1049 	timeout = hw->eeprom.word_size + 1;
1050 	while (timeout) {
1051 		swsm = E1000_READ_REG(hw, SWSM);
1052 		swsm |= E1000_SWSM_SWESMBI;
1053 		E1000_WRITE_REG(hw, SWSM, swsm);
1054 		/* if we managed to set the bit we got the semaphore. */
1055 		swsm = E1000_READ_REG(hw, SWSM);
1056 		if (swsm & E1000_SWSM_SWESMBI)
1057 			break;
1058 
1059 		udelay(50);
1060 		timeout--;
1061 	}
1062 
1063 	if (!timeout) {
1064 		/* Release semaphores */
1065 		e1000_put_hw_eeprom_semaphore(hw);
1066 		DEBUGOUT("Driver can't access the Eeprom - "
1067 				"SWESMBI bit is set.\n");
1068 		return -E1000_ERR_EEPROM;
1069 	}
1070 #endif
1071 	return E1000_SUCCESS;
1072 }
1073 
1074 /* Take ownership of the PHY */
1075 static int32_t
1076 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1077 {
1078 	uint32_t swfw_sync = 0;
1079 	uint32_t swmask = mask;
1080 	uint32_t fwmask = mask << 16;
1081 	int32_t timeout = 200;
1082 
1083 	DEBUGFUNC();
1084 	while (timeout) {
1085 		if (e1000_get_hw_eeprom_semaphore(hw))
1086 			return -E1000_ERR_SWFW_SYNC;
1087 
1088 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1089 		if (!(swfw_sync & (fwmask | swmask)))
1090 			break;
1091 
1092 		/* firmware currently using resource (fwmask) */
1093 		/* or other software thread currently using resource (swmask) */
1094 		e1000_put_hw_eeprom_semaphore(hw);
1095 		mdelay(5);
1096 		timeout--;
1097 	}
1098 
1099 	if (!timeout) {
1100 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1101 		return -E1000_ERR_SWFW_SYNC;
1102 	}
1103 
1104 	swfw_sync |= swmask;
1105 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1106 
1107 	e1000_put_hw_eeprom_semaphore(hw);
1108 	return E1000_SUCCESS;
1109 }
1110 
1111 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1112 {
1113 	uint32_t swfw_sync = 0;
1114 
1115 	DEBUGFUNC();
1116 	while (e1000_get_hw_eeprom_semaphore(hw))
1117 		; /* Empty */
1118 
1119 	swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1120 	swfw_sync &= ~mask;
1121 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1122 
1123 	e1000_put_hw_eeprom_semaphore(hw);
1124 }
1125 
1126 static bool e1000_is_second_port(struct e1000_hw *hw)
1127 {
1128 	switch (hw->mac_type) {
1129 	case e1000_80003es2lan:
1130 	case e1000_82546:
1131 	case e1000_82571:
1132 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1133 			return true;
1134 		/* Fallthrough */
1135 	default:
1136 		return false;
1137 	}
1138 }
1139 
1140 #ifndef CONFIG_E1000_NO_NVM
1141 /******************************************************************************
1142  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1143  * second function of dual function devices
1144  *
1145  * nic - Struct containing variables accessed by shared code
1146  *****************************************************************************/
1147 static int
1148 e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1149 {
1150 	uint16_t offset;
1151 	uint16_t eeprom_data;
1152 	uint32_t reg_data = 0;
1153 	int i;
1154 
1155 	DEBUGFUNC();
1156 
1157 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1158 		offset = i >> 1;
1159 		if (hw->mac_type == e1000_igb) {
1160 			/* i210 preloads MAC address into RAL/RAH registers */
1161 			if (offset == 0)
1162 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1163 			else if (offset == 1)
1164 				reg_data >>= 16;
1165 			else if (offset == 2)
1166 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1167 			eeprom_data = reg_data & 0xffff;
1168 		} else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1169 			DEBUGOUT("EEPROM Read Error\n");
1170 			return -E1000_ERR_EEPROM;
1171 		}
1172 		enetaddr[i] = eeprom_data & 0xff;
1173 		enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1174 	}
1175 
1176 	/* Invert the last bit if this is the second device */
1177 	if (e1000_is_second_port(hw))
1178 		enetaddr[5] ^= 1;
1179 
1180 	return 0;
1181 }
1182 #endif
1183 
1184 /******************************************************************************
1185  * Initializes receive address filters.
1186  *
1187  * hw - Struct containing variables accessed by shared code
1188  *
1189  * Places the MAC address in receive address register 0 and clears the rest
1190  * of the receive addresss registers. Clears the multicast table. Assumes
1191  * the receiver is in reset when the routine is called.
1192  *****************************************************************************/
1193 static void
1194 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1195 {
1196 	uint32_t i;
1197 	uint32_t addr_low;
1198 	uint32_t addr_high;
1199 
1200 	DEBUGFUNC();
1201 
1202 	/* Setup the receive address. */
1203 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1204 	addr_low = (enetaddr[0] |
1205 		    (enetaddr[1] << 8) |
1206 		    (enetaddr[2] << 16) | (enetaddr[3] << 24));
1207 
1208 	addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1209 
1210 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1211 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1212 
1213 	/* Zero out the other 15 receive addresses. */
1214 	DEBUGOUT("Clearing RAR[1-15]\n");
1215 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1216 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1217 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1218 	}
1219 }
1220 
1221 /******************************************************************************
1222  * Clears the VLAN filer table
1223  *
1224  * hw - Struct containing variables accessed by shared code
1225  *****************************************************************************/
1226 static void
1227 e1000_clear_vfta(struct e1000_hw *hw)
1228 {
1229 	uint32_t offset;
1230 
1231 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1232 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1233 }
1234 
1235 /******************************************************************************
1236  * Set the mac type member in the hw struct.
1237  *
1238  * hw - Struct containing variables accessed by shared code
1239  *****************************************************************************/
1240 int32_t
1241 e1000_set_mac_type(struct e1000_hw *hw)
1242 {
1243 	DEBUGFUNC();
1244 
1245 	switch (hw->device_id) {
1246 	case E1000_DEV_ID_82542:
1247 		switch (hw->revision_id) {
1248 		case E1000_82542_2_0_REV_ID:
1249 			hw->mac_type = e1000_82542_rev2_0;
1250 			break;
1251 		case E1000_82542_2_1_REV_ID:
1252 			hw->mac_type = e1000_82542_rev2_1;
1253 			break;
1254 		default:
1255 			/* Invalid 82542 revision ID */
1256 			return -E1000_ERR_MAC_TYPE;
1257 		}
1258 		break;
1259 	case E1000_DEV_ID_82543GC_FIBER:
1260 	case E1000_DEV_ID_82543GC_COPPER:
1261 		hw->mac_type = e1000_82543;
1262 		break;
1263 	case E1000_DEV_ID_82544EI_COPPER:
1264 	case E1000_DEV_ID_82544EI_FIBER:
1265 	case E1000_DEV_ID_82544GC_COPPER:
1266 	case E1000_DEV_ID_82544GC_LOM:
1267 		hw->mac_type = e1000_82544;
1268 		break;
1269 	case E1000_DEV_ID_82540EM:
1270 	case E1000_DEV_ID_82540EM_LOM:
1271 	case E1000_DEV_ID_82540EP:
1272 	case E1000_DEV_ID_82540EP_LOM:
1273 	case E1000_DEV_ID_82540EP_LP:
1274 		hw->mac_type = e1000_82540;
1275 		break;
1276 	case E1000_DEV_ID_82545EM_COPPER:
1277 	case E1000_DEV_ID_82545EM_FIBER:
1278 		hw->mac_type = e1000_82545;
1279 		break;
1280 	case E1000_DEV_ID_82545GM_COPPER:
1281 	case E1000_DEV_ID_82545GM_FIBER:
1282 	case E1000_DEV_ID_82545GM_SERDES:
1283 		hw->mac_type = e1000_82545_rev_3;
1284 		break;
1285 	case E1000_DEV_ID_82546EB_COPPER:
1286 	case E1000_DEV_ID_82546EB_FIBER:
1287 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1288 		hw->mac_type = e1000_82546;
1289 		break;
1290 	case E1000_DEV_ID_82546GB_COPPER:
1291 	case E1000_DEV_ID_82546GB_FIBER:
1292 	case E1000_DEV_ID_82546GB_SERDES:
1293 	case E1000_DEV_ID_82546GB_PCIE:
1294 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1295 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1296 		hw->mac_type = e1000_82546_rev_3;
1297 		break;
1298 	case E1000_DEV_ID_82541EI:
1299 	case E1000_DEV_ID_82541EI_MOBILE:
1300 	case E1000_DEV_ID_82541ER_LOM:
1301 		hw->mac_type = e1000_82541;
1302 		break;
1303 	case E1000_DEV_ID_82541ER:
1304 	case E1000_DEV_ID_82541GI:
1305 	case E1000_DEV_ID_82541GI_LF:
1306 	case E1000_DEV_ID_82541GI_MOBILE:
1307 		hw->mac_type = e1000_82541_rev_2;
1308 		break;
1309 	case E1000_DEV_ID_82547EI:
1310 	case E1000_DEV_ID_82547EI_MOBILE:
1311 		hw->mac_type = e1000_82547;
1312 		break;
1313 	case E1000_DEV_ID_82547GI:
1314 		hw->mac_type = e1000_82547_rev_2;
1315 		break;
1316 	case E1000_DEV_ID_82571EB_COPPER:
1317 	case E1000_DEV_ID_82571EB_FIBER:
1318 	case E1000_DEV_ID_82571EB_SERDES:
1319 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1320 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1321 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1322 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1323 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1324 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1325 		hw->mac_type = e1000_82571;
1326 		break;
1327 	case E1000_DEV_ID_82572EI_COPPER:
1328 	case E1000_DEV_ID_82572EI_FIBER:
1329 	case E1000_DEV_ID_82572EI_SERDES:
1330 	case E1000_DEV_ID_82572EI:
1331 		hw->mac_type = e1000_82572;
1332 		break;
1333 	case E1000_DEV_ID_82573E:
1334 	case E1000_DEV_ID_82573E_IAMT:
1335 	case E1000_DEV_ID_82573L:
1336 		hw->mac_type = e1000_82573;
1337 		break;
1338 	case E1000_DEV_ID_82574L:
1339 		hw->mac_type = e1000_82574;
1340 		break;
1341 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1342 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1343 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1344 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1345 		hw->mac_type = e1000_80003es2lan;
1346 		break;
1347 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1348 	case E1000_DEV_ID_ICH8_IGP_AMT:
1349 	case E1000_DEV_ID_ICH8_IGP_C:
1350 	case E1000_DEV_ID_ICH8_IFE:
1351 	case E1000_DEV_ID_ICH8_IFE_GT:
1352 	case E1000_DEV_ID_ICH8_IFE_G:
1353 	case E1000_DEV_ID_ICH8_IGP_M:
1354 		hw->mac_type = e1000_ich8lan;
1355 		break;
1356 	case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1357 	case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1358 	case PCI_DEVICE_ID_INTEL_I210_COPPER:
1359 	case PCI_DEVICE_ID_INTEL_I211_COPPER:
1360 	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1361 	case PCI_DEVICE_ID_INTEL_I210_SERDES:
1362 	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1363 	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1364 		hw->mac_type = e1000_igb;
1365 		break;
1366 	default:
1367 		/* Should never have loaded on this device */
1368 		return -E1000_ERR_MAC_TYPE;
1369 	}
1370 	return E1000_SUCCESS;
1371 }
1372 
1373 /******************************************************************************
1374  * Reset the transmit and receive units; mask and clear all interrupts.
1375  *
1376  * hw - Struct containing variables accessed by shared code
1377  *****************************************************************************/
1378 void
1379 e1000_reset_hw(struct e1000_hw *hw)
1380 {
1381 	uint32_t ctrl;
1382 	uint32_t ctrl_ext;
1383 	uint32_t manc;
1384 	uint32_t pba = 0;
1385 	uint32_t reg;
1386 
1387 	DEBUGFUNC();
1388 
1389 	/* get the correct pba value for both PCI and PCIe*/
1390 	if (hw->mac_type <  e1000_82571)
1391 		pba = E1000_DEFAULT_PCI_PBA;
1392 	else
1393 		pba = E1000_DEFAULT_PCIE_PBA;
1394 
1395 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1396 	if (hw->mac_type == e1000_82542_rev2_0) {
1397 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1398 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1399 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1400 	}
1401 
1402 	/* Clear interrupt mask to stop board from generating interrupts */
1403 	DEBUGOUT("Masking off all interrupts\n");
1404 	if (hw->mac_type == e1000_igb)
1405 		E1000_WRITE_REG(hw, I210_IAM, 0);
1406 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1407 
1408 	/* Disable the Transmit and Receive units.  Then delay to allow
1409 	 * any pending transactions to complete before we hit the MAC with
1410 	 * the global reset.
1411 	 */
1412 	E1000_WRITE_REG(hw, RCTL, 0);
1413 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1414 	E1000_WRITE_FLUSH(hw);
1415 
1416 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1417 	hw->tbi_compatibility_on = false;
1418 
1419 	/* Delay to allow any outstanding PCI transactions to complete before
1420 	 * resetting the device
1421 	 */
1422 	mdelay(10);
1423 
1424 	/* Issue a global reset to the MAC.  This will reset the chip's
1425 	 * transmit, receive, DMA, and link units.  It will not effect
1426 	 * the current PCI configuration.  The global reset bit is self-
1427 	 * clearing, and should clear within a microsecond.
1428 	 */
1429 	DEBUGOUT("Issuing a global reset to MAC\n");
1430 	ctrl = E1000_READ_REG(hw, CTRL);
1431 
1432 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1433 
1434 	/* Force a reload from the EEPROM if necessary */
1435 	if (hw->mac_type == e1000_igb) {
1436 		mdelay(20);
1437 		reg = E1000_READ_REG(hw, STATUS);
1438 		if (reg & E1000_STATUS_PF_RST_DONE)
1439 			DEBUGOUT("PF OK\n");
1440 		reg = E1000_READ_REG(hw, I210_EECD);
1441 		if (reg & E1000_EECD_AUTO_RD)
1442 			DEBUGOUT("EEC OK\n");
1443 	} else if (hw->mac_type < e1000_82540) {
1444 		/* Wait for reset to complete */
1445 		udelay(10);
1446 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1447 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1448 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1449 		E1000_WRITE_FLUSH(hw);
1450 		/* Wait for EEPROM reload */
1451 		mdelay(2);
1452 	} else {
1453 		/* Wait for EEPROM reload (it happens automatically) */
1454 		mdelay(4);
1455 		/* Dissable HW ARPs on ASF enabled adapters */
1456 		manc = E1000_READ_REG(hw, MANC);
1457 		manc &= ~(E1000_MANC_ARP_EN);
1458 		E1000_WRITE_REG(hw, MANC, manc);
1459 	}
1460 
1461 	/* Clear interrupt mask to stop board from generating interrupts */
1462 	DEBUGOUT("Masking off all interrupts\n");
1463 	if (hw->mac_type == e1000_igb)
1464 		E1000_WRITE_REG(hw, I210_IAM, 0);
1465 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1466 
1467 	/* Clear any pending interrupt events. */
1468 	E1000_READ_REG(hw, ICR);
1469 
1470 	/* If MWI was previously enabled, reenable it. */
1471 	if (hw->mac_type == e1000_82542_rev2_0) {
1472 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1473 	}
1474 	if (hw->mac_type != e1000_igb)
1475 		E1000_WRITE_REG(hw, PBA, pba);
1476 }
1477 
1478 /******************************************************************************
1479  *
1480  * Initialize a number of hardware-dependent bits
1481  *
1482  * hw: Struct containing variables accessed by shared code
1483  *
1484  * This function contains hardware limitation workarounds for PCI-E adapters
1485  *
1486  *****************************************************************************/
1487 static void
1488 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1489 {
1490 	if ((hw->mac_type >= e1000_82571) &&
1491 			(!hw->initialize_hw_bits_disable)) {
1492 		/* Settings common to all PCI-express silicon */
1493 		uint32_t reg_ctrl, reg_ctrl_ext;
1494 		uint32_t reg_tarc0, reg_tarc1;
1495 		uint32_t reg_tctl;
1496 		uint32_t reg_txdctl, reg_txdctl1;
1497 
1498 		/* link autonegotiation/sync workarounds */
1499 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1500 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1501 
1502 		/* Enable not-done TX descriptor counting */
1503 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1504 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1505 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1506 
1507 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1508 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1509 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1510 
1511 	/* IGB is cool */
1512 	if (hw->mac_type == e1000_igb)
1513 		return;
1514 
1515 		switch (hw->mac_type) {
1516 		case e1000_82571:
1517 		case e1000_82572:
1518 			/* Clear PHY TX compatible mode bits */
1519 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1520 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1521 
1522 			/* link autonegotiation/sync workarounds */
1523 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1524 
1525 			/* TX ring control fixes */
1526 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1527 
1528 			/* Multiple read bit is reversed polarity */
1529 			reg_tctl = E1000_READ_REG(hw, TCTL);
1530 			if (reg_tctl & E1000_TCTL_MULR)
1531 				reg_tarc1 &= ~(1 << 28);
1532 			else
1533 				reg_tarc1 |= (1 << 28);
1534 
1535 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1536 			break;
1537 		case e1000_82573:
1538 		case e1000_82574:
1539 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1540 			reg_ctrl_ext &= ~(1 << 23);
1541 			reg_ctrl_ext |= (1 << 22);
1542 
1543 			/* TX byte count fix */
1544 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1545 			reg_ctrl &= ~(1 << 29);
1546 
1547 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1548 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1549 			break;
1550 		case e1000_80003es2lan:
1551 	/* improve small packet performace for fiber/serdes */
1552 			if ((hw->media_type == e1000_media_type_fiber)
1553 			|| (hw->media_type ==
1554 				e1000_media_type_internal_serdes)) {
1555 				reg_tarc0 &= ~(1 << 20);
1556 			}
1557 
1558 		/* Multiple read bit is reversed polarity */
1559 			reg_tctl = E1000_READ_REG(hw, TCTL);
1560 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1561 			if (reg_tctl & E1000_TCTL_MULR)
1562 				reg_tarc1 &= ~(1 << 28);
1563 			else
1564 				reg_tarc1 |= (1 << 28);
1565 
1566 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1567 			break;
1568 		case e1000_ich8lan:
1569 			/* Reduce concurrent DMA requests to 3 from 4 */
1570 			if ((hw->revision_id < 3) ||
1571 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1572 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1573 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1574 
1575 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1576 			reg_ctrl_ext |= (1 << 22);
1577 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1578 
1579 			/* workaround TX hang with TSO=on */
1580 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1581 
1582 			/* Multiple read bit is reversed polarity */
1583 			reg_tctl = E1000_READ_REG(hw, TCTL);
1584 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1585 			if (reg_tctl & E1000_TCTL_MULR)
1586 				reg_tarc1 &= ~(1 << 28);
1587 			else
1588 				reg_tarc1 |= (1 << 28);
1589 
1590 			/* workaround TX hang with TSO=on */
1591 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1592 
1593 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1594 			break;
1595 		default:
1596 			break;
1597 		}
1598 
1599 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1600 	}
1601 }
1602 
1603 /******************************************************************************
1604  * Performs basic configuration of the adapter.
