xref: /openbmc/u-boot/drivers/net/e1000.c (revision 5699ea6d)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12  * SPDX-License-Identifier:	GPL-2.0+
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include "e1000.h"
33 
34 #define TOUT_LOOP   100000
35 
36 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
37 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
38 
39 #define E1000_DEFAULT_PCI_PBA	0x00000030
40 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
41 
42 /* NIC specific static variables go here */
43 
44 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
45 #define E1000_BUFFER_ALIGN	128
46 
47 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
48 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
49 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
50 
51 static int tx_tail;
52 static int rx_tail, rx_last;
53 
54 static struct pci_device_id e1000_supported[] = {
55 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
64 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
65 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
68 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
69 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
72 	/* E1000 PCIe card */
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
89 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
90 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
95 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER},
96 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS},
97 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES},
98 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS},
99 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX},
100 
101 	{}
102 };
103 
104 /* Function forward declarations */
105 static int e1000_setup_link(struct eth_device *nic);
106 static int e1000_setup_fiber_link(struct eth_device *nic);
107 static int e1000_setup_copper_link(struct eth_device *nic);
108 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
109 static void e1000_config_collision_dist(struct e1000_hw *hw);
110 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
111 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
112 static int e1000_check_for_link(struct eth_device *nic);
113 static int e1000_wait_autoneg(struct e1000_hw *hw);
114 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
115 				       uint16_t * duplex);
116 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
117 			      uint16_t * phy_data);
118 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
119 			       uint16_t phy_data);
120 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
121 static int e1000_phy_reset(struct e1000_hw *hw);
122 static int e1000_detect_gig_phy(struct e1000_hw *hw);
123 static void e1000_set_media_type(struct e1000_hw *hw);
124 
125 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
126 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
127 
128 #ifndef CONFIG_E1000_NO_NVM
129 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
130 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
131 		uint16_t words,
132 		uint16_t *data);
133 /******************************************************************************
134  * Raises the EEPROM's clock input.
135  *
136  * hw - Struct containing variables accessed by shared code
137  * eecd - EECD's current value
138  *****************************************************************************/
139 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
140 {
141 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
142 	 * wait 50 microseconds.
143 	 */
144 	*eecd = *eecd | E1000_EECD_SK;
145 	E1000_WRITE_REG(hw, EECD, *eecd);
146 	E1000_WRITE_FLUSH(hw);
147 	udelay(50);
148 }
149 
150 /******************************************************************************
151  * Lowers the EEPROM's clock input.
152  *
153  * hw - Struct containing variables accessed by shared code
154  * eecd - EECD's current value
155  *****************************************************************************/
156 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
157 {
158 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
159 	 * wait 50 microseconds.
160 	 */
161 	*eecd = *eecd & ~E1000_EECD_SK;
162 	E1000_WRITE_REG(hw, EECD, *eecd);
163 	E1000_WRITE_FLUSH(hw);
164 	udelay(50);
165 }
166 
167 /******************************************************************************
168  * Shift data bits out to the EEPROM.
169  *
170  * hw - Struct containing variables accessed by shared code
171  * data - data to send to the EEPROM
172  * count - number of bits to shift out
173  *****************************************************************************/
174 static void
175 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
176 {
177 	uint32_t eecd;
178 	uint32_t mask;
179 
180 	/* We need to shift "count" bits out to the EEPROM. So, value in the
181 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
182 	 * In order to do this, "data" must be broken down into bits.
183 	 */
184 	mask = 0x01 << (count - 1);
185 	eecd = E1000_READ_REG(hw, EECD);
186 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
187 	do {
188 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
189 		 * and then raising and then lowering the clock (the SK bit controls
190 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
191 		 * by setting "DI" to "0" and then raising and then lowering the clock.
192 		 */
193 		eecd &= ~E1000_EECD_DI;
194 
195 		if (data & mask)
196 			eecd |= E1000_EECD_DI;
197 
198 		E1000_WRITE_REG(hw, EECD, eecd);
199 		E1000_WRITE_FLUSH(hw);
200 
201 		udelay(50);
202 
203 		e1000_raise_ee_clk(hw, &eecd);
204 		e1000_lower_ee_clk(hw, &eecd);
205 
206 		mask = mask >> 1;
207 
208 	} while (mask);
209 
210 	/* We leave the "DI" bit set to "0" when we leave this routine. */
211 	eecd &= ~E1000_EECD_DI;
212 	E1000_WRITE_REG(hw, EECD, eecd);
213 }
214 
215 /******************************************************************************
216  * Shift data bits in from the EEPROM
217  *
218  * hw - Struct containing variables accessed by shared code
219  *****************************************************************************/
220 static uint16_t
221 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
222 {
223 	uint32_t eecd;
224 	uint32_t i;
225 	uint16_t data;
226 
227 	/* In order to read a register from the EEPROM, we need to shift 'count'
228 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
229 	 * input to the EEPROM (setting the SK bit), and then reading the
230 	 * value of the "DO" bit.  During this "shifting in" process the
231 	 * "DI" bit should always be clear.
232 	 */
233 
234 	eecd = E1000_READ_REG(hw, EECD);
235 
236 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
237 	data = 0;
238 
239 	for (i = 0; i < count; i++) {
240 		data = data << 1;
241 		e1000_raise_ee_clk(hw, &eecd);
242 
243 		eecd = E1000_READ_REG(hw, EECD);
244 
245 		eecd &= ~(E1000_EECD_DI);
246 		if (eecd & E1000_EECD_DO)
247 			data |= 1;
248 
249 		e1000_lower_ee_clk(hw, &eecd);
250 	}
251 
252 	return data;
253 }
254 
255 /******************************************************************************
256  * Returns EEPROM to a "standby" state
257  *
258  * hw - Struct containing variables accessed by shared code
259  *****************************************************************************/
260 void e1000_standby_eeprom(struct e1000_hw *hw)
261 {
262 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
263 	uint32_t eecd;
264 
265 	eecd = E1000_READ_REG(hw, EECD);
266 
267 	if (eeprom->type == e1000_eeprom_microwire) {
268 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
269 		E1000_WRITE_REG(hw, EECD, eecd);
270 		E1000_WRITE_FLUSH(hw);
271 		udelay(eeprom->delay_usec);
272 
273 		/* Clock high */
274 		eecd |= E1000_EECD_SK;
275 		E1000_WRITE_REG(hw, EECD, eecd);
276 		E1000_WRITE_FLUSH(hw);
277 		udelay(eeprom->delay_usec);
278 
279 		/* Select EEPROM */
280 		eecd |= E1000_EECD_CS;
281 		E1000_WRITE_REG(hw, EECD, eecd);
282 		E1000_WRITE_FLUSH(hw);
283 		udelay(eeprom->delay_usec);
284 
285 		/* Clock low */
286 		eecd &= ~E1000_EECD_SK;
287 		E1000_WRITE_REG(hw, EECD, eecd);
288 		E1000_WRITE_FLUSH(hw);
289 		udelay(eeprom->delay_usec);
290 	} else if (eeprom->type == e1000_eeprom_spi) {
291 		/* Toggle CS to flush commands */
292 		eecd |= E1000_EECD_CS;
293 		E1000_WRITE_REG(hw, EECD, eecd);
294 		E1000_WRITE_FLUSH(hw);
295 		udelay(eeprom->delay_usec);
296 		eecd &= ~E1000_EECD_CS;
297 		E1000_WRITE_REG(hw, EECD, eecd);
298 		E1000_WRITE_FLUSH(hw);
299 		udelay(eeprom->delay_usec);
300 	}
301 }
302 
303 /***************************************************************************
304 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
305 *
306 * hw - Struct containing variables accessed by shared code
307 ****************************************************************************/
308 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
309 {
310 	uint32_t eecd = 0;
311 
312 	DEBUGFUNC();
313 
314 	if (hw->mac_type == e1000_ich8lan)
315 		return false;
316 
317 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
318 		eecd = E1000_READ_REG(hw, EECD);
319 
320 		/* Isolate bits 15 & 16 */
321 		eecd = ((eecd >> 15) & 0x03);
322 
323 		/* If both bits are set, device is Flash type */
324 		if (eecd == 0x03)
325 			return false;
326 	}
327 	return true;
328 }
329 
330 /******************************************************************************
331  * Prepares EEPROM for access
332  *
333  * hw - Struct containing variables accessed by shared code
334  *
335  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
336  * function should be called before issuing a command to the EEPROM.
337  *****************************************************************************/
338 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
339 {
340 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
341 	uint32_t eecd, i = 0;
342 
343 	DEBUGFUNC();
344 
345 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
346 		return -E1000_ERR_SWFW_SYNC;
347 	eecd = E1000_READ_REG(hw, EECD);
348 
349 	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
350 		/* Request EEPROM Access */
351 		if (hw->mac_type > e1000_82544) {
352 			eecd |= E1000_EECD_REQ;
353 			E1000_WRITE_REG(hw, EECD, eecd);
354 			eecd = E1000_READ_REG(hw, EECD);
355 			while ((!(eecd & E1000_EECD_GNT)) &&
356 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
357 				i++;
358 				udelay(5);
359 				eecd = E1000_READ_REG(hw, EECD);
360 			}
361 			if (!(eecd & E1000_EECD_GNT)) {
362 				eecd &= ~E1000_EECD_REQ;
363 				E1000_WRITE_REG(hw, EECD, eecd);
364 				DEBUGOUT("Could not acquire EEPROM grant\n");
365 				return -E1000_ERR_EEPROM;
366 			}
367 		}
368 	}
369 
370 	/* Setup EEPROM for Read/Write */
371 
372 	if (eeprom->type == e1000_eeprom_microwire) {
373 		/* Clear SK and DI */
374 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
375 		E1000_WRITE_REG(hw, EECD, eecd);
376 
377 		/* Set CS */
378 		eecd |= E1000_EECD_CS;
379 		E1000_WRITE_REG(hw, EECD, eecd);
380 	} else if (eeprom->type == e1000_eeprom_spi) {
381 		/* Clear SK and CS */
382 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
383 		E1000_WRITE_REG(hw, EECD, eecd);
384 		udelay(1);
385 	}
386 
387 	return E1000_SUCCESS;
388 }
389 
390 /******************************************************************************
391  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
392  * is configured.  Additionally, if this is ICH8, the flash controller GbE
393  * registers must be mapped, or this will crash.
394  *
395  * hw - Struct containing variables accessed by shared code
396  *****************************************************************************/
397 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
398 {
399 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
400 	uint32_t eecd;
401 	int32_t ret_val = E1000_SUCCESS;
402 	uint16_t eeprom_size;
403 
404 	if (hw->mac_type == e1000_igb)
405 		eecd = E1000_READ_REG(hw, I210_EECD);
406 	else
407 		eecd = E1000_READ_REG(hw, EECD);
408 
409 	DEBUGFUNC();
410 
411 	switch (hw->mac_type) {
412 	case e1000_82542_rev2_0:
413 	case e1000_82542_rev2_1:
414 	case e1000_82543:
415 	case e1000_82544:
416 		eeprom->type = e1000_eeprom_microwire;
417 		eeprom->word_size = 64;
418 		eeprom->opcode_bits = 3;
419 		eeprom->address_bits = 6;
420 		eeprom->delay_usec = 50;
421 		eeprom->use_eerd = false;
422 		eeprom->use_eewr = false;
423 	break;
424 	case e1000_82540:
425 	case e1000_82545:
426 	case e1000_82545_rev_3:
427 	case e1000_82546:
428 	case e1000_82546_rev_3:
429 		eeprom->type = e1000_eeprom_microwire;
430 		eeprom->opcode_bits = 3;
431 		eeprom->delay_usec = 50;
432 		if (eecd & E1000_EECD_SIZE) {
433 			eeprom->word_size = 256;
434 			eeprom->address_bits = 8;
435 		} else {
436 			eeprom->word_size = 64;
437 			eeprom->address_bits = 6;
438 		}
439 		eeprom->use_eerd = false;
440 		eeprom->use_eewr = false;
441 		break;
442 	case e1000_82541:
443 	case e1000_82541_rev_2:
444 	case e1000_82547:
445 	case e1000_82547_rev_2:
446 		if (eecd & E1000_EECD_TYPE) {
447 			eeprom->type = e1000_eeprom_spi;
448 			eeprom->opcode_bits = 8;
449 			eeprom->delay_usec = 1;
450 			if (eecd & E1000_EECD_ADDR_BITS) {
451 				eeprom->page_size = 32;
452 				eeprom->address_bits = 16;
453 			} else {
454 				eeprom->page_size = 8;
455 				eeprom->address_bits = 8;
456 			}
457 		} else {
458 			eeprom->type = e1000_eeprom_microwire;
459 			eeprom->opcode_bits = 3;
460 			eeprom->delay_usec = 50;
461 			if (eecd & E1000_EECD_ADDR_BITS) {
462 				eeprom->word_size = 256;
463 				eeprom->address_bits = 8;
464 			} else {
465 				eeprom->word_size = 64;
466 				eeprom->address_bits = 6;
467 			}
468 		}
469 		eeprom->use_eerd = false;
470 		eeprom->use_eewr = false;
471 		break;
472 	case e1000_82571:
473 	case e1000_82572:
474 		eeprom->type = e1000_eeprom_spi;
475 		eeprom->opcode_bits = 8;
476 		eeprom->delay_usec = 1;
477 		if (eecd & E1000_EECD_ADDR_BITS) {
478 			eeprom->page_size = 32;
479 			eeprom->address_bits = 16;
480 		} else {
481 			eeprom->page_size = 8;
482 			eeprom->address_bits = 8;
483 		}
484 		eeprom->use_eerd = false;
485 		eeprom->use_eewr = false;
486 		break;
487 	case e1000_82573:
488 	case e1000_82574:
489 		eeprom->type = e1000_eeprom_spi;
490 		eeprom->opcode_bits = 8;
491 		eeprom->delay_usec = 1;
492 		if (eecd & E1000_EECD_ADDR_BITS) {
493 			eeprom->page_size = 32;
494 			eeprom->address_bits = 16;
495 		} else {
496 			eeprom->page_size = 8;
497 			eeprom->address_bits = 8;
498 		}
499 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
500 			eeprom->use_eerd = true;
501 			eeprom->use_eewr = true;
502 
503 			eeprom->type = e1000_eeprom_flash;
504 			eeprom->word_size = 2048;
505 
506 		/* Ensure that the Autonomous FLASH update bit is cleared due to
507 		 * Flash update issue on parts which use a FLASH for NVM. */
508 			eecd &= ~E1000_EECD_AUPDEN;
509 			E1000_WRITE_REG(hw, EECD, eecd);
510 		}
511 		break;
512 	case e1000_80003es2lan:
513 		eeprom->type = e1000_eeprom_spi;
514 		eeprom->opcode_bits = 8;
515 		eeprom->delay_usec = 1;
516 		if (eecd & E1000_EECD_ADDR_BITS) {
517 			eeprom->page_size = 32;
518 			eeprom->address_bits = 16;
519 		} else {
520 			eeprom->page_size = 8;
521 			eeprom->address_bits = 8;
522 		}
523 		eeprom->use_eerd = true;
524 		eeprom->use_eewr = false;
525 		break;
526 	case e1000_igb:
527 		/* i210 has 4k of iNVM mapped as EEPROM */
528 		eeprom->type = e1000_eeprom_invm;
529 		eeprom->opcode_bits = 8;
530 		eeprom->delay_usec = 1;
531 		eeprom->page_size = 32;
532 		eeprom->address_bits = 16;
533 		eeprom->use_eerd = true;
534 		eeprom->use_eewr = false;
535 		break;
536 
537 	/* ich8lan does not support currently. if needed, please
538 	 * add corresponding code and functions.
539 	 */
540 #if 0
541 	case e1000_ich8lan:
542 		{
543 		int32_t  i = 0;
544 
545 		eeprom->type = e1000_eeprom_ich8;
546 		eeprom->use_eerd = false;
547 		eeprom->use_eewr = false;
548 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
549 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
550 				ICH_FLASH_GFPREG);
551 		/* Zero the shadow RAM structure. But don't load it from NVM
552 		 * so as to save time for driver init */
553 		if (hw->eeprom_shadow_ram != NULL) {
554 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
555 				hw->eeprom_shadow_ram[i].modified = false;
556 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
557 			}
558 		}
559 
560 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
561 				ICH_FLASH_SECTOR_SIZE;
562 
563 		hw->flash_bank_size = ((flash_size >> 16)
564 				& ICH_GFPREG_BASE_MASK) + 1;
565 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
566 
567 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
568 
569 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
570 		break;
571 		}
572 #endif
573 	default:
574 		break;
575 	}
576 
577 	if (eeprom->type == e1000_eeprom_spi ||
578 	    eeprom->type == e1000_eeprom_invm) {
579 		/* eeprom_size will be an enum [0..8] that maps
580 		 * to eeprom sizes 128B to
581 		 * 32KB (incremented by powers of 2).
582 		 */
583 		if (hw->mac_type <= e1000_82547_rev_2) {
584 			/* Set to default value for initial eeprom read. */
585 			eeprom->word_size = 64;
586 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
587 					&eeprom_size);
588 			if (ret_val)
589 				return ret_val;
590 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
591 				>> EEPROM_SIZE_SHIFT;
592 			/* 256B eeprom size was not supported in earlier
593 			 * hardware, so we bump eeprom_size up one to
594 			 * ensure that "1" (which maps to 256B) is never
595 			 * the result used in the shifting logic below. */
596 			if (eeprom_size)
597 				eeprom_size++;
598 		} else {
599 			eeprom_size = (uint16_t)((eecd &
600 				E1000_EECD_SIZE_EX_MASK) >>
601 				E1000_EECD_SIZE_EX_SHIFT);
602 		}
603 
604 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
605 	}
606 	return ret_val;
607 }
608 
609 /******************************************************************************
610  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
611  *
612  * hw - Struct containing variables accessed by shared code
613  *****************************************************************************/
614 static int32_t
615 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
616 {
617 	uint32_t attempts = 100000;
618 	uint32_t i, reg = 0;
619 	int32_t done = E1000_ERR_EEPROM;
620 
621 	for (i = 0; i < attempts; i++) {
622 		if (eerd == E1000_EEPROM_POLL_READ) {
623 			if (hw->mac_type == e1000_igb)
624 				reg = E1000_READ_REG(hw, I210_EERD);
625 			else
626 				reg = E1000_READ_REG(hw, EERD);
627 		} else {
628 			if (hw->mac_type == e1000_igb)
629 				reg = E1000_READ_REG(hw, I210_EEWR);
630 			else
631 				reg = E1000_READ_REG(hw, EEWR);
632 		}
633 
634 		if (reg & E1000_EEPROM_RW_REG_DONE) {
635 			done = E1000_SUCCESS;
636 			break;
637 		}
638 		udelay(5);
639 	}
640 
641 	return done;
642 }
643 
644 /******************************************************************************
645  * Reads a 16 bit word from the EEPROM using the EERD register.
646  *
647  * hw - Struct containing variables accessed by shared code
648  * offset - offset of  word in the EEPROM to read
649  * data - word read from the EEPROM
650  * words - number of words to read
651  *****************************************************************************/
652 static int32_t
653 e1000_read_eeprom_eerd(struct e1000_hw *hw,
654 			uint16_t offset,
655 			uint16_t words,
656 			uint16_t *data)
657 {
658 	uint32_t i, eerd = 0;
659 	int32_t error = 0;
660 
661 	for (i = 0; i < words; i++) {
662 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
663 			E1000_EEPROM_RW_REG_START;
664 
665 		if (hw->mac_type == e1000_igb)
666 			E1000_WRITE_REG(hw, I210_EERD, eerd);
667 		else
668 			E1000_WRITE_REG(hw, EERD, eerd);
669 
670 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
671 
672 		if (error)
673 			break;
674 
675 		if (hw->mac_type == e1000_igb) {
676 			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
677 				E1000_EEPROM_RW_REG_DATA);
678 		} else {
679 			data[i] = (E1000_READ_REG(hw, EERD) >>
680 				E1000_EEPROM_RW_REG_DATA);
681 		}
682 
683 	}
684 
685 	return error;
686 }
687 
688 void e1000_release_eeprom(struct e1000_hw *hw)
689 {
690 	uint32_t eecd;
691 
692 	DEBUGFUNC();
693 
694 	eecd = E1000_READ_REG(hw, EECD);
695 
696 	if (hw->eeprom.type == e1000_eeprom_spi) {
697 		eecd |= E1000_EECD_CS;  /* Pull CS high */
698 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
699 
700 		E1000_WRITE_REG(hw, EECD, eecd);
701 
702 		udelay(hw->eeprom.delay_usec);
703 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
704 		/* cleanup eeprom */
705 
706 		/* CS on Microwire is active-high */
707 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
708 
709 		E1000_WRITE_REG(hw, EECD, eecd);
710 
711 		/* Rising edge of clock */
712 		eecd |= E1000_EECD_SK;
713 		E1000_WRITE_REG(hw, EECD, eecd);
714 		E1000_WRITE_FLUSH(hw);
715 		udelay(hw->eeprom.delay_usec);
716 
717 		/* Falling edge of clock */
718 		eecd &= ~E1000_EECD_SK;
719 		E1000_WRITE_REG(hw, EECD, eecd);
720 		E1000_WRITE_FLUSH(hw);
721 		udelay(hw->eeprom.delay_usec);
722 	}
723 
724 	/* Stop requesting EEPROM access */
725 	if (hw->mac_type > e1000_82544) {
726 		eecd &= ~E1000_EECD_REQ;
727 		E1000_WRITE_REG(hw, EECD, eecd);
728 	}
729 }
730 /******************************************************************************
731  * Reads a 16 bit word from the EEPROM.
732  *
733  * hw - Struct containing variables accessed by shared code
734  *****************************************************************************/
735 static int32_t
736 e1000_spi_eeprom_ready(struct e1000_hw *hw)
737 {
738 	uint16_t retry_count = 0;
739 	uint8_t spi_stat_reg;
740 
741 	DEBUGFUNC();
742 
743 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
744 	 * EEPROM will signal that the command has been completed by clearing
745 	 * bit 0 of the internal status register.  If it's not cleared within
746 	 * 5 milliseconds, then error out.
