xref: /openbmc/u-boot/drivers/net/e1000.c (revision 53677ef1)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12   This program is free software; you can redistribute it and/or modify it
13   under the terms of the GNU General Public License as published by the Free
14   Software Foundation; either version 2 of the License, or (at your option)
15   any later version.
16 
17   This program is distributed in the hope that it will be useful, but WITHOUT
18   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20   more details.
21 
22   You should have received a copy of the GNU General Public License along with
23   this program; if not, write to the Free Software Foundation, Inc., 59
24   Temple Place - Suite 330, Boston, MA	02111-1307, USA.
25 
26   The full GNU General Public License is included in this distribution in the
27   file called LICENSE.
28 
29   Contact Information:
30   Linux NICS <linux.nics@intel.com>
31   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32 
33 *******************************************************************************/
34 /*
35  *  Copyright (C) Archway Digital Solutions.
36  *
37  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38  *  2/9/2002
39  *
40  *  Copyright (C) Linux Networx.
41  *  Massive upgrade to work with the new intel gigabit NICs.
42  *  <ebiederman at lnxi dot com>
43  */
44 
45 #include "e1000.h"
46 
47 #if defined(CONFIG_CMD_NET) \
48 	&& defined(CONFIG_NET_MULTI) && defined(CONFIG_E1000)
49 
50 #define TOUT_LOOP   100000
51 
52 #undef	virt_to_bus
53 #define	virt_to_bus(x)	((unsigned long)x)
54 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
55 #define mdelay(n)	udelay((n)*1000)
56 
57 #define E1000_DEFAULT_PBA    0x00000030
58 
59 /* NIC specific static variables go here */
60 
61 static char tx_pool[128 + 16];
62 static char rx_pool[128 + 16];
63 static char packet[2096];
64 
65 static struct e1000_tx_desc *tx_base;
66 static struct e1000_rx_desc *rx_base;
67 
68 static int tx_tail;
69 static int rx_tail, rx_last;
70 
71 static struct pci_device_id supported[] = {
72 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
86 };
87 
88 /* Function forward declarations */
89 static int e1000_setup_link(struct eth_device *nic);
90 static int e1000_setup_fiber_link(struct eth_device *nic);
91 static int e1000_setup_copper_link(struct eth_device *nic);
92 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
93 static void e1000_config_collision_dist(struct e1000_hw *hw);
94 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
95 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
96 static int e1000_check_for_link(struct eth_device *nic);
97 static int e1000_wait_autoneg(struct e1000_hw *hw);
98 static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
99 				       uint16_t * duplex);
100 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
101 			      uint16_t * phy_data);
102 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
103 			       uint16_t phy_data);
104 static void e1000_phy_hw_reset(struct e1000_hw *hw);
105 static int e1000_phy_reset(struct e1000_hw *hw);
106 static int e1000_detect_gig_phy(struct e1000_hw *hw);
107 
108 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
109 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
110 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
111 			writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
112 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
113 	readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
114 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
115 
116 #ifndef CONFIG_AP1000 /* remove for warnings */
117 /******************************************************************************
118  * Raises the EEPROM's clock input.
119  *
120  * hw - Struct containing variables accessed by shared code
121  * eecd - EECD's current value
122  *****************************************************************************/
123 static void
124 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
125 {
126 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
127 	 * wait 50 microseconds.
128 	 */
129 	*eecd = *eecd | E1000_EECD_SK;
130 	E1000_WRITE_REG(hw, EECD, *eecd);
131 	E1000_WRITE_FLUSH(hw);
132 	udelay(50);
133 }
134 
135 /******************************************************************************
136  * Lowers the EEPROM's clock input.
137  *
138  * hw - Struct containing variables accessed by shared code
139  * eecd - EECD's current value
140  *****************************************************************************/
141 static void
142 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
143 {
144 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
145 	 * wait 50 microseconds.
146 	 */
147 	*eecd = *eecd & ~E1000_EECD_SK;
148 	E1000_WRITE_REG(hw, EECD, *eecd);
149 	E1000_WRITE_FLUSH(hw);
150 	udelay(50);
151 }
152 
153 /******************************************************************************
154  * Shift data bits out to the EEPROM.
155  *
156  * hw - Struct containing variables accessed by shared code
157  * data - data to send to the EEPROM
158  * count - number of bits to shift out
159  *****************************************************************************/
160 static void
161 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
162 {
163 	uint32_t eecd;
164 	uint32_t mask;
165 
166 	/* We need to shift "count" bits out to the EEPROM. So, value in the
167 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
168 	 * In order to do this, "data" must be broken down into bits.
169 	 */
170 	mask = 0x01 << (count - 1);
171 	eecd = E1000_READ_REG(hw, EECD);
172 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
173 	do {
174 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
175 		 * and then raising and then lowering the clock (the SK bit controls
176 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
177 		 * by setting "DI" to "0" and then raising and then lowering the clock.