1605  *
1606  * hw - Struct containing variables accessed by shared code
1607  *
1608  * Assumes that the controller has previously been reset and is in a
1609  * post-reset uninitialized state. Initializes the receive address registers,
1610  * multicast table, and VLAN filter table. Calls routines to setup link
1611  * configuration and flow control settings. Clears all on-chip counters. Leaves
1612  * the transmit and receive units disabled and uninitialized.
1613  *****************************************************************************/
1614 static int
1615 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1616 {
1617 	uint32_t ctrl;
1618 	uint32_t i;
1619 	int32_t ret_val;
1620 	uint16_t pcix_cmd_word;
1621 	uint16_t pcix_stat_hi_word;
1622 	uint16_t cmd_mmrbc;
1623 	uint16_t stat_mmrbc;
1624 	uint32_t mta_size;
1625 	uint32_t reg_data;
1626 	uint32_t ctrl_ext;
1627 	DEBUGFUNC();
1628 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1629 	if ((hw->mac_type == e1000_ich8lan) &&
1630 		((hw->revision_id < 3) ||
1631 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1632 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1633 			reg_data = E1000_READ_REG(hw, STATUS);
1634 			reg_data &= ~0x80000000;
1635 			E1000_WRITE_REG(hw, STATUS, reg_data);
1636 	}
1637 	/* Do not need initialize Identification LED */
1638 
1639 	/* Set the media type and TBI compatibility */
1640 	e1000_set_media_type(hw);
1641 
1642 	/* Must be called after e1000_set_media_type
1643 	 * because media_type is used */
1644 	e1000_initialize_hardware_bits(hw);
1645 
1646 	/* Disabling VLAN filtering. */
1647 	DEBUGOUT("Initializing the IEEE VLAN\n");
1648 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1649 	if (hw->mac_type != e1000_ich8lan) {
1650 		if (hw->mac_type < e1000_82545_rev_3)
1651 			E1000_WRITE_REG(hw, VET, 0);
1652 		e1000_clear_vfta(hw);
1653 	}
1654 
1655 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1656 	if (hw->mac_type == e1000_82542_rev2_0) {
1657 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1658 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1659 				      hw->
1660 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1661 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1662 		E1000_WRITE_FLUSH(hw);
1663 		mdelay(5);
1664 	}
1665 
1666 	/* Setup the receive address. This involves initializing all of the Receive
1667 	 * Address Registers (RARs 0 - 15).
1668 	 */
1669 	e1000_init_rx_addrs(hw, enetaddr);
1670 
1671 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1672 	if (hw->mac_type == e1000_82542_rev2_0) {
1673 		E1000_WRITE_REG(hw, RCTL, 0);
1674 		E1000_WRITE_FLUSH(hw);
1675 		mdelay(1);
1676 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1677 	}
1678 
1679 	/* Zero out the Multicast HASH table */
1680 	DEBUGOUT("Zeroing the MTA\n");
1681 	mta_size = E1000_MC_TBL_SIZE;
1682 	if (hw->mac_type == e1000_ich8lan)
1683 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1684 	for (i = 0; i < mta_size; i++) {
1685 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1686 		/* use write flush to prevent Memory Write Block (MWB) from
1687 		 * occuring when accessing our register space */
1688 		E1000_WRITE_FLUSH(hw);
1689 	}
1690 
1691 	switch (hw->mac_type) {
1692 	case e1000_82545_rev_3:
1693 	case e1000_82546_rev_3:
1694 	case e1000_igb:
1695 		break;
1696 	default:
1697 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1698 	if (hw->bus_type == e1000_bus_type_pcix) {
1699 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1700 				     &pcix_cmd_word);
1701 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1702 				     &pcix_stat_hi_word);
1703 		cmd_mmrbc =
1704 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1705 		    PCIX_COMMAND_MMRBC_SHIFT;
1706 		stat_mmrbc =
1707 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1708 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1709 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1710 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1711 		if (cmd_mmrbc > stat_mmrbc) {
1712 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1713 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1714 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1715 					      pcix_cmd_word);
1716 		}
1717 	}
1718 		break;
1719 	}
1720 
1721 	/* More time needed for PHY to initialize */
1722 	if (hw->mac_type == e1000_ich8lan)
1723 		mdelay(15);
1724 	if (hw->mac_type == e1000_igb)
1725 		mdelay(15);
1726 
1727 	/* Call a subroutine to configure the link and setup flow control. */
1728 	ret_val = e1000_setup_link(hw);
1729 
1730 	/* Set the transmit descriptor write-back policy */
1731 	if (hw->mac_type > e1000_82544) {
1732 		ctrl = E1000_READ_REG(hw, TXDCTL);
1733 		ctrl =
1734 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1735 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1736 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1737 	}
1738 
1739 	/* Set the receive descriptor write back policy */
1740 	if (hw->mac_type >= e1000_82571) {
1741 		ctrl = E1000_READ_REG(hw, RXDCTL);
1742 		ctrl =
1743 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1744 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1745 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1746 	}
1747 
1748 	switch (hw->mac_type) {
1749 	default:
1750 		break;
1751 	case e1000_80003es2lan:
1752 		/* Enable retransmit on late collisions */
1753 		reg_data = E1000_READ_REG(hw, TCTL);
1754 		reg_data |= E1000_TCTL_RTLC;
1755 		E1000_WRITE_REG(hw, TCTL, reg_data);
1756 
1757 		/* Configure Gigabit Carry Extend Padding */
1758 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1759 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1760 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1761 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1762 
1763 		/* Configure Transmit Inter-Packet Gap */
1764 		reg_data = E1000_READ_REG(hw, TIPG);
1765 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1766 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1767 		E1000_WRITE_REG(hw, TIPG, reg_data);
1768 
1769 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1770 		reg_data &= ~0x00100000;
1771 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1772 		/* Fall through */
1773 	case e1000_82571:
1774 	case e1000_82572:
1775 	case e1000_ich8lan:
1776 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1777 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1778 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1779 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1780 		break;
1781 	case e1000_82573:
1782 	case e1000_82574:
1783 		reg_data = E1000_READ_REG(hw, GCR);
1784 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1785 		E1000_WRITE_REG(hw, GCR, reg_data);
1786 	case e1000_igb:
1787 		break;
1788 	}
1789 
1790 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1791 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1792 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1793 		/* Relaxed ordering must be disabled to avoid a parity
1794 		 * error crash in a PCI slot. */
1795 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1796 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1797 	}
1798 
1799 	return ret_val;
1800 }
1801 
1802 /******************************************************************************
1803  * Configures flow control and link settings.
1804  *
1805  * hw - Struct containing variables accessed by shared code
1806  *
1807  * Determines which flow control settings to use. Calls the apropriate media-
1808  * specific link configuration function. Configures the flow control settings.
1809  * Assuming the adapter has a valid link partner, a valid link should be
1810  * established. Assumes the hardware has previously been reset and the
1811  * transmitter and receiver are not enabled.
1812  *****************************************************************************/
1813 static int
1814 e1000_setup_link(struct e1000_hw *hw)
1815 {
1816 	int32_t ret_val;
1817 #ifndef CONFIG_E1000_NO_NVM
1818 	uint32_t ctrl_ext;
1819 	uint16_t eeprom_data;
1820 #endif
1821 
1822 	DEBUGFUNC();
1823 
1824 	/* In the case of the phy reset being blocked, we already have a link.
1825 	 * We do not have to set it up again. */
1826 	if (e1000_check_phy_reset_block(hw))
1827 		return E1000_SUCCESS;
1828 
1829 #ifndef CONFIG_E1000_NO_NVM
1830 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1831 	 * that determine the hardware's default PAUSE (flow control) mode,
1832 	 * a bit that determines whether the HW defaults to enabling or
1833 	 * disabling auto-negotiation, and the direction of the
1834 	 * SW defined pins. If there is no SW over-ride of the flow
1835 	 * control setting, then the variable hw->fc will
1836 	 * be initialized based on a value in the EEPROM.
1837 	 */
1838 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1839 				&eeprom_data) < 0) {
1840 		DEBUGOUT("EEPROM Read Error\n");
1841 		return -E1000_ERR_EEPROM;
1842 	}
1843 #endif
1844 	if (hw->fc == e1000_fc_default) {
1845 		switch (hw->mac_type) {
1846 		case e1000_ich8lan:
1847 		case e1000_82573:
1848 		case e1000_82574:
1849 		case e1000_igb:
1850 			hw->fc = e1000_fc_full;
1851 			break;
1852 		default:
1853 #ifndef CONFIG_E1000_NO_NVM
1854 			ret_val = e1000_read_eeprom(hw,
1855 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1856 			if (ret_val) {
1857 				DEBUGOUT("EEPROM Read Error\n");
1858 				return -E1000_ERR_EEPROM;
1859 			}
1860 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1861 				hw->fc = e1000_fc_none;
1862 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1863 				    EEPROM_WORD0F_ASM_DIR)
1864 				hw->fc = e1000_fc_tx_pause;
1865 			else
1866 #endif
1867 				hw->fc = e1000_fc_full;
1868 			break;
1869 		}
1870 	}
1871 
1872 	/* We want to save off the original Flow Control configuration just
1873 	 * in case we get disconnected and then reconnected into a different
1874 	 * hub or switch with different Flow Control capabilities.
1875 	 */
1876 	if (hw->mac_type == e1000_82542_rev2_0)
1877 		hw->fc &= (~e1000_fc_tx_pause);
1878 
1879 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1880 		hw->fc &= (~e1000_fc_rx_pause);
1881 
1882 	hw->original_fc = hw->fc;
1883 
1884 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1885 
1886 #ifndef CONFIG_E1000_NO_NVM
1887 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1888 	 * polarity value for the SW controlled pins, and setup the
1889 	 * Extended Device Control reg with that info.
1890 	 * This is needed because one of the SW controlled pins is used for
1891 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1892 	 * or e1000_phy_setup() is called.
1893 	 */
1894 	if (hw->mac_type == e1000_82543) {
1895 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1896 			    SWDPIO__EXT_SHIFT);
1897 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1898 	}
1899 #endif
1900 
1901 	/* Call the necessary subroutine to configure the link. */
1902 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1903 	    e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
1904 	if (ret_val < 0) {
1905 		return ret_val;
1906 	}
1907 
1908 	/* Initialize the flow control address, type, and PAUSE timer
1909 	 * registers to their default values.  This is done even if flow
1910 	 * control is disabled, because it does not hurt anything to
1911 	 * initialize these registers.
1912 	 */
1913 	DEBUGOUT("Initializing the Flow Control address, type"
1914 			"and timer regs\n");
1915 
1916 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1917 	if (hw->mac_type != e1000_ich8lan) {
1918 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1919 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1920 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1921 	}
1922 
1923 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1924 
1925 	/* Set the flow control receive threshold registers.  Normally,
1926 	 * these registers will be set to a default threshold that may be
1927 	 * adjusted later by the driver's runtime code.  However, if the
1928 	 * ability to transmit pause frames in not enabled, then these
1929 	 * registers will be set to 0.
1930 	 */
1931 	if (!(hw->fc & e1000_fc_tx_pause)) {
1932 		E1000_WRITE_REG(hw, FCRTL, 0);
1933 		E1000_WRITE_REG(hw, FCRTH, 0);
1934 	} else {
1935 		/* We need to set up the Receive Threshold high and low water marks
1936 		 * as well as (optionally) enabling the transmission of XON frames.
1937 		 */
1938 		if (hw->fc_send_xon) {
1939 			E1000_WRITE_REG(hw, FCRTL,
1940 					(hw->fc_low_water | E1000_FCRTL_XONE));
1941 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1942 		} else {
1943 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1944 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1945 		}
1946 	}
1947 	return ret_val;
1948 }
1949 
1950 /******************************************************************************
1951  * Sets up link for a fiber based adapter
1952  *
1953  * hw - Struct containing variables accessed by shared code
1954  *
1955  * Manipulates Physical Coding Sublayer functions in order to configure
1956  * link. Assumes the hardware has been previously reset and the transmitter
1957  * and receiver are not enabled.
1958  *****************************************************************************/
1959 static int
1960 e1000_setup_fiber_link(struct e1000_hw *hw)
1961 {
1962 	uint32_t ctrl;
1963 	uint32_t status;
1964 	uint32_t txcw = 0;
1965 	uint32_t i;
1966 	uint32_t signal;
1967 	int32_t ret_val;
1968 
1969 	DEBUGFUNC();
1970 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1971 	 * set when the optics detect a signal. On older adapters, it will be
1972 	 * cleared when there is a signal
1973 	 */
1974 	ctrl = E1000_READ_REG(hw, CTRL);
1975 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1976 		signal = E1000_CTRL_SWDPIN1;
1977 	else
1978 		signal = 0;
1979 
1980 	printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
1981 	       ctrl);
1982 	/* Take the link out of reset */
1983 	ctrl &= ~(E1000_CTRL_LRST);
1984 
1985 	e1000_config_collision_dist(hw);
1986 
1987 	/* Check for a software override of the flow control settings, and setup
1988 	 * the device accordingly.  If auto-negotiation is enabled, then software
1989 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1990 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1991 	 * auto-negotiation is disabled, then software will have to manually
1992 	 * configure the two flow control enable bits in the CTRL register.
1993 	 *
1994 	 * The possible values of the "fc" parameter are:
1995 	 *	0:  Flow control is completely disabled
1996 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
1997 	 *	    not send pause frames).
1998 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
1999 	 *	    not support receiving pause frames).
2000 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
2001 	 */
2002 	switch (hw->fc) {
2003 	case e1000_fc_none:
2004 		/* Flow control is completely disabled by a software over-ride. */
2005 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2006 		break;
2007 	case e1000_fc_rx_pause:
2008 		/* RX Flow control is enabled and TX Flow control is disabled by a
2009 		 * software over-ride. Since there really isn't a way to advertise
2010 		 * that we are capable of RX Pause ONLY, we will advertise that we
2011 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
2012 		 *  disable the adapter's ability to send PAUSE frames.
2013 		 */
2014 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2015 		break;
2016 	case e1000_fc_tx_pause:
2017 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
2018 		 * software over-ride.
2019 		 */
2020 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2021 		break;
2022 	case e1000_fc_full:
2023 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
2024 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2025 		break;
2026 	default:
2027 		DEBUGOUT("Flow control param set incorrectly\n");
2028 		return -E1000_ERR_CONFIG;
2029 		break;
2030 	}
2031 
2032 	/* Since auto-negotiation is enabled, take the link out of reset (the link
2033 	 * will be in reset, because we previously reset the chip). This will
2034 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2035 	 * link-up status bit will be set and the flow control enable bits (RFCE
2036 	 * and TFCE) will be set according to their negotiated value.
2037 	 */
2038 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2039 
2040 	E1000_WRITE_REG(hw, TXCW, txcw);
2041 	E1000_WRITE_REG(hw, CTRL, ctrl);
2042 	E1000_WRITE_FLUSH(hw);
2043 
2044 	hw->txcw = txcw;
2045 	mdelay(1);
2046 
2047 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2048 	 * indication in the Device Status Register.  Time-out if a link isn't
2049 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2050 	 * less than 500 milliseconds even if the other end is doing it in SW).
2051 	 */
2052 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2053 		DEBUGOUT("Looking for Link\n");
2054 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2055 			mdelay(10);
2056 			status = E1000_READ_REG(hw, STATUS);
2057 			if (status & E1000_STATUS_LU)
2058 				break;
2059 		}
2060 		if (i == (LINK_UP_TIMEOUT / 10)) {
2061 			/* AutoNeg failed to achieve a link, so we'll call
2062 			 * e1000_check_for_link. This routine will force the link up if we
2063 			 * detect a signal. This will allow us to communicate with
2064 			 * non-autonegotiating link partners.
2065 			 */
2066 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2067 			hw->autoneg_failed = 1;
2068 			ret_val = e1000_check_for_link(hw);
2069 			if (ret_val < 0) {
2070 				DEBUGOUT("Error while checking for link\n");
2071 				return ret_val;
2072 			}
2073 			hw->autoneg_failed = 0;
2074 		} else {
2075 			hw->autoneg_failed = 0;
2076 			DEBUGOUT("Valid Link Found\n");
2077 		}
2078 	} else {
2079 		DEBUGOUT("No Signal Detected\n");
2080 		return -E1000_ERR_NOLINK;
2081 	}
2082 	return 0;
2083 }
2084 
2085 /******************************************************************************
2086 * Make sure we have a valid PHY and change PHY mode before link setup.
2087 *
2088 * hw - Struct containing variables accessed by shared code
2089 ******************************************************************************/
2090 static int32_t
2091 e1000_copper_link_preconfig(struct e1000_hw *hw)
2092 {
2093 	uint32_t ctrl;
2094 	int32_t ret_val;
2095 	uint16_t phy_data;
2096 
2097 	DEBUGFUNC();
2098 
2099 	ctrl = E1000_READ_REG(hw, CTRL);
2100 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2101 	 * the PHY speed and duplex configuration is. In addition, we need to
2102 	 * perform a hardware reset on the PHY to take it out of reset.
2103 	 */
2104 	if (hw->mac_type > e1000_82543) {
2105 		ctrl |= E1000_CTRL_SLU;
2106 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2107 		E1000_WRITE_REG(hw, CTRL, ctrl);
2108 	} else {
2109 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2110 				| E1000_CTRL_SLU);
2111 		E1000_WRITE_REG(hw, CTRL, ctrl);
2112 		ret_val = e1000_phy_hw_reset(hw);
2113 		if (ret_val)
2114 			return ret_val;
2115 	}
2116 
2117 	/* Make sure we have a valid PHY */
2118 	ret_val = e1000_detect_gig_phy(hw);
2119 	if (ret_val) {
2120 		DEBUGOUT("Error, did not detect valid phy.\n");
2121 		return ret_val;
2122 	}
2123 	DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2124 
2125 	/* Set PHY to class A mode (if necessary) */
2126 	ret_val = e1000_set_phy_mode(hw);
2127 	if (ret_val)
2128 		return ret_val;
2129 	if ((hw->mac_type == e1000_82545_rev_3) ||
2130 		(hw->mac_type == e1000_82546_rev_3)) {
2131 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2132 				&phy_data);
2133 		phy_data |= 0x00000008;
2134 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2135 				phy_data);
2136 	}
2137 
2138 	if (hw->mac_type <= e1000_82543 ||
2139 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2140 		hw->mac_type == e1000_82541_rev_2
2141 		|| hw->mac_type == e1000_82547_rev_2)
2142 			hw->phy_reset_disable = false;
2143 
2144 	return E1000_SUCCESS;
2145 }
2146 
2147 /*****************************************************************************
2148  *
2149  * This function sets the lplu state according to the active flag.  When
2150  * activating lplu this function also disables smart speed and vise versa.