747 	 */
748 	retry_count = 0;
749 	do {
750 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
751 			hw->eeprom.opcode_bits);
752 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
753 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
754 			break;
755 
756 		udelay(5);
757 		retry_count += 5;
758 
759 		e1000_standby_eeprom(hw);
760 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
761 
762 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
763 	 * only 0-5mSec on 5V devices)
764 	 */
765 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
766 		DEBUGOUT("SPI EEPROM Status error\n");
767 		return -E1000_ERR_EEPROM;
768 	}
769 
770 	return E1000_SUCCESS;
771 }
772 
773 /******************************************************************************
774  * Reads a 16 bit word from the EEPROM.
775  *
776  * hw - Struct containing variables accessed by shared code
777  * offset - offset of  word in the EEPROM to read
778  * data - word read from the EEPROM
779  *****************************************************************************/
780 static int32_t
781 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
782 		uint16_t words, uint16_t *data)
783 {
784 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
785 	uint32_t i = 0;
786 
787 	DEBUGFUNC();
788 
789 	/* If eeprom is not yet detected, do so now */
790 	if (eeprom->word_size == 0)
791 		e1000_init_eeprom_params(hw);
792 
793 	/* A check for invalid values:  offset too large, too many words,
794 	 * and not enough words.
795 	 */
796 	if ((offset >= eeprom->word_size) ||
797 		(words > eeprom->word_size - offset) ||
798 		(words == 0)) {
799 		DEBUGOUT("\"words\" parameter out of bounds."
800 			"Words = %d, size = %d\n", offset, eeprom->word_size);
801 		return -E1000_ERR_EEPROM;
802 	}
803 
804 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
805 	 * directly. In this case, we need to acquire the EEPROM so that
806 	 * FW or other port software does not interrupt.
807 	 */
808 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
809 		hw->eeprom.use_eerd == false) {
810 
811 		/* Prepare the EEPROM for bit-bang reading */
812 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
813 			return -E1000_ERR_EEPROM;
814 	}
815 
816 	/* Eerd register EEPROM access requires no eeprom aquire/release */
817 	if (eeprom->use_eerd == true)
818 		return e1000_read_eeprom_eerd(hw, offset, words, data);
819 
820 	/* ich8lan does not support currently. if needed, please
821 	 * add corresponding code and functions.
822 	 */
823 #if 0
824 	/* ICH EEPROM access is done via the ICH flash controller */
825 	if (eeprom->type == e1000_eeprom_ich8)
826 		return e1000_read_eeprom_ich8(hw, offset, words, data);
827 #endif
828 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
829 	 * acquired the EEPROM at this point, so any returns should relase it */
830 	if (eeprom->type == e1000_eeprom_spi) {
831 		uint16_t word_in;
832 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
833 
834 		if (e1000_spi_eeprom_ready(hw)) {
835 			e1000_release_eeprom(hw);
836 			return -E1000_ERR_EEPROM;
837 		}
838 
839 		e1000_standby_eeprom(hw);
840 
841 		/* Some SPI eeproms use the 8th address bit embedded in
842 		 * the opcode */
843 		if ((eeprom->address_bits == 8) && (offset >= 128))
844 			read_opcode |= EEPROM_A8_OPCODE_SPI;
845 
846 		/* Send the READ command (opcode + addr)  */
847 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
848 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
849 				eeprom->address_bits);
850 
851 		/* Read the data.  The address of the eeprom internally
852 		 * increments with each byte (spi) being read, saving on the
853 		 * overhead of eeprom setup and tear-down.  The address
854 		 * counter will roll over if reading beyond the size of
855 		 * the eeprom, thus allowing the entire memory to be read
856 		 * starting from any offset. */
857 		for (i = 0; i < words; i++) {
858 			word_in = e1000_shift_in_ee_bits(hw, 16);
859 			data[i] = (word_in >> 8) | (word_in << 8);
860 		}
861 	} else if (eeprom->type == e1000_eeprom_microwire) {
862 		for (i = 0; i < words; i++) {
863 			/* Send the READ command (opcode + addr)  */
864 			e1000_shift_out_ee_bits(hw,
865 				EEPROM_READ_OPCODE_MICROWIRE,
866 				eeprom->opcode_bits);
867 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
868 				eeprom->address_bits);
869 
870 			/* Read the data.  For microwire, each word requires
871 			 * the overhead of eeprom setup and tear-down. */
872 			data[i] = e1000_shift_in_ee_bits(hw, 16);
873 			e1000_standby_eeprom(hw);
874 		}
875 	}
876 
877 	/* End this read operation */
878 	e1000_release_eeprom(hw);
879 
880 	return E1000_SUCCESS;
881 }
882 
883 /******************************************************************************
884  * Verifies that the EEPROM has a valid checksum
885  *
886  * hw - Struct containing variables accessed by shared code
887  *
888  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
889  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
890  * valid.
891  *****************************************************************************/
892 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
893 {
894 	uint16_t i, checksum, checksum_reg, *buf;
895 
896 	DEBUGFUNC();
897 
898 	/* Allocate a temporary buffer */
899 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
900 	if (!buf) {
901 		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
902 		return -E1000_ERR_EEPROM;
903 	}
904 
905 	/* Read the EEPROM */
906 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
907 		E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
908 		return -E1000_ERR_EEPROM;
909 	}
910 
911 	/* Compute the checksum */
912 	checksum = 0;
913 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
914 		checksum += buf[i];
915 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
916 	checksum_reg = buf[i];
917 
918 	/* Verify it! */
919 	if (checksum == checksum_reg)
920 		return 0;
921 
922 	/* Hrm, verification failed, print an error */
923 	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
924 	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
925 			checksum_reg, checksum);
926 
927 	return -E1000_ERR_EEPROM;
928 }
929 #endif /* CONFIG_E1000_NO_NVM */
930 
931 /*****************************************************************************
932  * Set PHY to class A mode
933  * Assumes the following operations will follow to enable the new class mode.
934  *  1. Do a PHY soft reset
935  *  2. Restart auto-negotiation or force link.
936  *
937  * hw - Struct containing variables accessed by shared code
938  ****************************************************************************/
939 static int32_t
940 e1000_set_phy_mode(struct e1000_hw *hw)
941 {
942 #ifndef CONFIG_E1000_NO_NVM
943 	int32_t ret_val;
944 	uint16_t eeprom_data;
945 
946 	DEBUGFUNC();
947 
948 	if ((hw->mac_type == e1000_82545_rev_3) &&
949 		(hw->media_type == e1000_media_type_copper)) {
950 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
951 				1, &eeprom_data);
952 		if (ret_val)
953 			return ret_val;
954 
955 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
956 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
957 			ret_val = e1000_write_phy_reg(hw,
958 					M88E1000_PHY_PAGE_SELECT, 0x000B);
959 			if (ret_val)
960 				return ret_val;
961 			ret_val = e1000_write_phy_reg(hw,
962 					M88E1000_PHY_GEN_CONTROL, 0x8104);
963 			if (ret_val)
964 				return ret_val;
965 
966 			hw->phy_reset_disable = false;
967 		}
968 	}
969 #endif
970 	return E1000_SUCCESS;
971 }
972 
973 #ifndef CONFIG_E1000_NO_NVM
974 /***************************************************************************
975  *
976  * Obtaining software semaphore bit (SMBI) before resetting PHY.
977  *
978  * hw: Struct containing variables accessed by shared code
979  *
980  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
981  *            E1000_SUCCESS at any other case.
982  *
983  ***************************************************************************/
984 static int32_t
985 e1000_get_software_semaphore(struct e1000_hw *hw)
986 {
987 	 int32_t timeout = hw->eeprom.word_size + 1;
988 	 uint32_t swsm;
989 
990 	DEBUGFUNC();
991 
992 		swsm = E1000_READ_REG(hw, SWSM);
993 		swsm &= ~E1000_SWSM_SMBI;
994 		E1000_WRITE_REG(hw, SWSM, swsm);
995 
996 	if (hw->mac_type != e1000_80003es2lan)
997 		return E1000_SUCCESS;
998 
999 	while (timeout) {
1000 		swsm = E1000_READ_REG(hw, SWSM);
1001 		/* If SMBI bit cleared, it is now set and we hold
1002 		 * the semaphore */
1003 		if (!(swsm & E1000_SWSM_SMBI))
1004 			break;
1005 		mdelay(1);
1006 		timeout--;
1007 	}
1008 
1009 	if (!timeout) {
1010 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1011 		return -E1000_ERR_RESET;
1012 	}
1013 
1014 	return E1000_SUCCESS;
1015 }
1016 #endif
1017 
1018 /***************************************************************************
1019  * This function clears HW semaphore bits.
1020  *
1021  * hw: Struct containing variables accessed by shared code
1022  *
1023  * returns: - None.
1024  *
1025  ***************************************************************************/
1026 static void
1027 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1028 {
1029 #ifndef CONFIG_E1000_NO_NVM
1030 	 uint32_t swsm;
1031 
1032 	DEBUGFUNC();
1033 
1034 	if (!hw->eeprom_semaphore_present)
1035 		return;
1036 
1037 	swsm = E1000_READ_REG(hw, SWSM);
1038 	if (hw->mac_type == e1000_80003es2lan) {
1039 		/* Release both semaphores. */
1040 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1041 	} else
1042 		swsm &= ~(E1000_SWSM_SWESMBI);
1043 	E1000_WRITE_REG(hw, SWSM, swsm);
1044 #endif
1045 }
1046 
1047 /***************************************************************************
1048  *
1049  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1050  * adapter or Eeprom access.
1051  *
1052  * hw: Struct containing variables accessed by shared code
1053  *
1054  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1055  *            E1000_SUCCESS at any other case.
1056  *
1057  ***************************************************************************/
1058 static int32_t
1059 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1060 {
1061 #ifndef CONFIG_E1000_NO_NVM
1062 	int32_t timeout;
1063 	uint32_t swsm;
1064 
1065 	DEBUGFUNC();
1066 
1067 	if (!hw->eeprom_semaphore_present)
1068 		return E1000_SUCCESS;
1069 
1070 	if (hw->mac_type == e1000_80003es2lan) {
1071 		/* Get the SW semaphore. */
1072 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1073 			return -E1000_ERR_EEPROM;
1074 	}
1075 
1076 	/* Get the FW semaphore. */
1077 	timeout = hw->eeprom.word_size + 1;
1078 	while (timeout) {
1079 		swsm = E1000_READ_REG(hw, SWSM);
1080 		swsm |= E1000_SWSM_SWESMBI;
1081 		E1000_WRITE_REG(hw, SWSM, swsm);
1082 		/* if we managed to set the bit we got the semaphore. */
1083 		swsm = E1000_READ_REG(hw, SWSM);
1084 		if (swsm & E1000_SWSM_SWESMBI)
1085 			break;
1086 
1087 		udelay(50);
1088 		timeout--;
1089 	}
1090 
1091 	if (!timeout) {
1092 		/* Release semaphores */
1093 		e1000_put_hw_eeprom_semaphore(hw);
1094 		DEBUGOUT("Driver can't access the Eeprom - "
1095 				"SWESMBI bit is set.\n");
1096 		return -E1000_ERR_EEPROM;
1097 	}
1098 #endif
1099 	return E1000_SUCCESS;
1100 }
1101 
1102 static int32_t
1103 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1104 {
1105 	uint32_t swfw_sync = 0;
1106 	uint32_t swmask = mask;
1107 	uint32_t fwmask = mask << 16;
1108 	int32_t timeout = 200;
1109 
1110 	DEBUGFUNC();
1111 	while (timeout) {
1112 		if (e1000_get_hw_eeprom_semaphore(hw))
1113 			return -E1000_ERR_SWFW_SYNC;
1114 
1115 		if (hw->mac_type == e1000_igb)
1116 			swfw_sync = E1000_READ_REG(hw, I210_SW_FW_SYNC);
1117 		else
1118 			swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1119 		if (!(swfw_sync & (fwmask | swmask)))
1120 			break;
1121 
1122 		/* firmware currently using resource (fwmask) */
1123 		/* or other software thread currently using resource (swmask) */
1124 		e1000_put_hw_eeprom_semaphore(hw);
1125 		mdelay(5);
1126 		timeout--;
1127 	}
1128 
1129 	if (!timeout) {
1130 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1131 		return -E1000_ERR_SWFW_SYNC;
1132 	}
1133 
1134 	swfw_sync |= swmask;
1135 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1136 
1137 	e1000_put_hw_eeprom_semaphore(hw);
1138 	return E1000_SUCCESS;
1139 }
1140 
1141 static bool e1000_is_second_port(struct e1000_hw *hw)
1142 {
1143 	switch (hw->mac_type) {
1144 	case e1000_80003es2lan:
1145 	case e1000_82546:
1146 	case e1000_82571:
1147 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1148 			return true;
1149 		/* Fallthrough */
1150 	default:
1151 		return false;
1152 	}
1153 }
1154 
1155 #ifndef CONFIG_E1000_NO_NVM
1156 /******************************************************************************
1157  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1158  * second function of dual function devices
1159  *
1160  * nic - Struct containing variables accessed by shared code
1161  *****************************************************************************/
1162 static int
1163 e1000_read_mac_addr(struct eth_device *nic)
1164 {
1165 	struct e1000_hw *hw = nic->priv;
1166 	uint16_t offset;
1167 	uint16_t eeprom_data;
1168 	uint32_t reg_data = 0;
1169 	int i;
1170 
1171 	DEBUGFUNC();
1172 
1173 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1174 		offset = i >> 1;
1175 		if (hw->mac_type == e1000_igb) {
1176 			/* i210 preloads MAC address into RAL/RAH registers */
1177 			if (offset == 0)
1178 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1179 			else if (offset == 1)
1180 				reg_data >>= 16;
1181 			else if (offset == 2)
1182 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1183 			eeprom_data = reg_data & 0xffff;
1184 		} else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1185 			DEBUGOUT("EEPROM Read Error\n");
1186 			return -E1000_ERR_EEPROM;
1187 		}
1188 		nic->enetaddr[i] = eeprom_data & 0xff;
1189 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1190 	}
1191 
1192 	/* Invert the last bit if this is the second device */
1193 	if (e1000_is_second_port(hw))
1194 		nic->enetaddr[5] ^= 1;
1195 
1196 #ifdef CONFIG_E1000_FALLBACK_MAC
1197 	if (!is_valid_ether_addr(nic->enetaddr)) {
1198 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1199 
1200 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1201 	}
1202 #endif
1203 	return 0;
1204 }
1205 #endif
1206 
1207 /******************************************************************************
1208  * Initializes receive address filters.
1209  *
1210  * hw - Struct containing variables accessed by shared code
1211  *
1212  * Places the MAC address in receive address register 0 and clears the rest
1213  * of the receive addresss registers. Clears the multicast table. Assumes
1214  * the receiver is in reset when the routine is called.
1215  *****************************************************************************/
1216 static void
1217 e1000_init_rx_addrs(struct eth_device *nic)
1218 {
1219 	struct e1000_hw *hw = nic->priv;
1220 	uint32_t i;
1221 	uint32_t addr_low;
1222 	uint32_t addr_high;
1223 
1224 	DEBUGFUNC();
1225 
1226 	/* Setup the receive address. */
1227 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1228 	addr_low = (nic->enetaddr[0] |
1229 		    (nic->enetaddr[1] << 8) |
1230 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1231 
1232 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1233 
1234 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1235 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1236 
1237 	/* Zero out the other 15 receive addresses. */
1238 	DEBUGOUT("Clearing RAR[1-15]\n");
1239 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1240 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1241 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1242 	}
1243 }
1244 
1245 /******************************************************************************
1246  * Clears the VLAN filer table
1247  *
1248  * hw - Struct containing variables accessed by shared code
1249  *****************************************************************************/
1250 static void
1251 e1000_clear_vfta(struct e1000_hw *hw)
1252 {
1253 	uint32_t offset;
1254 
1255 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1256 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1257 }
1258 
1259 /******************************************************************************
1260  * Set the mac type member in the hw struct.
1261  *
1262  * hw - Struct containing variables accessed by shared code
1263  *****************************************************************************/
1264 int32_t
1265 e1000_set_mac_type(struct e1000_hw *hw)
1266 {
1267 	DEBUGFUNC();
1268 
1269 	switch (hw->device_id) {
1270 	case E1000_DEV_ID_82542:
1271 		switch (hw->revision_id) {
1272 		case E1000_82542_2_0_REV_ID:
1273 			hw->mac_type = e1000_82542_rev2_0;
1274 			break;
1275 		case E1000_82542_2_1_REV_ID:
1276 			hw->mac_type = e1000_82542_rev2_1;
1277 			break;
1278 		default:
1279 			/* Invalid 82542 revision ID */
1280 			return -E1000_ERR_MAC_TYPE;
1281 		}
1282 		break;
1283 	case E1000_DEV_ID_82543GC_FIBER:
1284 	case E1000_DEV_ID_82543GC_COPPER:
1285 		hw->mac_type = e1000_82543;
1286 		break;
1287 	case E1000_DEV_ID_82544EI_COPPER:
1288 	case E1000_DEV_ID_82544EI_FIBER:
1289 	case E1000_DEV_ID_82544GC_COPPER:
1290 	case E1000_DEV_ID_82544GC_LOM:
1291 		hw->mac_type = e1000_82544;
1292 		break;
1293 	case E1000_DEV_ID_82540EM:
1294 	case E1000_DEV_ID_82540EM_LOM:
1295 	case E1000_DEV_ID_82540EP:
1296 	case E1000_DEV_ID_82540EP_LOM:
1297 	case E1000_DEV_ID_82540EP_LP:
1298 		hw->mac_type = e1000_82540;
1299 		break;
1300 	case E1000_DEV_ID_82545EM_COPPER:
1301 	case E1000_DEV_ID_82545EM_FIBER:
1302 		hw->mac_type = e1000_82545;
1303 		break;
1304 	case E1000_DEV_ID_82545GM_COPPER:
1305 	case E1000_DEV_ID_82545GM_FIBER:
1306 	case E1000_DEV_ID_82545GM_SERDES:
1307 		hw->mac_type = e1000_82545_rev_3;
1308 		break;
1309 	case E1000_DEV_ID_82546EB_COPPER:
1310 	case E1000_DEV_ID_82546EB_FIBER:
1311 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1312 		hw->mac_type = e1000_82546;
1313 		break;
1314 	case E1000_DEV_ID_82546GB_COPPER:
1315 	case E1000_DEV_ID_82546GB_FIBER:
1316 	case E1000_DEV_ID_82546GB_SERDES:
1317 	case E1000_DEV_ID_82546GB_PCIE:
1318 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1319 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1320 		hw->mac_type = e1000_82546_rev_3;
1321 		break;
1322 	case E1000_DEV_ID_82541EI:
1323 	case E1000_DEV_ID_82541EI_MOBILE:
1324 	case E1000_DEV_ID_82541ER_LOM:
1325 		hw->mac_type = e1000_82541;
1326 		break;
1327 	case E1000_DEV_ID_82541ER:
1328 	case E1000_DEV_ID_82541GI:
1329 	case E1000_DEV_ID_82541GI_LF:
1330 	case E1000_DEV_ID_82541GI_MOBILE:
1331 		hw->mac_type = e1000_82541_rev_2;
1332 		break;
1333 	case E1000_DEV_ID_82547EI:
1334 	case E1000_DEV_ID_82547EI_MOBILE:
1335 		hw->mac_type = e1000_82547;
1336 		break;
1337 	case E1000_DEV_ID_82547GI:
1338 		hw->mac_type = e1000_82547_rev_2;
1339 		break;
1340 	case E1000_DEV_ID_82571EB_COPPER:
1341 	case E1000_DEV_ID_82571EB_FIBER:
1342 	case E1000_DEV_ID_82571EB_SERDES:
1343 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1344 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1345 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1346 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1347 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1348 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1349 		hw->mac_type = e1000_82571;
1350 		break;
1351 	case E1000_DEV_ID_82572EI_COPPER:
1352 	case E1000_DEV_ID_82572EI_FIBER:
1353 	case E1000_DEV_ID_82572EI_SERDES:
1354 	case E1000_DEV_ID_82572EI:
1355 		hw->mac_type = e1000_82572;
1356 		break;
1357 	case E1000_DEV_ID_82573E:
1358 	case E1000_DEV_ID_82573E_IAMT:
1359 	case E1000_DEV_ID_82573L:
1360 		hw->mac_type = e1000_82573;
1361 		break;
1362 	case E1000_DEV_ID_82574L:
1363 		hw->mac_type = e1000_82574;
1364 		break;
1365 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1366 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1367 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1368 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1369 		hw->mac_type = e1000_80003es2lan;
1370 		break;
1371 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1372 	case E1000_DEV_ID_ICH8_IGP_AMT:
1373 	case E1000_DEV_ID_ICH8_IGP_C:
1374 	case E1000_DEV_ID_ICH8_IFE:
1375 	case E1000_DEV_ID_ICH8_IFE_GT:
1376 	case E1000_DEV_ID_ICH8_IFE_G:
1377 	case E1000_DEV_ID_ICH8_IGP_M:
1378 		hw->mac_type = e1000_ich8lan;
1379 		break;
1380 	case PCI_DEVICE_ID_INTEL_I210_COPPER:
1381 	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1382 	case PCI_DEVICE_ID_INTEL_I210_SERDES:
1383 	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1384 	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1385 		hw->mac_type = e1000_igb;
1386 		break;
1387 	default:
1388 		/* Should never have loaded on this device */
1389 		return -E1000_ERR_MAC_TYPE;
1390 	}
1391 	return E1000_SUCCESS;
1392 }
1393 
1394 /******************************************************************************
1395  * Reset the transmit and receive units; mask and clear all interrupts.