178 		 */
179 		eecd &= ~E1000_EECD_DI;
180 
181 		if (data & mask)
182 			eecd |= E1000_EECD_DI;
183 
184 		E1000_WRITE_REG(hw, EECD, eecd);
185 		E1000_WRITE_FLUSH(hw);
186 
187 		udelay(50);
188 
189 		e1000_raise_ee_clk(hw, &eecd);
190 		e1000_lower_ee_clk(hw, &eecd);
191 
192 		mask = mask >> 1;
193 
194 	} while (mask);
195 
196 	/* We leave the "DI" bit set to "0" when we leave this routine. */
197 	eecd &= ~E1000_EECD_DI;
198 	E1000_WRITE_REG(hw, EECD, eecd);
199 }
200 
201 /******************************************************************************
202  * Shift data bits in from the EEPROM
203  *
204  * hw - Struct containing variables accessed by shared code
205  *****************************************************************************/
206 static uint16_t
207 e1000_shift_in_ee_bits(struct e1000_hw *hw)
208 {
209 	uint32_t eecd;
210 	uint32_t i;
211 	uint16_t data;
212 
213 	/* In order to read a register from the EEPROM, we need to shift 16 bits
214 	 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
215 	 * the EEPROM (setting the SK bit), and then reading the value of the "DO"
216 	 * bit.  During this "shifting in" process the "DI" bit should always be
217 	 * clear..
218 	 */
219 
220 	eecd = E1000_READ_REG(hw, EECD);
221 
222 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
223 	data = 0;
224 
225 	for (i = 0; i < 16; i++) {
226 		data = data << 1;
227 		e1000_raise_ee_clk(hw, &eecd);
228 
229 		eecd = E1000_READ_REG(hw, EECD);
230 
231 		eecd &= ~(E1000_EECD_DI);
232 		if (eecd & E1000_EECD_DO)
233 			data |= 1;
234 
235 		e1000_lower_ee_clk(hw, &eecd);
236 	}
237 
238 	return data;
239 }
240 
241 /******************************************************************************
242  * Prepares EEPROM for access
243  *
244  * hw - Struct containing variables accessed by shared code
245  *
246  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
247  * function should be called before issuing a command to the EEPROM.
248  *****************************************************************************/
249 static void
250 e1000_setup_eeprom(struct e1000_hw *hw)
251 {
252 	uint32_t eecd;
253 
254 	eecd = E1000_READ_REG(hw, EECD);
255 
256 	/* Clear SK and DI */
257 	eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
258 	E1000_WRITE_REG(hw, EECD, eecd);
259 
260 	/* Set CS */
261 	eecd |= E1000_EECD_CS;
262 	E1000_WRITE_REG(hw, EECD, eecd);
263 }
264 
265 /******************************************************************************
266  * Returns EEPROM to a "standby" state
267  *
268  * hw - Struct containing variables accessed by shared code
269  *****************************************************************************/
270 static void
271 e1000_standby_eeprom(struct e1000_hw *hw)
272 {
273 	uint32_t eecd;
274 
275 	eecd = E1000_READ_REG(hw, EECD);
276 
277 	/* Deselct EEPROM */
278 	eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
279 	E1000_WRITE_REG(hw, EECD, eecd);
280 	E1000_WRITE_FLUSH(hw);
281 	udelay(50);
282 
283 	/* Clock high */
284 	eecd |= E1000_EECD_SK;
285 	E1000_WRITE_REG(hw, EECD, eecd);
286 	E1000_WRITE_FLUSH(hw);
287 	udelay(50);
288 
289 	/* Select EEPROM */
290 	eecd |= E1000_EECD_CS;
291 	E1000_WRITE_REG(hw, EECD, eecd);
292 	E1000_WRITE_FLUSH(hw);
293 	udelay(50);
294 
295 	/* Clock low */
296 	eecd &= ~E1000_EECD_SK;
297 	E1000_WRITE_REG(hw, EECD, eecd);
298 	E1000_WRITE_FLUSH(hw);
299 	udelay(50);
300 }
301 
302 /******************************************************************************
303  * Reads a 16 bit word from the EEPROM.