2151  * lplu will not be activated unless the device autonegotiation advertisment
2152  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2153  * hw: Struct containing variables accessed by shared code
2154  * active - true to enable lplu false to disable lplu.
2155  *
2156  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2157  *            E1000_SUCCESS at any other case.
2158  *
2159  ****************************************************************************/
2160 
2161 static int32_t
2162 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2163 {
2164 	uint32_t phy_ctrl = 0;
2165 	int32_t ret_val;
2166 	uint16_t phy_data;
2167 	DEBUGFUNC();
2168 
2169 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2170 	    && hw->phy_type != e1000_phy_igp_3)
2171 		return E1000_SUCCESS;
2172 
2173 	/* During driver activity LPLU should not be used or it will attain link
2174 	 * from the lowest speeds starting from 10Mbps. The capability is used
2175 	 * for Dx transitions and states */
2176 	if (hw->mac_type == e1000_82541_rev_2
2177 			|| hw->mac_type == e1000_82547_rev_2) {
2178 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2179 				&phy_data);
2180 		if (ret_val)
2181 			return ret_val;
2182 	} else if (hw->mac_type == e1000_ich8lan) {
2183 		/* MAC writes into PHY register based on the state transition
2184 		 * and start auto-negotiation. SW driver can overwrite the
2185 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2186 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2187 	} else {
2188 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2189 				&phy_data);
2190 		if (ret_val)
2191 			return ret_val;
2192 	}
2193 
2194 	if (!active) {
2195 		if (hw->mac_type == e1000_82541_rev_2 ||
2196 			hw->mac_type == e1000_82547_rev_2) {
2197 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2198 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2199 					phy_data);
2200 			if (ret_val)
2201 				return ret_val;
2202 		} else {
2203 			if (hw->mac_type == e1000_ich8lan) {
2204 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2205 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2206 			} else {
2207 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2208 				ret_val = e1000_write_phy_reg(hw,
2209 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2210 				if (ret_val)
2211 					return ret_val;
2212 			}
2213 		}
2214 
2215 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2216 	 * Dx states where the power conservation is most important.  During
2217 	 * driver activity we should enable SmartSpeed, so performance is
2218 	 * maintained. */
2219 		if (hw->smart_speed == e1000_smart_speed_on) {
2220 			ret_val = e1000_read_phy_reg(hw,
2221 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2222 			if (ret_val)
2223 				return ret_val;
2224 
2225 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2226 			ret_val = e1000_write_phy_reg(hw,
2227 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2228 			if (ret_val)
2229 				return ret_val;
2230 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2231 			ret_val = e1000_read_phy_reg(hw,
2232 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2233 			if (ret_val)
2234 				return ret_val;
2235 
2236 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2237 			ret_val = e1000_write_phy_reg(hw,
2238 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2239 			if (ret_val)
2240 				return ret_val;
2241 		}
2242 
2243 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2244 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2245 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2246 
2247 		if (hw->mac_type == e1000_82541_rev_2 ||
2248 		    hw->mac_type == e1000_82547_rev_2) {
2249 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2250 			ret_val = e1000_write_phy_reg(hw,
2251 					IGP01E1000_GMII_FIFO, phy_data);
2252 			if (ret_val)
2253 				return ret_val;
2254 		} else {
2255 			if (hw->mac_type == e1000_ich8lan) {
2256 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2257 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2258 			} else {
2259 				phy_data |= IGP02E1000_PM_D3_LPLU;
2260 				ret_val = e1000_write_phy_reg(hw,
2261 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2262 				if (ret_val)
2263 					return ret_val;
2264 			}
2265 		}
2266 
2267 		/* When LPLU is enabled we should disable SmartSpeed */
2268 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2269 				&phy_data);
2270 		if (ret_val)
2271 			return ret_val;
2272 
2273 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2274 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2275 				phy_data);
2276 		if (ret_val)
2277 			return ret_val;
2278 	}
2279 	return E1000_SUCCESS;
2280 }
2281 
2282 /*****************************************************************************
2283  *
2284  * This function sets the lplu d0 state according to the active flag.  When
2285  * activating lplu this function also disables smart speed and vise versa.
2286  * lplu will not be activated unless the device autonegotiation advertisment
2287  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2288  * hw: Struct containing variables accessed by shared code
2289  * active - true to enable lplu false to disable lplu.
2290  *
2291  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2292  *            E1000_SUCCESS at any other case.
2293  *
2294  ****************************************************************************/
2295 
2296 static int32_t
2297 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2298 {
2299 	uint32_t phy_ctrl = 0;
2300 	int32_t ret_val;
2301 	uint16_t phy_data;
2302 	DEBUGFUNC();
2303 
2304 	if (hw->mac_type <= e1000_82547_rev_2)
2305 		return E1000_SUCCESS;
2306 
2307 	if (hw->mac_type == e1000_ich8lan) {
2308 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2309 	} else if (hw->mac_type == e1000_igb) {
2310 		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2311 	} else {
2312 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2313 				&phy_data);
2314 		if (ret_val)
2315 			return ret_val;
2316 	}
2317 
2318 	if (!active) {
2319 		if (hw->mac_type == e1000_ich8lan) {
2320 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2321 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2322 		} else if (hw->mac_type == e1000_igb) {
2323 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2324 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2325 		} else {
2326 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2327 			ret_val = e1000_write_phy_reg(hw,
2328 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2329 			if (ret_val)
2330 				return ret_val;
2331 		}
2332 
2333 		if (hw->mac_type == e1000_igb)
2334 			return E1000_SUCCESS;
2335 
2336 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2337 	 * Dx states where the power conservation is most important.  During
2338 	 * driver activity we should enable SmartSpeed, so performance is
2339 	 * maintained. */
2340 		if (hw->smart_speed == e1000_smart_speed_on) {
2341 			ret_val = e1000_read_phy_reg(hw,
2342 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2343 			if (ret_val)
2344 				return ret_val;
2345 
2346 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2347 			ret_val = e1000_write_phy_reg(hw,
2348 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2349 			if (ret_val)
2350 				return ret_val;
2351 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2352 			ret_val = e1000_read_phy_reg(hw,
2353 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2354 			if (ret_val)
2355 				return ret_val;
2356 
2357 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2358 			ret_val = e1000_write_phy_reg(hw,
2359 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2360 			if (ret_val)
2361 				return ret_val;
2362 		}
2363 
2364 
2365 	} else {
2366 
2367 		if (hw->mac_type == e1000_ich8lan) {
2368 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2369 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2370 		} else if (hw->mac_type == e1000_igb) {
2371 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2372 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2373 		} else {
2374 			phy_data |= IGP02E1000_PM_D0_LPLU;
2375 			ret_val = e1000_write_phy_reg(hw,
2376 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2377 			if (ret_val)
2378 				return ret_val;
2379 		}
2380 
2381 		if (hw->mac_type == e1000_igb)
2382 			return E1000_SUCCESS;
2383 
2384 		/* When LPLU is enabled we should disable SmartSpeed */
2385 		ret_val = e1000_read_phy_reg(hw,
2386 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2387 		if (ret_val)
2388 			return ret_val;
2389 
2390 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2391 		ret_val = e1000_write_phy_reg(hw,
2392 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2393 		if (ret_val)
2394 			return ret_val;
2395 
2396 	}
2397 	return E1000_SUCCESS;
2398 }
2399 
2400 /********************************************************************
2401 * Copper link setup for e1000_phy_igp series.
2402 *
2403 * hw - Struct containing variables accessed by shared code
2404 *********************************************************************/
2405 static int32_t
2406 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2407 {
2408 	uint32_t led_ctrl;
2409 	int32_t ret_val;
2410 	uint16_t phy_data;
2411 
2412 	DEBUGFUNC();
2413 
2414 	if (hw->phy_reset_disable)
2415 		return E1000_SUCCESS;
2416 
2417 	ret_val = e1000_phy_reset(hw);
2418 	if (ret_val) {
2419 		DEBUGOUT("Error Resetting the PHY\n");
2420 		return ret_val;
2421 	}
2422 
2423 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2424 	mdelay(15);
2425 	if (hw->mac_type != e1000_ich8lan) {
2426 		/* Configure activity LED after PHY reset */
2427 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2428 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2429 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2430 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2431 	}
2432 
2433 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2434 	if (hw->phy_type == e1000_phy_igp) {
2435 		/* disable lplu d3 during driver init */
2436 		ret_val = e1000_set_d3_lplu_state(hw, false);
2437 		if (ret_val) {
2438 			DEBUGOUT("Error Disabling LPLU D3\n");
2439 			return ret_val;
2440 		}
2441 	}
2442 
2443 	/* disable lplu d0 during driver init */
2444 	ret_val = e1000_set_d0_lplu_state(hw, false);
2445 	if (ret_val) {
2446 		DEBUGOUT("Error Disabling LPLU D0\n");
2447 		return ret_val;
2448 	}
2449 	/* Configure mdi-mdix settings */
2450 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2451 	if (ret_val)
2452 		return ret_val;
2453 
2454 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2455 		hw->dsp_config_state = e1000_dsp_config_disabled;
2456 		/* Force MDI for earlier revs of the IGP PHY */
2457 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2458 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2459 		hw->mdix = 1;
2460 
2461 	} else {
2462 		hw->dsp_config_state = e1000_dsp_config_enabled;
2463 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2464 
2465 		switch (hw->mdix) {
2466 		case 1:
2467 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2468 			break;
2469 		case 2:
2470 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2471 			break;
2472 		case 0:
2473 		default:
2474 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2475 			break;
2476 		}
2477 	}
2478 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2479 	if (ret_val)
2480 		return ret_val;
2481 
2482 	/* set auto-master slave resolution settings */
2483 	if (hw->autoneg) {
2484 		e1000_ms_type phy_ms_setting = hw->master_slave;
2485 
2486 		if (hw->ffe_config_state == e1000_ffe_config_active)
2487 			hw->ffe_config_state = e1000_ffe_config_enabled;
2488 
2489 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2490 			hw->dsp_config_state = e1000_dsp_config_enabled;
2491 
2492 		/* when autonegotiation advertisment is only 1000Mbps then we
2493 		  * should disable SmartSpeed and enable Auto MasterSlave
2494 		  * resolution as hardware default. */
2495 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2496 			/* Disable SmartSpeed */
2497 			ret_val = e1000_read_phy_reg(hw,
2498 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2499 			if (ret_val)
2500 				return ret_val;
2501 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2502 			ret_val = e1000_write_phy_reg(hw,
2503 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2504 			if (ret_val)
2505 				return ret_val;
2506 			/* Set auto Master/Slave resolution process */
2507 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2508 					&phy_data);
2509 			if (ret_val)
2510 				return ret_val;
2511 			phy_data &= ~CR_1000T_MS_ENABLE;
2512 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2513 					phy_data);
2514 			if (ret_val)
2515 				return ret_val;
2516 		}
2517 
2518 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2519 		if (ret_val)
2520 			return ret_val;
2521 
2522 		/* load defaults for future use */
2523 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2524 				((phy_data & CR_1000T_MS_VALUE) ?
2525 				e1000_ms_force_master :
2526 				e1000_ms_force_slave) :
2527 				e1000_ms_auto;
2528 
2529 		switch (phy_ms_setting) {
2530 		case e1000_ms_force_master:
2531 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2532 			break;
2533 		case e1000_ms_force_slave:
2534 			phy_data |= CR_1000T_MS_ENABLE;
2535 			phy_data &= ~(CR_1000T_MS_VALUE);
2536 			break;
2537 		case e1000_ms_auto:
2538 			phy_data &= ~CR_1000T_MS_ENABLE;
2539 		default:
2540 			break;
2541 		}
2542 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2543 		if (ret_val)
2544 			return ret_val;
2545 	}
2546 
2547 	return E1000_SUCCESS;
2548 }
2549 
2550 /*****************************************************************************
2551  * This function checks the mode of the firmware.
2552  *
2553  * returns  - true when the mode is IAMT or false.
2554  ****************************************************************************/
2555 bool
2556 e1000_check_mng_mode(struct e1000_hw *hw)
2557 {
2558 	uint32_t fwsm;
2559 	DEBUGFUNC();
2560 
2561 	fwsm = E1000_READ_REG(hw, FWSM);
2562 
2563 	if (hw->mac_type == e1000_ich8lan) {
2564 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2565 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2566 			return true;
2567 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2568 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2569 			return true;
2570 
2571 	return false;
2572 }
2573 
2574 static int32_t
2575 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2576 {
2577 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2578 	uint32_t reg_val;
2579 	DEBUGFUNC();
2580 
2581 	if (e1000_is_second_port(hw))
2582 		swfw = E1000_SWFW_PHY1_SM;
2583 
2584 	if (e1000_swfw_sync_acquire(hw, swfw))
2585 		return -E1000_ERR_SWFW_SYNC;
2586 
2587 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2588 			& E1000_KUMCTRLSTA_OFFSET) | data;
2589 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2590 	udelay(2);
2591 
2592 	return E1000_SUCCESS;
2593 }
2594 
2595 static int32_t
2596 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2597 {
2598 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2599 	uint32_t reg_val;
2600 	DEBUGFUNC();
2601 
2602 	if (e1000_is_second_port(hw))
2603 		swfw = E1000_SWFW_PHY1_SM;
2604 
2605 	if (e1000_swfw_sync_acquire(hw, swfw)) {
2606 		debug("%s[%i]\n", __func__, __LINE__);
2607 		return -E1000_ERR_SWFW_SYNC;
2608 	}
2609 
2610 	/* Write register address */
2611 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2612 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2613 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2614 	udelay(2);
2615 
2616 	/* Read the data returned */
2617 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2618 	*data = (uint16_t)reg_val;
2619 
2620 	return E1000_SUCCESS;
2621 }
2622 
2623 /********************************************************************
2624 * Copper link setup for e1000_phy_gg82563 series.
2625 *
2626 * hw - Struct containing variables accessed by shared code
2627 *********************************************************************/
2628 static int32_t
2629 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2630 {
2631 	int32_t ret_val;
2632 	uint16_t phy_data;
2633 	uint32_t reg_data;
2634 
2635 	DEBUGFUNC();
2636 
2637 	if (!hw->phy_reset_disable) {
2638 		/* Enable CRS on TX for half-duplex operation. */
2639 		ret_val = e1000_read_phy_reg(hw,
2640 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2641 		if (ret_val)
2642 			return ret_val;
2643 
2644 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2645 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2646 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2647 
2648 		ret_val = e1000_write_phy_reg(hw,
2649 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2650 		if (ret_val)
2651 			return ret_val;
2652 
2653 		/* Options:
2654 		 *   MDI/MDI-X = 0 (default)
2655 		 *   0 - Auto for all speeds
2656 		 *   1 - MDI mode
2657 		 *   2 - MDI-X mode
2658 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2659 		 */
2660 		ret_val = e1000_read_phy_reg(hw,
2661 				GG82563_PHY_SPEC_CTRL, &phy_data);
2662 		if (ret_val)
2663 			return ret_val;
2664 
2665 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2666 
2667 		switch (hw->mdix) {
2668 		case 1:
2669 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2670 			break;
2671 		case 2:
2672 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2673 			break;
2674 		case 0:
2675 		default:
2676 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2677 			break;
2678 		}
2679 
2680 		/* Options:
2681 		 *   disable_polarity_correction = 0 (default)
2682 		 *       Automatic Correction for Reversed Cable Polarity
2683 		 *   0 - Disabled
2684 		 *   1 - Enabled
2685 		 */
2686 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2687 		ret_val = e1000_write_phy_reg(hw,
2688 				GG82563_PHY_SPEC_CTRL, phy_data);
2689 
2690 		if (ret_val)
2691 			return ret_val;
2692 
2693 		/* SW Reset the PHY so all changes take effect */
2694 		ret_val = e1000_phy_reset(hw);
2695 		if (ret_val) {
2696 			DEBUGOUT("Error Resetting the PHY\n");
2697 			return ret_val;
2698 		}
2699 	} /* phy_reset_disable */
2700 
2701 	if (hw->mac_type == e1000_80003es2lan) {
2702 		/* Bypass RX and TX FIFO's */
2703 		ret_val = e1000_write_kmrn_reg(hw,
2704 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2705 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2706 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2707 		if (ret_val)
2708 			return ret_val;
2709 
2710 		ret_val = e1000_read_phy_reg(hw,
2711 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2712 		if (ret_val)
2713 			return ret_val;
2714 
2715 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2716 		ret_val = e1000_write_phy_reg(hw,
2717 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2718 
2719 		if (ret_val)
2720 			return ret_val;
2721 
2722 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2723 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2724 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2725 
2726 		ret_val = e1000_read_phy_reg(hw,
2727 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2728 		if (ret_val)
2729 			return ret_val;
2730 
2731 	/* Do not init these registers when the HW is in IAMT mode, since the
2732 	 * firmware will have already initialized them.  We only initialize
2733 	 * them if the HW is not in IAMT mode.
2734 	 */
2735 		if (e1000_check_mng_mode(hw) == false) {
2736 			/* Enable Electrical Idle on the PHY */
2737 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2738 			ret_val = e1000_write_phy_reg(hw,
2739 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2740 			if (ret_val)
2741 				return ret_val;
2742 
2743 			ret_val = e1000_read_phy_reg(hw,
2744 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2745 			if (ret_val)
2746 				return ret_val;
2747 
2748 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2749 			ret_val = e1000_write_phy_reg(hw,
2750 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2751 
2752 			if (ret_val)
2753 				return ret_val;
2754 		}
2755 
2756 		/* Workaround: Disable padding in Kumeran interface in the MAC
2757 		 * and in the PHY to avoid CRC errors.