1396  *
1397  * hw - Struct containing variables accessed by shared code
1398  *****************************************************************************/
1399 void
1400 e1000_reset_hw(struct e1000_hw *hw)
1401 {
1402 	uint32_t ctrl;
1403 	uint32_t ctrl_ext;
1404 	uint32_t manc;
1405 	uint32_t pba = 0;
1406 	uint32_t reg;
1407 
1408 	DEBUGFUNC();
1409 
1410 	/* get the correct pba value for both PCI and PCIe*/
1411 	if (hw->mac_type <  e1000_82571)
1412 		pba = E1000_DEFAULT_PCI_PBA;
1413 	else
1414 		pba = E1000_DEFAULT_PCIE_PBA;
1415 
1416 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1417 	if (hw->mac_type == e1000_82542_rev2_0) {
1418 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1419 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1420 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1421 	}
1422 
1423 	/* Clear interrupt mask to stop board from generating interrupts */
1424 	DEBUGOUT("Masking off all interrupts\n");
1425 	if (hw->mac_type == e1000_igb)
1426 		E1000_WRITE_REG(hw, I210_IAM, 0);
1427 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1428 
1429 	/* Disable the Transmit and Receive units.  Then delay to allow
1430 	 * any pending transactions to complete before we hit the MAC with
1431 	 * the global reset.
1432 	 */
1433 	E1000_WRITE_REG(hw, RCTL, 0);
1434 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1435 	E1000_WRITE_FLUSH(hw);
1436 
1437 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1438 	hw->tbi_compatibility_on = false;
1439 
1440 	/* Delay to allow any outstanding PCI transactions to complete before
1441 	 * resetting the device
1442 	 */
1443 	mdelay(10);
1444 
1445 	/* Issue a global reset to the MAC.  This will reset the chip's
1446 	 * transmit, receive, DMA, and link units.  It will not effect
1447 	 * the current PCI configuration.  The global reset bit is self-
1448 	 * clearing, and should clear within a microsecond.
1449 	 */
1450 	DEBUGOUT("Issuing a global reset to MAC\n");
1451 	ctrl = E1000_READ_REG(hw, CTRL);
1452 
1453 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1454 
1455 	/* Force a reload from the EEPROM if necessary */
1456 	if (hw->mac_type == e1000_igb) {
1457 		mdelay(20);
1458 		reg = E1000_READ_REG(hw, STATUS);
1459 		if (reg & E1000_STATUS_PF_RST_DONE)
1460 			DEBUGOUT("PF OK\n");
1461 		reg = E1000_READ_REG(hw, I210_EECD);
1462 		if (reg & E1000_EECD_AUTO_RD)
1463 			DEBUGOUT("EEC OK\n");
1464 	} else if (hw->mac_type < e1000_82540) {
1465 		/* Wait for reset to complete */
1466 		udelay(10);
1467 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1468 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1469 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1470 		E1000_WRITE_FLUSH(hw);
1471 		/* Wait for EEPROM reload */
1472 		mdelay(2);
1473 	} else {
1474 		/* Wait for EEPROM reload (it happens automatically) */
1475 		mdelay(4);
1476 		/* Dissable HW ARPs on ASF enabled adapters */
1477 		manc = E1000_READ_REG(hw, MANC);
1478 		manc &= ~(E1000_MANC_ARP_EN);
1479 		E1000_WRITE_REG(hw, MANC, manc);
1480 	}
1481 
1482 	/* Clear interrupt mask to stop board from generating interrupts */
1483 	DEBUGOUT("Masking off all interrupts\n");
1484 	if (hw->mac_type == e1000_igb)
1485 		E1000_WRITE_REG(hw, I210_IAM, 0);
1486 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1487 
1488 	/* Clear any pending interrupt events. */
1489 	E1000_READ_REG(hw, ICR);
1490 
1491 	/* If MWI was previously enabled, reenable it. */
1492 	if (hw->mac_type == e1000_82542_rev2_0) {
1493 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1494 	}
1495 	if (hw->mac_type != e1000_igb)
1496 		E1000_WRITE_REG(hw, PBA, pba);
1497 }
1498 
1499 /******************************************************************************
1500  *
1501  * Initialize a number of hardware-dependent bits
1502  *
1503  * hw: Struct containing variables accessed by shared code
1504  *
1505  * This function contains hardware limitation workarounds for PCI-E adapters
1506  *
1507  *****************************************************************************/
1508 static void
1509 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1510 {
1511 	if ((hw->mac_type >= e1000_82571) &&
1512 			(!hw->initialize_hw_bits_disable)) {
1513 		/* Settings common to all PCI-express silicon */
1514 		uint32_t reg_ctrl, reg_ctrl_ext;
1515 		uint32_t reg_tarc0, reg_tarc1;
1516 		uint32_t reg_tctl;
1517 		uint32_t reg_txdctl, reg_txdctl1;
1518 
1519 		/* link autonegotiation/sync workarounds */
1520 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1521 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1522 
1523 		/* Enable not-done TX descriptor counting */
1524 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1525 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1526 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1527 
1528 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1529 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1530 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1531 
1532 	/* IGB is cool */
1533 	if (hw->mac_type == e1000_igb)
1534 		return;
1535 
1536 		switch (hw->mac_type) {
1537 		case e1000_82571:
1538 		case e1000_82572:
1539 			/* Clear PHY TX compatible mode bits */
1540 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1541 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1542 
1543 			/* link autonegotiation/sync workarounds */
1544 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1545 
1546 			/* TX ring control fixes */
1547 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1548 
1549 			/* Multiple read bit is reversed polarity */
1550 			reg_tctl = E1000_READ_REG(hw, TCTL);
1551 			if (reg_tctl & E1000_TCTL_MULR)
1552 				reg_tarc1 &= ~(1 << 28);
1553 			else
1554 				reg_tarc1 |= (1 << 28);
1555 
1556 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1557 			break;
1558 		case e1000_82573:
1559 		case e1000_82574:
1560 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1561 			reg_ctrl_ext &= ~(1 << 23);
1562 			reg_ctrl_ext |= (1 << 22);
1563 
1564 			/* TX byte count fix */
1565 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1566 			reg_ctrl &= ~(1 << 29);
1567 
1568 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1569 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1570 			break;
1571 		case e1000_80003es2lan:
1572 	/* improve small packet performace for fiber/serdes */
1573 			if ((hw->media_type == e1000_media_type_fiber)
1574 			|| (hw->media_type ==
1575 				e1000_media_type_internal_serdes)) {
1576 				reg_tarc0 &= ~(1 << 20);
1577 			}
1578 
1579 		/* Multiple read bit is reversed polarity */
1580 			reg_tctl = E1000_READ_REG(hw, TCTL);
1581 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1582 			if (reg_tctl & E1000_TCTL_MULR)
1583 				reg_tarc1 &= ~(1 << 28);
1584 			else
1585 				reg_tarc1 |= (1 << 28);
1586 
1587 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1588 			break;
1589 		case e1000_ich8lan:
1590 			/* Reduce concurrent DMA requests to 3 from 4 */
1591 			if ((hw->revision_id < 3) ||
1592 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1593 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1594 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1595 
1596 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1597 			reg_ctrl_ext |= (1 << 22);
1598 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1599 
1600 			/* workaround TX hang with TSO=on */
1601 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1602 
1603 			/* Multiple read bit is reversed polarity */
1604 			reg_tctl = E1000_READ_REG(hw, TCTL);
1605 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1606 			if (reg_tctl & E1000_TCTL_MULR)
1607 				reg_tarc1 &= ~(1 << 28);
1608 			else
1609 				reg_tarc1 |= (1 << 28);
1610 
1611 			/* workaround TX hang with TSO=on */
1612 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1613 
1614 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1615 			break;
1616 		default:
1617 			break;
1618 		}
1619 
1620 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1621 	}
1622 }
1623 
1624 /******************************************************************************
1625  * Performs basic configuration of the adapter.
1626  *
1627  * hw - Struct containing variables accessed by shared code
1628  *
1629  * Assumes that the controller has previously been reset and is in a
1630  * post-reset uninitialized state. Initializes the receive address registers,
1631  * multicast table, and VLAN filter table. Calls routines to setup link
1632  * configuration and flow control settings. Clears all on-chip counters. Leaves
1633  * the transmit and receive units disabled and uninitialized.
1634  *****************************************************************************/
1635 static int
1636 e1000_init_hw(struct eth_device *nic)
1637 {
1638 	struct e1000_hw *hw = nic->priv;
1639 	uint32_t ctrl;
1640 	uint32_t i;
1641 	int32_t ret_val;
1642 	uint16_t pcix_cmd_word;
1643 	uint16_t pcix_stat_hi_word;
1644 	uint16_t cmd_mmrbc;
1645 	uint16_t stat_mmrbc;
1646 	uint32_t mta_size;
1647 	uint32_t reg_data;
1648 	uint32_t ctrl_ext;
1649 	DEBUGFUNC();
1650 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1651 	if ((hw->mac_type == e1000_ich8lan) &&
1652 		((hw->revision_id < 3) ||
1653 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1654 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1655 			reg_data = E1000_READ_REG(hw, STATUS);
1656 			reg_data &= ~0x80000000;
1657 			E1000_WRITE_REG(hw, STATUS, reg_data);
1658 	}
1659 	/* Do not need initialize Identification LED */
1660 
1661 	/* Set the media type and TBI compatibility */
1662 	e1000_set_media_type(hw);
1663 
1664 	/* Must be called after e1000_set_media_type
1665 	 * because media_type is used */
1666 	e1000_initialize_hardware_bits(hw);
1667 
1668 	/* Disabling VLAN filtering. */
1669 	DEBUGOUT("Initializing the IEEE VLAN\n");
1670 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1671 	if (hw->mac_type != e1000_ich8lan) {
1672 		if (hw->mac_type < e1000_82545_rev_3)
1673 			E1000_WRITE_REG(hw, VET, 0);
1674 		e1000_clear_vfta(hw);
1675 	}
1676 
1677 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1678 	if (hw->mac_type == e1000_82542_rev2_0) {
1679 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1680 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1681 				      hw->
1682 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1683 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1684 		E1000_WRITE_FLUSH(hw);
1685 		mdelay(5);
1686 	}
1687 
1688 	/* Setup the receive address. This involves initializing all of the Receive
1689 	 * Address Registers (RARs 0 - 15).
1690 	 */
1691 	e1000_init_rx_addrs(nic);
1692 
1693 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1694 	if (hw->mac_type == e1000_82542_rev2_0) {
1695 		E1000_WRITE_REG(hw, RCTL, 0);
1696 		E1000_WRITE_FLUSH(hw);
1697 		mdelay(1);
1698 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1699 	}
1700 
1701 	/* Zero out the Multicast HASH table */
1702 	DEBUGOUT("Zeroing the MTA\n");
1703 	mta_size = E1000_MC_TBL_SIZE;
1704 	if (hw->mac_type == e1000_ich8lan)
1705 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1706 	for (i = 0; i < mta_size; i++) {
1707 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1708 		/* use write flush to prevent Memory Write Block (MWB) from
1709 		 * occuring when accessing our register space */
1710 		E1000_WRITE_FLUSH(hw);
1711 	}
1712 #if 0
1713 	/* Set the PCI priority bit correctly in the CTRL register.  This
1714 	 * determines if the adapter gives priority to receives, or if it
1715 	 * gives equal priority to transmits and receives.  Valid only on
1716 	 * 82542 and 82543 silicon.
1717 	 */
1718 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1719 		ctrl = E1000_READ_REG(hw, CTRL);
1720 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1721 	}
1722 #endif
1723 	switch (hw->mac_type) {
1724 	case e1000_82545_rev_3:
1725 	case e1000_82546_rev_3:
1726 	case e1000_igb:
1727 		break;
1728 	default:
1729 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1730 	if (hw->bus_type == e1000_bus_type_pcix) {
1731 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1732 				     &pcix_cmd_word);
1733 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1734 				     &pcix_stat_hi_word);
1735 		cmd_mmrbc =
1736 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1737 		    PCIX_COMMAND_MMRBC_SHIFT;
1738 		stat_mmrbc =
1739 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1740 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1741 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1742 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1743 		if (cmd_mmrbc > stat_mmrbc) {
1744 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1745 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1746 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1747 					      pcix_cmd_word);
1748 		}
1749 	}
1750 		break;
1751 	}
1752 
1753 	/* More time needed for PHY to initialize */
1754 	if (hw->mac_type == e1000_ich8lan)
1755 		mdelay(15);
1756 	if (hw->mac_type == e1000_igb)
1757 		mdelay(15);
1758 
1759 	/* Call a subroutine to configure the link and setup flow control. */
1760 	ret_val = e1000_setup_link(nic);
1761 
1762 	/* Set the transmit descriptor write-back policy */
1763 	if (hw->mac_type > e1000_82544) {
1764 		ctrl = E1000_READ_REG(hw, TXDCTL);
1765 		ctrl =
1766 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1767 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1768 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1769 	}
1770 
1771 	/* Set the receive descriptor write back policy */
1772 	if (hw->mac_type >= e1000_82571) {
1773 		ctrl = E1000_READ_REG(hw, RXDCTL);
1774 		ctrl =
1775 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1776 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1777 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1778 	}
1779 
1780 	switch (hw->mac_type) {
1781 	default:
1782 		break;
1783 	case e1000_80003es2lan:
1784 		/* Enable retransmit on late collisions */
1785 		reg_data = E1000_READ_REG(hw, TCTL);
1786 		reg_data |= E1000_TCTL_RTLC;
1787 		E1000_WRITE_REG(hw, TCTL, reg_data);
1788 
1789 		/* Configure Gigabit Carry Extend Padding */
1790 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1791 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1792 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1793 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1794 
1795 		/* Configure Transmit Inter-Packet Gap */
1796 		reg_data = E1000_READ_REG(hw, TIPG);
1797 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1798 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1799 		E1000_WRITE_REG(hw, TIPG, reg_data);
1800 
1801 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1802 		reg_data &= ~0x00100000;
1803 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1804 		/* Fall through */
1805 	case e1000_82571:
1806 	case e1000_82572:
1807 	case e1000_ich8lan:
1808 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1809 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1810 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1811 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1812 		break;
1813 	case e1000_82573:
1814 	case e1000_82574:
1815 		reg_data = E1000_READ_REG(hw, GCR);
1816 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1817 		E1000_WRITE_REG(hw, GCR, reg_data);
1818 	case e1000_igb:
1819 		break;
1820 	}
1821 
1822 #if 0
1823 	/* Clear all of the statistics registers (clear on read).  It is
1824 	 * important that we do this after we have tried to establish link
1825 	 * because the symbol error count will increment wildly if there
1826 	 * is no link.
1827 	 */
1828 	e1000_clear_hw_cntrs(hw);
1829 
1830 	/* ICH8 No-snoop bits are opposite polarity.
1831 	 * Set to snoop by default after reset. */
1832 	if (hw->mac_type == e1000_ich8lan)
1833 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1834 #endif
1835 
1836 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1837 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1838 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1839 		/* Relaxed ordering must be disabled to avoid a parity
1840 		 * error crash in a PCI slot. */
1841 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1842 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1843 	}
1844 
1845 	return ret_val;
1846 }
1847 
1848 /******************************************************************************
1849  * Configures flow control and link settings.
1850  *
1851  * hw - Struct containing variables accessed by shared code
1852  *
1853  * Determines which flow control settings to use. Calls the apropriate media-
1854  * specific link configuration function. Configures the flow control settings.
1855  * Assuming the adapter has a valid link partner, a valid link should be
1856  * established. Assumes the hardware has previously been reset and the
1857  * transmitter and receiver are not enabled.
1858  *****************************************************************************/
1859 static int
1860 e1000_setup_link(struct eth_device *nic)
1861 {
1862 	struct e1000_hw *hw = nic->priv;
1863 	int32_t ret_val;
1864 #ifndef CONFIG_E1000_NO_NVM
1865 	uint32_t ctrl_ext;
1866 	uint16_t eeprom_data;
1867 #endif
1868 
1869 	DEBUGFUNC();
1870 
1871 	/* In the case of the phy reset being blocked, we already have a link.
1872 	 * We do not have to set it up again. */
1873 	if (e1000_check_phy_reset_block(hw))
1874 		return E1000_SUCCESS;
1875 
1876 #ifndef CONFIG_E1000_NO_NVM
1877 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1878 	 * that determine the hardware's default PAUSE (flow control) mode,
1879 	 * a bit that determines whether the HW defaults to enabling or
1880 	 * disabling auto-negotiation, and the direction of the
1881 	 * SW defined pins. If there is no SW over-ride of the flow
1882 	 * control setting, then the variable hw->fc will
1883 	 * be initialized based on a value in the EEPROM.
1884 	 */
1885 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1886 				&eeprom_data) < 0) {
1887 		DEBUGOUT("EEPROM Read Error\n");
1888 		return -E1000_ERR_EEPROM;
1889 	}
1890 #endif
1891 	if (hw->fc == e1000_fc_default) {
1892 		switch (hw->mac_type) {
1893 		case e1000_ich8lan:
1894 		case e1000_82573:
1895 		case e1000_82574:
1896 		case e1000_igb:
1897 			hw->fc = e1000_fc_full;
1898 			break;
1899 		default:
1900 #ifndef CONFIG_E1000_NO_NVM
1901 			ret_val = e1000_read_eeprom(hw,
1902 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1903 			if (ret_val) {
1904 				DEBUGOUT("EEPROM Read Error\n");
1905 				return -E1000_ERR_EEPROM;
1906 			}
1907 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1908 				hw->fc = e1000_fc_none;
1909 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1910 				    EEPROM_WORD0F_ASM_DIR)
1911 				hw->fc = e1000_fc_tx_pause;
1912 			else
1913 #endif
1914 				hw->fc = e1000_fc_full;
1915 			break;
1916 		}
1917 	}
1918 
1919 	/* We want to save off the original Flow Control configuration just
1920 	 * in case we get disconnected and then reconnected into a different
1921 	 * hub or switch with different Flow Control capabilities.
1922 	 */
1923 	if (hw->mac_type == e1000_82542_rev2_0)
1924 		hw->fc &= (~e1000_fc_tx_pause);
1925 
1926 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1927 		hw->fc &= (~e1000_fc_rx_pause);
1928 
1929 	hw->original_fc = hw->fc;
1930 
1931 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1932 
1933 #ifndef CONFIG_E1000_NO_NVM
1934 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1935 	 * polarity value for the SW controlled pins, and setup the
1936 	 * Extended Device Control reg with that info.
1937 	 * This is needed because one of the SW controlled pins is used for
1938 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1939 	 * or e1000_phy_setup() is called.
1940 	 */
1941 	if (hw->mac_type == e1000_82543) {
1942 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1943 			    SWDPIO__EXT_SHIFT);
1944 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1945 	}
1946 #endif
1947 
1948 	/* Call the necessary subroutine to configure the link. */
1949 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1950 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1951 	if (ret_val < 0) {
1952 		return ret_val;
1953 	}
1954 
1955 	/* Initialize the flow control address, type, and PAUSE timer
1956 	 * registers to their default values.  This is done even if flow
1957 	 * control is disabled, because it does not hurt anything to
1958 	 * initialize these registers.
1959 	 */
1960 	DEBUGOUT("Initializing the Flow Control address, type"
1961 			"and timer regs\n");
1962 
1963 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1964 	if (hw->mac_type != e1000_ich8lan) {
1965 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1966 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1967 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1968 	}
1969 
1970 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1971 
1972 	/* Set the flow control receive threshold registers.  Normally,
1973 	 * these registers will be set to a default threshold that may be
1974 	 * adjusted later by the driver's runtime code.  However, if the
1975 	 * ability to transmit pause frames in not enabled, then these
1976 	 * registers will be set to 0.
1977 	 */
1978 	if (!(hw->fc & e1000_fc_tx_pause)) {
1979 		E1000_WRITE_REG(hw, FCRTL, 0);
1980 		E1000_WRITE_REG(hw, FCRTH, 0);
1981 	} else {
1982 		/* We need to set up the Receive Threshold high and low water marks
1983 		 * as well as (optionally) enabling the transmission of XON frames.
1984 		 */
1985 		if (hw->fc_send_xon) {
1986 			E1000_WRITE_REG(hw, FCRTL,
1987 					(hw->fc_low_water | E1000_FCRTL_XONE));
1988 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1989 		} else {
1990 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1991 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1992 		}
1993 	}
1994 	return ret_val;
1995 }
1996 
1997 /******************************************************************************
1998  * Sets up link for a fiber based adapter
1999  *
2000  * hw - Struct containing variables accessed by shared code
2001  *
2002  * Manipulates Physical Coding Sublayer functions in order to configure
2003  * link. Assumes the hardware has been previously reset and the transmitter
2004  * and receiver are not enabled.
2005  *****************************************************************************/
2006 static int
2007 e1000_setup_fiber_link(struct eth_device *nic)
2008 {
2009 	struct e1000_hw *hw = nic->priv;
2010 	uint32_t ctrl;
2011 	uint32_t status;
2012 	uint32_t txcw = 0;
2013 	uint32_t i;
2014 	uint32_t signal;
2015 	int32_t ret_val;
2016 
2017 	DEBUGFUNC();
2018 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2019 	 * set when the optics detect a signal. On older adapters, it will be
2020 	 * cleared when there is a signal
2021 	 */
2022 	ctrl = E1000_READ_REG(hw, CTRL);
2023 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2024 		signal = E1000_CTRL_SWDPIN1;
2025 	else
2026 		signal = 0;
2027 
2028 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
2029 	       ctrl);
2030 	/* Take the link out of reset */
2031 	ctrl &= ~(E1000_CTRL_LRST);
2032 
2033 	e1000_config_collision_dist(hw);
2034 
2035 	/* Check for a software override of the flow control settings, and setup
2036 	 * the device accordingly.  If auto-negotiation is enabled, then software
2037 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2038 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2039 	 * auto-negotiation is disabled, then software will have to manually
2040 	 * configure the two flow control enable bits in the CTRL register.
2041 	 *
2042 	 * The possible values of the "fc" parameter are:
2043 	 *	0:  Flow control is completely disabled
2044 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
2045 	 *	    not send pause frames).
2046 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
2047 	 *	    not support receiving pause frames).
2048 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
2049 	 */
2050 	switch (hw->fc) {
2051 	case e1000_fc_none:
2052 		/* Flow control is completely disabled by a software over-ride. */
2053 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2054 		break;
2055 	case e1000_fc_rx_pause:
2056 		/* RX Flow control is enabled and TX Flow control is disabled by a
2057 		 * software over-ride. Since there really isn't a way to advertise
2058 		 * that we are capable of RX Pause ONLY, we will advertise that we
2059 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
2060 		 *  disable the adapter's ability to send PAUSE frames.