304  *
305  * hw - Struct containing variables accessed by shared code
306  * offset - offset of  word in the EEPROM to read
307  * data - word read from the EEPROM
308  *****************************************************************************/
309 static int
310 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
311 {
312 	uint32_t eecd;
313 	uint32_t i = 0;
314 	int large_eeprom = FALSE;
315 
316 	/* Request EEPROM Access */
317 	if (hw->mac_type > e1000_82544) {
318 		eecd = E1000_READ_REG(hw, EECD);
319 		if (eecd & E1000_EECD_SIZE)
320 			large_eeprom = TRUE;
321 		eecd |= E1000_EECD_REQ;
322 		E1000_WRITE_REG(hw, EECD, eecd);
323 		eecd = E1000_READ_REG(hw, EECD);
324 		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
325 			i++;
326 			udelay(10);
327 			eecd = E1000_READ_REG(hw, EECD);
328 		}
329 		if (!(eecd & E1000_EECD_GNT)) {
330 			eecd &= ~E1000_EECD_REQ;
331 			E1000_WRITE_REG(hw, EECD, eecd);
332 			DEBUGOUT("Could not acquire EEPROM grant\n");
333 			return -E1000_ERR_EEPROM;
334 		}
335 	}
336 
337 	/*  Prepare the EEPROM for reading  */
338 	e1000_setup_eeprom(hw);
339 
340 	/*  Send the READ command (opcode + addr)  */
341 	e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
342 	e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
343 
344 	/* Read the data */
345 	*data = e1000_shift_in_ee_bits(hw);
346 
347 	/* End this read operation */
348 	e1000_standby_eeprom(hw);
349 
350 	/* Stop requesting EEPROM access */
351 	if (hw->mac_type > e1000_82544) {
352 		eecd = E1000_READ_REG(hw, EECD);
353 		eecd &= ~E1000_EECD_REQ;
354 		E1000_WRITE_REG(hw, EECD, eecd);
355 	}
356 
357 	return 0;
358 }
359 
360 #if 0
361 static void
362 e1000_eeprom_cleanup(struct e1000_hw *hw)
363 {
364 	uint32_t eecd;
365 
366 	eecd = E1000_READ_REG(hw, EECD);
367 	eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
368 	E1000_WRITE_REG(hw, EECD, eecd);
369 	e1000_raise_ee_clk(hw, &eecd);
370 	e1000_lower_ee_clk(hw, &eecd);
371 }
372 
373 static uint16_t
374 e1000_wait_eeprom_done(struct e1000_hw *hw)
375 {
376 	uint32_t eecd;
377 	uint32_t i;
378 
379 	e1000_standby_eeprom(hw);
380 	for (i = 0; i < 200; i++) {
381 		eecd = E1000_READ_REG(hw, EECD);
382 		if (eecd & E1000_EECD_DO)
383 			return (TRUE);
384 		udelay(5);
385 	}
386 	return (FALSE);
387 }
388 
389 static int
390 e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
391 {
392 	uint32_t eecd;
393 	int large_eeprom = FALSE;
394 	int i = 0;
395 
396 	/* Request EEPROM Access */
397 	if (hw->mac_type > e1000_82544) {
398 		eecd = E1000_READ_REG(hw, EECD);
399 		if (eecd & E1000_EECD_SIZE)
400 			large_eeprom = TRUE;
401 		eecd |= E1000_EECD_REQ;
402 		E1000_WRITE_REG(hw, EECD, eecd);
403 		eecd = E1000_READ_REG(hw, EECD);
404 		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
405 			i++;
406 			udelay(5);
407 			eecd = E1000_READ_REG(hw, EECD);
408 		}
409 		if (!(eecd & E1000_EECD_GNT)) {
410 			eecd &= ~E1000_EECD_REQ;
411 			E1000_WRITE_REG(hw, EECD, eecd);
412 			DEBUGOUT("Could not acquire EEPROM grant\n");
413 			return FALSE;
414 		}
415 	}
416 	e1000_setup_eeprom(hw);
417 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
418 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
419 	e1000_standby_eeprom(hw);
420 	e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
421 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
422 	e1000_shift_out_ee_bits(hw, Data, 16);
423 	if (!e1000_wait_eeprom_done(hw)) {
424 		return FALSE;
425 	}
426 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
427 	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
428 	e1000_eeprom_cleanup(hw);
429 
430 	/* Stop requesting EEPROM access */
431 	if (hw->mac_type > e1000_82544) {
432 		eecd = E1000_READ_REG(hw, EECD);
433 		eecd &= ~E1000_EECD_REQ;
434 		E1000_WRITE_REG(hw, EECD, eecd);
435 	}
436 	i = 0;
437 	eecd = E1000_READ_REG(hw, EECD);
438 	while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
439 		i++;
440 		udelay(10);
441 		eecd = E1000_READ_REG(hw, EECD);
442 	}
443 	if ((eecd & E1000_EECD_GNT)) {
444 		DEBUGOUT("Could not release EEPROM grant\n");
445 	}
446 	return TRUE;
447 }
448 #endif
449 
450 /******************************************************************************
451  * Verifies that the EEPROM has a valid checksum
452  *
453  * hw - Struct containing variables accessed by shared code
454  *
455  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
456  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
457  * valid.