2758 		 */
2759 		ret_val = e1000_read_phy_reg(hw,
2760 				GG82563_PHY_INBAND_CTRL, &phy_data);
2761 		if (ret_val)
2762 			return ret_val;
2763 		phy_data |= GG82563_ICR_DIS_PADDING;
2764 		ret_val = e1000_write_phy_reg(hw,
2765 				GG82563_PHY_INBAND_CTRL, phy_data);
2766 		if (ret_val)
2767 			return ret_val;
2768 	}
2769 	return E1000_SUCCESS;
2770 }
2771 
2772 /********************************************************************
2773 * Copper link setup for e1000_phy_m88 series.
2774 *
2775 * hw - Struct containing variables accessed by shared code
2776 *********************************************************************/
2777 static int32_t
2778 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2779 {
2780 	int32_t ret_val;
2781 	uint16_t phy_data;
2782 
2783 	DEBUGFUNC();
2784 
2785 	if (hw->phy_reset_disable)
2786 		return E1000_SUCCESS;
2787 
2788 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2789 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2790 	if (ret_val)
2791 		return ret_val;
2792 
2793 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2794 
2795 	/* Options:
2796 	 *   MDI/MDI-X = 0 (default)
2797 	 *   0 - Auto for all speeds
2798 	 *   1 - MDI mode
2799 	 *   2 - MDI-X mode
2800 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2801 	 */
2802 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2803 
2804 	switch (hw->mdix) {
2805 	case 1:
2806 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2807 		break;
2808 	case 2:
2809 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2810 		break;
2811 	case 3:
2812 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2813 		break;
2814 	case 0:
2815 	default:
2816 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2817 		break;
2818 	}
2819 
2820 	/* Options:
2821 	 *   disable_polarity_correction = 0 (default)
2822 	 *       Automatic Correction for Reversed Cable Polarity
2823 	 *   0 - Disabled
2824 	 *   1 - Enabled
2825 	 */
2826 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2827 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2828 	if (ret_val)
2829 		return ret_val;
2830 
2831 	if (hw->phy_revision < M88E1011_I_REV_4) {
2832 		/* Force TX_CLK in the Extended PHY Specific Control Register
2833 		 * to 25MHz clock.
2834 		 */
2835 		ret_val = e1000_read_phy_reg(hw,
2836 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2837 		if (ret_val)
2838 			return ret_val;
2839 
2840 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2841 
2842 		if ((hw->phy_revision == E1000_REVISION_2) &&
2843 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2844 			/* Vidalia Phy, set the downshift counter to 5x */
2845 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2846 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2847 			ret_val = e1000_write_phy_reg(hw,
2848 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2849 			if (ret_val)
2850 				return ret_val;
2851 		} else {
2852 			/* Configure Master and Slave downshift values */
2853 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2854 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2855 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2856 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2857 			ret_val = e1000_write_phy_reg(hw,
2858 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2859 			if (ret_val)
2860 				return ret_val;
2861 		}
2862 	}
2863 
2864 	/* SW Reset the PHY so all changes take effect */
2865 	ret_val = e1000_phy_reset(hw);
2866 	if (ret_val) {
2867 		DEBUGOUT("Error Resetting the PHY\n");
2868 		return ret_val;
2869 	}
2870 
2871 	return E1000_SUCCESS;
2872 }
2873 
2874 /********************************************************************
2875 * Setup auto-negotiation and flow control advertisements,
2876 * and then perform auto-negotiation.
2877 *
2878 * hw - Struct containing variables accessed by shared code
2879 *********************************************************************/
2880 static int32_t
2881 e1000_copper_link_autoneg(struct e1000_hw *hw)
2882 {
2883 	int32_t ret_val;
2884 	uint16_t phy_data;
2885 
2886 	DEBUGFUNC();
2887 
2888 	/* Perform some bounds checking on the hw->autoneg_advertised
2889 	 * parameter.  If this variable is zero, then set it to the default.
2890 	 */
2891 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2892 
2893 	/* If autoneg_advertised is zero, we assume it was not defaulted
2894 	 * by the calling code so we set to advertise full capability.
2895 	 */
2896 	if (hw->autoneg_advertised == 0)
2897 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2898 
2899 	/* IFE phy only supports 10/100 */
2900 	if (hw->phy_type == e1000_phy_ife)
2901 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2902 
2903 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2904 	ret_val = e1000_phy_setup_autoneg(hw);
2905 	if (ret_val) {
2906 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2907 		return ret_val;
2908 	}
2909 	DEBUGOUT("Restarting Auto-Neg\n");
2910 
2911 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2912 	 * the Auto Neg Restart bit in the PHY control register.
2913 	 */
2914 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2915 	if (ret_val)
2916 		return ret_val;
2917 
2918 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2919 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2920 	if (ret_val)
2921 		return ret_val;
2922 
2923 	/* Does the user want to wait for Auto-Neg to complete here, or
2924 	 * check at a later time (for example, callback routine).
2925 	 */
2926 	/* If we do not wait for autonegtation to complete I
2927 	 * do not see a valid link status.
2928 	 * wait_autoneg_complete = 1 .
2929 	 */
2930 	if (hw->wait_autoneg_complete) {
2931 		ret_val = e1000_wait_autoneg(hw);
2932 		if (ret_val) {
2933 			DEBUGOUT("Error while waiting for autoneg"
2934 					"to complete\n");
2935 			return ret_val;
2936 		}
2937 	}
2938 
2939 	hw->get_link_status = true;
2940 
2941 	return E1000_SUCCESS;
2942 }
2943 
2944 /******************************************************************************
2945 * Config the MAC and the PHY after link is up.
2946 *   1) Set up the MAC to the current PHY speed/duplex
2947 *      if we are on 82543.  If we
2948 *      are on newer silicon, we only need to configure
2949 *      collision distance in the Transmit Control Register.
2950 *   2) Set up flow control on the MAC to that established with
2951 *      the link partner.
2952 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2953 *
2954 * hw - Struct containing variables accessed by shared code
2955 ******************************************************************************/
2956 static int32_t
2957 e1000_copper_link_postconfig(struct e1000_hw *hw)
2958 {
2959 	int32_t ret_val;
2960 	DEBUGFUNC();
2961 
2962 	if (hw->mac_type >= e1000_82544) {
2963 		e1000_config_collision_dist(hw);
2964 	} else {
2965 		ret_val = e1000_config_mac_to_phy(hw);
2966 		if (ret_val) {
2967 			DEBUGOUT("Error configuring MAC to PHY settings\n");
2968 			return ret_val;
2969 		}
2970 	}
2971 	ret_val = e1000_config_fc_after_link_up(hw);
2972 	if (ret_val) {
2973 		DEBUGOUT("Error Configuring Flow Control\n");
2974 		return ret_val;
2975 	}
2976 	return E1000_SUCCESS;
2977 }
2978 
2979 /******************************************************************************
2980 * Detects which PHY is present and setup the speed and duplex
2981 *
2982 * hw - Struct containing variables accessed by shared code
2983 ******************************************************************************/
2984 static int
2985 e1000_setup_copper_link(struct e1000_hw *hw)
2986 {
2987 	int32_t ret_val;
2988 	uint16_t i;
2989 	uint16_t phy_data;
2990 	uint16_t reg_data;
2991 
2992 	DEBUGFUNC();
2993 
2994 	switch (hw->mac_type) {
2995 	case e1000_80003es2lan:
2996 	case e1000_ich8lan:
2997 		/* Set the mac to wait the maximum time between each
2998 		 * iteration and increase the max iterations when
2999 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3000 		ret_val = e1000_write_kmrn_reg(hw,
3001 				GG82563_REG(0x34, 4), 0xFFFF);
3002 		if (ret_val)
3003 			return ret_val;
3004 		ret_val = e1000_read_kmrn_reg(hw,
3005 				GG82563_REG(0x34, 9), &reg_data);
3006 		if (ret_val)
3007 			return ret_val;
3008 		reg_data |= 0x3F;
3009 		ret_val = e1000_write_kmrn_reg(hw,
3010 				GG82563_REG(0x34, 9), reg_data);
3011 		if (ret_val)
3012 			return ret_val;
3013 	default:
3014 		break;
3015 	}
3016 
3017 	/* Check if it is a valid PHY and set PHY mode if necessary. */
3018 	ret_val = e1000_copper_link_preconfig(hw);
3019 	if (ret_val)
3020 		return ret_val;
3021 	switch (hw->mac_type) {
3022 	case e1000_80003es2lan:
3023 		/* Kumeran registers are written-only */
3024 		reg_data =
3025 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3026 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3027 		ret_val = e1000_write_kmrn_reg(hw,
3028 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3029 		if (ret_val)
3030 			return ret_val;
3031 		break;
3032 	default:
3033 		break;
3034 	}
3035 
3036 	if (hw->phy_type == e1000_phy_igp ||
3037 		hw->phy_type == e1000_phy_igp_3 ||
3038 		hw->phy_type == e1000_phy_igp_2) {
3039 		ret_val = e1000_copper_link_igp_setup(hw);
3040 		if (ret_val)
3041 			return ret_val;
3042 	} else if (hw->phy_type == e1000_phy_m88 ||
3043 		hw->phy_type == e1000_phy_igb) {
3044 		ret_val = e1000_copper_link_mgp_setup(hw);
3045 		if (ret_val)
3046 			return ret_val;
3047 	} else if (hw->phy_type == e1000_phy_gg82563) {
3048 		ret_val = e1000_copper_link_ggp_setup(hw);
3049 		if (ret_val)
3050 			return ret_val;
3051 	}
3052 
3053 	/* always auto */
3054 	/* Setup autoneg and flow control advertisement
3055 	  * and perform autonegotiation */
3056 	ret_val = e1000_copper_link_autoneg(hw);
3057 	if (ret_val)
3058 		return ret_val;
3059 
3060 	/* Check link status. Wait up to 100 microseconds for link to become
3061 	 * valid.
3062 	 */
3063 	for (i = 0; i < 10; i++) {
3064 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3065 		if (ret_val)
3066 			return ret_val;
3067 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3068 		if (ret_val)
3069 			return ret_val;
3070 
3071 		if (phy_data & MII_SR_LINK_STATUS) {
3072 			/* Config the MAC and PHY after link is up */
3073 			ret_val = e1000_copper_link_postconfig(hw);
3074 			if (ret_val)
3075 				return ret_val;
3076 
3077 			DEBUGOUT("Valid link established!!!\n");
3078 			return E1000_SUCCESS;
3079 		}
3080 		udelay(10);
3081 	}
3082 
3083 	DEBUGOUT("Unable to establish link!!!\n");
3084 	return E1000_SUCCESS;
3085 }
3086 
3087 /******************************************************************************
3088 * Configures PHY autoneg and flow control advertisement settings
3089 *
3090 * hw - Struct containing variables accessed by shared code
3091 ******************************************************************************/
3092 int32_t
3093 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3094 {
3095 	int32_t ret_val;
3096 	uint16_t mii_autoneg_adv_reg;
3097 	uint16_t mii_1000t_ctrl_reg;
3098 
3099 	DEBUGFUNC();
3100 
3101 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3102 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3103 	if (ret_val)
3104 		return ret_val;
3105 
3106 	if (hw->phy_type != e1000_phy_ife) {
3107 		/* Read the MII 1000Base-T Control Register (Address 9). */
3108 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3109 				&mii_1000t_ctrl_reg);
3110 		if (ret_val)
3111 			return ret_val;
3112 	} else
3113 		mii_1000t_ctrl_reg = 0;
3114 
3115 	/* Need to parse both autoneg_advertised and fc and set up
3116 	 * the appropriate PHY registers.  First we will parse for
3117 	 * autoneg_advertised software override.  Since we can advertise
3118 	 * a plethora of combinations, we need to check each bit
3119 	 * individually.
3120 	 */
3121 
3122 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3123 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3124 	 * the  1000Base-T Control Register (Address 9).
3125 	 */
3126 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3127 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3128 
3129 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3130 
3131 	/* Do we want to advertise 10 Mb Half Duplex? */
3132 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3133 		DEBUGOUT("Advertise 10mb Half duplex\n");
3134 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3135 	}
3136 
3137 	/* Do we want to advertise 10 Mb Full Duplex? */
3138 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3139 		DEBUGOUT("Advertise 10mb Full duplex\n");
3140 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3141 	}
3142 
3143 	/* Do we want to advertise 100 Mb Half Duplex? */
3144 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3145 		DEBUGOUT("Advertise 100mb Half duplex\n");
3146 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3147 	}
3148 
3149 	/* Do we want to advertise 100 Mb Full Duplex? */
3150 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3151 		DEBUGOUT("Advertise 100mb Full duplex\n");
3152 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3153 	}
3154 
3155 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3156 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3157 		DEBUGOUT
3158 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3159 	}
3160 
3161 	/* Do we want to advertise 1000 Mb Full Duplex? */
3162 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3163 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3164 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3165 	}
3166 
3167 	/* Check for a software override of the flow control settings, and
3168 	 * setup the PHY advertisement registers accordingly.  If
3169 	 * auto-negotiation is enabled, then software will have to set the
3170 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3171 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3172 	 *
3173 	 * The possible values of the "fc" parameter are:
3174 	 *	0:  Flow control is completely disabled
3175 	 *	1:  Rx flow control is enabled (we can receive pause frames
3176 	 *	    but not send pause frames).
3177 	 *	2:  Tx flow control is enabled (we can send pause frames
3178 	 *	    but we do not support receiving pause frames).
3179 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3180 	 *  other:  No software override.  The flow control configuration
3181 	 *	    in the EEPROM is used.
3182 	 */
3183 	switch (hw->fc) {
3184 	case e1000_fc_none:	/* 0 */
3185 		/* Flow control (RX & TX) is completely disabled by a
3186 		 * software over-ride.
3187 		 */
3188 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3189 		break;
3190 	case e1000_fc_rx_pause:	/* 1 */
3191 		/* RX Flow control is enabled, and TX Flow control is
3192 		 * disabled, by a software over-ride.
3193 		 */
3194 		/* Since there really isn't a way to advertise that we are
3195 		 * capable of RX Pause ONLY, we will advertise that we
3196 		 * support both symmetric and asymmetric RX PAUSE.  Later
3197 		 * (in e1000_config_fc_after_link_up) we will disable the
3198 		 *hw's ability to send PAUSE frames.
3199 		 */
3200 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3201 		break;
3202 	case e1000_fc_tx_pause:	/* 2 */
3203 		/* TX Flow control is enabled, and RX Flow control is
3204 		 * disabled, by a software over-ride.
3205 		 */
3206 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3207 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3208 		break;
3209 	case e1000_fc_full:	/* 3 */
3210 		/* Flow control (both RX and TX) is enabled by a software
3211 		 * over-ride.
3212 		 */
3213 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3214 		break;
3215 	default:
3216 		DEBUGOUT("Flow control param set incorrectly\n");
3217 		return -E1000_ERR_CONFIG;
3218 	}
3219 
3220 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3221 	if (ret_val)
3222 		return ret_val;
3223 
3224 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3225 
3226 	if (hw->phy_type != e1000_phy_ife) {
3227 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3228 				mii_1000t_ctrl_reg);
3229 		if (ret_val)
3230 			return ret_val;
3231 	}
3232 
3233 	return E1000_SUCCESS;
3234 }
3235 
3236 /******************************************************************************
3237 * Sets the collision distance in the Transmit Control register
3238 *
3239 * hw - Struct containing variables accessed by shared code
3240 *
3241 * Link should have been established previously. Reads the speed and duplex
3242 * information from the Device Status register.
3243 ******************************************************************************/
3244 static void
3245 e1000_config_collision_dist(struct e1000_hw *hw)
3246 {
3247 	uint32_t tctl, coll_dist;
3248 
3249 	DEBUGFUNC();
3250 
3251 	if (hw->mac_type < e1000_82543)
3252 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3253 	else
3254 		coll_dist = E1000_COLLISION_DISTANCE;
3255 
3256 	tctl = E1000_READ_REG(hw, TCTL);
3257 
3258 	tctl &= ~E1000_TCTL_COLD;
3259 	tctl |= coll_dist << E1000_COLD_SHIFT;
3260 
3261 	E1000_WRITE_REG(hw, TCTL, tctl);
3262 	E1000_WRITE_FLUSH(hw);
3263 }
3264 
3265 /******************************************************************************
3266 * Sets MAC speed and duplex settings to reflect the those in the PHY
3267 *
3268 * hw - Struct containing variables accessed by shared code
3269 * mii_reg - data to write to the MII control register
3270 *
3271 * The contents of the PHY register containing the needed information need to
3272 * be passed in.
3273 ******************************************************************************/
3274 static int
3275 e1000_config_mac_to_phy(struct e1000_hw *hw)
3276 {
3277 	uint32_t ctrl;
3278 	uint16_t phy_data;
3279 
3280 	DEBUGFUNC();
3281 
3282 	/* Read the Device Control Register and set the bits to Force Speed
3283 	 * and Duplex.
3284 	 */
3285 	ctrl = E1000_READ_REG(hw, CTRL);
3286 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3287 	ctrl &= ~(E1000_CTRL_ILOS);
3288 	ctrl |= (E1000_CTRL_SPD_SEL);
3289 
3290 	/* Set up duplex in the Device Control and Transmit Control
3291 	 * registers depending on negotiated values.
3292 	 */
3293 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3294 		DEBUGOUT("PHY Read Error\n");
3295 		return -E1000_ERR_PHY;
3296 	}
3297 	if (phy_data & M88E1000_PSSR_DPLX)
3298 		ctrl |= E1000_CTRL_FD;
3299 	else
3300 		ctrl &= ~E1000_CTRL_FD;
3301 
3302 	e1000_config_collision_dist(hw);
3303 
3304 	/* Set up speed in the Device Control register depending on
3305 	 * negotiated values.
3306 	 */
3307 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3308 		ctrl |= E1000_CTRL_SPD_1000;
3309 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3310 		ctrl |= E1000_CTRL_SPD_100;
3311 	/* Write the configured values back to the Device Control Reg. */
3312 	E1000_WRITE_REG(hw, CTRL, ctrl);
3313 	return 0;
3314 }
3315 
3316 /******************************************************************************
3317  * Forces the MAC's flow control settings.
3318  *
3319  * hw - Struct containing variables accessed by shared code
3320  *
3321  * Sets the TFCE and RFCE bits in the device control register to reflect
3322  * the adapter settings. TFCE and RFCE need to be explicitly set by
3323  * software when a Copper PHY is used because autonegotiation is managed
3324  * by the PHY rather than the MAC. Software must also configure these
3325  * bits when link is forced on a fiber connection.
3326  *****************************************************************************/
3327 static int
3328 e1000_force_mac_fc(struct e1000_hw *hw)
3329 {
3330 	uint32_t ctrl;
3331 
3332 	DEBUGFUNC();
3333 
3334 	/* Get the current configuration of the Device Control Register */
3335 	ctrl = E1000_READ_REG(hw, CTRL);
3336 
3337 	/* Because we didn't get link via the internal auto-negotiation
3338 	 * mechanism (we either forced link or we got link via PHY
3339 	 * auto-neg), we have to manually enable/disable transmit an
3340 	 * receive flow control.