2061 		 */
2062 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2063 		break;
2064 	case e1000_fc_tx_pause:
2065 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
2066 		 * software over-ride.
2067 		 */
2068 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2069 		break;
2070 	case e1000_fc_full:
2071 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
2072 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2073 		break;
2074 	default:
2075 		DEBUGOUT("Flow control param set incorrectly\n");
2076 		return -E1000_ERR_CONFIG;
2077 		break;
2078 	}
2079 
2080 	/* Since auto-negotiation is enabled, take the link out of reset (the link
2081 	 * will be in reset, because we previously reset the chip). This will
2082 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2083 	 * link-up status bit will be set and the flow control enable bits (RFCE
2084 	 * and TFCE) will be set according to their negotiated value.
2085 	 */
2086 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2087 
2088 	E1000_WRITE_REG(hw, TXCW, txcw);
2089 	E1000_WRITE_REG(hw, CTRL, ctrl);
2090 	E1000_WRITE_FLUSH(hw);
2091 
2092 	hw->txcw = txcw;
2093 	mdelay(1);
2094 
2095 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2096 	 * indication in the Device Status Register.  Time-out if a link isn't
2097 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2098 	 * less than 500 milliseconds even if the other end is doing it in SW).
2099 	 */
2100 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2101 		DEBUGOUT("Looking for Link\n");
2102 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2103 			mdelay(10);
2104 			status = E1000_READ_REG(hw, STATUS);
2105 			if (status & E1000_STATUS_LU)
2106 				break;
2107 		}
2108 		if (i == (LINK_UP_TIMEOUT / 10)) {
2109 			/* AutoNeg failed to achieve a link, so we'll call
2110 			 * e1000_check_for_link. This routine will force the link up if we
2111 			 * detect a signal. This will allow us to communicate with
2112 			 * non-autonegotiating link partners.
2113 			 */
2114 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2115 			hw->autoneg_failed = 1;
2116 			ret_val = e1000_check_for_link(nic);
2117 			if (ret_val < 0) {
2118 				DEBUGOUT("Error while checking for link\n");
2119 				return ret_val;
2120 			}
2121 			hw->autoneg_failed = 0;
2122 		} else {
2123 			hw->autoneg_failed = 0;
2124 			DEBUGOUT("Valid Link Found\n");
2125 		}
2126 	} else {
2127 		DEBUGOUT("No Signal Detected\n");
2128 		return -E1000_ERR_NOLINK;
2129 	}
2130 	return 0;
2131 }
2132 
2133 /******************************************************************************
2134 * Make sure we have a valid PHY and change PHY mode before link setup.
2135 *
2136 * hw - Struct containing variables accessed by shared code
2137 ******************************************************************************/
2138 static int32_t
2139 e1000_copper_link_preconfig(struct e1000_hw *hw)
2140 {
2141 	uint32_t ctrl;
2142 	int32_t ret_val;
2143 	uint16_t phy_data;
2144 
2145 	DEBUGFUNC();
2146 
2147 	ctrl = E1000_READ_REG(hw, CTRL);
2148 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2149 	 * the PHY speed and duplex configuration is. In addition, we need to
2150 	 * perform a hardware reset on the PHY to take it out of reset.
2151 	 */
2152 	if (hw->mac_type > e1000_82543) {
2153 		ctrl |= E1000_CTRL_SLU;
2154 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2155 		E1000_WRITE_REG(hw, CTRL, ctrl);
2156 	} else {
2157 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2158 				| E1000_CTRL_SLU);
2159 		E1000_WRITE_REG(hw, CTRL, ctrl);
2160 		ret_val = e1000_phy_hw_reset(hw);
2161 		if (ret_val)
2162 			return ret_val;
2163 	}
2164 
2165 	/* Make sure we have a valid PHY */
2166 	ret_val = e1000_detect_gig_phy(hw);
2167 	if (ret_val) {
2168 		DEBUGOUT("Error, did not detect valid phy.\n");
2169 		return ret_val;
2170 	}
2171 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2172 
2173 	/* Set PHY to class A mode (if necessary) */
2174 	ret_val = e1000_set_phy_mode(hw);
2175 	if (ret_val)
2176 		return ret_val;
2177 	if ((hw->mac_type == e1000_82545_rev_3) ||
2178 		(hw->mac_type == e1000_82546_rev_3)) {
2179 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2180 				&phy_data);
2181 		phy_data |= 0x00000008;
2182 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2183 				phy_data);
2184 	}
2185 
2186 	if (hw->mac_type <= e1000_82543 ||
2187 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2188 		hw->mac_type == e1000_82541_rev_2
2189 		|| hw->mac_type == e1000_82547_rev_2)
2190 			hw->phy_reset_disable = false;
2191 
2192 	return E1000_SUCCESS;
2193 }
2194 
2195 /*****************************************************************************
2196  *
2197  * This function sets the lplu state according to the active flag.  When
2198  * activating lplu this function also disables smart speed and vise versa.
2199  * lplu will not be activated unless the device autonegotiation advertisment
2200  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2201  * hw: Struct containing variables accessed by shared code
2202  * active - true to enable lplu false to disable lplu.
2203  *
2204  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2205  *            E1000_SUCCESS at any other case.
2206  *
2207  ****************************************************************************/
2208 
2209 static int32_t
2210 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2211 {
2212 	uint32_t phy_ctrl = 0;
2213 	int32_t ret_val;
2214 	uint16_t phy_data;
2215 	DEBUGFUNC();
2216 
2217 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2218 	    && hw->phy_type != e1000_phy_igp_3)
2219 		return E1000_SUCCESS;
2220 
2221 	/* During driver activity LPLU should not be used or it will attain link
2222 	 * from the lowest speeds starting from 10Mbps. The capability is used
2223 	 * for Dx transitions and states */
2224 	if (hw->mac_type == e1000_82541_rev_2
2225 			|| hw->mac_type == e1000_82547_rev_2) {
2226 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2227 				&phy_data);
2228 		if (ret_val)
2229 			return ret_val;
2230 	} else if (hw->mac_type == e1000_ich8lan) {
2231 		/* MAC writes into PHY register based on the state transition
2232 		 * and start auto-negotiation. SW driver can overwrite the
2233 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2234 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2235 	} else {
2236 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2237 				&phy_data);
2238 		if (ret_val)
2239 			return ret_val;
2240 	}
2241 
2242 	if (!active) {
2243 		if (hw->mac_type == e1000_82541_rev_2 ||
2244 			hw->mac_type == e1000_82547_rev_2) {
2245 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2246 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2247 					phy_data);
2248 			if (ret_val)
2249 				return ret_val;
2250 		} else {
2251 			if (hw->mac_type == e1000_ich8lan) {
2252 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2253 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2254 			} else {
2255 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2256 				ret_val = e1000_write_phy_reg(hw,
2257 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2258 				if (ret_val)
2259 					return ret_val;
2260 			}
2261 		}
2262 
2263 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2264 	 * Dx states where the power conservation is most important.  During
2265 	 * driver activity we should enable SmartSpeed, so performance is
2266 	 * maintained. */
2267 		if (hw->smart_speed == e1000_smart_speed_on) {
2268 			ret_val = e1000_read_phy_reg(hw,
2269 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2270 			if (ret_val)
2271 				return ret_val;
2272 
2273 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2274 			ret_val = e1000_write_phy_reg(hw,
2275 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2276 			if (ret_val)
2277 				return ret_val;
2278 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2279 			ret_val = e1000_read_phy_reg(hw,
2280 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2281 			if (ret_val)
2282 				return ret_val;
2283 
2284 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2285 			ret_val = e1000_write_phy_reg(hw,
2286 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2287 			if (ret_val)
2288 				return ret_val;
2289 		}
2290 
2291 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2292 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2293 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2294 
2295 		if (hw->mac_type == e1000_82541_rev_2 ||
2296 		    hw->mac_type == e1000_82547_rev_2) {
2297 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2298 			ret_val = e1000_write_phy_reg(hw,
2299 					IGP01E1000_GMII_FIFO, phy_data);
2300 			if (ret_val)
2301 				return ret_val;
2302 		} else {
2303 			if (hw->mac_type == e1000_ich8lan) {
2304 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2305 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2306 			} else {
2307 				phy_data |= IGP02E1000_PM_D3_LPLU;
2308 				ret_val = e1000_write_phy_reg(hw,
2309 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2310 				if (ret_val)
2311 					return ret_val;
2312 			}
2313 		}
2314 
2315 		/* When LPLU is enabled we should disable SmartSpeed */
2316 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2317 				&phy_data);
2318 		if (ret_val)
2319 			return ret_val;
2320 
2321 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2322 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2323 				phy_data);
2324 		if (ret_val)
2325 			return ret_val;
2326 	}
2327 	return E1000_SUCCESS;
2328 }
2329 
2330 /*****************************************************************************
2331  *
2332  * This function sets the lplu d0 state according to the active flag.  When
2333  * activating lplu this function also disables smart speed and vise versa.
2334  * lplu will not be activated unless the device autonegotiation advertisment
2335  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2336  * hw: Struct containing variables accessed by shared code
2337  * active - true to enable lplu false to disable lplu.
2338  *
2339  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2340  *            E1000_SUCCESS at any other case.
2341  *
2342  ****************************************************************************/
2343 
2344 static int32_t
2345 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2346 {
2347 	uint32_t phy_ctrl = 0;
2348 	int32_t ret_val;
2349 	uint16_t phy_data;
2350 	DEBUGFUNC();
2351 
2352 	if (hw->mac_type <= e1000_82547_rev_2)
2353 		return E1000_SUCCESS;
2354 
2355 	if (hw->mac_type == e1000_ich8lan) {
2356 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2357 	} else if (hw->mac_type == e1000_igb) {
2358 		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2359 	} else {
2360 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2361 				&phy_data);
2362 		if (ret_val)
2363 			return ret_val;
2364 	}
2365 
2366 	if (!active) {
2367 		if (hw->mac_type == e1000_ich8lan) {
2368 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2369 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2370 		} else if (hw->mac_type == e1000_igb) {
2371 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2372 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2373 		} else {
2374 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2375 			ret_val = e1000_write_phy_reg(hw,
2376 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2377 			if (ret_val)
2378 				return ret_val;
2379 		}
2380 
2381 		if (hw->mac_type == e1000_igb)
2382 			return E1000_SUCCESS;
2383 
2384 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2385 	 * Dx states where the power conservation is most important.  During
2386 	 * driver activity we should enable SmartSpeed, so performance is
2387 	 * maintained. */
2388 		if (hw->smart_speed == e1000_smart_speed_on) {
2389 			ret_val = e1000_read_phy_reg(hw,
2390 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2391 			if (ret_val)
2392 				return ret_val;
2393 
2394 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2395 			ret_val = e1000_write_phy_reg(hw,
2396 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2397 			if (ret_val)
2398 				return ret_val;
2399 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2400 			ret_val = e1000_read_phy_reg(hw,
2401 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2402 			if (ret_val)
2403 				return ret_val;
2404 
2405 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2406 			ret_val = e1000_write_phy_reg(hw,
2407 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2408 			if (ret_val)
2409 				return ret_val;
2410 		}
2411 
2412 
2413 	} else {
2414 
2415 		if (hw->mac_type == e1000_ich8lan) {
2416 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2417 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2418 		} else if (hw->mac_type == e1000_igb) {
2419 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2420 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2421 		} else {
2422 			phy_data |= IGP02E1000_PM_D0_LPLU;
2423 			ret_val = e1000_write_phy_reg(hw,
2424 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2425 			if (ret_val)
2426 				return ret_val;
2427 		}
2428 
2429 		if (hw->mac_type == e1000_igb)
2430 			return E1000_SUCCESS;
2431 
2432 		/* When LPLU is enabled we should disable SmartSpeed */
2433 		ret_val = e1000_read_phy_reg(hw,
2434 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2435 		if (ret_val)
2436 			return ret_val;
2437 
2438 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2439 		ret_val = e1000_write_phy_reg(hw,
2440 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2441 		if (ret_val)
2442 			return ret_val;
2443 
2444 	}
2445 	return E1000_SUCCESS;
2446 }
2447 
2448 /********************************************************************
2449 * Copper link setup for e1000_phy_igp series.
2450 *
2451 * hw - Struct containing variables accessed by shared code
2452 *********************************************************************/
2453 static int32_t
2454 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2455 {
2456 	uint32_t led_ctrl;
2457 	int32_t ret_val;
2458 	uint16_t phy_data;
2459 
2460 	DEBUGFUNC();
2461 
2462 	if (hw->phy_reset_disable)
2463 		return E1000_SUCCESS;
2464 
2465 	ret_val = e1000_phy_reset(hw);
2466 	if (ret_val) {
2467 		DEBUGOUT("Error Resetting the PHY\n");
2468 		return ret_val;
2469 	}
2470 
2471 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2472 	mdelay(15);
2473 	if (hw->mac_type != e1000_ich8lan) {
2474 		/* Configure activity LED after PHY reset */
2475 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2476 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2477 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2478 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2479 	}
2480 
2481 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2482 	if (hw->phy_type == e1000_phy_igp) {
2483 		/* disable lplu d3 during driver init */
2484 		ret_val = e1000_set_d3_lplu_state(hw, false);
2485 		if (ret_val) {
2486 			DEBUGOUT("Error Disabling LPLU D3\n");
2487 			return ret_val;
2488 		}
2489 	}
2490 
2491 	/* disable lplu d0 during driver init */
2492 	ret_val = e1000_set_d0_lplu_state(hw, false);
2493 	if (ret_val) {
2494 		DEBUGOUT("Error Disabling LPLU D0\n");
2495 		return ret_val;
2496 	}
2497 	/* Configure mdi-mdix settings */
2498 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2499 	if (ret_val)
2500 		return ret_val;
2501 
2502 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2503 		hw->dsp_config_state = e1000_dsp_config_disabled;
2504 		/* Force MDI for earlier revs of the IGP PHY */
2505 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2506 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2507 		hw->mdix = 1;
2508 
2509 	} else {
2510 		hw->dsp_config_state = e1000_dsp_config_enabled;
2511 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2512 
2513 		switch (hw->mdix) {
2514 		case 1:
2515 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2516 			break;
2517 		case 2:
2518 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2519 			break;
2520 		case 0:
2521 		default:
2522 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2523 			break;
2524 		}
2525 	}
2526 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2527 	if (ret_val)
2528 		return ret_val;
2529 
2530 	/* set auto-master slave resolution settings */
2531 	if (hw->autoneg) {
2532 		e1000_ms_type phy_ms_setting = hw->master_slave;
2533 
2534 		if (hw->ffe_config_state == e1000_ffe_config_active)
2535 			hw->ffe_config_state = e1000_ffe_config_enabled;
2536 
2537 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2538 			hw->dsp_config_state = e1000_dsp_config_enabled;
2539 
2540 		/* when autonegotiation advertisment is only 1000Mbps then we
2541 		  * should disable SmartSpeed and enable Auto MasterSlave
2542 		  * resolution as hardware default. */
2543 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2544 			/* Disable SmartSpeed */
2545 			ret_val = e1000_read_phy_reg(hw,
2546 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2547 			if (ret_val)
2548 				return ret_val;
2549 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2550 			ret_val = e1000_write_phy_reg(hw,
2551 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2552 			if (ret_val)
2553 				return ret_val;
2554 			/* Set auto Master/Slave resolution process */
2555 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2556 					&phy_data);
2557 			if (ret_val)
2558 				return ret_val;
2559 			phy_data &= ~CR_1000T_MS_ENABLE;
2560 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2561 					phy_data);
2562 			if (ret_val)
2563 				return ret_val;
2564 		}
2565 
2566 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2567 		if (ret_val)
2568 			return ret_val;
2569 
2570 		/* load defaults for future use */
2571 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2572 				((phy_data & CR_1000T_MS_VALUE) ?
2573 				e1000_ms_force_master :
2574 				e1000_ms_force_slave) :
2575 				e1000_ms_auto;
2576 
2577 		switch (phy_ms_setting) {
2578 		case e1000_ms_force_master:
2579 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2580 			break;
2581 		case e1000_ms_force_slave:
2582 			phy_data |= CR_1000T_MS_ENABLE;
2583 			phy_data &= ~(CR_1000T_MS_VALUE);
2584 			break;
2585 		case e1000_ms_auto:
2586 			phy_data &= ~CR_1000T_MS_ENABLE;
2587 		default:
2588 			break;
2589 		}
2590 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2591 		if (ret_val)
2592 			return ret_val;
2593 	}
2594 
2595 	return E1000_SUCCESS;
2596 }
2597 
2598 /*****************************************************************************
2599  * This function checks the mode of the firmware.
2600  *
2601  * returns  - true when the mode is IAMT or false.
2602  ****************************************************************************/
2603 bool
2604 e1000_check_mng_mode(struct e1000_hw *hw)
2605 {
2606 	uint32_t fwsm;
2607 	DEBUGFUNC();
2608 
2609 	fwsm = E1000_READ_REG(hw, FWSM);
2610 
2611 	if (hw->mac_type == e1000_ich8lan) {
2612 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2613 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2614 			return true;
2615 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2616 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2617 			return true;
2618 
2619 	return false;
2620 }
2621 
2622 static int32_t
2623 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2624 {
2625 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2626 	uint32_t reg_val;
2627 	DEBUGFUNC();
2628 
2629 	if (e1000_is_second_port(hw))
2630 		swfw = E1000_SWFW_PHY1_SM;
2631 
2632 	if (e1000_swfw_sync_acquire(hw, swfw))
2633 		return -E1000_ERR_SWFW_SYNC;
2634 
2635 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2636 			& E1000_KUMCTRLSTA_OFFSET) | data;
2637 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2638 	udelay(2);
2639 
2640 	return E1000_SUCCESS;
2641 }
2642 
2643 static int32_t
2644 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2645 {
2646 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2647 	uint32_t reg_val;
2648 	DEBUGFUNC();
2649 
2650 	if (e1000_is_second_port(hw))
2651 		swfw = E1000_SWFW_PHY1_SM;
2652 
2653 	if (e1000_swfw_sync_acquire(hw, swfw)) {
2654 		debug("%s[%i]\n", __func__, __LINE__);
2655 		return -E1000_ERR_SWFW_SYNC;
2656 	}
2657 
2658 	/* Write register address */
2659 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2660 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2661 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2662 	udelay(2);
2663 
2664 	/* Read the data returned */
2665 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2666 	*data = (uint16_t)reg_val;
2667 
2668 	return E1000_SUCCESS;
2669 }
2670 
2671 /********************************************************************
2672 * Copper link setup for e1000_phy_gg82563 series.
2673 *
2674 * hw - Struct containing variables accessed by shared code
2675 *********************************************************************/
2676 static int32_t
2677 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2678 {
2679 	int32_t ret_val;
2680 	uint16_t phy_data;
2681 	uint32_t reg_data;
2682 
2683 	DEBUGFUNC();
2684 
2685 	if (!hw->phy_reset_disable) {
2686 		/* Enable CRS on TX for half-duplex operation. */
2687 		ret_val = e1000_read_phy_reg(hw,
2688 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2689 		if (ret_val)
2690 			return ret_val;
2691 
2692 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2693 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2694 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2695 
2696 		ret_val = e1000_write_phy_reg(hw,
2697 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2698 		if (ret_val)
2699 			return ret_val;
2700 
2701 		/* Options:
2702 		 *   MDI/MDI-X = 0 (default)
2703 		 *   0 - Auto for all speeds
2704 		 *   1 - MDI mode
2705 		 *   2 - MDI-X mode
2706 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2707 		 */
2708 		ret_val = e1000_read_phy_reg(hw,
2709 				GG82563_PHY_SPEC_CTRL, &phy_data);
2710 		if (ret_val)
2711 			return ret_val;
2712 
2713 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2714 
2715 		switch (hw->mdix) {
2716 		case 1:
2717 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2718 			break;
2719 		case 2:
2720 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2721 			break;
2722 		case 0:
2723 		default:
2724 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2725 			break;
2726 		}
2727 
2728 		/* Options:
2729 		 *   disable_polarity_correction = 0 (default)
2730 		 *       Automatic Correction for Reversed Cable Polarity
2731 		 *   0 - Disabled
2732 		 *   1 - Enabled
2733 		 */
2734 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2735 		ret_val = e1000_write_phy_reg(hw,
2736 				GG82563_PHY_SPEC_CTRL, phy_data);
2737 
2738 		if (ret_val)
2739 			return ret_val;
2740 
2741 		/* SW Reset the PHY so all changes take effect */
2742 		ret_val = e1000_phy_reset(hw);
2743 		if (ret_val) {
2744 			DEBUGOUT("Error Resetting the PHY\n");
2745 			return ret_val;
2746 		}
2747 	} /* phy_reset_disable */
2748 
2749 	if (hw->mac_type == e1000_80003es2lan) {
2750 		/* Bypass RX and TX FIFO's */
2751 		ret_val = e1000_write_kmrn_reg(hw,
2752 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2753 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2754 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2755 		if (ret_val)
2756 			return ret_val;
2757 
2758 		ret_val = e1000_read_phy_reg(hw,
2759 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2760 		if (ret_val)
2761 			return ret_val;
2762 
2763 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2764 		ret_val = e1000_write_phy_reg(hw,
2765 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2766 
2767 		if (ret_val)
2768 			return ret_val;
2769 
2770 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2771 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2772 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2773 
2774 		ret_val = e1000_read_phy_reg(hw,
2775 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2776 		if (ret_val)
2777 			return ret_val;
2778 
2779 	/* Do not init these registers when the HW is in IAMT mode, since the
2780 	 * firmware will have already initialized them.  We only initialize
2781 	 * them if the HW is not in IAMT mode.