458  *****************************************************************************/
459 static int
460 e1000_validate_eeprom_checksum(struct eth_device *nic)
461 {
462 	struct e1000_hw *hw = nic->priv;
463 	uint16_t checksum = 0;
464 	uint16_t i, eeprom_data;
465 
466 	DEBUGFUNC();
467 
468 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
469 		if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
470 			DEBUGOUT("EEPROM Read Error\n");
471 			return -E1000_ERR_EEPROM;
472 		}
473 		checksum += eeprom_data;
474 	}
475 
476 	if (checksum == (uint16_t) EEPROM_SUM) {
477 		return 0;
478 	} else {
479 		DEBUGOUT("EEPROM Checksum Invalid\n");
480 		return -E1000_ERR_EEPROM;
481 	}
482 }
483 #endif /* #ifndef CONFIG_AP1000 */
484 
485 /******************************************************************************
486  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
487  * second function of dual function devices
488  *
489  * nic - Struct containing variables accessed by shared code
490  *****************************************************************************/
491 static int
492 e1000_read_mac_addr(struct eth_device *nic)
493 {
494 #ifndef CONFIG_AP1000
495 	struct e1000_hw *hw = nic->priv;
496 	uint16_t offset;
497 	uint16_t eeprom_data;
498 	int i;
499 
500 	DEBUGFUNC();
501 
502 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
503 		offset = i >> 1;
504 		if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
505 			DEBUGOUT("EEPROM Read Error\n");
506 			return -E1000_ERR_EEPROM;
507 		}
508 		nic->enetaddr[i] = eeprom_data & 0xff;
509 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
510 	}
511 	if ((hw->mac_type == e1000_82546) &&
512 	    (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
513 		/* Invert the last bit if this is the second device */
514 		nic->enetaddr[5] += 1;
515 	}
516 #ifdef CONFIG_E1000_FALLBACK_MAC
517 	if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 )
518 		for ( i=0; i < NODE_ADDRESS_SIZE; i++ )
519 			nic->enetaddr[i] = (CONFIG_E1000_FALLBACK_MAC >> (8*(5-i))) & 0xff;
520 #endif
521 #else
522 	/*
523 	 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
524 	 * environment variables.  Currently this does not support the addition
525 	 * of a PMC e1000 card, which is certainly a possibility, so this should
526 	 * be updated to properly use the env variable only for the onboard e1000
527 	 */
528 
529 	int ii;
530 	char *s, *e;
531 
532 	DEBUGFUNC();
533 
534 	s = getenv ("ethaddr");
535 	if (s == NULL){
536 		return -E1000_ERR_EEPROM;
537 	}
538 	else{
539 		for(ii = 0; ii < 6; ii++) {
540 			nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
541 			if (s){
542 				s = (*e) ? e + 1 : e;
543 			}
544 		}
545 	}
546 #endif
547 	return 0;
548 }
549 
550 /******************************************************************************
551  * Initializes receive address filters.
552  *
553  * hw - Struct containing variables accessed by shared code
554  *
555  * Places the MAC address in receive address register 0 and clears the rest
556  * of the receive addresss registers. Clears the multicast table. Assumes
557  * the receiver is in reset when the routine is called.
558  *****************************************************************************/
559 static void
560 e1000_init_rx_addrs(struct eth_device *nic)
561 {
562 	struct e1000_hw *hw = nic->priv;
563 	uint32_t i;
564 	uint32_t addr_low;
565 	uint32_t addr_high;
566 
567 	DEBUGFUNC();
568 
569 	/* Setup the receive address. */
570 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
571 	addr_low = (nic->enetaddr[0] |
572 		    (nic->enetaddr[1] << 8) |
573 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
574 
575 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
576 
577 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
578 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
579 
580 	/* Zero out the other 15 receive addresses. */
581 	DEBUGOUT("Clearing RAR[1-15]\n");
582 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
583 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
584 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
585 	}
586 }
587 
588 /******************************************************************************
589  * Clears the VLAN filer table
590  *
591  * hw - Struct containing variables accessed by shared code
592  *****************************************************************************/
593 static void
594 e1000_clear_vfta(struct e1000_hw *hw)
595 {
596 	uint32_t offset;
597 
598 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
599 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
600 }
601 
602 /******************************************************************************
603  * Set the mac type member in the hw struct.
604  *
605  * hw - Struct containing variables accessed by shared code
606  *****************************************************************************/
607 static int
608 e1000_set_mac_type(struct e1000_hw *hw)
609 {
610 	DEBUGFUNC();
611 
612 	switch (hw->device_id) {
613 	case E1000_DEV_ID_82542:
614 		switch (hw->revision_id) {
615 		case E1000_82542_2_0_REV_ID:
616 			hw->mac_type = e1000_82542_rev2_0;
617 			break;
618 		case E1000_82542_2_1_REV_ID:
619 			hw->mac_type = e1000_82542_rev2_1;
620 			break;
621 		default:
622 			/* Invalid 82542 revision ID */
623 			return -E1000_ERR_MAC_TYPE;
624 		}
625 		break;
626 	case E1000_DEV_ID_82543GC_FIBER:
627 	case E1000_DEV_ID_82543GC_COPPER:
628 		hw->mac_type = e1000_82543;
629 		break;
630 	case E1000_DEV_ID_82544EI_COPPER:
631 	case E1000_DEV_ID_82544EI_FIBER:
632 	case E1000_DEV_ID_82544GC_COPPER:
633 	case E1000_DEV_ID_82544GC_LOM:
634 		hw->mac_type = e1000_82544;
635 		break;
636 	case E1000_DEV_ID_82540EM:
637 	case E1000_DEV_ID_82540EM_LOM:
638 		hw->mac_type = e1000_82540;
639 		break;
640 	case E1000_DEV_ID_82545EM_COPPER:
641 	case E1000_DEV_ID_82545EM_FIBER:
642 		hw->mac_type = e1000_82545;
643 		break;
644 	case E1000_DEV_ID_82546EB_COPPER:
645 	case E1000_DEV_ID_82546EB_FIBER:
646 		hw->mac_type = e1000_82546;
647 		break;
648 	case E1000_DEV_ID_82541ER:
649 		hw->mac_type = e1000_82541_rev_2;
650 		break;
651 	default:
652 		/* Should never have loaded on this device */
653 		return -E1000_ERR_MAC_TYPE;
654 	}
655 	return E1000_SUCCESS;
656 }
657 
658 /******************************************************************************
659  * Reset the transmit and receive units; mask and clear all interrupts.