3341 	 *
3342 	 * The "Case" statement below enables/disable flow control
3343 	 * according to the "hw->fc" parameter.
3344 	 *
3345 	 * The possible values of the "fc" parameter are:
3346 	 *	0:  Flow control is completely disabled
3347 	 *	1:  Rx flow control is enabled (we can receive pause
3348 	 *	    frames but not send pause frames).
3349 	 *	2:  Tx flow control is enabled (we can send pause frames
3350 	 *	    frames but we do not receive pause frames).
3351 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3352 	 *  other:  No other values should be possible at this point.
3353 	 */
3354 
3355 	switch (hw->fc) {
3356 	case e1000_fc_none:
3357 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3358 		break;
3359 	case e1000_fc_rx_pause:
3360 		ctrl &= (~E1000_CTRL_TFCE);
3361 		ctrl |= E1000_CTRL_RFCE;
3362 		break;
3363 	case e1000_fc_tx_pause:
3364 		ctrl &= (~E1000_CTRL_RFCE);
3365 		ctrl |= E1000_CTRL_TFCE;
3366 		break;
3367 	case e1000_fc_full:
3368 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3369 		break;
3370 	default:
3371 		DEBUGOUT("Flow control param set incorrectly\n");
3372 		return -E1000_ERR_CONFIG;
3373 	}
3374 
3375 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3376 	if (hw->mac_type == e1000_82542_rev2_0)
3377 		ctrl &= (~E1000_CTRL_TFCE);
3378 
3379 	E1000_WRITE_REG(hw, CTRL, ctrl);
3380 	return 0;
3381 }
3382 
3383 /******************************************************************************
3384  * Configures flow control settings after link is established
3385  *
3386  * hw - Struct containing variables accessed by shared code
3387  *
3388  * Should be called immediately after a valid link has been established.
3389  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3390  * and autonegotiation is enabled, the MAC flow control settings will be set
3391  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3392  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3393  *****************************************************************************/
3394 static int32_t
3395 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3396 {
3397 	int32_t ret_val;
3398 	uint16_t mii_status_reg;
3399 	uint16_t mii_nway_adv_reg;
3400 	uint16_t mii_nway_lp_ability_reg;
3401 	uint16_t speed;
3402 	uint16_t duplex;
3403 
3404 	DEBUGFUNC();
3405 
3406 	/* Check for the case where we have fiber media and auto-neg failed
3407 	 * so we had to force link.  In this case, we need to force the
3408 	 * configuration of the MAC to match the "fc" parameter.
3409 	 */
3410 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3411 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3412 		&& (hw->autoneg_failed))
3413 		|| ((hw->media_type == e1000_media_type_copper)
3414 		&& (!hw->autoneg))) {
3415 		ret_val = e1000_force_mac_fc(hw);
3416 		if (ret_val < 0) {
3417 			DEBUGOUT("Error forcing flow control settings\n");
3418 			return ret_val;
3419 		}
3420 	}
3421 
3422 	/* Check for the case where we have copper media and auto-neg is
3423 	 * enabled.  In this case, we need to check and see if Auto-Neg
3424 	 * has completed, and if so, how the PHY and link partner has
3425 	 * flow control configured.
3426 	 */
3427 	if (hw->media_type == e1000_media_type_copper) {
3428 		/* Read the MII Status Register and check to see if AutoNeg
3429 		 * has completed.  We read this twice because this reg has
3430 		 * some "sticky" (latched) bits.
3431 		 */
3432 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3433 			DEBUGOUT("PHY Read Error\n");
3434 			return -E1000_ERR_PHY;
3435 		}
3436 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3437 			DEBUGOUT("PHY Read Error\n");
3438 			return -E1000_ERR_PHY;
3439 		}
3440 
3441 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3442 			/* The AutoNeg process has completed, so we now need to
3443 			 * read both the Auto Negotiation Advertisement Register
3444 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3445 			 * Register (Address 5) to determine how flow control was
3446 			 * negotiated.
3447 			 */
3448 			if (e1000_read_phy_reg
3449 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3450 				DEBUGOUT("PHY Read Error\n");
3451 				return -E1000_ERR_PHY;
3452 			}
3453 			if (e1000_read_phy_reg
3454 			    (hw, PHY_LP_ABILITY,
3455 			     &mii_nway_lp_ability_reg) < 0) {
3456 				DEBUGOUT("PHY Read Error\n");
3457 				return -E1000_ERR_PHY;
3458 			}
3459 
3460 			/* Two bits in the Auto Negotiation Advertisement Register
3461 			 * (Address 4) and two bits in the Auto Negotiation Base
3462 			 * Page Ability Register (Address 5) determine flow control
3463 			 * for both the PHY and the link partner.  The following
3464 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3465 			 * 1999, describes these PAUSE resolution bits and how flow
3466 			 * control is determined based upon these settings.
3467 			 * NOTE:  DC = Don't Care
3468 			 *
3469 			 *   LOCAL DEVICE  |   LINK PARTNER
3470 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3471 			 *-------|---------|-------|---------|--------------------
3472 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3473 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3474 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3475 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3476 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3477 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3478 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3479 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3480 			 *
3481 			 */
3482 			/* Are both PAUSE bits set to 1?  If so, this implies
3483 			 * Symmetric Flow Control is enabled at both ends.  The
3484 			 * ASM_DIR bits are irrelevant per the spec.
3485 			 *
3486 			 * For Symmetric Flow Control:
3487 			 *
3488 			 *   LOCAL DEVICE  |   LINK PARTNER
3489 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3490 			 *-------|---------|-------|---------|--------------------
3491 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3492 			 *
3493 			 */
3494 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3495 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3496 				/* Now we need to check if the user selected RX ONLY
3497 				 * of pause frames.  In this case, we had to advertise
3498 				 * FULL flow control because we could not advertise RX
3499 				 * ONLY. Hence, we must now check to see if we need to
3500 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3501 				 */
3502 				if (hw->original_fc == e1000_fc_full) {
3503 					hw->fc = e1000_fc_full;
3504 					DEBUGOUT("Flow Control = FULL.\r\n");
3505 				} else {
3506 					hw->fc = e1000_fc_rx_pause;
3507 					DEBUGOUT
3508 					    ("Flow Control = RX PAUSE frames only.\r\n");
3509 				}
3510 			}
3511 			/* For receiving PAUSE frames ONLY.
3512 			 *
3513 			 *   LOCAL DEVICE  |   LINK PARTNER
3514 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3515 			 *-------|---------|-------|---------|--------------------
3516 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3517 			 *
3518 			 */
3519 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3520 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3521 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3522 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3523 			{
3524 				hw->fc = e1000_fc_tx_pause;
3525 				DEBUGOUT
3526 				    ("Flow Control = TX PAUSE frames only.\r\n");
3527 			}
3528 			/* For transmitting PAUSE frames ONLY.
3529 			 *
3530 			 *   LOCAL DEVICE  |   LINK PARTNER
3531 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3532 			 *-------|---------|-------|---------|--------------------
3533 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3534 			 *
3535 			 */
3536 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3537 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3538 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3539 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3540 			{
3541 				hw->fc = e1000_fc_rx_pause;
3542 				DEBUGOUT
3543 				    ("Flow Control = RX PAUSE frames only.\r\n");
3544 			}
3545 			/* Per the IEEE spec, at this point flow control should be
3546 			 * disabled.  However, we want to consider that we could
3547 			 * be connected to a legacy switch that doesn't advertise
3548 			 * desired flow control, but can be forced on the link
3549 			 * partner.  So if we advertised no flow control, that is
3550 			 * what we will resolve to.  If we advertised some kind of
3551 			 * receive capability (Rx Pause Only or Full Flow Control)
3552 			 * and the link partner advertised none, we will configure
3553 			 * ourselves to enable Rx Flow Control only.  We can do
3554 			 * this safely for two reasons:  If the link partner really
3555 			 * didn't want flow control enabled, and we enable Rx, no
3556 			 * harm done since we won't be receiving any PAUSE frames
3557 			 * anyway.  If the intent on the link partner was to have
3558 			 * flow control enabled, then by us enabling RX only, we
3559 			 * can at least receive pause frames and process them.
3560 			 * This is a good idea because in most cases, since we are
3561 			 * predominantly a server NIC, more times than not we will
3562 			 * be asked to delay transmission of packets than asking
3563 			 * our link partner to pause transmission of frames.
3564 			 */
3565 			else if (hw->original_fc == e1000_fc_none ||
3566 				 hw->original_fc == e1000_fc_tx_pause) {
3567 				hw->fc = e1000_fc_none;
3568 				DEBUGOUT("Flow Control = NONE.\r\n");
3569 			} else {
3570 				hw->fc = e1000_fc_rx_pause;
3571 				DEBUGOUT
3572 				    ("Flow Control = RX PAUSE frames only.\r\n");
3573 			}
3574 
3575 			/* Now we need to do one last check...	If we auto-
3576 			 * negotiated to HALF DUPLEX, flow control should not be
3577 			 * enabled per IEEE 802.3 spec.
3578 			 */
3579 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3580 
3581 			if (duplex == HALF_DUPLEX)
3582 				hw->fc = e1000_fc_none;
3583 
3584 			/* Now we call a subroutine to actually force the MAC
3585 			 * controller to use the correct flow control settings.
3586 			 */
3587 			ret_val = e1000_force_mac_fc(hw);
3588 			if (ret_val < 0) {
3589 				DEBUGOUT
3590 				    ("Error forcing flow control settings\n");
3591 				return ret_val;
3592 			}
3593 		} else {
3594 			DEBUGOUT
3595 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3596 		}
3597 	}
3598 	return E1000_SUCCESS;
3599 }
3600 
3601 /******************************************************************************
3602  * Checks to see if the link status of the hardware has changed.
3603  *
3604  * hw - Struct containing variables accessed by shared code
3605  *
3606  * Called by any function that needs to check the link status of the adapter.
3607  *****************************************************************************/
3608 static int
3609 e1000_check_for_link(struct e1000_hw *hw)
3610 {
3611 	uint32_t rxcw;
3612 	uint32_t ctrl;
3613 	uint32_t status;
3614 	uint32_t rctl;
3615 	uint32_t signal;
3616 	int32_t ret_val;
3617 	uint16_t phy_data;
3618 	uint16_t lp_capability;
3619 
3620 	DEBUGFUNC();
3621 
3622 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3623 	 * set when the optics detect a signal. On older adapters, it will be
3624 	 * cleared when there is a signal
3625 	 */
3626 	ctrl = E1000_READ_REG(hw, CTRL);
3627 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3628 		signal = E1000_CTRL_SWDPIN1;
3629 	else
3630 		signal = 0;
3631 
3632 	status = E1000_READ_REG(hw, STATUS);
3633 	rxcw = E1000_READ_REG(hw, RXCW);
3634 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3635 
3636 	/* If we have a copper PHY then we only want to go out to the PHY
3637 	 * registers to see if Auto-Neg has completed and/or if our link
3638 	 * status has changed.	The get_link_status flag will be set if we
3639 	 * receive a Link Status Change interrupt or we have Rx Sequence
3640 	 * Errors.
3641 	 */
3642 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3643 		/* First we want to see if the MII Status Register reports
3644 		 * link.  If so, then we want to get the current speed/duplex
3645 		 * of the PHY.
3646 		 * Read the register twice since the link bit is sticky.
3647 		 */
3648 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3649 			DEBUGOUT("PHY Read Error\n");
3650 			return -E1000_ERR_PHY;
3651 		}
3652 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3653 			DEBUGOUT("PHY Read Error\n");
3654 			return -E1000_ERR_PHY;
3655 		}
3656 
3657 		if (phy_data & MII_SR_LINK_STATUS) {
3658 			hw->get_link_status = false;
3659 		} else {
3660 			/* No link detected */
3661 			return -E1000_ERR_NOLINK;
3662 		}
3663 
3664 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3665 		 * have Si on board that is 82544 or newer, Auto
3666 		 * Speed Detection takes care of MAC speed/duplex
3667 		 * configuration.  So we only need to configure Collision
3668 		 * Distance in the MAC.  Otherwise, we need to force
3669 		 * speed/duplex on the MAC to the current PHY speed/duplex
3670 		 * settings.
3671 		 */
3672 		if (hw->mac_type >= e1000_82544)
3673 			e1000_config_collision_dist(hw);
3674 		else {
3675 			ret_val = e1000_config_mac_to_phy(hw);
3676 			if (ret_val < 0) {
3677 				DEBUGOUT
3678 				    ("Error configuring MAC to PHY settings\n");
3679 				return ret_val;
3680 			}
3681 		}
3682 
3683 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3684 		 * need to restore the desired flow control settings because we may
3685 		 * have had to re-autoneg with a different link partner.
3686 		 */
3687 		ret_val = e1000_config_fc_after_link_up(hw);
3688 		if (ret_val < 0) {
3689 			DEBUGOUT("Error configuring flow control\n");
3690 			return ret_val;
3691 		}
3692 
3693 		/* At this point we know that we are on copper and we have
3694 		 * auto-negotiated link.  These are conditions for checking the link
3695 		 * parter capability register.	We use the link partner capability to
3696 		 * determine if TBI Compatibility needs to be turned on or off.  If
3697 		 * the link partner advertises any speed in addition to Gigabit, then
3698 		 * we assume that they are GMII-based, and TBI compatibility is not
3699 		 * needed. If no other speeds are advertised, we assume the link
3700 		 * partner is TBI-based, and we turn on TBI Compatibility.
3701 		 */
3702 		if (hw->tbi_compatibility_en) {
3703 			if (e1000_read_phy_reg
3704 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3705 				DEBUGOUT("PHY Read Error\n");
3706 				return -E1000_ERR_PHY;
3707 			}
3708 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3709 					     NWAY_LPAR_10T_FD_CAPS |
3710 					     NWAY_LPAR_100TX_HD_CAPS |
3711 					     NWAY_LPAR_100TX_FD_CAPS |
3712 					     NWAY_LPAR_100T4_CAPS)) {
3713 				/* If our link partner advertises anything in addition to
3714 				 * gigabit, we do not need to enable TBI compatibility.
3715 				 */
3716 				if (hw->tbi_compatibility_on) {
3717 					/* If we previously were in the mode, turn it off. */
3718 					rctl = E1000_READ_REG(hw, RCTL);
3719 					rctl &= ~E1000_RCTL_SBP;
3720 					E1000_WRITE_REG(hw, RCTL, rctl);
3721 					hw->tbi_compatibility_on = false;
3722 				}
3723 			} else {
3724 				/* If TBI compatibility is was previously off, turn it on. For
3725 				 * compatibility with a TBI link partner, we will store bad
3726 				 * packets. Some frames have an additional byte on the end and
3727 				 * will look like CRC errors to to the hardware.
3728 				 */
3729 				if (!hw->tbi_compatibility_on) {
3730 					hw->tbi_compatibility_on = true;
3731 					rctl = E1000_READ_REG(hw, RCTL);
3732 					rctl |= E1000_RCTL_SBP;
3733 					E1000_WRITE_REG(hw, RCTL, rctl);
3734 				}
3735 			}
3736 		}
3737 	}
3738 	/* If we don't have link (auto-negotiation failed or link partner cannot
3739 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3740 	 * link partner is not trying to auto-negotiate with us (we are receiving
3741 	 * idles or data), we need to force link up. We also need to give
3742 	 * auto-negotiation time to complete, in case the cable was just plugged
3743 	 * in. The autoneg_failed flag does this.
3744 	 */
3745 	else if ((hw->media_type == e1000_media_type_fiber) &&
3746 		 (!(status & E1000_STATUS_LU)) &&
3747 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3748 		 (!(rxcw & E1000_RXCW_C))) {
3749 		if (hw->autoneg_failed == 0) {
3750 			hw->autoneg_failed = 1;
3751 			return 0;
3752 		}
3753 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3754 
3755 		/* Disable auto-negotiation in the TXCW register */
3756 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3757 
3758 		/* Force link-up and also force full-duplex. */
3759 		ctrl = E1000_READ_REG(hw, CTRL);
3760 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3761 		E1000_WRITE_REG(hw, CTRL, ctrl);
3762 
3763 		/* Configure Flow Control after forcing link up. */
3764 		ret_val = e1000_config_fc_after_link_up(hw);
3765 		if (ret_val < 0) {
3766 			DEBUGOUT("Error configuring flow control\n");
3767 			return ret_val;
3768 		}
3769 	}
3770 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3771 	 * auto-negotiation in the TXCW register and disable forced link in the
3772 	 * Device Control register in an attempt to auto-negotiate with our link
3773 	 * partner.
3774 	 */
3775 	else if ((hw->media_type == e1000_media_type_fiber) &&
3776 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3777 		DEBUGOUT
3778 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3779 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3780 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3781 	}
3782 	return 0;
3783 }
3784 
3785 /******************************************************************************
3786 * Configure the MAC-to-PHY interface for 10/100Mbps
3787 *
3788 * hw - Struct containing variables accessed by shared code
3789 ******************************************************************************/
3790 static int32_t
3791 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3792 {
3793 	int32_t ret_val = E1000_SUCCESS;
3794 	uint32_t tipg;
3795 	uint16_t reg_data;
3796 
3797 	DEBUGFUNC();
3798 
3799 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3800 	ret_val = e1000_write_kmrn_reg(hw,
3801 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3802 	if (ret_val)
3803 		return ret_val;
3804 
3805 	/* Configure Transmit Inter-Packet Gap */
3806 	tipg = E1000_READ_REG(hw, TIPG);
3807 	tipg &= ~E1000_TIPG_IPGT_MASK;
3808 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3809 	E1000_WRITE_REG(hw, TIPG, tipg);
3810 
3811 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3812 
3813 	if (ret_val)
3814 		return ret_val;
3815 
3816 	if (duplex == HALF_DUPLEX)
3817 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3818 	else
3819 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3820 
3821 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3822 
3823 	return ret_val;
3824 }
3825 
3826 static int32_t
3827 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3828 {
3829 	int32_t ret_val = E1000_SUCCESS;
3830 	uint16_t reg_data;
3831 	uint32_t tipg;
3832 
3833 	DEBUGFUNC();
3834 
3835 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3836 	ret_val = e1000_write_kmrn_reg(hw,
3837 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3838 	if (ret_val)
3839 		return ret_val;
3840 
3841 	/* Configure Transmit Inter-Packet Gap */
3842 	tipg = E1000_READ_REG(hw, TIPG);
3843 	tipg &= ~E1000_TIPG_IPGT_MASK;
3844 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3845 	E1000_WRITE_REG(hw, TIPG, tipg);
3846 
3847 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3848 
3849 	if (ret_val)
3850 		return ret_val;
3851 
3852 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3853 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3854 
3855 	return ret_val;
3856 }
3857 
3858 /******************************************************************************
3859  * Detects the current speed and duplex settings of the hardware.