2782 	 */
2783 		if (e1000_check_mng_mode(hw) == false) {
2784 			/* Enable Electrical Idle on the PHY */
2785 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2786 			ret_val = e1000_write_phy_reg(hw,
2787 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2788 			if (ret_val)
2789 				return ret_val;
2790 
2791 			ret_val = e1000_read_phy_reg(hw,
2792 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2793 			if (ret_val)
2794 				return ret_val;
2795 
2796 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2797 			ret_val = e1000_write_phy_reg(hw,
2798 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2799 
2800 			if (ret_val)
2801 				return ret_val;
2802 		}
2803 
2804 		/* Workaround: Disable padding in Kumeran interface in the MAC
2805 		 * and in the PHY to avoid CRC errors.
2806 		 */
2807 		ret_val = e1000_read_phy_reg(hw,
2808 				GG82563_PHY_INBAND_CTRL, &phy_data);
2809 		if (ret_val)
2810 			return ret_val;
2811 		phy_data |= GG82563_ICR_DIS_PADDING;
2812 		ret_val = e1000_write_phy_reg(hw,
2813 				GG82563_PHY_INBAND_CTRL, phy_data);
2814 		if (ret_val)
2815 			return ret_val;
2816 	}
2817 	return E1000_SUCCESS;
2818 }
2819 
2820 /********************************************************************
2821 * Copper link setup for e1000_phy_m88 series.
2822 *
2823 * hw - Struct containing variables accessed by shared code
2824 *********************************************************************/
2825 static int32_t
2826 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2827 {
2828 	int32_t ret_val;
2829 	uint16_t phy_data;
2830 
2831 	DEBUGFUNC();
2832 
2833 	if (hw->phy_reset_disable)
2834 		return E1000_SUCCESS;
2835 
2836 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2837 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2838 	if (ret_val)
2839 		return ret_val;
2840 
2841 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2842 
2843 	/* Options:
2844 	 *   MDI/MDI-X = 0 (default)
2845 	 *   0 - Auto for all speeds
2846 	 *   1 - MDI mode
2847 	 *   2 - MDI-X mode
2848 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2849 	 */
2850 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2851 
2852 	switch (hw->mdix) {
2853 	case 1:
2854 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2855 		break;
2856 	case 2:
2857 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2858 		break;
2859 	case 3:
2860 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2861 		break;
2862 	case 0:
2863 	default:
2864 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2865 		break;
2866 	}
2867 
2868 	/* Options:
2869 	 *   disable_polarity_correction = 0 (default)
2870 	 *       Automatic Correction for Reversed Cable Polarity
2871 	 *   0 - Disabled
2872 	 *   1 - Enabled
2873 	 */
2874 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2875 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2876 	if (ret_val)
2877 		return ret_val;
2878 
2879 	if (hw->phy_revision < M88E1011_I_REV_4) {
2880 		/* Force TX_CLK in the Extended PHY Specific Control Register
2881 		 * to 25MHz clock.
2882 		 */
2883 		ret_val = e1000_read_phy_reg(hw,
2884 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2885 		if (ret_val)
2886 			return ret_val;
2887 
2888 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2889 
2890 		if ((hw->phy_revision == E1000_REVISION_2) &&
2891 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2892 			/* Vidalia Phy, set the downshift counter to 5x */
2893 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2894 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2895 			ret_val = e1000_write_phy_reg(hw,
2896 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2897 			if (ret_val)
2898 				return ret_val;
2899 		} else {
2900 			/* Configure Master and Slave downshift values */
2901 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2902 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2903 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2904 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2905 			ret_val = e1000_write_phy_reg(hw,
2906 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2907 			if (ret_val)
2908 				return ret_val;
2909 		}
2910 	}
2911 
2912 	/* SW Reset the PHY so all changes take effect */
2913 	ret_val = e1000_phy_reset(hw);
2914 	if (ret_val) {
2915 		DEBUGOUT("Error Resetting the PHY\n");
2916 		return ret_val;
2917 	}
2918 
2919 	return E1000_SUCCESS;
2920 }
2921 
2922 /********************************************************************
2923 * Setup auto-negotiation and flow control advertisements,
2924 * and then perform auto-negotiation.
2925 *
2926 * hw - Struct containing variables accessed by shared code
2927 *********************************************************************/
2928 static int32_t
2929 e1000_copper_link_autoneg(struct e1000_hw *hw)
2930 {
2931 	int32_t ret_val;
2932 	uint16_t phy_data;
2933 
2934 	DEBUGFUNC();
2935 
2936 	/* Perform some bounds checking on the hw->autoneg_advertised
2937 	 * parameter.  If this variable is zero, then set it to the default.
2938 	 */
2939 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2940 
2941 	/* If autoneg_advertised is zero, we assume it was not defaulted
2942 	 * by the calling code so we set to advertise full capability.
2943 	 */
2944 	if (hw->autoneg_advertised == 0)
2945 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2946 
2947 	/* IFE phy only supports 10/100 */
2948 	if (hw->phy_type == e1000_phy_ife)
2949 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2950 
2951 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2952 	ret_val = e1000_phy_setup_autoneg(hw);
2953 	if (ret_val) {
2954 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2955 		return ret_val;
2956 	}
2957 	DEBUGOUT("Restarting Auto-Neg\n");
2958 
2959 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2960 	 * the Auto Neg Restart bit in the PHY control register.
2961 	 */
2962 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2963 	if (ret_val)
2964 		return ret_val;
2965 
2966 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2967 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2968 	if (ret_val)
2969 		return ret_val;
2970 
2971 	/* Does the user want to wait for Auto-Neg to complete here, or
2972 	 * check at a later time (for example, callback routine).
2973 	 */
2974 	/* If we do not wait for autonegtation to complete I
2975 	 * do not see a valid link status.
2976 	 * wait_autoneg_complete = 1 .
2977 	 */
2978 	if (hw->wait_autoneg_complete) {
2979 		ret_val = e1000_wait_autoneg(hw);
2980 		if (ret_val) {
2981 			DEBUGOUT("Error while waiting for autoneg"
2982 					"to complete\n");
2983 			return ret_val;
2984 		}
2985 	}
2986 
2987 	hw->get_link_status = true;
2988 
2989 	return E1000_SUCCESS;
2990 }
2991 
2992 /******************************************************************************
2993 * Config the MAC and the PHY after link is up.
2994 *   1) Set up the MAC to the current PHY speed/duplex
2995 *      if we are on 82543.  If we
2996 *      are on newer silicon, we only need to configure
2997 *      collision distance in the Transmit Control Register.
2998 *   2) Set up flow control on the MAC to that established with
2999 *      the link partner.
3000 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3001 *
3002 * hw - Struct containing variables accessed by shared code
3003 ******************************************************************************/
3004 static int32_t
3005 e1000_copper_link_postconfig(struct e1000_hw *hw)
3006 {
3007 	int32_t ret_val;
3008 	DEBUGFUNC();
3009 
3010 	if (hw->mac_type >= e1000_82544) {
3011 		e1000_config_collision_dist(hw);
3012 	} else {
3013 		ret_val = e1000_config_mac_to_phy(hw);
3014 		if (ret_val) {
3015 			DEBUGOUT("Error configuring MAC to PHY settings\n");
3016 			return ret_val;
3017 		}
3018 	}
3019 	ret_val = e1000_config_fc_after_link_up(hw);
3020 	if (ret_val) {
3021 		DEBUGOUT("Error Configuring Flow Control\n");
3022 		return ret_val;
3023 	}
3024 	return E1000_SUCCESS;
3025 }
3026 
3027 /******************************************************************************
3028 * Detects which PHY is present and setup the speed and duplex
3029 *
3030 * hw - Struct containing variables accessed by shared code
3031 ******************************************************************************/
3032 static int
3033 e1000_setup_copper_link(struct eth_device *nic)
3034 {
3035 	struct e1000_hw *hw = nic->priv;
3036 	int32_t ret_val;
3037 	uint16_t i;
3038 	uint16_t phy_data;
3039 	uint16_t reg_data;
3040 
3041 	DEBUGFUNC();
3042 
3043 	switch (hw->mac_type) {
3044 	case e1000_80003es2lan:
3045 	case e1000_ich8lan:
3046 		/* Set the mac to wait the maximum time between each
3047 		 * iteration and increase the max iterations when
3048 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3049 		ret_val = e1000_write_kmrn_reg(hw,
3050 				GG82563_REG(0x34, 4), 0xFFFF);
3051 		if (ret_val)
3052 			return ret_val;
3053 		ret_val = e1000_read_kmrn_reg(hw,
3054 				GG82563_REG(0x34, 9), &reg_data);
3055 		if (ret_val)
3056 			return ret_val;
3057 		reg_data |= 0x3F;
3058 		ret_val = e1000_write_kmrn_reg(hw,
3059 				GG82563_REG(0x34, 9), reg_data);
3060 		if (ret_val)
3061 			return ret_val;
3062 	default:
3063 		break;
3064 	}
3065 
3066 	/* Check if it is a valid PHY and set PHY mode if necessary. */
3067 	ret_val = e1000_copper_link_preconfig(hw);
3068 	if (ret_val)
3069 		return ret_val;
3070 	switch (hw->mac_type) {
3071 	case e1000_80003es2lan:
3072 		/* Kumeran registers are written-only */
3073 		reg_data =
3074 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3075 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3076 		ret_val = e1000_write_kmrn_reg(hw,
3077 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3078 		if (ret_val)
3079 			return ret_val;
3080 		break;
3081 	default:
3082 		break;
3083 	}
3084 
3085 	if (hw->phy_type == e1000_phy_igp ||
3086 		hw->phy_type == e1000_phy_igp_3 ||
3087 		hw->phy_type == e1000_phy_igp_2) {
3088 		ret_val = e1000_copper_link_igp_setup(hw);
3089 		if (ret_val)
3090 			return ret_val;
3091 	} else if (hw->phy_type == e1000_phy_m88 ||
3092 		hw->phy_type == e1000_phy_igb) {
3093 		ret_val = e1000_copper_link_mgp_setup(hw);
3094 		if (ret_val)
3095 			return ret_val;
3096 	} else if (hw->phy_type == e1000_phy_gg82563) {
3097 		ret_val = e1000_copper_link_ggp_setup(hw);
3098 		if (ret_val)
3099 			return ret_val;
3100 	}
3101 
3102 	/* always auto */
3103 	/* Setup autoneg and flow control advertisement
3104 	  * and perform autonegotiation */
3105 	ret_val = e1000_copper_link_autoneg(hw);
3106 	if (ret_val)
3107 		return ret_val;
3108 
3109 	/* Check link status. Wait up to 100 microseconds for link to become
3110 	 * valid.
3111 	 */
3112 	for (i = 0; i < 10; i++) {
3113 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3114 		if (ret_val)
3115 			return ret_val;
3116 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3117 		if (ret_val)
3118 			return ret_val;
3119 
3120 		if (phy_data & MII_SR_LINK_STATUS) {
3121 			/* Config the MAC and PHY after link is up */
3122 			ret_val = e1000_copper_link_postconfig(hw);
3123 			if (ret_val)
3124 				return ret_val;
3125 
3126 			DEBUGOUT("Valid link established!!!\n");
3127 			return E1000_SUCCESS;
3128 		}
3129 		udelay(10);
3130 	}
3131 
3132 	DEBUGOUT("Unable to establish link!!!\n");
3133 	return E1000_SUCCESS;
3134 }
3135 
3136 /******************************************************************************
3137 * Configures PHY autoneg and flow control advertisement settings
3138 *
3139 * hw - Struct containing variables accessed by shared code
3140 ******************************************************************************/
3141 int32_t
3142 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3143 {
3144 	int32_t ret_val;
3145 	uint16_t mii_autoneg_adv_reg;
3146 	uint16_t mii_1000t_ctrl_reg;
3147 
3148 	DEBUGFUNC();
3149 
3150 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3151 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3152 	if (ret_val)
3153 		return ret_val;
3154 
3155 	if (hw->phy_type != e1000_phy_ife) {
3156 		/* Read the MII 1000Base-T Control Register (Address 9). */
3157 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3158 				&mii_1000t_ctrl_reg);
3159 		if (ret_val)
3160 			return ret_val;
3161 	} else
3162 		mii_1000t_ctrl_reg = 0;
3163 
3164 	/* Need to parse both autoneg_advertised and fc and set up
3165 	 * the appropriate PHY registers.  First we will parse for
3166 	 * autoneg_advertised software override.  Since we can advertise
3167 	 * a plethora of combinations, we need to check each bit
3168 	 * individually.
3169 	 */
3170 
3171 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3172 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3173 	 * the  1000Base-T Control Register (Address 9).
3174 	 */
3175 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3176 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3177 
3178 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3179 
3180 	/* Do we want to advertise 10 Mb Half Duplex? */
3181 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3182 		DEBUGOUT("Advertise 10mb Half duplex\n");
3183 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3184 	}
3185 
3186 	/* Do we want to advertise 10 Mb Full Duplex? */
3187 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3188 		DEBUGOUT("Advertise 10mb Full duplex\n");
3189 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3190 	}
3191 
3192 	/* Do we want to advertise 100 Mb Half Duplex? */
3193 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3194 		DEBUGOUT("Advertise 100mb Half duplex\n");
3195 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3196 	}
3197 
3198 	/* Do we want to advertise 100 Mb Full Duplex? */
3199 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3200 		DEBUGOUT("Advertise 100mb Full duplex\n");
3201 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3202 	}
3203 
3204 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3205 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3206 		DEBUGOUT
3207 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3208 	}
3209 
3210 	/* Do we want to advertise 1000 Mb Full Duplex? */
3211 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3212 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3213 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3214 	}
3215 
3216 	/* Check for a software override of the flow control settings, and
3217 	 * setup the PHY advertisement registers accordingly.  If
3218 	 * auto-negotiation is enabled, then software will have to set the
3219 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3220 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3221 	 *
3222 	 * The possible values of the "fc" parameter are:
3223 	 *	0:  Flow control is completely disabled
3224 	 *	1:  Rx flow control is enabled (we can receive pause frames
3225 	 *	    but not send pause frames).
3226 	 *	2:  Tx flow control is enabled (we can send pause frames
3227 	 *	    but we do not support receiving pause frames).
3228 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3229 	 *  other:  No software override.  The flow control configuration
3230 	 *	    in the EEPROM is used.
3231 	 */
3232 	switch (hw->fc) {
3233 	case e1000_fc_none:	/* 0 */
3234 		/* Flow control (RX & TX) is completely disabled by a
3235 		 * software over-ride.
3236 		 */
3237 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3238 		break;
3239 	case e1000_fc_rx_pause:	/* 1 */
3240 		/* RX Flow control is enabled, and TX Flow control is
3241 		 * disabled, by a software over-ride.
3242 		 */
3243 		/* Since there really isn't a way to advertise that we are
3244 		 * capable of RX Pause ONLY, we will advertise that we
3245 		 * support both symmetric and asymmetric RX PAUSE.  Later
3246 		 * (in e1000_config_fc_after_link_up) we will disable the
3247 		 *hw's ability to send PAUSE frames.
3248 		 */
3249 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3250 		break;
3251 	case e1000_fc_tx_pause:	/* 2 */
3252 		/* TX Flow control is enabled, and RX Flow control is
3253 		 * disabled, by a software over-ride.
3254 		 */
3255 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3256 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3257 		break;
3258 	case e1000_fc_full:	/* 3 */
3259 		/* Flow control (both RX and TX) is enabled by a software
3260 		 * over-ride.
3261 		 */
3262 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3263 		break;
3264 	default:
3265 		DEBUGOUT("Flow control param set incorrectly\n");
3266 		return -E1000_ERR_CONFIG;
3267 	}
3268 
3269 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3270 	if (ret_val)
3271 		return ret_val;
3272 
3273 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3274 
3275 	if (hw->phy_type != e1000_phy_ife) {
3276 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3277 				mii_1000t_ctrl_reg);
3278 		if (ret_val)
3279 			return ret_val;
3280 	}
3281 
3282 	return E1000_SUCCESS;
3283 }
3284 
3285 /******************************************************************************
3286 * Sets the collision distance in the Transmit Control register
3287 *
3288 * hw - Struct containing variables accessed by shared code
3289 *
3290 * Link should have been established previously. Reads the speed and duplex
3291 * information from the Device Status register.
3292 ******************************************************************************/
3293 static void
3294 e1000_config_collision_dist(struct e1000_hw *hw)
3295 {
3296 	uint32_t tctl, coll_dist;
3297 
3298 	DEBUGFUNC();
3299 
3300 	if (hw->mac_type < e1000_82543)
3301 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3302 	else
3303 		coll_dist = E1000_COLLISION_DISTANCE;
3304 
3305 	tctl = E1000_READ_REG(hw, TCTL);
3306 
3307 	tctl &= ~E1000_TCTL_COLD;
3308 	tctl |= coll_dist << E1000_COLD_SHIFT;
3309 
3310 	E1000_WRITE_REG(hw, TCTL, tctl);
3311 	E1000_WRITE_FLUSH(hw);
3312 }
3313 
3314 /******************************************************************************
3315 * Sets MAC speed and duplex settings to reflect the those in the PHY
3316 *
3317 * hw - Struct containing variables accessed by shared code
3318 * mii_reg - data to write to the MII control register
3319 *
3320 * The contents of the PHY register containing the needed information need to
3321 * be passed in.
3322 ******************************************************************************/
3323 static int
3324 e1000_config_mac_to_phy(struct e1000_hw *hw)
3325 {
3326 	uint32_t ctrl;
3327 	uint16_t phy_data;
3328 
3329 	DEBUGFUNC();
3330 
3331 	/* Read the Device Control Register and set the bits to Force Speed
3332 	 * and Duplex.
3333 	 */
3334 	ctrl = E1000_READ_REG(hw, CTRL);
3335 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3336 	ctrl &= ~(E1000_CTRL_ILOS);
3337 	ctrl |= (E1000_CTRL_SPD_SEL);
3338 
3339 	/* Set up duplex in the Device Control and Transmit Control
3340 	 * registers depending on negotiated values.
3341 	 */
3342 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3343 		DEBUGOUT("PHY Read Error\n");
3344 		return -E1000_ERR_PHY;
3345 	}
3346 	if (phy_data & M88E1000_PSSR_DPLX)
3347 		ctrl |= E1000_CTRL_FD;
3348 	else
3349 		ctrl &= ~E1000_CTRL_FD;
3350 
3351 	e1000_config_collision_dist(hw);
3352 
3353 	/* Set up speed in the Device Control register depending on
3354 	 * negotiated values.
3355 	 */
3356 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3357 		ctrl |= E1000_CTRL_SPD_1000;
3358 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3359 		ctrl |= E1000_CTRL_SPD_100;
3360 	/* Write the configured values back to the Device Control Reg. */
3361 	E1000_WRITE_REG(hw, CTRL, ctrl);
3362 	return 0;
3363 }
3364 
3365 /******************************************************************************
3366  * Forces the MAC's flow control settings.
3367  *
3368  * hw - Struct containing variables accessed by shared code
3369  *
3370  * Sets the TFCE and RFCE bits in the device control register to reflect
3371  * the adapter settings. TFCE and RFCE need to be explicitly set by
3372  * software when a Copper PHY is used because autonegotiation is managed
3373  * by the PHY rather than the MAC. Software must also configure these
3374  * bits when link is forced on a fiber connection.
3375  *****************************************************************************/
3376 static int
3377 e1000_force_mac_fc(struct e1000_hw *hw)
3378 {
3379 	uint32_t ctrl;
3380 
3381 	DEBUGFUNC();
3382 
3383 	/* Get the current configuration of the Device Control Register */
3384 	ctrl = E1000_READ_REG(hw, CTRL);
3385 
3386 	/* Because we didn't get link via the internal auto-negotiation
3387 	 * mechanism (we either forced link or we got link via PHY
3388 	 * auto-neg), we have to manually enable/disable transmit an
3389 	 * receive flow control.
3390 	 *
3391 	 * The "Case" statement below enables/disable flow control
3392 	 * according to the "hw->fc" parameter.
3393 	 *
3394 	 * The possible values of the "fc" parameter are:
3395 	 *	0:  Flow control is completely disabled
3396 	 *	1:  Rx flow control is enabled (we can receive pause
3397 	 *	    frames but not send pause frames).
3398 	 *	2:  Tx flow control is enabled (we can send pause frames
3399 	 *	    frames but we do not receive pause frames).
3400 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3401 	 *  other:  No other values should be possible at this point.
3402 	 */
3403 
3404 	switch (hw->fc) {
3405 	case e1000_fc_none:
3406 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3407 		break;
3408 	case e1000_fc_rx_pause:
3409 		ctrl &= (~E1000_CTRL_TFCE);
3410 		ctrl |= E1000_CTRL_RFCE;
3411 		break;
3412 	case e1000_fc_tx_pause:
3413 		ctrl &= (~E1000_CTRL_RFCE);
3414 		ctrl |= E1000_CTRL_TFCE;
3415 		break;
3416 	case e1000_fc_full:
3417 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3418 		break;
3419 	default:
3420 		DEBUGOUT("Flow control param set incorrectly\n");
3421 		return -E1000_ERR_CONFIG;
3422 	}
3423 
3424 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3425 	if (hw->mac_type == e1000_82542_rev2_0)
3426 		ctrl &= (~E1000_CTRL_TFCE);
3427 
3428 	E1000_WRITE_REG(hw, CTRL, ctrl);
3429 	return 0;
3430 }
3431 
3432 /******************************************************************************
3433  * Configures flow control settings after link is established
3434  *
3435  * hw - Struct containing variables accessed by shared code
3436  *
3437  * Should be called immediately after a valid link has been established.
3438  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3439  * and autonegotiation is enabled, the MAC flow control settings will be set
3440  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3441  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3442  *****************************************************************************/
3443 static int32_t
3444 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3445 {
3446 	int32_t ret_val;
3447 	uint16_t mii_status_reg;
3448 	uint16_t mii_nway_adv_reg;
3449 	uint16_t mii_nway_lp_ability_reg;
3450 	uint16_t speed;
3451 	uint16_t duplex;
3452 
3453 	DEBUGFUNC();
3454 
3455 	/* Check for the case where we have fiber media and auto-neg failed
3456 	 * so we had to force link.  In this case, we need to force the
3457 	 * configuration of the MAC to match the "fc" parameter.