660  *
661  * hw - Struct containing variables accessed by shared code
662  *****************************************************************************/
663 void
664 e1000_reset_hw(struct e1000_hw *hw)
665 {
666 	uint32_t ctrl;
667 	uint32_t ctrl_ext;
668 	uint32_t icr;
669 	uint32_t manc;
670 
671 	DEBUGFUNC();
672 
673 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
674 	if (hw->mac_type == e1000_82542_rev2_0) {
675 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
676 		pci_write_config_word(hw->pdev, PCI_COMMAND,
677 				      hw->
678 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
679 	}
680 
681 	/* Clear interrupt mask to stop board from generating interrupts */
682 	DEBUGOUT("Masking off all interrupts\n");
683 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
684 
685 	/* Disable the Transmit and Receive units.  Then delay to allow
686 	 * any pending transactions to complete before we hit the MAC with
687 	 * the global reset.
688 	 */
689 	E1000_WRITE_REG(hw, RCTL, 0);
690 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
691 	E1000_WRITE_FLUSH(hw);
692 
693 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
694 	hw->tbi_compatibility_on = FALSE;
695 
696 	/* Delay to allow any outstanding PCI transactions to complete before
697 	 * resetting the device
698 	 */
699 	mdelay(10);
700 
701 	/* Issue a global reset to the MAC.  This will reset the chip's
702 	 * transmit, receive, DMA, and link units.  It will not effect
703 	 * the current PCI configuration.  The global reset bit is self-
704 	 * clearing, and should clear within a microsecond.
705 	 */
706 	DEBUGOUT("Issuing a global reset to MAC\n");
707 	ctrl = E1000_READ_REG(hw, CTRL);
708 
709 #if 0
710 	if (hw->mac_type > e1000_82543)
711 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
712 	else
713 #endif
714 		E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
715 
716 	/* Force a reload from the EEPROM if necessary */
717 	if (hw->mac_type < e1000_82540) {
718 		/* Wait for reset to complete */
719 		udelay(10);
720 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
721 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
722 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
723 		E1000_WRITE_FLUSH(hw);
724 		/* Wait for EEPROM reload */
725 		mdelay(2);
726 	} else {
727 		/* Wait for EEPROM reload (it happens automatically) */
728 		mdelay(4);
729 		/* Dissable HW ARPs on ASF enabled adapters */
730 		manc = E1000_READ_REG(hw, MANC);
731 		manc &= ~(E1000_MANC_ARP_EN);
732 		E1000_WRITE_REG(hw, MANC, manc);
733 	}
734 
735 	/* Clear interrupt mask to stop board from generating interrupts */
736 	DEBUGOUT("Masking off all interrupts\n");
737 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
738 
739 	/* Clear any pending interrupt events. */
740 	icr = E1000_READ_REG(hw, ICR);
741 
742 	/* If MWI was previously enabled, reenable it. */
743 	if (hw->mac_type == e1000_82542_rev2_0) {
744 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
745 	}
746 }
747 
748 /******************************************************************************
749  * Performs basic configuration of the adapter.
750  *
751  * hw - Struct containing variables accessed by shared code
752  *
753  * Assumes that the controller has previously been reset and is in a
754  * post-reset uninitialized state. Initializes the receive address registers,
755  * multicast table, and VLAN filter table. Calls routines to setup link
756  * configuration and flow control settings. Clears all on-chip counters. Leaves
757  * the transmit and receive units disabled and uninitialized.