3860  *
3861  * hw - Struct containing variables accessed by shared code
3862  * speed - Speed of the connection
3863  * duplex - Duplex setting of the connection
3864  *****************************************************************************/
3865 static int
3866 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3867 		uint16_t *duplex)
3868 {
3869 	uint32_t status;
3870 	int32_t ret_val;
3871 	uint16_t phy_data;
3872 
3873 	DEBUGFUNC();
3874 
3875 	if (hw->mac_type >= e1000_82543) {
3876 		status = E1000_READ_REG(hw, STATUS);
3877 		if (status & E1000_STATUS_SPEED_1000) {
3878 			*speed = SPEED_1000;
3879 			DEBUGOUT("1000 Mbs, ");
3880 		} else if (status & E1000_STATUS_SPEED_100) {
3881 			*speed = SPEED_100;
3882 			DEBUGOUT("100 Mbs, ");
3883 		} else {
3884 			*speed = SPEED_10;
3885 			DEBUGOUT("10 Mbs, ");
3886 		}
3887 
3888 		if (status & E1000_STATUS_FD) {
3889 			*duplex = FULL_DUPLEX;
3890 			DEBUGOUT("Full Duplex\r\n");
3891 		} else {
3892 			*duplex = HALF_DUPLEX;
3893 			DEBUGOUT(" Half Duplex\r\n");
3894 		}
3895 	} else {
3896 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3897 		*speed = SPEED_1000;
3898 		*duplex = FULL_DUPLEX;
3899 	}
3900 
3901 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3902 	 * even if it is operating at half duplex.  Here we set the duplex
3903 	 * settings to match the duplex in the link partner's capabilities.
3904 	 */
3905 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3906 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3907 		if (ret_val)
3908 			return ret_val;
3909 
3910 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3911 			*duplex = HALF_DUPLEX;
3912 		else {
3913 			ret_val = e1000_read_phy_reg(hw,
3914 					PHY_LP_ABILITY, &phy_data);
3915 			if (ret_val)
3916 				return ret_val;
3917 			if ((*speed == SPEED_100 &&
3918 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3919 				|| (*speed == SPEED_10
3920 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3921 				*duplex = HALF_DUPLEX;
3922 		}
3923 	}
3924 
3925 	if ((hw->mac_type == e1000_80003es2lan) &&
3926 		(hw->media_type == e1000_media_type_copper)) {
3927 		if (*speed == SPEED_1000)
3928 			ret_val = e1000_configure_kmrn_for_1000(hw);
3929 		else
3930 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3931 		if (ret_val)
3932 			return ret_val;
3933 	}
3934 	return E1000_SUCCESS;
3935 }
3936 
3937 /******************************************************************************
3938 * Blocks until autoneg completes or times out (~4.5 seconds)
3939 *
3940 * hw - Struct containing variables accessed by shared code
3941 ******************************************************************************/
3942 static int
3943 e1000_wait_autoneg(struct e1000_hw *hw)
3944 {
3945 	uint16_t i;
3946 	uint16_t phy_data;
3947 
3948 	DEBUGFUNC();
3949 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3950 
3951 	/* We will wait for autoneg to complete or timeout to expire. */
3952 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3953 		/* Read the MII Status Register and wait for Auto-Neg
3954 		 * Complete bit to be set.
3955 		 */
3956 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3957 			DEBUGOUT("PHY Read Error\n");
3958 			return -E1000_ERR_PHY;
3959 		}
3960 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3961 			DEBUGOUT("PHY Read Error\n");
3962 			return -E1000_ERR_PHY;
3963 		}
3964 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3965 			DEBUGOUT("Auto-Neg complete.\n");
3966 			return 0;
3967 		}
3968 		mdelay(100);
3969 	}
3970 	DEBUGOUT("Auto-Neg timedout.\n");
3971 	return -E1000_ERR_TIMEOUT;
3972 }
3973 
3974 /******************************************************************************
3975 * Raises the Management Data Clock
3976 *
3977 * hw - Struct containing variables accessed by shared code
3978 * ctrl - Device control register's current value
3979 ******************************************************************************/
3980 static void
3981 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3982 {
3983 	/* Raise the clock input to the Management Data Clock (by setting the MDC
3984 	 * bit), and then delay 2 microseconds.
3985 	 */
3986 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3987 	E1000_WRITE_FLUSH(hw);
3988 	udelay(2);
3989 }
3990 
3991 /******************************************************************************
3992 * Lowers the Management Data Clock
3993 *
3994 * hw - Struct containing variables accessed by shared code
3995 * ctrl - Device control register's current value
3996 ******************************************************************************/
3997 static void
3998 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3999 {
4000 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
4001 	 * bit), and then delay 2 microseconds.
4002 	 */
4003 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4004 	E1000_WRITE_FLUSH(hw);
4005 	udelay(2);
4006 }
4007 
4008 /******************************************************************************
4009 * Shifts data bits out to the PHY
4010 *
4011 * hw - Struct containing variables accessed by shared code
4012 * data - Data to send out to the PHY
4013 * count - Number of bits to shift out
4014 *
4015 * Bits are shifted out in MSB to LSB order.
4016 ******************************************************************************/
4017 static void
4018 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4019 {
4020 	uint32_t ctrl;
4021 	uint32_t mask;
4022 
4023 	/* We need to shift "count" number of bits out to the PHY. So, the value
4024 	 * in the "data" parameter will be shifted out to the PHY one bit at a
4025 	 * time. In order to do this, "data" must be broken down into bits.
4026 	 */
4027 	mask = 0x01;
4028 	mask <<= (count - 1);
4029 
4030 	ctrl = E1000_READ_REG(hw, CTRL);
4031 
4032 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4033 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4034 
4035 	while (mask) {
4036 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4037 		 * then raising and lowering the Management Data Clock. A "0" is
4038 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
4039 		 * raising and lowering the clock.
4040 		 */
4041 		if (data & mask)
4042 			ctrl |= E1000_CTRL_MDIO;
4043 		else
4044 			ctrl &= ~E1000_CTRL_MDIO;
4045 
4046 		E1000_WRITE_REG(hw, CTRL, ctrl);
4047 		E1000_WRITE_FLUSH(hw);
4048 
4049 		udelay(2);
4050 
4051 		e1000_raise_mdi_clk(hw, &ctrl);
4052 		e1000_lower_mdi_clk(hw, &ctrl);
4053 
4054 		mask = mask >> 1;
4055 	}
4056 }
4057 
4058 /******************************************************************************
4059 * Shifts data bits in from the PHY
4060 *
4061 * hw - Struct containing variables accessed by shared code
4062 *
4063 * Bits are shifted in in MSB to LSB order.
4064 ******************************************************************************/
4065 static uint16_t
4066 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4067 {
4068 	uint32_t ctrl;
4069 	uint16_t data = 0;
4070 	uint8_t i;
4071 
4072 	/* In order to read a register from the PHY, we need to shift in a total
4073 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4074 	 * to avoid contention on the MDIO pin when a read operation is performed.
4075 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4076 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4077 	 * and then reading the value of the MDIO bit.
4078 	 */
4079 	ctrl = E1000_READ_REG(hw, CTRL);
4080 
4081 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4082 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4083 	ctrl &= ~E1000_CTRL_MDIO;
4084 
4085 	E1000_WRITE_REG(hw, CTRL, ctrl);
4086 	E1000_WRITE_FLUSH(hw);
4087 
4088 	/* Raise and Lower the clock before reading in the data. This accounts for
4089 	 * the turnaround bits. The first clock occurred when we clocked out the
4090 	 * last bit of the Register Address.
4091 	 */
4092 	e1000_raise_mdi_clk(hw, &ctrl);
4093 	e1000_lower_mdi_clk(hw, &ctrl);
4094 
4095 	for (data = 0, i = 0; i < 16; i++) {
4096 		data = data << 1;
4097 		e1000_raise_mdi_clk(hw, &ctrl);
4098 		ctrl = E1000_READ_REG(hw, CTRL);
4099 		/* Check to see if we shifted in a "1". */
4100 		if (ctrl & E1000_CTRL_MDIO)
4101 			data |= 1;
4102 		e1000_lower_mdi_clk(hw, &ctrl);
4103 	}
4104 
4105 	e1000_raise_mdi_clk(hw, &ctrl);
4106 	e1000_lower_mdi_clk(hw, &ctrl);
4107 
4108 	return data;
4109 }
4110 
4111 /*****************************************************************************
4112 * Reads the value from a PHY register
4113 *
4114 * hw - Struct containing variables accessed by shared code
4115 * reg_addr - address of the PHY register to read
4116 ******************************************************************************/
4117 static int
4118 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4119 {
4120 	uint32_t i;
4121 	uint32_t mdic = 0;
4122 	const uint32_t phy_addr = 1;
4123 
4124 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4125 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4126 		return -E1000_ERR_PARAM;
4127 	}
4128 
4129 	if (hw->mac_type > e1000_82543) {
4130 		/* Set up Op-code, Phy Address, and register address in the MDI
4131 		 * Control register.  The MAC will take care of interfacing with the
4132 		 * PHY to retrieve the desired data.
4133 		 */
4134 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4135 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4136 			(E1000_MDIC_OP_READ));
4137 
4138 		E1000_WRITE_REG(hw, MDIC, mdic);
4139 
4140 		/* Poll the ready bit to see if the MDI read completed */
4141 		for (i = 0; i < 64; i++) {
4142 			udelay(10);
4143 			mdic = E1000_READ_REG(hw, MDIC);
4144 			if (mdic & E1000_MDIC_READY)
4145 				break;
4146 		}
4147 		if (!(mdic & E1000_MDIC_READY)) {
4148 			DEBUGOUT("MDI Read did not complete\n");
4149 			return -E1000_ERR_PHY;
4150 		}
4151 		if (mdic & E1000_MDIC_ERROR) {
4152 			DEBUGOUT("MDI Error\n");
4153 			return -E1000_ERR_PHY;
4154 		}
4155 		*phy_data = (uint16_t) mdic;
4156 	} else {
4157 		/* We must first send a preamble through the MDIO pin to signal the
4158 		 * beginning of an MII instruction.  This is done by sending 32
4159 		 * consecutive "1" bits.
4160 		 */
4161 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4162 
4163 		/* Now combine the next few fields that are required for a read
4164 		 * operation.  We use this method instead of calling the
4165 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4166 		 * a MII read instruction consists of a shift out of 14 bits and is
4167 		 * defined as follows:
4168 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4169 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4170 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4171 		 * READ operation is performed.  These two bits are thrown away
4172 		 * followed by a shift in of 16 bits which contains the desired data.
4173 		 */
4174 		mdic = ((reg_addr) | (phy_addr << 5) |
4175 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4176 
4177 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4178 
4179 		/* Now that we've shifted out the read command to the MII, we need to
4180 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4181 		 * register address.
4182 		 */
4183 		*phy_data = e1000_shift_in_mdi_bits(hw);
4184 	}
4185 	return 0;
4186 }
4187 
4188 /******************************************************************************
4189 * Writes a value to a PHY register
4190 *
4191 * hw - Struct containing variables accessed by shared code
4192 * reg_addr - address of the PHY register to write
4193 * data - data to write to the PHY
4194 ******************************************************************************/
4195 static int
4196 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4197 {
4198 	uint32_t i;
4199 	uint32_t mdic = 0;
4200 	const uint32_t phy_addr = 1;
4201 
4202 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4203 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4204 		return -E1000_ERR_PARAM;
4205 	}
4206 
4207 	if (hw->mac_type > e1000_82543) {
4208 		/* Set up Op-code, Phy Address, register address, and data intended
4209 		 * for the PHY register in the MDI Control register.  The MAC will take
4210 		 * care of interfacing with the PHY to send the desired data.
4211 		 */
4212 		mdic = (((uint32_t) phy_data) |
4213 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4214 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4215 			(E1000_MDIC_OP_WRITE));
4216 
4217 		E1000_WRITE_REG(hw, MDIC, mdic);
4218 
4219 		/* Poll the ready bit to see if the MDI read completed */
4220 		for (i = 0; i < 64; i++) {
4221 			udelay(10);
4222 			mdic = E1000_READ_REG(hw, MDIC);
4223 			if (mdic & E1000_MDIC_READY)
4224 				break;
4225 		}
4226 		if (!(mdic & E1000_MDIC_READY)) {
4227 			DEBUGOUT("MDI Write did not complete\n");
4228 			return -E1000_ERR_PHY;
4229 		}
4230 	} else {
4231 		/* We'll need to use the SW defined pins to shift the write command
4232 		 * out to the PHY. We first send a preamble to the PHY to signal the
4233 		 * beginning of the MII instruction.  This is done by sending 32
4234 		 * consecutive "1" bits.
4235 		 */
4236 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4237 
4238 		/* Now combine the remaining required fields that will indicate a
4239 		 * write operation. We use this method instead of calling the
4240 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4241 		 * format of a MII write instruction is as follows:
4242 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4243 		 */
4244 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4245 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4246 		mdic <<= 16;
4247 		mdic |= (uint32_t) phy_data;
4248 
4249 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4250 	}
4251 	return 0;
4252 }
4253 
4254 /******************************************************************************
4255  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4256  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4257  * the caller to figure out how to deal with it.
4258  *
4259  * hw - Struct containing variables accessed by shared code
4260  *
4261  * returns: - E1000_BLK_PHY_RESET
4262  *            E1000_SUCCESS
4263  *
4264  *****************************************************************************/
4265 int32_t
4266 e1000_check_phy_reset_block(struct e1000_hw *hw)
4267 {
4268 	uint32_t manc = 0;
4269 	uint32_t fwsm = 0;
4270 
4271 	if (hw->mac_type == e1000_ich8lan) {
4272 		fwsm = E1000_READ_REG(hw, FWSM);
4273 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4274 						: E1000_BLK_PHY_RESET;
4275 	}
4276 
4277 	if (hw->mac_type > e1000_82547_rev_2)
4278 		manc = E1000_READ_REG(hw, MANC);
4279 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4280 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4281 }
4282 
4283 /***************************************************************************
4284  * Checks if the PHY configuration is done
4285  *
4286  * hw: Struct containing variables accessed by shared code
4287  *
4288  * returns: - E1000_ERR_RESET if fail to reset MAC
4289  *            E1000_SUCCESS at any other case.
4290  *
4291  ***************************************************************************/
4292 static int32_t
4293 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4294 {
4295 	int32_t timeout = PHY_CFG_TIMEOUT;
4296 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4297 
4298 	DEBUGFUNC();
4299 
4300 	switch (hw->mac_type) {
4301 	default:
4302 		mdelay(10);
4303 		break;
4304 
4305 	case e1000_80003es2lan:
4306 		/* Separate *_CFG_DONE_* bit for each port */
4307 		if (e1000_is_second_port(hw))
4308 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4309 		/* Fall Through */
4310 
4311 	case e1000_82571:
4312 	case e1000_82572:
4313 	case e1000_igb:
4314 		while (timeout) {
4315 			if (hw->mac_type == e1000_igb) {
4316 				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4317 					break;
4318 			} else {
4319 				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4320 					break;
4321 			}
4322 			mdelay(1);
4323 			timeout--;
4324 		}
4325 		if (!timeout) {
4326 			DEBUGOUT("MNG configuration cycle has not "
4327 					"completed.\n");
4328 			return -E1000_ERR_RESET;
4329 		}
4330 		break;
4331 	}
4332 
4333 	return E1000_SUCCESS;
4334 }
4335 
4336 /******************************************************************************
4337 * Returns the PHY to the power-on reset state
4338 *
4339 * hw - Struct containing variables accessed by shared code
4340 ******************************************************************************/
4341 int32_t
4342 e1000_phy_hw_reset(struct e1000_hw *hw)
4343 {
4344 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4345 	uint32_t ctrl, ctrl_ext;
4346 	uint32_t led_ctrl;
4347 	int32_t ret_val;
4348 
4349 	DEBUGFUNC();
4350 
4351 	/* In the case of the phy reset being blocked, it's not an error, we
4352 	 * simply return success without performing the reset. */
4353 	ret_val = e1000_check_phy_reset_block(hw);
4354 	if (ret_val)
4355 		return E1000_SUCCESS;
4356 
4357 	DEBUGOUT("Resetting Phy...\n");
4358 
4359 	if (hw->mac_type > e1000_82543) {
4360 		if (e1000_is_second_port(hw))
4361 			swfw = E1000_SWFW_PHY1_SM;
4362 
4363 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4364 			DEBUGOUT("Unable to acquire swfw sync\n");
4365 			return -E1000_ERR_SWFW_SYNC;
4366 		}
4367 
4368 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4369 		 * bit. Then, take it out of reset.
4370 		 */
4371 		ctrl = E1000_READ_REG(hw, CTRL);
4372 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4373 		E1000_WRITE_FLUSH(hw);
4374 
4375 		if (hw->mac_type < e1000_82571)
4376 			udelay(10);
4377 		else
4378 			udelay(100);
4379 
4380 		E1000_WRITE_REG(hw, CTRL, ctrl);
4381 		E1000_WRITE_FLUSH(hw);
4382 
4383 		if (hw->mac_type >= e1000_82571)
4384 			mdelay(10);
4385 
4386 	} else {
4387 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4388 		 * bit to put the PHY into reset. Then, take it out of reset.