3458 	 */
3459 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3460 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3461 		&& (hw->autoneg_failed))
3462 		|| ((hw->media_type == e1000_media_type_copper)
3463 		&& (!hw->autoneg))) {
3464 		ret_val = e1000_force_mac_fc(hw);
3465 		if (ret_val < 0) {
3466 			DEBUGOUT("Error forcing flow control settings\n");
3467 			return ret_val;
3468 		}
3469 	}
3470 
3471 	/* Check for the case where we have copper media and auto-neg is
3472 	 * enabled.  In this case, we need to check and see if Auto-Neg
3473 	 * has completed, and if so, how the PHY and link partner has
3474 	 * flow control configured.
3475 	 */
3476 	if (hw->media_type == e1000_media_type_copper) {
3477 		/* Read the MII Status Register and check to see if AutoNeg
3478 		 * has completed.  We read this twice because this reg has
3479 		 * some "sticky" (latched) bits.
3480 		 */
3481 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3482 			DEBUGOUT("PHY Read Error \n");
3483 			return -E1000_ERR_PHY;
3484 		}
3485 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3486 			DEBUGOUT("PHY Read Error \n");
3487 			return -E1000_ERR_PHY;
3488 		}
3489 
3490 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3491 			/* The AutoNeg process has completed, so we now need to
3492 			 * read both the Auto Negotiation Advertisement Register
3493 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3494 			 * Register (Address 5) to determine how flow control was
3495 			 * negotiated.
3496 			 */
3497 			if (e1000_read_phy_reg
3498 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3499 				DEBUGOUT("PHY Read Error\n");
3500 				return -E1000_ERR_PHY;
3501 			}
3502 			if (e1000_read_phy_reg
3503 			    (hw, PHY_LP_ABILITY,
3504 			     &mii_nway_lp_ability_reg) < 0) {
3505 				DEBUGOUT("PHY Read Error\n");
3506 				return -E1000_ERR_PHY;
3507 			}
3508 
3509 			/* Two bits in the Auto Negotiation Advertisement Register
3510 			 * (Address 4) and two bits in the Auto Negotiation Base
3511 			 * Page Ability Register (Address 5) determine flow control
3512 			 * for both the PHY and the link partner.  The following
3513 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3514 			 * 1999, describes these PAUSE resolution bits and how flow
3515 			 * control is determined based upon these settings.
3516 			 * NOTE:  DC = Don't Care
3517 			 *
3518 			 *   LOCAL DEVICE  |   LINK PARTNER
3519 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3520 			 *-------|---------|-------|---------|--------------------
3521 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3522 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3523 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3524 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3525 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3526 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3527 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3528 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3529 			 *
3530 			 */
3531 			/* Are both PAUSE bits set to 1?  If so, this implies
3532 			 * Symmetric Flow Control is enabled at both ends.  The
3533 			 * ASM_DIR bits are irrelevant per the spec.
3534 			 *
3535 			 * For Symmetric Flow Control:
3536 			 *
3537 			 *   LOCAL DEVICE  |   LINK PARTNER
3538 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3539 			 *-------|---------|-------|---------|--------------------
3540 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3541 			 *
3542 			 */
3543 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3544 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3545 				/* Now we need to check if the user selected RX ONLY
3546 				 * of pause frames.  In this case, we had to advertise
3547 				 * FULL flow control because we could not advertise RX
3548 				 * ONLY. Hence, we must now check to see if we need to
3549 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3550 				 */
3551 				if (hw->original_fc == e1000_fc_full) {
3552 					hw->fc = e1000_fc_full;
3553 					DEBUGOUT("Flow Control = FULL.\r\n");
3554 				} else {
3555 					hw->fc = e1000_fc_rx_pause;
3556 					DEBUGOUT
3557 					    ("Flow Control = RX PAUSE frames only.\r\n");
3558 				}
3559 			}
3560 			/* For receiving PAUSE frames ONLY.
3561 			 *
3562 			 *   LOCAL DEVICE  |   LINK PARTNER
3563 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3564 			 *-------|---------|-------|---------|--------------------
3565 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3566 			 *
3567 			 */
3568 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3569 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3570 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3571 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3572 			{
3573 				hw->fc = e1000_fc_tx_pause;
3574 				DEBUGOUT
3575 				    ("Flow Control = TX PAUSE frames only.\r\n");
3576 			}
3577 			/* For transmitting PAUSE frames ONLY.
3578 			 *
3579 			 *   LOCAL DEVICE  |   LINK PARTNER
3580 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3581 			 *-------|---------|-------|---------|--------------------
3582 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3583 			 *
3584 			 */
3585 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3586 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3587 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3588 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3589 			{
3590 				hw->fc = e1000_fc_rx_pause;
3591 				DEBUGOUT
3592 				    ("Flow Control = RX PAUSE frames only.\r\n");
3593 			}
3594 			/* Per the IEEE spec, at this point flow control should be
3595 			 * disabled.  However, we want to consider that we could
3596 			 * be connected to a legacy switch that doesn't advertise
3597 			 * desired flow control, but can be forced on the link
3598 			 * partner.  So if we advertised no flow control, that is
3599 			 * what we will resolve to.  If we advertised some kind of
3600 			 * receive capability (Rx Pause Only or Full Flow Control)
3601 			 * and the link partner advertised none, we will configure
3602 			 * ourselves to enable Rx Flow Control only.  We can do
3603 			 * this safely for two reasons:  If the link partner really
3604 			 * didn't want flow control enabled, and we enable Rx, no
3605 			 * harm done since we won't be receiving any PAUSE frames
3606 			 * anyway.  If the intent on the link partner was to have
3607 			 * flow control enabled, then by us enabling RX only, we
3608 			 * can at least receive pause frames and process them.
3609 			 * This is a good idea because in most cases, since we are
3610 			 * predominantly a server NIC, more times than not we will
3611 			 * be asked to delay transmission of packets than asking
3612 			 * our link partner to pause transmission of frames.
3613 			 */
3614 			else if (hw->original_fc == e1000_fc_none ||
3615 				 hw->original_fc == e1000_fc_tx_pause) {
3616 				hw->fc = e1000_fc_none;
3617 				DEBUGOUT("Flow Control = NONE.\r\n");
3618 			} else {
3619 				hw->fc = e1000_fc_rx_pause;
3620 				DEBUGOUT
3621 				    ("Flow Control = RX PAUSE frames only.\r\n");
3622 			}
3623 
3624 			/* Now we need to do one last check...	If we auto-
3625 			 * negotiated to HALF DUPLEX, flow control should not be
3626 			 * enabled per IEEE 802.3 spec.
3627 			 */
3628 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3629 
3630 			if (duplex == HALF_DUPLEX)
3631 				hw->fc = e1000_fc_none;
3632 
3633 			/* Now we call a subroutine to actually force the MAC
3634 			 * controller to use the correct flow control settings.
3635 			 */
3636 			ret_val = e1000_force_mac_fc(hw);
3637 			if (ret_val < 0) {
3638 				DEBUGOUT
3639 				    ("Error forcing flow control settings\n");
3640 				return ret_val;
3641 			}
3642 		} else {
3643 			DEBUGOUT
3644 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3645 		}
3646 	}
3647 	return E1000_SUCCESS;
3648 }
3649 
3650 /******************************************************************************
3651  * Checks to see if the link status of the hardware has changed.
3652  *
3653  * hw - Struct containing variables accessed by shared code
3654  *
3655  * Called by any function that needs to check the link status of the adapter.
3656  *****************************************************************************/
3657 static int
3658 e1000_check_for_link(struct eth_device *nic)
3659 {
3660 	struct e1000_hw *hw = nic->priv;
3661 	uint32_t rxcw;
3662 	uint32_t ctrl;
3663 	uint32_t status;
3664 	uint32_t rctl;
3665 	uint32_t signal;
3666 	int32_t ret_val;
3667 	uint16_t phy_data;
3668 	uint16_t lp_capability;
3669 
3670 	DEBUGFUNC();
3671 
3672 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3673 	 * set when the optics detect a signal. On older adapters, it will be
3674 	 * cleared when there is a signal
3675 	 */
3676 	ctrl = E1000_READ_REG(hw, CTRL);
3677 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3678 		signal = E1000_CTRL_SWDPIN1;
3679 	else
3680 		signal = 0;
3681 
3682 	status = E1000_READ_REG(hw, STATUS);
3683 	rxcw = E1000_READ_REG(hw, RXCW);
3684 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3685 
3686 	/* If we have a copper PHY then we only want to go out to the PHY
3687 	 * registers to see if Auto-Neg has completed and/or if our link
3688 	 * status has changed.	The get_link_status flag will be set if we
3689 	 * receive a Link Status Change interrupt or we have Rx Sequence
3690 	 * Errors.
3691 	 */
3692 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3693 		/* First we want to see if the MII Status Register reports
3694 		 * link.  If so, then we want to get the current speed/duplex
3695 		 * of the PHY.
3696 		 * Read the register twice since the link bit is sticky.
3697 		 */
3698 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3699 			DEBUGOUT("PHY Read Error\n");
3700 			return -E1000_ERR_PHY;
3701 		}
3702 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3703 			DEBUGOUT("PHY Read Error\n");
3704 			return -E1000_ERR_PHY;
3705 		}
3706 
3707 		if (phy_data & MII_SR_LINK_STATUS) {
3708 			hw->get_link_status = false;
3709 		} else {
3710 			/* No link detected */
3711 			return -E1000_ERR_NOLINK;
3712 		}
3713 
3714 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3715 		 * have Si on board that is 82544 or newer, Auto
3716 		 * Speed Detection takes care of MAC speed/duplex
3717 		 * configuration.  So we only need to configure Collision
3718 		 * Distance in the MAC.  Otherwise, we need to force
3719 		 * speed/duplex on the MAC to the current PHY speed/duplex
3720 		 * settings.
3721 		 */
3722 		if (hw->mac_type >= e1000_82544)
3723 			e1000_config_collision_dist(hw);
3724 		else {
3725 			ret_val = e1000_config_mac_to_phy(hw);
3726 			if (ret_val < 0) {
3727 				DEBUGOUT
3728 				    ("Error configuring MAC to PHY settings\n");
3729 				return ret_val;
3730 			}
3731 		}
3732 
3733 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3734 		 * need to restore the desired flow control settings because we may
3735 		 * have had to re-autoneg with a different link partner.
3736 		 */
3737 		ret_val = e1000_config_fc_after_link_up(hw);
3738 		if (ret_val < 0) {
3739 			DEBUGOUT("Error configuring flow control\n");
3740 			return ret_val;
3741 		}
3742 
3743 		/* At this point we know that we are on copper and we have
3744 		 * auto-negotiated link.  These are conditions for checking the link
3745 		 * parter capability register.	We use the link partner capability to
3746 		 * determine if TBI Compatibility needs to be turned on or off.  If
3747 		 * the link partner advertises any speed in addition to Gigabit, then
3748 		 * we assume that they are GMII-based, and TBI compatibility is not
3749 		 * needed. If no other speeds are advertised, we assume the link
3750 		 * partner is TBI-based, and we turn on TBI Compatibility.
3751 		 */
3752 		if (hw->tbi_compatibility_en) {
3753 			if (e1000_read_phy_reg
3754 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3755 				DEBUGOUT("PHY Read Error\n");
3756 				return -E1000_ERR_PHY;
3757 			}
3758 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3759 					     NWAY_LPAR_10T_FD_CAPS |
3760 					     NWAY_LPAR_100TX_HD_CAPS |
3761 					     NWAY_LPAR_100TX_FD_CAPS |
3762 					     NWAY_LPAR_100T4_CAPS)) {
3763 				/* If our link partner advertises anything in addition to
3764 				 * gigabit, we do not need to enable TBI compatibility.
3765 				 */
3766 				if (hw->tbi_compatibility_on) {
3767 					/* If we previously were in the mode, turn it off. */
3768 					rctl = E1000_READ_REG(hw, RCTL);
3769 					rctl &= ~E1000_RCTL_SBP;
3770 					E1000_WRITE_REG(hw, RCTL, rctl);
3771 					hw->tbi_compatibility_on = false;
3772 				}
3773 			} else {
3774 				/* If TBI compatibility is was previously off, turn it on. For
3775 				 * compatibility with a TBI link partner, we will store bad
3776 				 * packets. Some frames have an additional byte on the end and
3777 				 * will look like CRC errors to to the hardware.
3778 				 */
3779 				if (!hw->tbi_compatibility_on) {
3780 					hw->tbi_compatibility_on = true;
3781 					rctl = E1000_READ_REG(hw, RCTL);
3782 					rctl |= E1000_RCTL_SBP;
3783 					E1000_WRITE_REG(hw, RCTL, rctl);
3784 				}
3785 			}
3786 		}
3787 	}
3788 	/* If we don't have link (auto-negotiation failed or link partner cannot
3789 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3790 	 * link partner is not trying to auto-negotiate with us (we are receiving
3791 	 * idles or data), we need to force link up. We also need to give
3792 	 * auto-negotiation time to complete, in case the cable was just plugged
3793 	 * in. The autoneg_failed flag does this.
3794 	 */
3795 	else if ((hw->media_type == e1000_media_type_fiber) &&
3796 		 (!(status & E1000_STATUS_LU)) &&
3797 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3798 		 (!(rxcw & E1000_RXCW_C))) {
3799 		if (hw->autoneg_failed == 0) {
3800 			hw->autoneg_failed = 1;
3801 			return 0;
3802 		}
3803 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3804 
3805 		/* Disable auto-negotiation in the TXCW register */
3806 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3807 
3808 		/* Force link-up and also force full-duplex. */
3809 		ctrl = E1000_READ_REG(hw, CTRL);
3810 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3811 		E1000_WRITE_REG(hw, CTRL, ctrl);
3812 
3813 		/* Configure Flow Control after forcing link up. */
3814 		ret_val = e1000_config_fc_after_link_up(hw);
3815 		if (ret_val < 0) {
3816 			DEBUGOUT("Error configuring flow control\n");
3817 			return ret_val;
3818 		}
3819 	}
3820 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3821 	 * auto-negotiation in the TXCW register and disable forced link in the
3822 	 * Device Control register in an attempt to auto-negotiate with our link
3823 	 * partner.
3824 	 */
3825 	else if ((hw->media_type == e1000_media_type_fiber) &&
3826 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3827 		DEBUGOUT
3828 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3829 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3830 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3831 	}
3832 	return 0;
3833 }
3834 
3835 /******************************************************************************
3836 * Configure the MAC-to-PHY interface for 10/100Mbps
3837 *
3838 * hw - Struct containing variables accessed by shared code
3839 ******************************************************************************/
3840 static int32_t
3841 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3842 {
3843 	int32_t ret_val = E1000_SUCCESS;
3844 	uint32_t tipg;
3845 	uint16_t reg_data;
3846 
3847 	DEBUGFUNC();
3848 
3849 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3850 	ret_val = e1000_write_kmrn_reg(hw,
3851 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3852 	if (ret_val)
3853 		return ret_val;
3854 
3855 	/* Configure Transmit Inter-Packet Gap */
3856 	tipg = E1000_READ_REG(hw, TIPG);
3857 	tipg &= ~E1000_TIPG_IPGT_MASK;
3858 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3859 	E1000_WRITE_REG(hw, TIPG, tipg);
3860 
3861 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3862 
3863 	if (ret_val)
3864 		return ret_val;
3865 
3866 	if (duplex == HALF_DUPLEX)
3867 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3868 	else
3869 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3870 
3871 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3872 
3873 	return ret_val;
3874 }
3875 
3876 static int32_t
3877 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3878 {
3879 	int32_t ret_val = E1000_SUCCESS;
3880 	uint16_t reg_data;
3881 	uint32_t tipg;
3882 
3883 	DEBUGFUNC();
3884 
3885 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3886 	ret_val = e1000_write_kmrn_reg(hw,
3887 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3888 	if (ret_val)
3889 		return ret_val;
3890 
3891 	/* Configure Transmit Inter-Packet Gap */
3892 	tipg = E1000_READ_REG(hw, TIPG);
3893 	tipg &= ~E1000_TIPG_IPGT_MASK;
3894 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3895 	E1000_WRITE_REG(hw, TIPG, tipg);
3896 
3897 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3898 
3899 	if (ret_val)
3900 		return ret_val;
3901 
3902 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3903 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3904 
3905 	return ret_val;
3906 }
3907 
3908 /******************************************************************************
3909  * Detects the current speed and duplex settings of the hardware.
3910  *
3911  * hw - Struct containing variables accessed by shared code
3912  * speed - Speed of the connection
3913  * duplex - Duplex setting of the connection
3914  *****************************************************************************/
3915 static int
3916 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3917 		uint16_t *duplex)
3918 {
3919 	uint32_t status;
3920 	int32_t ret_val;
3921 	uint16_t phy_data;
3922 
3923 	DEBUGFUNC();
3924 
3925 	if (hw->mac_type >= e1000_82543) {
3926 		status = E1000_READ_REG(hw, STATUS);
3927 		if (status & E1000_STATUS_SPEED_1000) {
3928 			*speed = SPEED_1000;
3929 			DEBUGOUT("1000 Mbs, ");
3930 		} else if (status & E1000_STATUS_SPEED_100) {
3931 			*speed = SPEED_100;
3932 			DEBUGOUT("100 Mbs, ");
3933 		} else {
3934 			*speed = SPEED_10;
3935 			DEBUGOUT("10 Mbs, ");
3936 		}
3937 
3938 		if (status & E1000_STATUS_FD) {
3939 			*duplex = FULL_DUPLEX;
3940 			DEBUGOUT("Full Duplex\r\n");
3941 		} else {
3942 			*duplex = HALF_DUPLEX;
3943 			DEBUGOUT(" Half Duplex\r\n");
3944 		}
3945 	} else {
3946 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3947 		*speed = SPEED_1000;
3948 		*duplex = FULL_DUPLEX;
3949 	}
3950 
3951 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3952 	 * even if it is operating at half duplex.  Here we set the duplex
3953 	 * settings to match the duplex in the link partner's capabilities.
3954 	 */
3955 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3956 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3957 		if (ret_val)
3958 			return ret_val;
3959 
3960 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3961 			*duplex = HALF_DUPLEX;
3962 		else {
3963 			ret_val = e1000_read_phy_reg(hw,
3964 					PHY_LP_ABILITY, &phy_data);
3965 			if (ret_val)
3966 				return ret_val;
3967 			if ((*speed == SPEED_100 &&
3968 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3969 				|| (*speed == SPEED_10
3970 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3971 				*duplex = HALF_DUPLEX;
3972 		}
3973 	}
3974 
3975 	if ((hw->mac_type == e1000_80003es2lan) &&
3976 		(hw->media_type == e1000_media_type_copper)) {
3977 		if (*speed == SPEED_1000)
3978 			ret_val = e1000_configure_kmrn_for_1000(hw);
3979 		else
3980 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3981 		if (ret_val)
3982 			return ret_val;
3983 	}
3984 	return E1000_SUCCESS;
3985 }
3986 
3987 /******************************************************************************
3988 * Blocks until autoneg completes or times out (~4.5 seconds)
3989 *
3990 * hw - Struct containing variables accessed by shared code
3991 ******************************************************************************/
3992 static int
3993 e1000_wait_autoneg(struct e1000_hw *hw)
3994 {
3995 	uint16_t i;
3996 	uint16_t phy_data;
3997 
3998 	DEBUGFUNC();
3999 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4000 
4001 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
4002 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4003 		/* Read the MII Status Register and wait for Auto-Neg
4004 		 * Complete bit to be set.
4005 		 */
4006 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4007 			DEBUGOUT("PHY Read Error\n");
4008 			return -E1000_ERR_PHY;
4009 		}
4010 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4011 			DEBUGOUT("PHY Read Error\n");
4012 			return -E1000_ERR_PHY;
4013 		}
4014 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4015 			DEBUGOUT("Auto-Neg complete.\n");
4016 			return 0;
4017 		}
4018 		mdelay(100);
4019 	}
4020 	DEBUGOUT("Auto-Neg timedout.\n");
4021 	return -E1000_ERR_TIMEOUT;
4022 }
4023 
4024 /******************************************************************************
4025 * Raises the Management Data Clock
4026 *
4027 * hw - Struct containing variables accessed by shared code
4028 * ctrl - Device control register's current value
4029 ******************************************************************************/
4030 static void
4031 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4032 {
4033 	/* Raise the clock input to the Management Data Clock (by setting the MDC
4034 	 * bit), and then delay 2 microseconds.
4035 	 */
4036 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4037 	E1000_WRITE_FLUSH(hw);
4038 	udelay(2);
4039 }
4040 
4041 /******************************************************************************
4042 * Lowers the Management Data Clock
4043 *
4044 * hw - Struct containing variables accessed by shared code
4045 * ctrl - Device control register's current value
4046 ******************************************************************************/
4047 static void
4048 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4049 {
4050 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
4051 	 * bit), and then delay 2 microseconds.
4052 	 */
4053 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4054 	E1000_WRITE_FLUSH(hw);
4055 	udelay(2);
4056 }
4057 
4058 /******************************************************************************
4059 * Shifts data bits out to the PHY
4060 *
4061 * hw - Struct containing variables accessed by shared code
4062 * data - Data to send out to the PHY
4063 * count - Number of bits to shift out
4064 *
4065 * Bits are shifted out in MSB to LSB order.
4066 ******************************************************************************/
4067 static void
4068 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4069 {
4070 	uint32_t ctrl;
4071 	uint32_t mask;
4072 
4073 	/* We need to shift "count" number of bits out to the PHY. So, the value
4074 	 * in the "data" parameter will be shifted out to the PHY one bit at a
4075 	 * time. In order to do this, "data" must be broken down into bits.
4076 	 */
4077 	mask = 0x01;
4078 	mask <<= (count - 1);
4079 
4080 	ctrl = E1000_READ_REG(hw, CTRL);
4081 
4082 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4083 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4084 
4085 	while (mask) {
4086 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4087 		 * then raising and lowering the Management Data Clock. A "0" is
4088 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
4089 		 * raising and lowering the clock.