758  *****************************************************************************/
759 static int
760 e1000_init_hw(struct eth_device *nic)
761 {
762 	struct e1000_hw *hw = nic->priv;
763 	uint32_t ctrl, status;
764 	uint32_t i;
765 	int32_t ret_val;
766 	uint16_t pcix_cmd_word;
767 	uint16_t pcix_stat_hi_word;
768 	uint16_t cmd_mmrbc;
769 	uint16_t stat_mmrbc;
770 	e1000_bus_type bus_type = e1000_bus_type_unknown;
771 
772 	DEBUGFUNC();
773 #if 0
774 	/* Initialize Identification LED */
775 	ret_val = e1000_id_led_init(hw);
776 	if (ret_val < 0) {
777 		DEBUGOUT("Error Initializing Identification LED\n");
778 		return ret_val;
779 	}
780 #endif
781 	/* Set the Media Type and exit with error if it is not valid. */
782 	if (hw->mac_type != e1000_82543) {
783 		/* tbi_compatibility is only valid on 82543 */
784 		hw->tbi_compatibility_en = FALSE;
785 	}
786 
787 	if (hw->mac_type >= e1000_82543) {
788 		status = E1000_READ_REG(hw, STATUS);
789 		if (status & E1000_STATUS_TBIMODE) {
790 			hw->media_type = e1000_media_type_fiber;
791 			/* tbi_compatibility not valid on fiber */
792 			hw->tbi_compatibility_en = FALSE;
793 		} else {
794 			hw->media_type = e1000_media_type_copper;
795 		}
796 	} else {
797 		/* This is an 82542 (fiber only) */
798 		hw->media_type = e1000_media_type_fiber;
799 	}
800 
801 	/* Disabling VLAN filtering. */
802 	DEBUGOUT("Initializing the IEEE VLAN\n");
803 	E1000_WRITE_REG(hw, VET, 0);
804 
805 	e1000_clear_vfta(hw);
806 
807 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
808 	if (hw->mac_type == e1000_82542_rev2_0) {
809 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
810 		pci_write_config_word(hw->pdev, PCI_COMMAND,
811 				      hw->
812 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
813 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
814 		E1000_WRITE_FLUSH(hw);
815 		mdelay(5);
816 	}
817 
818 	/* Setup the receive address. This involves initializing all of the Receive
819 	 * Address Registers (RARs 0 - 15).
820 	 */
821 	e1000_init_rx_addrs(nic);
822 
823 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
824 	if (hw->mac_type == e1000_82542_rev2_0) {
825 		E1000_WRITE_REG(hw, RCTL, 0);
826 		E1000_WRITE_FLUSH(hw);
827 		mdelay(1);
828 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
829 	}
830 
831 	/* Zero out the Multicast HASH table */
832 	DEBUGOUT("Zeroing the MTA\n");
833 	for (i = 0; i < E1000_MC_TBL_SIZE; i++)
834 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
835 
836 #if 0
837 	/* Set the PCI priority bit correctly in the CTRL register.  This
838 	 * determines if the adapter gives priority to receives, or if it
839 	 * gives equal priority to transmits and receives.
840 	 */
841 	if (hw->dma_fairness) {
842 		ctrl = E1000_READ_REG(hw, CTRL);
843 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
844 	}
845 #endif
846 	if (hw->mac_type >= e1000_82543) {
847 		status = E1000_READ_REG(hw, STATUS);
848 		bus_type = (status & E1000_STATUS_PCIX_MODE) ?
849 		    e1000_bus_type_pcix : e1000_bus_type_pci;
850 	}
851 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
852 	if (bus_type == e1000_bus_type_pcix) {
853 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
854 				     &pcix_cmd_word);
855 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
856 				     &pcix_stat_hi_word);
857 		cmd_mmrbc =
858 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
859 		    PCIX_COMMAND_MMRBC_SHIFT;
860 		stat_mmrbc =
861 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
862 		    PCIX_STATUS_HI_MMRBC_SHIFT;
863 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
864 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
865 		if (cmd_mmrbc > stat_mmrbc) {
866 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
867 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
868 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
869 					      pcix_cmd_word);
870 		}
871 	}
872 
873 	/* Call a subroutine to configure the link and setup flow control. */
874 	ret_val = e1000_setup_link(nic);
875 
876 	/* Set the transmit descriptor write-back policy */
877 	if (hw->mac_type > e1000_82544) {
878 		ctrl = E1000_READ_REG(hw, TXDCTL);
879 		ctrl =
880 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
881 		    E1000_TXDCTL_FULL_TX_DESC_WB;
882 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
883 	}
884 #if 0
885 	/* Clear all of the statistics registers (clear on read).  It is
886 	 * important that we do this after we have tried to establish link
887 	 * because the symbol error count will increment wildly if there
888 	 * is no link.
889 	 */
890 	e1000_clear_hw_cntrs(hw);
891 #endif
892 
893 	return ret_val;
894 }
895 
896 /******************************************************************************
897  * Configures flow control and link settings.
898  *
899  * hw - Struct containing variables accessed by shared code
900  *
901  * Determines which flow control settings to use. Calls the apropriate media-
902  * specific link configuration function. Configures the flow control settings.
903  * Assuming the adapter has a valid link partner, a valid link should be
904  * established. Assumes the hardware has previously been reset and the
905  * transmitter and receiver are not enabled.
906  *****************************************************************************/
907 static int
908 e1000_setup_link(struct eth_device *nic)
909 {
910 	struct e1000_hw *hw = nic->priv;
911 	uint32_t ctrl_ext;
912 	int32_t ret_val;
913 	uint16_t eeprom_data;
914 
915 	DEBUGFUNC();
916 
917 #ifndef CONFIG_AP1000
918 	/* Read and store word 0x0F of the EEPROM. This word contains bits
919 	 * that determine the hardware's default PAUSE (flow control) mode,
920 	 * a bit that determines whether the HW defaults to enabling or
921 	 * disabling auto-negotiation, and the direction of the
922 	 * SW defined pins. If there is no SW over-ride of the flow
923 	 * control setting, then the variable hw->fc will
924 	 * be initialized based on a value in the EEPROM.