4389 		 */
4390 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4391 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4392 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4393 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4394 		E1000_WRITE_FLUSH(hw);
4395 		mdelay(10);
4396 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4397 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4398 		E1000_WRITE_FLUSH(hw);
4399 	}
4400 	udelay(150);
4401 
4402 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4403 		/* Configure activity LED after PHY reset */
4404 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4405 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4406 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4407 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4408 	}
4409 
4410 	e1000_swfw_sync_release(hw, swfw);
4411 
4412 	/* Wait for FW to finish PHY configuration. */
4413 	ret_val = e1000_get_phy_cfg_done(hw);
4414 	if (ret_val != E1000_SUCCESS)
4415 		return ret_val;
4416 
4417 	return ret_val;
4418 }
4419 
4420 /******************************************************************************
4421  * IGP phy init script - initializes the GbE PHY
4422  *
4423  * hw - Struct containing variables accessed by shared code
4424  *****************************************************************************/
4425 static void
4426 e1000_phy_init_script(struct e1000_hw *hw)
4427 {
4428 	uint32_t ret_val;
4429 	uint16_t phy_saved_data;
4430 	DEBUGFUNC();
4431 
4432 	if (hw->phy_init_script) {
4433 		mdelay(20);
4434 
4435 		/* Save off the current value of register 0x2F5B to be
4436 		 * restored at the end of this routine. */
4437 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4438 
4439 		/* Disabled the PHY transmitter */
4440 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4441 
4442 		mdelay(20);
4443 
4444 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4445 
4446 		mdelay(5);
4447 
4448 		switch (hw->mac_type) {
4449 		case e1000_82541:
4450 		case e1000_82547:
4451 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4452 
4453 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4454 
4455 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4456 
4457 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4458 
4459 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4460 
4461 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4462 
4463 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4464 
4465 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4466 
4467 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4468 			break;
4469 
4470 		case e1000_82541_rev_2:
4471 		case e1000_82547_rev_2:
4472 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4473 			break;
4474 		default:
4475 			break;
4476 		}
4477 
4478 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4479 
4480 		mdelay(20);
4481 
4482 		/* Now enable the transmitter */
4483 		if (!ret_val)
4484 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4485 
4486 		if (hw->mac_type == e1000_82547) {
4487 			uint16_t fused, fine, coarse;
4488 
4489 			/* Move to analog registers page */
4490 			e1000_read_phy_reg(hw,
4491 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4492 
4493 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4494 				e1000_read_phy_reg(hw,
4495 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4496 
4497 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4498 				coarse = fused
4499 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4500 
4501 				if (coarse >
4502 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4503 					coarse -=
4504 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4505 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4506 				} else if (coarse
4507 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4508 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4509 
4510 				fused = (fused
4511 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4512 					(fine
4513 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4514 					(coarse
4515 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4516 
4517 				e1000_write_phy_reg(hw,
4518 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4519 				e1000_write_phy_reg(hw,
4520 					IGP01E1000_ANALOG_FUSE_BYPASS,
4521 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4522 			}
4523 		}
4524 	}
4525 }
4526 
4527 /******************************************************************************
4528 * Resets the PHY
4529 *
4530 * hw - Struct containing variables accessed by shared code
4531 *
4532 * Sets bit 15 of the MII Control register
4533 ******************************************************************************/
4534 int32_t
4535 e1000_phy_reset(struct e1000_hw *hw)
4536 {
4537 	int32_t ret_val;
4538 	uint16_t phy_data;
4539 
4540 	DEBUGFUNC();
4541 
4542 	/* In the case of the phy reset being blocked, it's not an error, we
4543 	 * simply return success without performing the reset. */
4544 	ret_val = e1000_check_phy_reset_block(hw);
4545 	if (ret_val)
4546 		return E1000_SUCCESS;
4547 
4548 	switch (hw->phy_type) {
4549 	case e1000_phy_igp:
4550 	case e1000_phy_igp_2:
4551 	case e1000_phy_igp_3:
4552 	case e1000_phy_ife:
4553 	case e1000_phy_igb:
4554 		ret_val = e1000_phy_hw_reset(hw);
4555 		if (ret_val)
4556 			return ret_val;
4557 		break;
4558 	default:
4559 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4560 		if (ret_val)
4561 			return ret_val;
4562 
4563 		phy_data |= MII_CR_RESET;
4564 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4565 		if (ret_val)
4566 			return ret_val;
4567 
4568 		udelay(1);
4569 		break;
4570 	}
4571 
4572 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4573 		e1000_phy_init_script(hw);
4574 
4575 	return E1000_SUCCESS;
4576 }
4577 
4578 static int e1000_set_phy_type (struct e1000_hw *hw)
4579 {
4580 	DEBUGFUNC ();
4581 
4582 	if (hw->mac_type == e1000_undefined)
4583 		return -E1000_ERR_PHY_TYPE;
4584 
4585 	switch (hw->phy_id) {
4586 	case M88E1000_E_PHY_ID:
4587 	case M88E1000_I_PHY_ID:
4588 	case M88E1011_I_PHY_ID:
4589 	case M88E1111_I_PHY_ID:
4590 		hw->phy_type = e1000_phy_m88;
4591 		break;
4592 	case IGP01E1000_I_PHY_ID:
4593 		if (hw->mac_type == e1000_82541 ||
4594 			hw->mac_type == e1000_82541_rev_2 ||
4595 			hw->mac_type == e1000_82547 ||
4596 			hw->mac_type == e1000_82547_rev_2) {
4597 			hw->phy_type = e1000_phy_igp;
4598 			break;
4599 		}
4600 	case IGP03E1000_E_PHY_ID:
4601 		hw->phy_type = e1000_phy_igp_3;
4602 		break;
4603 	case IFE_E_PHY_ID:
4604 	case IFE_PLUS_E_PHY_ID:
4605 	case IFE_C_E_PHY_ID:
4606 		hw->phy_type = e1000_phy_ife;
4607 		break;
4608 	case GG82563_E_PHY_ID:
4609 		if (hw->mac_type == e1000_80003es2lan) {
4610 			hw->phy_type = e1000_phy_gg82563;
4611 			break;
4612 		}
4613 	case BME1000_E_PHY_ID:
4614 		hw->phy_type = e1000_phy_bm;
4615 		break;
4616 	case I210_I_PHY_ID:
4617 		hw->phy_type = e1000_phy_igb;
4618 		break;
4619 		/* Fall Through */
4620 	default:
4621 		/* Should never have loaded on this device */
4622 		hw->phy_type = e1000_phy_undefined;
4623 		return -E1000_ERR_PHY_TYPE;
4624 	}
4625 
4626 	return E1000_SUCCESS;
4627 }
4628 
4629 /******************************************************************************
4630 * Probes the expected PHY address for known PHY IDs
4631 *
4632 * hw - Struct containing variables accessed by shared code
4633 ******************************************************************************/
4634 static int32_t
4635 e1000_detect_gig_phy(struct e1000_hw *hw)
4636 {
4637 	int32_t phy_init_status, ret_val;
4638 	uint16_t phy_id_high, phy_id_low;
4639 	bool match = false;
4640 
4641 	DEBUGFUNC();
4642 
4643 	/* The 82571 firmware may still be configuring the PHY.  In this
4644 	 * case, we cannot access the PHY until the configuration is done.  So
4645 	 * we explicitly set the PHY values. */
4646 	if (hw->mac_type == e1000_82571 ||
4647 		hw->mac_type == e1000_82572) {
4648 		hw->phy_id = IGP01E1000_I_PHY_ID;
4649 		hw->phy_type = e1000_phy_igp_2;
4650 		return E1000_SUCCESS;
4651 	}
4652 
4653 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4654 	 * work- around that forces PHY page 0 to be set or the reads fail.
4655 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4656 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4657 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4658 	 * the routines below will figure this out as well. */
4659 	if (hw->mac_type == e1000_80003es2lan)
4660 		hw->phy_type = e1000_phy_gg82563;
4661 
4662 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4663 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4664 	if (ret_val)
4665 		return ret_val;
4666 
4667 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4668 	udelay(20);
4669 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4670 	if (ret_val)
4671 		return ret_val;
4672 
4673 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4674 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4675 
4676 	switch (hw->mac_type) {
4677 	case e1000_82543:
4678 		if (hw->phy_id == M88E1000_E_PHY_ID)
4679 			match = true;
4680 		break;
4681 	case e1000_82544:
4682 		if (hw->phy_id == M88E1000_I_PHY_ID)
4683 			match = true;
4684 		break;
4685 	case e1000_82540:
4686 	case e1000_82545:
4687 	case e1000_82545_rev_3:
4688 	case e1000_82546:
4689 	case e1000_82546_rev_3:
4690 		if (hw->phy_id == M88E1011_I_PHY_ID)
4691 			match = true;
4692 		break;
4693 	case e1000_82541:
4694 	case e1000_82541_rev_2:
4695 	case e1000_82547:
4696 	case e1000_82547_rev_2:
4697 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4698 			match = true;
4699 
4700 		break;
4701 	case e1000_82573:
4702 		if (hw->phy_id == M88E1111_I_PHY_ID)
4703 			match = true;
4704 		break;
4705 	case e1000_82574:
4706 		if (hw->phy_id == BME1000_E_PHY_ID)
4707 			match = true;
4708 		break;
4709 	case e1000_80003es2lan:
4710 		if (hw->phy_id == GG82563_E_PHY_ID)
4711 			match = true;
4712 		break;
4713 	case e1000_ich8lan:
4714 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4715 			match = true;
4716 		if (hw->phy_id == IFE_E_PHY_ID)
4717 			match = true;
4718 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4719 			match = true;
4720 		if (hw->phy_id == IFE_C_E_PHY_ID)
4721 			match = true;
4722 		break;
4723 	case e1000_igb:
4724 		if (hw->phy_id == I210_I_PHY_ID)
4725 			match = true;
4726 		break;
4727 	default:
4728 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4729 		return -E1000_ERR_CONFIG;
4730 	}
4731 
4732 	phy_init_status = e1000_set_phy_type(hw);
4733 
4734 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4735 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4736 		return 0;
4737 	}
4738 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4739 	return -E1000_ERR_PHY;
4740 }
4741 
4742 /*****************************************************************************
4743  * Set media type and TBI compatibility.
4744  *
4745  * hw - Struct containing variables accessed by shared code
4746  * **************************************************************************/
4747 void
4748 e1000_set_media_type(struct e1000_hw *hw)
4749 {
4750 	uint32_t status;
4751 
4752 	DEBUGFUNC();
4753 
4754 	if (hw->mac_type != e1000_82543) {
4755 		/* tbi_compatibility is only valid on 82543 */
4756 		hw->tbi_compatibility_en = false;
4757 	}
4758 
4759 	switch (hw->device_id) {
4760 	case E1000_DEV_ID_82545GM_SERDES:
4761 	case E1000_DEV_ID_82546GB_SERDES:
4762 	case E1000_DEV_ID_82571EB_SERDES:
4763 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4764 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4765 	case E1000_DEV_ID_82572EI_SERDES:
4766 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4767 		hw->media_type = e1000_media_type_internal_serdes;
4768 		break;
4769 	default:
4770 		switch (hw->mac_type) {
4771 		case e1000_82542_rev2_0:
4772 		case e1000_82542_rev2_1:
4773 			hw->media_type = e1000_media_type_fiber;
4774 			break;
4775 		case e1000_ich8lan:
4776 		case e1000_82573:
4777 		case e1000_82574:
4778 		case e1000_igb:
4779 			/* The STATUS_TBIMODE bit is reserved or reused
4780 			 * for the this device.
4781 			 */
4782 			hw->media_type = e1000_media_type_copper;
4783 			break;
4784 		default:
4785 			status = E1000_READ_REG(hw, STATUS);
4786 			if (status & E1000_STATUS_TBIMODE) {
4787 				hw->media_type = e1000_media_type_fiber;
4788 				/* tbi_compatibility not valid on fiber */
4789 				hw->tbi_compatibility_en = false;
4790 			} else {
4791 				hw->media_type = e1000_media_type_copper;
4792 			}
4793 			break;
4794 		}
4795 	}
4796 }
4797 
4798 /**
4799  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4800  *
4801  * e1000_sw_init initializes the Adapter private data structure.
4802  * Fields are initialized based on PCI device information and
4803  * OS network device settings (MTU size).
4804  **/
4805 
4806 static int
4807 e1000_sw_init(struct e1000_hw *hw)
4808 {
4809 	int result;
4810 
4811 	/* PCI config space info */
4812 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4813 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4814 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4815 			     &hw->subsystem_vendor_id);
4816 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4817 
4818 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4819 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4820 
4821 	/* identify the MAC */
4822 	result = e1000_set_mac_type(hw);
4823 	if (result) {
4824 		E1000_ERR(hw, "Unknown MAC Type\n");
4825 		return result;
4826 	}
4827 
4828 	switch (hw->mac_type) {
4829 	default:
4830 		break;
4831 	case e1000_82541:
4832 	case e1000_82547:
4833 	case e1000_82541_rev_2:
4834 	case e1000_82547_rev_2:
4835 		hw->phy_init_script = 1;
4836 		break;
4837 	}
4838 
4839 	/* flow control settings */
4840 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4841 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4842 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4843 	hw->fc_send_xon = 1;
4844 
4845 	/* Media type - copper or fiber */
4846 	hw->tbi_compatibility_en = true;
4847 	e1000_set_media_type(hw);
4848 
4849 	if (hw->mac_type >= e1000_82543) {
4850 		uint32_t status = E1000_READ_REG(hw, STATUS);
4851 
4852 		if (status & E1000_STATUS_TBIMODE) {
4853 			DEBUGOUT("fiber interface\n");
4854 			hw->media_type = e1000_media_type_fiber;
4855 		} else {
4856 			DEBUGOUT("copper interface\n");
4857 			hw->media_type = e1000_media_type_copper;
4858 		}
4859 	} else {
4860 		hw->media_type = e1000_media_type_fiber;
4861 	}
4862 
4863 	hw->wait_autoneg_complete = true;
4864 	if (hw->mac_type < e1000_82543)
4865 		hw->report_tx_early = 0;
4866 	else
4867 		hw->report_tx_early = 1;
4868 
4869 	return E1000_SUCCESS;
4870 }
4871 
4872 void
4873 fill_rx(struct e1000_hw *hw)
4874 {
4875 	struct e1000_rx_desc *rd;
4876 	unsigned long flush_start, flush_end;
4877 
4878 	rx_last = rx_tail;
4879 	rd = rx_base + rx_tail;
4880 	rx_tail = (rx_tail + 1) % 8;
4881 	memset(rd, 0, 16);
4882 	rd->buffer_addr = cpu_to_le64((unsigned long)packet);
4883 
4884 	/*
4885 	 * Make sure there are no stale data in WB over this area, which
4886 	 * might get written into the memory while the e1000 also writes
4887 	 * into the same memory area.
4888 	 */
4889 	invalidate_dcache_range((unsigned long)packet,
4890 				(unsigned long)packet + 4096);
4891 	/* Dump the DMA descriptor into RAM. */
4892 	flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
4893 	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4894 	flush_dcache_range(flush_start, flush_end);
4895 
4896 	E1000_WRITE_REG(hw, RDT, rx_tail);
4897 }
4898 
4899 /**
4900  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4901  * @adapter: board private structure
4902  *
4903  * Configure the Tx unit of the MAC after a reset.
4904  **/
4905 
4906 static void
4907 e1000_configure_tx(struct e1000_hw *hw)
4908 {
4909 	unsigned long tctl;
4910 	unsigned long tipg, tarc;
4911 	uint32_t ipgr1, ipgr2;
4912 
4913 	E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
4914 	E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
4915 
4916 	E1000_WRITE_REG(hw, TDLEN, 128);
4917 
4918 	/* Setup the HW Tx Head and Tail descriptor pointers */
4919 	E1000_WRITE_REG(hw, TDH, 0);
4920 	E1000_WRITE_REG(hw, TDT, 0);
4921 	tx_tail = 0;
4922 
4923 	/* Set the default values for the Tx Inter Packet Gap timer */
4924 	if (hw->mac_type <= e1000_82547_rev_2 &&
4925 	    (hw->media_type == e1000_media_type_fiber ||
4926 	     hw->media_type == e1000_media_type_internal_serdes))
4927 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4928 	else
4929 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4930 
4931 	/* Set the default values for the Tx Inter Packet Gap timer */
4932 	switch (hw->mac_type) {
4933 	case e1000_82542_rev2_0:
4934 	case e1000_82542_rev2_1:
4935 		tipg = DEFAULT_82542_TIPG_IPGT;
4936 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4937 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4938 		break;
4939 	case e1000_80003es2lan:
4940 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4941 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4942 		break;
4943 	default:
4944 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4945 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4946 		break;
4947 	}
4948 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4949 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4950 	E1000_WRITE_REG(hw, TIPG, tipg);
4951 	/* Program the Transmit Control Register */
4952 	tctl = E1000_READ_REG(hw, TCTL);
4953 	tctl &= ~E1000_TCTL_CT;
4954 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4955 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4956 
4957 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4958 		tarc = E1000_READ_REG(hw, TARC0);
4959 		/* set the speed mode bit, we'll clear it if we're not at
4960 		 * gigabit link later */
4961 		/* git bit can be set to 1*/
4962 	} else if (hw->mac_type == e1000_80003es2lan) {
4963 		tarc = E1000_READ_REG(hw, TARC0);
4964 		tarc |= 1;
4965 		E1000_WRITE_REG(hw, TARC0, tarc);
4966 		tarc = E1000_READ_REG(hw, TARC1);
4967 		tarc |= 1;
4968 		E1000_WRITE_REG(hw, TARC1, tarc);
4969 	}
4970 
4971 
4972 	e1000_config_collision_dist(hw);
4973 	/* Setup Transmit Descriptor Settings for eop descriptor */
4974 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4975 
4976 	/* Need to set up RS bit */
4977 	if (hw->mac_type < e1000_82543)
4978 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
4979 	else
4980 		hw->txd_cmd |= E1000_TXD_CMD_RS;
4981 
4982 
4983 	if (hw->mac_type == e1000_igb) {
4984 		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
4985 
4986 		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
4987 		reg_txdctl |= 1 << 25;
4988 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
4989 		mdelay(20);
4990 	}
4991 
4992 
4993 
4994 	E1000_WRITE_REG(hw, TCTL, tctl);
4995 
4996 
4997 }
4998 
4999 /**
5000  * e1000_setup_rctl - configure the receive control register
5001  * @adapter: Board private structure
5002  **/
5003 static void
5004 e1000_setup_rctl(struct e1000_hw *hw)
5005 {
5006 	uint32_t rctl;
5007 
5008 	rctl = E1000_READ_REG(hw, RCTL);
5009 
5010 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5011 
5012 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5013 		| E1000_RCTL_RDMTS_HALF;	/* |
5014 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5015 
5016 	if (hw->tbi_compatibility_on == 1)
5017 		rctl |= E1000_RCTL_SBP;
5018 	else
5019 		rctl &= ~E1000_RCTL_SBP;
5020 
5021 	rctl &= ~(E1000_RCTL_SZ_4096);
5022 		rctl |= E1000_RCTL_SZ_2048;
5023 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5024 	E1000_WRITE_REG(hw, RCTL, rctl);
5025 }
5026 
5027 /**
5028  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5029  * @adapter: board private structure
5030  *
5031  * Configure the Rx unit of the MAC after a reset.