4090 		 */
4091 		if (data & mask)
4092 			ctrl |= E1000_CTRL_MDIO;
4093 		else
4094 			ctrl &= ~E1000_CTRL_MDIO;
4095 
4096 		E1000_WRITE_REG(hw, CTRL, ctrl);
4097 		E1000_WRITE_FLUSH(hw);
4098 
4099 		udelay(2);
4100 
4101 		e1000_raise_mdi_clk(hw, &ctrl);
4102 		e1000_lower_mdi_clk(hw, &ctrl);
4103 
4104 		mask = mask >> 1;
4105 	}
4106 }
4107 
4108 /******************************************************************************
4109 * Shifts data bits in from the PHY
4110 *
4111 * hw - Struct containing variables accessed by shared code
4112 *
4113 * Bits are shifted in in MSB to LSB order.
4114 ******************************************************************************/
4115 static uint16_t
4116 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4117 {
4118 	uint32_t ctrl;
4119 	uint16_t data = 0;
4120 	uint8_t i;
4121 
4122 	/* In order to read a register from the PHY, we need to shift in a total
4123 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4124 	 * to avoid contention on the MDIO pin when a read operation is performed.
4125 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4126 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4127 	 * and then reading the value of the MDIO bit.
4128 	 */
4129 	ctrl = E1000_READ_REG(hw, CTRL);
4130 
4131 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4132 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4133 	ctrl &= ~E1000_CTRL_MDIO;
4134 
4135 	E1000_WRITE_REG(hw, CTRL, ctrl);
4136 	E1000_WRITE_FLUSH(hw);
4137 
4138 	/* Raise and Lower the clock before reading in the data. This accounts for
4139 	 * the turnaround bits. The first clock occurred when we clocked out the
4140 	 * last bit of the Register Address.
4141 	 */
4142 	e1000_raise_mdi_clk(hw, &ctrl);
4143 	e1000_lower_mdi_clk(hw, &ctrl);
4144 
4145 	for (data = 0, i = 0; i < 16; i++) {
4146 		data = data << 1;
4147 		e1000_raise_mdi_clk(hw, &ctrl);
4148 		ctrl = E1000_READ_REG(hw, CTRL);
4149 		/* Check to see if we shifted in a "1". */
4150 		if (ctrl & E1000_CTRL_MDIO)
4151 			data |= 1;
4152 		e1000_lower_mdi_clk(hw, &ctrl);
4153 	}
4154 
4155 	e1000_raise_mdi_clk(hw, &ctrl);
4156 	e1000_lower_mdi_clk(hw, &ctrl);
4157 
4158 	return data;
4159 }
4160 
4161 /*****************************************************************************
4162 * Reads the value from a PHY register
4163 *
4164 * hw - Struct containing variables accessed by shared code
4165 * reg_addr - address of the PHY register to read
4166 ******************************************************************************/
4167 static int
4168 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4169 {
4170 	uint32_t i;
4171 	uint32_t mdic = 0;
4172 	const uint32_t phy_addr = 1;
4173 
4174 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4175 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4176 		return -E1000_ERR_PARAM;
4177 	}
4178 
4179 	if (hw->mac_type > e1000_82543) {
4180 		/* Set up Op-code, Phy Address, and register address in the MDI
4181 		 * Control register.  The MAC will take care of interfacing with the
4182 		 * PHY to retrieve the desired data.
4183 		 */
4184 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4185 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4186 			(E1000_MDIC_OP_READ));
4187 
4188 		E1000_WRITE_REG(hw, MDIC, mdic);
4189 
4190 		/* Poll the ready bit to see if the MDI read completed */
4191 		for (i = 0; i < 64; i++) {
4192 			udelay(10);
4193 			mdic = E1000_READ_REG(hw, MDIC);
4194 			if (mdic & E1000_MDIC_READY)
4195 				break;
4196 		}
4197 		if (!(mdic & E1000_MDIC_READY)) {
4198 			DEBUGOUT("MDI Read did not complete\n");
4199 			return -E1000_ERR_PHY;
4200 		}
4201 		if (mdic & E1000_MDIC_ERROR) {
4202 			DEBUGOUT("MDI Error\n");
4203 			return -E1000_ERR_PHY;
4204 		}
4205 		*phy_data = (uint16_t) mdic;
4206 	} else {
4207 		/* We must first send a preamble through the MDIO pin to signal the
4208 		 * beginning of an MII instruction.  This is done by sending 32
4209 		 * consecutive "1" bits.
4210 		 */
4211 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4212 
4213 		/* Now combine the next few fields that are required for a read
4214 		 * operation.  We use this method instead of calling the
4215 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4216 		 * a MII read instruction consists of a shift out of 14 bits and is
4217 		 * defined as follows:
4218 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4219 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4220 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4221 		 * READ operation is performed.  These two bits are thrown away
4222 		 * followed by a shift in of 16 bits which contains the desired data.
4223 		 */
4224 		mdic = ((reg_addr) | (phy_addr << 5) |
4225 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4226 
4227 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4228 
4229 		/* Now that we've shifted out the read command to the MII, we need to
4230 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4231 		 * register address.
4232 		 */
4233 		*phy_data = e1000_shift_in_mdi_bits(hw);
4234 	}
4235 	return 0;
4236 }
4237 
4238 /******************************************************************************
4239 * Writes a value to a PHY register
4240 *
4241 * hw - Struct containing variables accessed by shared code
4242 * reg_addr - address of the PHY register to write
4243 * data - data to write to the PHY
4244 ******************************************************************************/
4245 static int
4246 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4247 {
4248 	uint32_t i;
4249 	uint32_t mdic = 0;
4250 	const uint32_t phy_addr = 1;
4251 
4252 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4253 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4254 		return -E1000_ERR_PARAM;
4255 	}
4256 
4257 	if (hw->mac_type > e1000_82543) {
4258 		/* Set up Op-code, Phy Address, register address, and data intended
4259 		 * for the PHY register in the MDI Control register.  The MAC will take
4260 		 * care of interfacing with the PHY to send the desired data.
4261 		 */
4262 		mdic = (((uint32_t) phy_data) |
4263 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4264 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4265 			(E1000_MDIC_OP_WRITE));
4266 
4267 		E1000_WRITE_REG(hw, MDIC, mdic);
4268 
4269 		/* Poll the ready bit to see if the MDI read completed */
4270 		for (i = 0; i < 64; i++) {
4271 			udelay(10);
4272 			mdic = E1000_READ_REG(hw, MDIC);
4273 			if (mdic & E1000_MDIC_READY)
4274 				break;
4275 		}
4276 		if (!(mdic & E1000_MDIC_READY)) {
4277 			DEBUGOUT("MDI Write did not complete\n");
4278 			return -E1000_ERR_PHY;
4279 		}
4280 	} else {
4281 		/* We'll need to use the SW defined pins to shift the write command
4282 		 * out to the PHY. We first send a preamble to the PHY to signal the
4283 		 * beginning of the MII instruction.  This is done by sending 32
4284 		 * consecutive "1" bits.
4285 		 */
4286 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4287 
4288 		/* Now combine the remaining required fields that will indicate a
4289 		 * write operation. We use this method instead of calling the
4290 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4291 		 * format of a MII write instruction is as follows:
4292 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4293 		 */
4294 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4295 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4296 		mdic <<= 16;
4297 		mdic |= (uint32_t) phy_data;
4298 
4299 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4300 	}
4301 	return 0;
4302 }
4303 
4304 /******************************************************************************
4305  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4306  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4307  * the caller to figure out how to deal with it.
4308  *
4309  * hw - Struct containing variables accessed by shared code
4310  *
4311  * returns: - E1000_BLK_PHY_RESET
4312  *            E1000_SUCCESS
4313  *
4314  *****************************************************************************/
4315 int32_t
4316 e1000_check_phy_reset_block(struct e1000_hw *hw)
4317 {
4318 	uint32_t manc = 0;
4319 	uint32_t fwsm = 0;
4320 
4321 	if (hw->mac_type == e1000_ich8lan) {
4322 		fwsm = E1000_READ_REG(hw, FWSM);
4323 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4324 						: E1000_BLK_PHY_RESET;
4325 	}
4326 
4327 	if (hw->mac_type > e1000_82547_rev_2)
4328 		manc = E1000_READ_REG(hw, MANC);
4329 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4330 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4331 }
4332 
4333 /***************************************************************************
4334  * Checks if the PHY configuration is done
4335  *
4336  * hw: Struct containing variables accessed by shared code
4337  *
4338  * returns: - E1000_ERR_RESET if fail to reset MAC
4339  *            E1000_SUCCESS at any other case.
4340  *
4341  ***************************************************************************/
4342 static int32_t
4343 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4344 {
4345 	int32_t timeout = PHY_CFG_TIMEOUT;
4346 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4347 
4348 	DEBUGFUNC();
4349 
4350 	switch (hw->mac_type) {
4351 	default:
4352 		mdelay(10);
4353 		break;
4354 
4355 	case e1000_80003es2lan:
4356 		/* Separate *_CFG_DONE_* bit for each port */
4357 		if (e1000_is_second_port(hw))
4358 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4359 		/* Fall Through */
4360 
4361 	case e1000_82571:
4362 	case e1000_82572:
4363 	case e1000_igb:
4364 		while (timeout) {
4365 			if (hw->mac_type == e1000_igb) {
4366 				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4367 					break;
4368 			} else {
4369 				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4370 					break;
4371 			}
4372 			mdelay(1);
4373 			timeout--;
4374 		}
4375 		if (!timeout) {
4376 			DEBUGOUT("MNG configuration cycle has not "
4377 					"completed.\n");
4378 			return -E1000_ERR_RESET;
4379 		}
4380 		break;
4381 	}
4382 
4383 	return E1000_SUCCESS;
4384 }
4385 
4386 /******************************************************************************
4387 * Returns the PHY to the power-on reset state
4388 *
4389 * hw - Struct containing variables accessed by shared code
4390 ******************************************************************************/
4391 int32_t
4392 e1000_phy_hw_reset(struct e1000_hw *hw)
4393 {
4394 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4395 	uint32_t ctrl, ctrl_ext;
4396 	uint32_t led_ctrl;
4397 	int32_t ret_val;
4398 
4399 	DEBUGFUNC();
4400 
4401 	/* In the case of the phy reset being blocked, it's not an error, we
4402 	 * simply return success without performing the reset. */
4403 	ret_val = e1000_check_phy_reset_block(hw);
4404 	if (ret_val)
4405 		return E1000_SUCCESS;
4406 
4407 	DEBUGOUT("Resetting Phy...\n");
4408 
4409 	if (hw->mac_type > e1000_82543) {
4410 		if (e1000_is_second_port(hw))
4411 			swfw = E1000_SWFW_PHY1_SM;
4412 
4413 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4414 			DEBUGOUT("Unable to acquire swfw sync\n");
4415 			return -E1000_ERR_SWFW_SYNC;
4416 		}
4417 
4418 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4419 		 * bit. Then, take it out of reset.
4420 		 */
4421 		ctrl = E1000_READ_REG(hw, CTRL);
4422 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4423 		E1000_WRITE_FLUSH(hw);
4424 
4425 		if (hw->mac_type < e1000_82571)
4426 			udelay(10);
4427 		else
4428 			udelay(100);
4429 
4430 		E1000_WRITE_REG(hw, CTRL, ctrl);
4431 		E1000_WRITE_FLUSH(hw);
4432 
4433 		if (hw->mac_type >= e1000_82571)
4434 			mdelay(10);
4435 	} else {
4436 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4437 		 * bit to put the PHY into reset. Then, take it out of reset.
4438 		 */
4439 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4440 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4441 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4442 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4443 		E1000_WRITE_FLUSH(hw);
4444 		mdelay(10);
4445 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4446 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4447 		E1000_WRITE_FLUSH(hw);
4448 	}
4449 	udelay(150);
4450 
4451 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4452 		/* Configure activity LED after PHY reset */
4453 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4454 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4455 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4456 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4457 	}
4458 
4459 	/* Wait for FW to finish PHY configuration. */
4460 	ret_val = e1000_get_phy_cfg_done(hw);
4461 	if (ret_val != E1000_SUCCESS)
4462 		return ret_val;
4463 
4464 	return ret_val;
4465 }
4466 
4467 /******************************************************************************
4468  * IGP phy init script - initializes the GbE PHY
4469  *
4470  * hw - Struct containing variables accessed by shared code
4471  *****************************************************************************/
4472 static void
4473 e1000_phy_init_script(struct e1000_hw *hw)
4474 {
4475 	uint32_t ret_val;
4476 	uint16_t phy_saved_data;
4477 	DEBUGFUNC();
4478 
4479 	if (hw->phy_init_script) {
4480 		mdelay(20);
4481 
4482 		/* Save off the current value of register 0x2F5B to be
4483 		 * restored at the end of this routine. */
4484 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4485 
4486 		/* Disabled the PHY transmitter */
4487 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4488 
4489 		mdelay(20);
4490 
4491 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4492 
4493 		mdelay(5);
4494 
4495 		switch (hw->mac_type) {
4496 		case e1000_82541:
4497 		case e1000_82547:
4498 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4499 
4500 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4501 
4502 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4503 
4504 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4505 
4506 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4507 
4508 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4509 
4510 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4511 
4512 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4513 
4514 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4515 			break;
4516 
4517 		case e1000_82541_rev_2:
4518 		case e1000_82547_rev_2:
4519 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4520 			break;
4521 		default:
4522 			break;
4523 		}
4524 
4525 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4526 
4527 		mdelay(20);
4528 
4529 		/* Now enable the transmitter */
4530 		if (!ret_val)
4531 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4532 
4533 		if (hw->mac_type == e1000_82547) {
4534 			uint16_t fused, fine, coarse;
4535 
4536 			/* Move to analog registers page */
4537 			e1000_read_phy_reg(hw,
4538 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4539 
4540 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4541 				e1000_read_phy_reg(hw,
4542 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4543 
4544 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4545 				coarse = fused
4546 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4547 
4548 				if (coarse >
4549 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4550 					coarse -=
4551 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4552 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4553 				} else if (coarse
4554 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4555 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4556 
4557 				fused = (fused
4558 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4559 					(fine
4560 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4561 					(coarse
4562 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4563 
4564 				e1000_write_phy_reg(hw,
4565 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4566 				e1000_write_phy_reg(hw,
4567 					IGP01E1000_ANALOG_FUSE_BYPASS,
4568 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4569 			}
4570 		}
4571 	}
4572 }
4573 
4574 /******************************************************************************
4575 * Resets the PHY
4576 *
4577 * hw - Struct containing variables accessed by shared code
4578 *
4579 * Sets bit 15 of the MII Control register
4580 ******************************************************************************/
4581 int32_t
4582 e1000_phy_reset(struct e1000_hw *hw)
4583 {
4584 	int32_t ret_val;
4585 	uint16_t phy_data;
4586 
4587 	DEBUGFUNC();
4588 
4589 	/* In the case of the phy reset being blocked, it's not an error, we
4590 	 * simply return success without performing the reset. */
4591 	ret_val = e1000_check_phy_reset_block(hw);
4592 	if (ret_val)
4593 		return E1000_SUCCESS;
4594 
4595 	switch (hw->phy_type) {
4596 	case e1000_phy_igp:
4597 	case e1000_phy_igp_2:
4598 	case e1000_phy_igp_3:
4599 	case e1000_phy_ife:
4600 	case e1000_phy_igb:
4601 		ret_val = e1000_phy_hw_reset(hw);
4602 		if (ret_val)
4603 			return ret_val;
4604 		break;
4605 	default:
4606 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4607 		if (ret_val)
4608 			return ret_val;
4609 
4610 		phy_data |= MII_CR_RESET;
4611 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4612 		if (ret_val)
4613 			return ret_val;
4614 
4615 		udelay(1);
4616 		break;
4617 	}
4618 
4619 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4620 		e1000_phy_init_script(hw);
4621 
4622 	return E1000_SUCCESS;
4623 }
4624 
4625 static int e1000_set_phy_type (struct e1000_hw *hw)
4626 {
4627 	DEBUGFUNC ();
4628 
4629 	if (hw->mac_type == e1000_undefined)
4630 		return -E1000_ERR_PHY_TYPE;
4631 
4632 	switch (hw->phy_id) {
4633 	case M88E1000_E_PHY_ID:
4634 	case M88E1000_I_PHY_ID:
4635 	case M88E1011_I_PHY_ID:
4636 	case M88E1111_I_PHY_ID:
4637 		hw->phy_type = e1000_phy_m88;
4638 		break;
4639 	case IGP01E1000_I_PHY_ID:
4640 		if (hw->mac_type == e1000_82541 ||
4641 			hw->mac_type == e1000_82541_rev_2 ||
4642 			hw->mac_type == e1000_82547 ||
4643 			hw->mac_type == e1000_82547_rev_2) {
4644 			hw->phy_type = e1000_phy_igp;
4645 			break;
4646 		}
4647 	case IGP03E1000_E_PHY_ID:
4648 		hw->phy_type = e1000_phy_igp_3;
4649 		break;
4650 	case IFE_E_PHY_ID:
4651 	case IFE_PLUS_E_PHY_ID:
4652 	case IFE_C_E_PHY_ID:
4653 		hw->phy_type = e1000_phy_ife;
4654 		break;
4655 	case GG82563_E_PHY_ID:
4656 		if (hw->mac_type == e1000_80003es2lan) {
4657 			hw->phy_type = e1000_phy_gg82563;
4658 			break;
4659 		}
4660 	case BME1000_E_PHY_ID:
4661 		hw->phy_type = e1000_phy_bm;
4662 		break;
4663 	case I210_I_PHY_ID:
4664 		hw->phy_type = e1000_phy_igb;
4665 		break;
4666 		/* Fall Through */
4667 	default:
4668 		/* Should never have loaded on this device */
4669 		hw->phy_type = e1000_phy_undefined;
4670 		return -E1000_ERR_PHY_TYPE;
4671 	}
4672 
4673 	return E1000_SUCCESS;
4674 }
4675 
4676 /******************************************************************************
4677 * Probes the expected PHY address for known PHY IDs
4678 *
4679 * hw - Struct containing variables accessed by shared code
4680 ******************************************************************************/
4681 static int32_t
4682 e1000_detect_gig_phy(struct e1000_hw *hw)
4683 {
4684 	int32_t phy_init_status, ret_val;
4685 	uint16_t phy_id_high, phy_id_low;
4686 	bool match = false;
4687 
4688 	DEBUGFUNC();
4689 
4690 	/* The 82571 firmware may still be configuring the PHY.  In this
4691 	 * case, we cannot access the PHY until the configuration is done.  So
4692 	 * we explicitly set the PHY values. */
4693 	if (hw->mac_type == e1000_82571 ||
4694 		hw->mac_type == e1000_82572) {
4695 		hw->phy_id = IGP01E1000_I_PHY_ID;
4696 		hw->phy_type = e1000_phy_igp_2;
4697 		return E1000_SUCCESS;
4698 	}
4699 
4700 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4701 	 * work- around that forces PHY page 0 to be set or the reads fail.
4702 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4703 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4704 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4705 	 * the routines below will figure this out as well. */
4706 	if (hw->mac_type == e1000_80003es2lan)
4707 		hw->phy_type = e1000_phy_gg82563;
4708 
4709 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4710 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4711 	if (ret_val)
4712 		return ret_val;
4713 
4714 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4715 	udelay(20);
4716 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4717 	if (ret_val)
4718 		return ret_val;
4719 
4720 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4721 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4722 
4723 	switch (hw->mac_type) {
4724 	case e1000_82543:
4725 		if (hw->phy_id == M88E1000_E_PHY_ID)
4726 			match = true;
4727 		break;
4728 	case e1000_82544:
4729 		if (hw->phy_id == M88E1000_I_PHY_ID)
4730 			match = true;
4731 		break;
4732 	case e1000_82540:
4733 	case e1000_82545:
4734 	case e1000_82545_rev_3:
4735 	case e1000_82546:
4736 	case e1000_82546_rev_3:
4737 		if (hw->phy_id == M88E1011_I_PHY_ID)
4738 			match = true;
4739 		break;
4740 	case e1000_82541:
4741 	case e1000_82541_rev_2:
4742 	case e1000_82547:
4743 	case e1000_82547_rev_2:
4744 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4745 			match = true;
4746 
4747 		break;
4748 	case e1000_82573:
4749 		if (hw->phy_id == M88E1111_I_PHY_ID)
4750 			match = true;
4751 		break;
4752 	case e1000_82574:
4753 		if (hw->phy_id == BME1000_E_PHY_ID)
4754 			match = true;
4755 		break;
4756 	case e1000_80003es2lan:
4757 		if (hw->phy_id == GG82563_E_PHY_ID)
4758 			match = true;
4759 		break;
4760 	case e1000_ich8lan:
4761 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4762 			match = true;
4763 		if (hw->phy_id == IFE_E_PHY_ID)
4764 			match = true;
4765 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4766 			match = true;
4767 		if (hw->phy_id == IFE_C_E_PHY_ID)
4768 			match = true;
4769 		break;
4770 	case e1000_igb:
4771 		if (hw->phy_id == I210_I_PHY_ID)
4772 			match = true;
4773 		break;
4774 	default:
4775 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4776 		return -E1000_ERR_CONFIG;
4777 	}
4778 
4779 	phy_init_status = e1000_set_phy_type(hw);
4780 
4781 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4782 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4783 		return 0;
4784 	}
4785 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4786 	return -E1000_ERR_PHY;
4787 }
4788 
4789 /*****************************************************************************
4790  * Set media type and TBI compatibility.
4791  *
4792  * hw - Struct containing variables accessed by shared code
4793  * **************************************************************************/
4794 void
4795 e1000_set_media_type(struct e1000_hw *hw)
4796 {
4797 	uint32_t status;
4798 
4799 	DEBUGFUNC();
4800 
4801 	if (hw->mac_type != e1000_82543) {
4802 		/* tbi_compatibility is only valid on 82543 */
4803 		hw->tbi_compatibility_en = false;
4804 	}
4805 
4806 	switch (hw->device_id) {
4807 	case E1000_DEV_ID_82545GM_SERDES:
4808 	case E1000_DEV_ID_82546GB_SERDES:
4809 	case E1000_DEV_ID_82571EB_SERDES:
4810 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4811 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4812 	case E1000_DEV_ID_82572EI_SERDES:
4813 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4814 		hw->media_type = e1000_media_type_internal_serdes;
4815 		break;
4816 	default:
4817 		switch (hw->mac_type) {
4818 		case e1000_82542_rev2_0:
4819 		case e1000_82542_rev2_1:
4820 			hw->media_type = e1000_media_type_fiber;
4821 			break;
4822 		case e1000_ich8lan:
4823 		case e1000_82573:
4824 		case e1000_82574:
4825 		case e1000_igb:
4826 			/* The STATUS_TBIMODE bit is reserved or reused
4827 			 * for the this device.