925 	 */
926 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
927 		DEBUGOUT("EEPROM Read Error\n");
928 		return -E1000_ERR_EEPROM;
929 	}
930 #else
931 	/* we have to hardcode the proper value for our hardware. */
932 	/* this value is for the 82540EM pci card used for prototyping, and it works. */
933 	eeprom_data = 0xb220;
934 #endif
935 
936 	if (hw->fc == e1000_fc_default) {
937 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
938 			hw->fc = e1000_fc_none;
939 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
940 			 EEPROM_WORD0F_ASM_DIR)
941 			hw->fc = e1000_fc_tx_pause;
942 		else
943 			hw->fc = e1000_fc_full;
944 	}
945 
946 	/* We want to save off the original Flow Control configuration just
947 	 * in case we get disconnected and then reconnected into a different
948 	 * hub or switch with different Flow Control capabilities.
949 	 */
950 	if (hw->mac_type == e1000_82542_rev2_0)
951 		hw->fc &= (~e1000_fc_tx_pause);
952 
953 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
954 		hw->fc &= (~e1000_fc_rx_pause);
955 
956 	hw->original_fc = hw->fc;
957 
958 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
959 
960 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
961 	 * polarity value for the SW controlled pins, and setup the
962 	 * Extended Device Control reg with that info.
963 	 * This is needed because one of the SW controlled pins is used for
964 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
965 	 * or e1000_phy_setup() is called.
966 	 */
967 	if (hw->mac_type == e1000_82543) {
968 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
969 			    SWDPIO__EXT_SHIFT);
970 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
971 	}
972 
973 	/* Call the necessary subroutine to configure the link. */
974 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
975 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
976 	if (ret_val < 0) {
977 		return ret_val;
978 	}
979 
980 	/* Initialize the flow control address, type, and PAUSE timer
981 	 * registers to their default values.  This is done even if flow
982 	 * control is disabled, because it does not hurt anything to
983 	 * initialize these registers.
984 	 */
985 	DEBUGOUT
986 	    ("Initializing the Flow Control address, type and timer regs\n");
987 
988 	E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
989 	E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
990 	E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
991 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
992 
993 	/* Set the flow control receive threshold registers.  Normally,
994 	 * these registers will be set to a default threshold that may be
995 	 * adjusted later by the driver's runtime code.  However, if the
996 	 * ability to transmit pause frames in not enabled, then these
997 	 * registers will be set to 0.
998 	 */
999 	if (!(hw->fc & e1000_fc_tx_pause)) {
1000 		E1000_WRITE_REG(hw, FCRTL, 0);
1001 		E1000_WRITE_REG(hw, FCRTH, 0);
1002 	} else {
1003 		/* We need to set up the Receive Threshold high and low water marks
1004 		 * as well as (optionally) enabling the transmission of XON frames.
1005 		 */
1006 		if (hw->fc_send_xon) {
1007 			E1000_WRITE_REG(hw, FCRTL,
1008 					(hw->fc_low_water | E1000_FCRTL_XONE));
1009 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1010 		} else {
1011 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1012 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1013 		}
1014 	}
1015 	return ret_val;
1016 }
1017 
1018 /******************************************************************************
1019  * Sets up link for a fiber based adapter
1020  *
1021  * hw - Struct containing variables accessed by shared code
1022  *
1023  * Manipulates Physical Coding Sublayer functions in order to configure
1024  * link. Assumes the hardware has been previously reset and the transmitter
1025  * and receiver are not enabled.
1026  *****************************************************************************/
1027 static int
1028 e1000_setup_fiber_link(struct eth_device *nic)
1029 {
1030 	struct e1000_hw *hw = nic->priv;
1031 	uint32_t ctrl;
1032 	uint32_t status;
1033 	uint32_t txcw = 0;
1034 	uint32_t i;
1035 	uint32_t signal;
1036 	int32_t ret_val;
1037 
1038 	DEBUGFUNC();
1039 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1040 	 * set when the optics detect a signal. On older adapters, it will be
1041 	 * cleared when there is a signal
1042 	 */
1043 	ctrl = E1000_READ_REG(hw, CTRL);
1044 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1045 		signal = E1000_CTRL_SWDPIN1;
1046 	else
1047 		signal = 0;
1048 
1049 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1050 	       ctrl);
1051 	/* Take the link out of reset */
1052 	ctrl &= ~(E1000_CTRL_LRST);
1053 
1054 	e1000_config_collision_dist(hw);
1055 
1056 	/* Check for a software override of the flow control settings, and setup
1057 	 * the device accordingly.  If auto-negotiation is enabled, then software
1058 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1059 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1060 	 * auto-negotiation is disabled, then software will have to manually
1061 	 * configure the two flow control enable bits in the CTRL register.
1062 	 *
1063 	 * The possible values of the "fc" parameter are:
1064 	 *	0:  Flow control is completely disabled
1065 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
1066 	 *	    not send pause frames).
1067 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
1068 	 *	    not support receiving pause frames).