5032  **/
5033 static void
5034 e1000_configure_rx(struct e1000_hw *hw)
5035 {
5036 	unsigned long rctl, ctrl_ext;
5037 	rx_tail = 0;
5038 
5039 	/* make sure receives are disabled while setting up the descriptors */
5040 	rctl = E1000_READ_REG(hw, RCTL);
5041 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5042 	if (hw->mac_type >= e1000_82540) {
5043 		/* Set the interrupt throttling rate.  Value is calculated
5044 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5045 #define MAX_INTS_PER_SEC	8000
5046 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
5047 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5048 	}
5049 
5050 	if (hw->mac_type >= e1000_82571) {
5051 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5052 		/* Reset delay timers after every interrupt */
5053 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5054 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5055 		E1000_WRITE_FLUSH(hw);
5056 	}
5057 	/* Setup the Base and Length of the Rx Descriptor Ring */
5058 	E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5059 	E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5060 
5061 	E1000_WRITE_REG(hw, RDLEN, 128);
5062 
5063 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
5064 	E1000_WRITE_REG(hw, RDH, 0);
5065 	E1000_WRITE_REG(hw, RDT, 0);
5066 	/* Enable Receives */
5067 
5068 	if (hw->mac_type == e1000_igb) {
5069 
5070 		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5071 		reg_rxdctl |= 1 << 25;
5072 		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5073 		mdelay(20);
5074 	}
5075 
5076 	E1000_WRITE_REG(hw, RCTL, rctl);
5077 
5078 	fill_rx(hw);
5079 }
5080 
5081 /**************************************************************************
5082 POLL - Wait for a frame
5083 ***************************************************************************/
5084 static int
5085 _e1000_poll(struct e1000_hw *hw)
5086 {
5087 	struct e1000_rx_desc *rd;
5088 	unsigned long inval_start, inval_end;
5089 	uint32_t len;
5090 
5091 	/* return true if there's an ethernet packet ready to read */
5092 	rd = rx_base + rx_last;
5093 
5094 	/* Re-load the descriptor from RAM. */
5095 	inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5096 	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5097 	invalidate_dcache_range(inval_start, inval_end);
5098 
5099 	if (!(rd->status & E1000_RXD_STAT_DD))
5100 		return 0;
5101 	/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5102 	/* Packet received, make sure the data are re-loaded from RAM. */
5103 	len = le16_to_cpu(rd->length);
5104 	invalidate_dcache_range((unsigned long)packet,
5105 				(unsigned long)packet +
5106 				roundup(len, ARCH_DMA_MINALIGN));
5107 	return len;
5108 }
5109 
5110 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5111 {
5112 	void *nv_packet = (void *)txpacket;
5113 	struct e1000_tx_desc *txp;
5114 	int i = 0;
5115 	unsigned long flush_start, flush_end;
5116 
5117 	txp = tx_base + tx_tail;
5118 	tx_tail = (tx_tail + 1) % 8;
5119 
5120 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5121 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5122 	txp->upper.data = 0;
5123 
5124 	/* Dump the packet into RAM so e1000 can pick them. */
5125 	flush_dcache_range((unsigned long)nv_packet,
5126 			   (unsigned long)nv_packet +
5127 			   roundup(length, ARCH_DMA_MINALIGN));
5128 	/* Dump the descriptor into RAM as well. */
5129 	flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5130 	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5131 	flush_dcache_range(flush_start, flush_end);
5132 
5133 	E1000_WRITE_REG(hw, TDT, tx_tail);
5134 
5135 	E1000_WRITE_FLUSH(hw);
5136 	while (1) {
5137 		invalidate_dcache_range(flush_start, flush_end);
5138 		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5139 			break;
5140 		if (i++ > TOUT_LOOP) {
5141 			DEBUGOUT("e1000: tx timeout\n");
5142 			return 0;
5143 		}
5144 		udelay(10);	/* give the nic a chance to write to the register */
5145 	}
5146 	return 1;
5147 }
5148 
5149 static void
5150 _e1000_disable(struct e1000_hw *hw)
5151 {
5152 	/* Turn off the ethernet interface */
5153 	E1000_WRITE_REG(hw, RCTL, 0);
5154 	E1000_WRITE_REG(hw, TCTL, 0);
5155 
5156 	/* Clear the transmit ring */
5157 	E1000_WRITE_REG(hw, TDH, 0);
5158 	E1000_WRITE_REG(hw, TDT, 0);
5159 
5160 	/* Clear the receive ring */
5161 	E1000_WRITE_REG(hw, RDH, 0);
5162 	E1000_WRITE_REG(hw, RDT, 0);
5163 
5164 	mdelay(10);
5165 }
5166 
5167 /*reset function*/
5168 static inline int
5169 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5170 {
5171 	e1000_reset_hw(hw);
5172 	if (hw->mac_type >= e1000_82544)
5173 		E1000_WRITE_REG(hw, WUC, 0);
5174 
5175 	return e1000_init_hw(hw, enetaddr);
5176 }
5177 
5178 static int
5179 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5180 {
5181 	int ret_val = 0;
5182 
5183 	ret_val = e1000_reset(hw, enetaddr);
5184 	if (ret_val < 0) {
5185 		if ((ret_val == -E1000_ERR_NOLINK) ||
5186 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5187 			E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5188 		} else {
5189 			E1000_ERR(hw, "Hardware Initialization Failed\n");
5190 		}
5191 		return ret_val;
5192 	}
5193 	e1000_configure_tx(hw);
5194 	e1000_setup_rctl(hw);
5195 	e1000_configure_rx(hw);
5196 	return 0;
5197 }
5198 
5199 /******************************************************************************
5200  * Gets the current PCI bus type of hardware
5201  *
5202  * hw - Struct containing variables accessed by shared code
5203  *****************************************************************************/
5204 void e1000_get_bus_type(struct e1000_hw *hw)
5205 {
5206 	uint32_t status;
5207 
5208 	switch (hw->mac_type) {
5209 	case e1000_82542_rev2_0:
5210 	case e1000_82542_rev2_1:
5211 		hw->bus_type = e1000_bus_type_pci;
5212 		break;
5213 	case e1000_82571:
5214 	case e1000_82572:
5215 	case e1000_82573:
5216 	case e1000_82574:
5217 	case e1000_80003es2lan:
5218 	case e1000_ich8lan:
5219 	case e1000_igb:
5220 		hw->bus_type = e1000_bus_type_pci_express;
5221 		break;
5222 	default:
5223 		status = E1000_READ_REG(hw, STATUS);
5224 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5225 				e1000_bus_type_pcix : e1000_bus_type_pci;
5226 		break;
5227 	}
5228 }
5229 
5230 #ifndef CONFIG_DM_ETH
5231 /* A list of all registered e1000 devices */
5232 static LIST_HEAD(e1000_hw_list);
5233 #endif
5234 
5235 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5236 			  unsigned char enetaddr[6])
5237 {
5238 	u32 val;
5239 
5240 	/* Assign the passed-in values */
5241 	hw->pdev = devno;
5242 	hw->cardnum = cardnum;
5243 
5244 	/* Print a debug message with the IO base address */
5245 	pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5246 	E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5247 
5248 	/* Try to enable I/O accesses and bus-mastering */
5249 	val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5250 	pci_write_config_dword(devno, PCI_COMMAND, val);
5251 
5252 	/* Make sure it worked */
5253 	pci_read_config_dword(devno, PCI_COMMAND, &val);
5254 	if (!(val & PCI_COMMAND_MEMORY)) {
5255 		E1000_ERR(hw, "Can't enable I/O memory\n");
5256 		return -ENOSPC;
5257 	}
5258 	if (!(val & PCI_COMMAND_MASTER)) {
5259 		E1000_ERR(hw, "Can't enable bus-mastering\n");
5260 		return -EPERM;
5261 	}
5262 
5263 	/* Are these variables needed? */
5264 	hw->fc = e1000_fc_default;
5265 	hw->original_fc = e1000_fc_default;
5266 	hw->autoneg_failed = 0;
5267 	hw->autoneg = 1;
5268 	hw->get_link_status = true;
5269 #ifndef CONFIG_E1000_NO_NVM
5270 	hw->eeprom_semaphore_present = true;
5271 #endif
5272 	hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5273 						PCI_REGION_MEM);
5274 	hw->mac_type = e1000_undefined;
5275 
5276 	/* MAC and Phy settings */
5277 	if (e1000_sw_init(hw) < 0) {
5278 		E1000_ERR(hw, "Software init failed\n");
5279 		return -EIO;
5280 	}
5281 	if (e1000_check_phy_reset_block(hw))
5282 		E1000_ERR(hw, "PHY Reset is blocked!\n");
5283 
5284 	/* Basic init was OK, reset the hardware and allow SPI access */
5285 	e1000_reset_hw(hw);
5286 
5287 #ifndef CONFIG_E1000_NO_NVM
5288 	/* Validate the EEPROM and get chipset information */
5289 	if (e1000_init_eeprom_params(hw)) {
5290 		E1000_ERR(hw, "EEPROM is invalid!\n");
5291 		return -EINVAL;
5292 	}
5293 	if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5294 	    e1000_validate_eeprom_checksum(hw))
5295 		return -ENXIO;
5296 	e1000_read_mac_addr(hw, enetaddr);
5297 #endif
5298 	e1000_get_bus_type(hw);
5299 
5300 #ifndef CONFIG_E1000_NO_NVM
5301 	printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5302 	       enetaddr[0], enetaddr[1], enetaddr[2],
5303 	       enetaddr[3], enetaddr[4], enetaddr[5]);
5304 #else
5305 	memset(enetaddr, 0, 6);
5306 	printf("e1000: no NVM\n");
5307 #endif
5308 
5309 	return 0;
5310 }
5311 
5312 /* Put the name of a device in a string */
5313 static void e1000_name(char *str, int cardnum)
5314 {
5315 	sprintf(str, "e1000#%u", cardnum);
5316 }
5317 
5318 #ifndef CONFIG_DM_ETH
5319 /**************************************************************************
5320 TRANSMIT - Transmit a frame
5321 ***************************************************************************/
5322 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5323 {
5324 	struct e1000_hw *hw = nic->priv;
5325 
5326 	return _e1000_transmit(hw, txpacket, length);
5327 }
5328 
5329 /**************************************************************************
5330 DISABLE - Turn off ethernet interface
5331 ***************************************************************************/
5332 static void
5333 e1000_disable(struct eth_device *nic)
5334 {
5335 	struct e1000_hw *hw = nic->priv;
5336 
5337 	_e1000_disable(hw);
5338 }
5339 
5340 /**************************************************************************
5341 INIT - set up ethernet interface(s)
5342 ***************************************************************************/
5343 static int
5344 e1000_init(struct eth_device *nic, bd_t *bis)
5345 {
5346 	struct e1000_hw *hw = nic->priv;
5347 
5348 	return _e1000_init(hw, nic->enetaddr);
5349 }
5350 
5351 static int
5352 e1000_poll(struct eth_device *nic)
5353 {
5354 	struct e1000_hw *hw = nic->priv;
5355 	int len;
5356 
5357 	len = _e1000_poll(hw);
5358 	if (len) {
5359 		net_process_received_packet((uchar *)packet, len);
5360 		fill_rx(hw);
5361 	}
5362 
5363 	return len ? 1 : 0;
5364 }
5365 
5366 /**************************************************************************
5367 PROBE - Look for an adapter, this routine's visible to the outside
5368 You should omit the last argument struct pci_device * for a non-PCI NIC
5369 ***************************************************************************/
5370 int
5371 e1000_initialize(bd_t * bis)
5372 {
5373 	unsigned int i;
5374 	pci_dev_t devno;
5375 	int ret;
5376 
5377 	DEBUGFUNC();
5378 
5379 	/* Find and probe all the matching PCI devices */
5380 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5381 		/*
5382 		 * These will never get freed due to errors, this allows us to
5383 		 * perform SPI EEPROM programming from U-boot, for example.
5384 		 */
5385 		struct eth_device *nic = malloc(sizeof(*nic));
5386 		struct e1000_hw *hw = malloc(sizeof(*hw));
5387 		if (!nic || !hw) {
5388 			printf("e1000#%u: Out of Memory!\n", i);
5389 			free(nic);
5390 			free(hw);
5391 			continue;
5392 		}
5393 
5394 		/* Make sure all of the fields are initially zeroed */
5395 		memset(nic, 0, sizeof(*nic));
5396 		memset(hw, 0, sizeof(*hw));
5397 		nic->priv = hw;
5398 
5399 		/* Generate a card name */
5400 		e1000_name(nic->name, i);
5401 		hw->name = nic->name;
5402 
5403 		ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5404 		if (ret)
5405 			continue;
5406 		list_add_tail(&hw->list_node, &e1000_hw_list);
5407 
5408 		hw->nic = nic;
5409 
5410 		/* Set up the function pointers and register the device */
5411 		nic->init = e1000_init;
5412 		nic->recv = e1000_poll;
5413 		nic->send = e1000_transmit;
5414 		nic->halt = e1000_disable;
5415 		eth_register(nic);
5416 	}
5417 
5418 	return i;
5419 }
5420 
5421 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5422 {
5423 	struct e1000_hw *hw;
5424 
5425 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5426 		if (hw->cardnum == cardnum)
5427 			return hw;
5428 
5429 	return NULL;
5430 }
5431 #endif /* !CONFIG_DM_ETH */
5432 
5433 #ifdef CONFIG_CMD_E1000
5434 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5435 		int argc, char * const argv[])
5436 {
5437 	unsigned char *mac = NULL;
5438 #ifdef CONFIG_DM_ETH
5439 	struct eth_pdata *plat;
5440 	struct udevice *dev;
5441 	char name[30];
5442 	int ret;
5443 #else
5444 	struct e1000_hw *hw;
5445 #endif
5446 	int cardnum;
5447 
5448 	if (argc < 3) {
5449 		cmd_usage(cmdtp);
5450 		return 1;
5451 	}
5452 
5453 	/* Make sure we can find the requested e1000 card */
5454 	cardnum = simple_strtoul(argv[1], NULL, 10);
5455 #ifdef CONFIG_DM_ETH
5456 	e1000_name(name, cardnum);
5457 	ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5458 	if (!ret) {
5459 		plat = dev_get_platdata(dev);
5460 		mac = plat->enetaddr;
5461 	}
5462 #else
5463 	hw = e1000_find_card(cardnum);
5464 	if (hw)
5465 		mac = hw->nic->enetaddr;
5466 #endif
5467 	if (!mac) {
5468 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5469 		return 1;
5470 	}
5471 
5472 	if (!strcmp(argv[2], "print-mac-address")) {
5473 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5474 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5475 		return 0;
5476 	}
5477 
5478 #ifdef CONFIG_E1000_SPI
5479 	/* Handle the "SPI" subcommand */
5480 	if (!strcmp(argv[2], "spi"))
5481 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5482 #endif
5483 
5484 	cmd_usage(cmdtp);
5485 	return 1;
5486 }
5487 
5488 U_BOOT_CMD(
5489 	e1000, 7, 0, do_e1000,
5490 	"Intel e1000 controller management",
5491 	/*  */"<card#> print-mac-address\n"
5492 #ifdef CONFIG_E1000_SPI
5493 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5494 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5495 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5496 	"e1000 <card#> spi checksum [update]\n"
5497 #endif
5498 	"       - Manage the Intel E1000 PCI device"
5499 );
5500 #endif /* not CONFIG_CMD_E1000 */
5501 
5502 #ifdef CONFIG_DM_ETH
5503 static int e1000_eth_start(struct udevice *dev)
5504 {
5505 	struct eth_pdata *plat = dev_get_platdata(dev);
5506 	struct e1000_hw *hw = dev_get_priv(dev);
5507 
5508 	return _e1000_init(hw, plat->enetaddr);
5509 }
5510 
5511 static void e1000_eth_stop(struct udevice *dev)
5512 {
5513 	struct e1000_hw *hw = dev_get_priv(dev);
5514 
5515 	_e1000_disable(hw);
5516 }
5517 
5518 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5519 {
5520 	struct e1000_hw *hw = dev_get_priv(dev);
5521 	int ret;
5522 
5523 	ret = _e1000_transmit(hw, packet, length);
5524 
5525 	return ret ? 0 : -ETIMEDOUT;
5526 }
5527 
5528 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5529 {
5530 	struct e1000_hw *hw = dev_get_priv(dev);
5531 	int len;
5532 
5533 	len = _e1000_poll(hw);
5534 	if (len)
5535 		*packetp = packet;
5536 
5537 	return len ? len : -EAGAIN;
5538 }
5539 
5540 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5541 {
5542 	struct e1000_hw *hw = dev_get_priv(dev);
5543 
5544 	fill_rx(hw);
5545 
5546 	return 0;
5547 }
5548 
5549 static int e1000_eth_probe(struct udevice *dev)
5550 {
5551 	struct eth_pdata *plat = dev_get_platdata(dev);
5552 	struct e1000_hw *hw = dev_get_priv(dev);
5553 	int ret;
5554 
5555 	hw->name = dev->name;
5556 	ret = e1000_init_one(hw, trailing_strtol(dev->name),
5557 			     dm_pci_get_bdf(dev), plat->enetaddr);
5558 	if (ret < 0) {
5559 		printf(pr_fmt("failed to initialize card: %d\n"), ret);
5560 		return ret;
5561 	}
5562 
5563 	return 0;
5564 }
5565 
5566 static int e1000_eth_bind(struct udevice *dev)
5567 {
5568 	char name[20];
5569 
5570 	/*
5571 	 * A simple way to number the devices. When device tree is used this
5572 	 * is unnecessary, but when the device is just discovered on the PCI
5573 	 * bus we need a name. We could instead have the uclass figure out
5574 	 * which devices are different and number them.
5575 	 */
5576 	e1000_name(name, num_cards++);
5577 
5578 	return device_set_name(dev, name);
5579 }
5580 
5581 static const struct eth_ops e1000_eth_ops = {
5582 	.start	= e1000_eth_start,
5583 	.send	= e1000_eth_send,
5584 	.recv	= e1000_eth_recv,
5585 	.stop	= e1000_eth_stop,
5586 	.free_pkt = e1000_free_pkt,
5587 };
5588 
5589 static const struct udevice_id e1000_eth_ids[] = {
5590 	{ .compatible = "intel,e1000" },
5591 	{ }
5592 };
5593 
5594 U_BOOT_DRIVER(eth_e1000) = {
5595 	.name	= "eth_e1000",
5596 	.id	= UCLASS_ETH,
5597 	.of_match = e1000_eth_ids,
5598 	.bind	= e1000_eth_bind,
5599 	.probe	= e1000_eth_probe,
5600 	.ops	= &e1000_eth_ops,
5601 	.priv_auto_alloc_size = sizeof(struct e1000_hw),
5602 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
5603 };
5604 
5605 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5606 #endif
5607