4828 			 */
4829 			hw->media_type = e1000_media_type_copper;
4830 			break;
4831 		default:
4832 			status = E1000_READ_REG(hw, STATUS);
4833 			if (status & E1000_STATUS_TBIMODE) {
4834 				hw->media_type = e1000_media_type_fiber;
4835 				/* tbi_compatibility not valid on fiber */
4836 				hw->tbi_compatibility_en = false;
4837 			} else {
4838 				hw->media_type = e1000_media_type_copper;
4839 			}
4840 			break;
4841 		}
4842 	}
4843 }
4844 
4845 /**
4846  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4847  *
4848  * e1000_sw_init initializes the Adapter private data structure.
4849  * Fields are initialized based on PCI device information and
4850  * OS network device settings (MTU size).
4851  **/
4852 
4853 static int
4854 e1000_sw_init(struct eth_device *nic)
4855 {
4856 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
4857 	int result;
4858 
4859 	/* PCI config space info */
4860 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4861 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4862 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4863 			     &hw->subsystem_vendor_id);
4864 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4865 
4866 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4867 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4868 
4869 	/* identify the MAC */
4870 	result = e1000_set_mac_type(hw);
4871 	if (result) {
4872 		E1000_ERR(hw->nic, "Unknown MAC Type\n");
4873 		return result;
4874 	}
4875 
4876 	switch (hw->mac_type) {
4877 	default:
4878 		break;
4879 	case e1000_82541:
4880 	case e1000_82547:
4881 	case e1000_82541_rev_2:
4882 	case e1000_82547_rev_2:
4883 		hw->phy_init_script = 1;
4884 		break;
4885 	}
4886 
4887 	/* flow control settings */
4888 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4889 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4890 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4891 	hw->fc_send_xon = 1;
4892 
4893 	/* Media type - copper or fiber */
4894 	hw->tbi_compatibility_en = true;
4895 	e1000_set_media_type(hw);
4896 
4897 	if (hw->mac_type >= e1000_82543) {
4898 		uint32_t status = E1000_READ_REG(hw, STATUS);
4899 
4900 		if (status & E1000_STATUS_TBIMODE) {
4901 			DEBUGOUT("fiber interface\n");
4902 			hw->media_type = e1000_media_type_fiber;
4903 		} else {
4904 			DEBUGOUT("copper interface\n");
4905 			hw->media_type = e1000_media_type_copper;
4906 		}
4907 	} else {
4908 		hw->media_type = e1000_media_type_fiber;
4909 	}
4910 
4911 	hw->wait_autoneg_complete = true;
4912 	if (hw->mac_type < e1000_82543)
4913 		hw->report_tx_early = 0;
4914 	else
4915 		hw->report_tx_early = 1;
4916 
4917 	return E1000_SUCCESS;
4918 }
4919 
4920 void
4921 fill_rx(struct e1000_hw *hw)
4922 {
4923 	struct e1000_rx_desc *rd;
4924 	uint32_t flush_start, flush_end;
4925 
4926 	rx_last = rx_tail;
4927 	rd = rx_base + rx_tail;
4928 	rx_tail = (rx_tail + 1) % 8;
4929 	memset(rd, 0, 16);
4930 	rd->buffer_addr = cpu_to_le64((u32)packet);
4931 
4932 	/*
4933 	 * Make sure there are no stale data in WB over this area, which
4934 	 * might get written into the memory while the e1000 also writes
4935 	 * into the same memory area.
4936 	 */
4937 	invalidate_dcache_range((u32)packet, (u32)packet + 4096);
4938 	/* Dump the DMA descriptor into RAM. */
4939 	flush_start = ((u32)rd) & ~(ARCH_DMA_MINALIGN - 1);
4940 	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4941 	flush_dcache_range(flush_start, flush_end);
4942 
4943 	E1000_WRITE_REG(hw, RDT, rx_tail);
4944 }
4945 
4946 /**
4947  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4948  * @adapter: board private structure
4949  *
4950  * Configure the Tx unit of the MAC after a reset.
4951  **/
4952 
4953 static void
4954 e1000_configure_tx(struct e1000_hw *hw)
4955 {
4956 	unsigned long tctl;
4957 	unsigned long tipg, tarc;
4958 	uint32_t ipgr1, ipgr2;
4959 
4960 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4961 	E1000_WRITE_REG(hw, TDBAH, 0);
4962 
4963 	E1000_WRITE_REG(hw, TDLEN, 128);
4964 
4965 	/* Setup the HW Tx Head and Tail descriptor pointers */
4966 	E1000_WRITE_REG(hw, TDH, 0);
4967 	E1000_WRITE_REG(hw, TDT, 0);
4968 	tx_tail = 0;
4969 
4970 	/* Set the default values for the Tx Inter Packet Gap timer */
4971 	if (hw->mac_type <= e1000_82547_rev_2 &&
4972 	    (hw->media_type == e1000_media_type_fiber ||
4973 	     hw->media_type == e1000_media_type_internal_serdes))
4974 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4975 	else
4976 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4977 
4978 	/* Set the default values for the Tx Inter Packet Gap timer */
4979 	switch (hw->mac_type) {
4980 	case e1000_82542_rev2_0:
4981 	case e1000_82542_rev2_1:
4982 		tipg = DEFAULT_82542_TIPG_IPGT;
4983 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4984 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4985 		break;
4986 	case e1000_80003es2lan:
4987 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4988 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4989 		break;
4990 	default:
4991 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4992 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4993 		break;
4994 	}
4995 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4996 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4997 	E1000_WRITE_REG(hw, TIPG, tipg);
4998 	/* Program the Transmit Control Register */
4999 	tctl = E1000_READ_REG(hw, TCTL);
5000 	tctl &= ~E1000_TCTL_CT;
5001 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5002 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5003 
5004 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5005 		tarc = E1000_READ_REG(hw, TARC0);
5006 		/* set the speed mode bit, we'll clear it if we're not at
5007 		 * gigabit link later */
5008 		/* git bit can be set to 1*/
5009 	} else if (hw->mac_type == e1000_80003es2lan) {
5010 		tarc = E1000_READ_REG(hw, TARC0);
5011 		tarc |= 1;
5012 		E1000_WRITE_REG(hw, TARC0, tarc);
5013 		tarc = E1000_READ_REG(hw, TARC1);
5014 		tarc |= 1;
5015 		E1000_WRITE_REG(hw, TARC1, tarc);
5016 	}
5017 
5018 
5019 	e1000_config_collision_dist(hw);
5020 	/* Setup Transmit Descriptor Settings for eop descriptor */
5021 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5022 
5023 	/* Need to set up RS bit */
5024 	if (hw->mac_type < e1000_82543)
5025 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
5026 	else
5027 		hw->txd_cmd |= E1000_TXD_CMD_RS;
5028 
5029 
5030 	if (hw->mac_type == e1000_igb) {
5031 		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5032 
5033 		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5034 		reg_txdctl |= 1 << 25;
5035 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5036 		mdelay(20);
5037 	}
5038 
5039 
5040 
5041 	E1000_WRITE_REG(hw, TCTL, tctl);
5042 
5043 
5044 }
5045 
5046 /**
5047  * e1000_setup_rctl - configure the receive control register
5048  * @adapter: Board private structure
5049  **/
5050 static void
5051 e1000_setup_rctl(struct e1000_hw *hw)
5052 {
5053 	uint32_t rctl;
5054 
5055 	rctl = E1000_READ_REG(hw, RCTL);
5056 
5057 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5058 
5059 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5060 		| E1000_RCTL_RDMTS_HALF;	/* |
5061 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5062 
5063 	if (hw->tbi_compatibility_on == 1)
5064 		rctl |= E1000_RCTL_SBP;
5065 	else
5066 		rctl &= ~E1000_RCTL_SBP;
5067 
5068 	rctl &= ~(E1000_RCTL_SZ_4096);
5069 		rctl |= E1000_RCTL_SZ_2048;
5070 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5071 	E1000_WRITE_REG(hw, RCTL, rctl);
5072 }
5073 
5074 /**
5075  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5076  * @adapter: board private structure
5077  *
5078  * Configure the Rx unit of the MAC after a reset.
5079  **/
5080 static void
5081 e1000_configure_rx(struct e1000_hw *hw)
5082 {
5083 	unsigned long rctl, ctrl_ext;
5084 	rx_tail = 0;
5085 	/* make sure receives are disabled while setting up the descriptors */
5086 	rctl = E1000_READ_REG(hw, RCTL);
5087 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5088 	if (hw->mac_type >= e1000_82540) {
5089 		/* Set the interrupt throttling rate.  Value is calculated
5090 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5091 #define MAX_INTS_PER_SEC	8000
5092 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
5093 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5094 	}
5095 
5096 	if (hw->mac_type >= e1000_82571) {
5097 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5098 		/* Reset delay timers after every interrupt */
5099 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5100 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5101 		E1000_WRITE_FLUSH(hw);
5102 	}
5103 	/* Setup the Base and Length of the Rx Descriptor Ring */
5104 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
5105 	E1000_WRITE_REG(hw, RDBAH, 0);
5106 
5107 	E1000_WRITE_REG(hw, RDLEN, 128);
5108 
5109 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
5110 	E1000_WRITE_REG(hw, RDH, 0);
5111 	E1000_WRITE_REG(hw, RDT, 0);
5112 	/* Enable Receives */
5113 
5114 	if (hw->mac_type == e1000_igb) {
5115 
5116 		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5117 		reg_rxdctl |= 1 << 25;
5118 		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5119 		mdelay(20);
5120 	}
5121 
5122 	E1000_WRITE_REG(hw, RCTL, rctl);
5123 
5124 	fill_rx(hw);
5125 }
5126 
5127 /**************************************************************************
5128 POLL - Wait for a frame
5129 ***************************************************************************/
5130 static int
5131 e1000_poll(struct eth_device *nic)
5132 {
5133 	struct e1000_hw *hw = nic->priv;
5134 	struct e1000_rx_desc *rd;
5135 	uint32_t inval_start, inval_end;
5136 	uint32_t len;
5137 
5138 	/* return true if there's an ethernet packet ready to read */
5139 	rd = rx_base + rx_last;
5140 
5141 	/* Re-load the descriptor from RAM. */
5142 	inval_start = ((u32)rd) & ~(ARCH_DMA_MINALIGN - 1);
5143 	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5144 	invalidate_dcache_range(inval_start, inval_end);
5145 
5146 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5147 		return 0;
5148 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5149 	/* Packet received, make sure the data are re-loaded from RAM. */
5150 	len = le32_to_cpu(rd->length);
5151 	invalidate_dcache_range((u32)packet,
5152 				(u32)packet + roundup(len, ARCH_DMA_MINALIGN));
5153 	NetReceive((uchar *)packet, len);
5154 	fill_rx(hw);
5155 	return 1;
5156 }
5157 
5158 /**************************************************************************
5159 TRANSMIT - Transmit a frame
5160 ***************************************************************************/
5161 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5162 {
5163 	void *nv_packet = (void *)txpacket;
5164 	struct e1000_hw *hw = nic->priv;
5165 	struct e1000_tx_desc *txp;
5166 	int i = 0;
5167 	uint32_t flush_start, flush_end;
5168 
5169 	txp = tx_base + tx_tail;
5170 	tx_tail = (tx_tail + 1) % 8;
5171 
5172 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5173 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5174 	txp->upper.data = 0;
5175 
5176 	/* Dump the packet into RAM so e1000 can pick them. */
5177 	flush_dcache_range((u32)nv_packet,
5178 			   (u32)nv_packet + roundup(length, ARCH_DMA_MINALIGN));
5179 	/* Dump the descriptor into RAM as well. */
5180 	flush_start = ((u32)txp) & ~(ARCH_DMA_MINALIGN - 1);
5181 	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5182 	flush_dcache_range(flush_start, flush_end);
5183 
5184 	E1000_WRITE_REG(hw, TDT, tx_tail);
5185 
5186 	E1000_WRITE_FLUSH(hw);
5187 	while (1) {
5188 		invalidate_dcache_range(flush_start, flush_end);
5189 		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5190 			break;
5191 		if (i++ > TOUT_LOOP) {
5192 			DEBUGOUT("e1000: tx timeout\n");
5193 			return 0;
5194 		}
5195 		udelay(10);	/* give the nic a chance to write to the register */
5196 	}
5197 	return 1;
5198 }
5199 
5200 /*reset function*/
5201 static inline int
5202 e1000_reset(struct eth_device *nic)
5203 {
5204 	struct e1000_hw *hw = nic->priv;
5205 
5206 	e1000_reset_hw(hw);
5207 	if (hw->mac_type >= e1000_82544) {
5208 		E1000_WRITE_REG(hw, WUC, 0);
5209 	}
5210 	return e1000_init_hw(nic);
5211 }
5212 
5213 /**************************************************************************
5214 DISABLE - Turn off ethernet interface
5215 ***************************************************************************/
5216 static void
5217 e1000_disable(struct eth_device *nic)
5218 {
5219 	struct e1000_hw *hw = nic->priv;
5220 
5221 	/* Turn off the ethernet interface */
5222 	E1000_WRITE_REG(hw, RCTL, 0);
5223 	E1000_WRITE_REG(hw, TCTL, 0);
5224 
5225 	/* Clear the transmit ring */
5226 	E1000_WRITE_REG(hw, TDH, 0);
5227 	E1000_WRITE_REG(hw, TDT, 0);
5228 
5229 	/* Clear the receive ring */
5230 	E1000_WRITE_REG(hw, RDH, 0);
5231 	E1000_WRITE_REG(hw, RDT, 0);
5232 
5233 	/* put the card in its initial state */
5234 #if 0
5235 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5236 #endif
5237 	mdelay(10);
5238 
5239 }
5240 
5241 /**************************************************************************
5242 INIT - set up ethernet interface(s)
5243 ***************************************************************************/
5244 static int
5245 e1000_init(struct eth_device *nic, bd_t * bis)
5246 {
5247 	struct e1000_hw *hw = nic->priv;
5248 	int ret_val = 0;
5249 
5250 	ret_val = e1000_reset(nic);
5251 	if (ret_val < 0) {
5252 		if ((ret_val == -E1000_ERR_NOLINK) ||
5253 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5254 			E1000_ERR(hw->nic, "Valid Link not detected\n");
5255 		} else {
5256 			E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5257 		}
5258 		return 0;
5259 	}
5260 	e1000_configure_tx(hw);
5261 	e1000_setup_rctl(hw);
5262 	e1000_configure_rx(hw);
5263 	return 1;
5264 }
5265 
5266 /******************************************************************************
5267  * Gets the current PCI bus type of hardware
5268  *
5269  * hw - Struct containing variables accessed by shared code
5270  *****************************************************************************/
5271 void e1000_get_bus_type(struct e1000_hw *hw)
5272 {
5273 	uint32_t status;
5274 
5275 	switch (hw->mac_type) {
5276 	case e1000_82542_rev2_0:
5277 	case e1000_82542_rev2_1:
5278 		hw->bus_type = e1000_bus_type_pci;
5279 		break;
5280 	case e1000_82571:
5281 	case e1000_82572:
5282 	case e1000_82573:
5283 	case e1000_82574:
5284 	case e1000_80003es2lan:
5285 	case e1000_ich8lan:
5286 	case e1000_igb:
5287 		hw->bus_type = e1000_bus_type_pci_express;
5288 		break;
5289 	default:
5290 		status = E1000_READ_REG(hw, STATUS);
5291 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5292 				e1000_bus_type_pcix : e1000_bus_type_pci;
5293 		break;
5294 	}
5295 }
5296 
5297 /* A list of all registered e1000 devices */
5298 static LIST_HEAD(e1000_hw_list);
5299 
5300 /**************************************************************************
5301 PROBE - Look for an adapter, this routine's visible to the outside
5302 You should omit the last argument struct pci_device * for a non-PCI NIC
5303 ***************************************************************************/
5304 int
5305 e1000_initialize(bd_t * bis)
5306 {
5307 	unsigned int i;
5308 	pci_dev_t devno;
5309 
5310 	DEBUGFUNC();
5311 
5312 	/* Find and probe all the matching PCI devices */
5313 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5314 		u32 val;
5315 
5316 		/*
5317 		 * These will never get freed due to errors, this allows us to
5318 		 * perform SPI EEPROM programming from U-boot, for example.
5319 		 */
5320 		struct eth_device *nic = malloc(sizeof(*nic));
5321 		struct e1000_hw *hw = malloc(sizeof(*hw));
5322 		if (!nic || !hw) {
5323 			printf("e1000#%u: Out of Memory!\n", i);
5324 			free(nic);
5325 			free(hw);
5326 			continue;
5327 		}
5328 
5329 		/* Make sure all of the fields are initially zeroed */
5330 		memset(nic, 0, sizeof(*nic));
5331 		memset(hw, 0, sizeof(*hw));
5332 
5333 		/* Assign the passed-in values */
5334 		hw->cardnum = i;
5335 		hw->pdev = devno;
5336 		hw->nic = nic;
5337 		nic->priv = hw;
5338 
5339 		/* Generate a card name */
5340 		sprintf(nic->name, "e1000#%u", hw->cardnum);
5341 
5342 		/* Print a debug message with the IO base address */
5343 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5344 		E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5345 
5346 		/* Try to enable I/O accesses and bus-mastering */
5347 		val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5348 		pci_write_config_dword(devno, PCI_COMMAND, val);
5349 
5350 		/* Make sure it worked */
5351 		pci_read_config_dword(devno, PCI_COMMAND, &val);
5352 		if (!(val & PCI_COMMAND_MEMORY)) {
5353 			E1000_ERR(nic, "Can't enable I/O memory\n");
5354 			continue;
5355 		}
5356 		if (!(val & PCI_COMMAND_MASTER)) {
5357 			E1000_ERR(nic, "Can't enable bus-mastering\n");
5358 			continue;
5359 		}
5360 
5361 		/* Are these variables needed? */
5362 		hw->fc = e1000_fc_default;
5363 		hw->original_fc = e1000_fc_default;
5364 		hw->autoneg_failed = 0;
5365 		hw->autoneg = 1;
5366 		hw->get_link_status = true;
5367 #ifndef CONFIG_E1000_NO_NVM
5368 		hw->eeprom_semaphore_present = true;
5369 #endif
5370 		hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5371 							PCI_REGION_MEM);
5372 		hw->mac_type = e1000_undefined;
5373 
5374 		/* MAC and Phy settings */
5375 		if (e1000_sw_init(nic) < 0) {
5376 			E1000_ERR(nic, "Software init failed\n");
5377 			continue;
5378 		}
5379 		if (e1000_check_phy_reset_block(hw))
5380 			E1000_ERR(nic, "PHY Reset is blocked!\n");
5381 
5382 		/* Basic init was OK, reset the hardware and allow SPI access */
5383 		e1000_reset_hw(hw);
5384 		list_add_tail(&hw->list_node, &e1000_hw_list);
5385 
5386 #ifndef CONFIG_E1000_NO_NVM
5387 		/* Validate the EEPROM and get chipset information */
5388 #if !defined(CONFIG_MVBC_1G)
5389 		if (e1000_init_eeprom_params(hw)) {
5390 			E1000_ERR(nic, "EEPROM is invalid!\n");
5391 			continue;
5392 		}
5393 		if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5394 		    e1000_validate_eeprom_checksum(hw))
5395 			continue;
5396 #endif
5397 		e1000_read_mac_addr(nic);
5398 #endif
5399 		e1000_get_bus_type(hw);
5400 
5401 #ifndef CONFIG_E1000_NO_NVM
5402 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5403 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5404 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5405 #else
5406 		memset(nic->enetaddr, 0, 6);
5407 		printf("e1000: no NVM\n");
5408 #endif
5409 
5410 		/* Set up the function pointers and register the device */
5411 		nic->init = e1000_init;
5412 		nic->recv = e1000_poll;
5413 		nic->send = e1000_transmit;
5414 		nic->halt = e1000_disable;
5415 		eth_register(nic);
5416 	}
5417 
5418 	return i;
5419 }
5420 
5421 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5422 {
5423 	struct e1000_hw *hw;
5424 
5425 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5426 		if (hw->cardnum == cardnum)
5427 			return hw;
5428 
5429 	return NULL;
5430 }
5431 
5432 #ifdef CONFIG_CMD_E1000
5433 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5434 		int argc, char * const argv[])
5435 {
5436 	struct e1000_hw *hw;
5437 
5438 	if (argc < 3) {
5439 		cmd_usage(cmdtp);
5440 		return 1;
5441 	}
5442 
5443 	/* Make sure we can find the requested e1000 card */
5444 	hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5445 	if (!hw) {
5446 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5447 		return 1;
5448 	}
5449 
5450 	if (!strcmp(argv[2], "print-mac-address")) {
5451 		unsigned char *mac = hw->nic->enetaddr;
5452 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5453 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5454 		return 0;
5455 	}
5456 
5457 #ifdef CONFIG_E1000_SPI
5458 	/* Handle the "SPI" subcommand */
5459 	if (!strcmp(argv[2], "spi"))
5460 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5461 #endif
5462 
5463 	cmd_usage(cmdtp);
5464 	return 1;
5465 }
5466 
5467 U_BOOT_CMD(
5468 	e1000, 7, 0, do_e1000,
5469 	"Intel e1000 controller management",
5470 	/*  */"<card#> print-mac-address\n"
5471 #ifdef CONFIG_E1000_SPI
5472 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5473 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5474 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5475 	"e1000 <card#> spi checksum [update]\n"
5476 #endif
5477 	"       - Manage the Intel E1000 PCI device"
5478 );
5479 #endif /* not CONFIG_CMD_E1000 */
5480