1069 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1070 	 */
1071 	switch (hw->fc) {
1072 	case e1000_fc_none:
1073 		/* Flow control is completely disabled by a software over-ride. */
1074 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1075 		break;
1076 	case e1000_fc_rx_pause:
1077 		/* RX Flow control is enabled and TX Flow control is disabled by a
1078 		 * software over-ride. Since there really isn't a way to advertise
1079 		 * that we are capable of RX Pause ONLY, we will advertise that we
1080 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
1081 		 *  disable the adapter's ability to send PAUSE frames.
1082 		 */
1083 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1084 		break;
1085 	case e1000_fc_tx_pause:
1086 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
1087 		 * software over-ride.
1088 		 */
1089 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1090 		break;
1091 	case e1000_fc_full:
1092 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
1093 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1094 		break;
1095 	default:
1096 		DEBUGOUT("Flow control param set incorrectly\n");
1097 		return -E1000_ERR_CONFIG;
1098 		break;
1099 	}
1100 
1101 	/* Since auto-negotiation is enabled, take the link out of reset (the link
1102 	 * will be in reset, because we previously reset the chip). This will
1103 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
1104 	 * link-up status bit will be set and the flow control enable bits (RFCE
1105 	 * and TFCE) will be set according to their negotiated value.
1106 	 */
1107 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1108 
1109 	E1000_WRITE_REG(hw, TXCW, txcw);
1110 	E1000_WRITE_REG(hw, CTRL, ctrl);
1111 	E1000_WRITE_FLUSH(hw);
1112 
1113 	hw->txcw = txcw;
1114 	mdelay(1);
1115 
1116 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1117 	 * indication in the Device Status Register.  Time-out if a link isn't
1118 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1119 	 * less than 500 milliseconds even if the other end is doing it in SW).
1120 	 */
1121 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1122 		DEBUGOUT("Looking for Link\n");
1123 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1124 			mdelay(10);
1125 			status = E1000_READ_REG(hw, STATUS);
1126 			if (status & E1000_STATUS_LU)
1127 				break;
1128 		}
1129 		if (i == (LINK_UP_TIMEOUT / 10)) {
1130 			/* AutoNeg failed to achieve a link, so we'll call
1131 			 * e1000_check_for_link. This routine will force the link up if we
1132 			 * detect a signal. This will allow us to communicate with
1133 			 * non-autonegotiating link partners.
1134 			 */
1135 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1136 			hw->autoneg_failed = 1;
1137 			ret_val = e1000_check_for_link(nic);
1138 			if (ret_val < 0) {
1139 				DEBUGOUT("Error while checking for link\n");
1140 				return ret_val;
1141 			}
1142 			hw->autoneg_failed = 0;
1143 		} else {
1144 			hw->autoneg_failed = 0;
1145 			DEBUGOUT("Valid Link Found\n");
1146 		}
1147 	} else {
1148 		DEBUGOUT("No Signal Detected\n");
1149 		return -E1000_ERR_NOLINK;
1150 	}
1151 	return 0;
1152 }
1153 
1154 /******************************************************************************
1155 * Detects which PHY is present and the speed and duplex
1156 *
1157 * hw - Struct containing variables accessed by shared code
1158 ******************************************************************************/
1159 static int
1160 e1000_setup_copper_link(struct eth_device *nic)
1161 {
1162 	struct e1000_hw *hw = nic->priv;
1163 	uint32_t ctrl;
1164 	int32_t ret_val;
1165 	uint16_t i;
1166 	uint16_t phy_data;
1167 
1168 	DEBUGFUNC();
1169 
1170 	ctrl = E1000_READ_REG(hw, CTRL);
1171 	/* With 82543, we need to force speed and duplex on the MAC equal to what
1172 	 * the PHY speed and duplex configuration is. In addition, we need to
1173 	 * perform a hardware reset on the PHY to take it out of reset.
1174 	 */
1175 	if (hw->mac_type > e1000_82543) {
1176 		ctrl |= E1000_CTRL_SLU;
1177 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1178 		E1000_WRITE_REG(hw, CTRL, ctrl);
1179 	} else {
1180 		ctrl |=
1181 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1182 		E1000_WRITE_REG(hw, CTRL, ctrl);
1183 		e1000_phy_hw_reset(hw);
1184 	}
1185 
1186 	/* Make sure we have a valid PHY */
1187 	ret_val = e1000_detect_gig_phy(hw);
1188 	if (ret_val < 0) {
1189 		DEBUGOUT("Error, did not detect valid phy.\n");
1190 		return ret_val;
1191 	}
1192 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
1193 
1194 	/* Enable CRS on TX. This must be set for half-duplex operation. */
1195 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
1196 		DEBUGOUT("PHY Read Error\n");
1197 		return -E1000_ERR_PHY;
1198 	}
1199 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1200 
1201 #if 0
1202 	/* Options:
1203 	 *   MDI/MDI-X = 0 (default)
1204 	 *   0 - Auto for all speeds
1205 	 *   1 - MDI mode
1206 	 *   2 - MDI-X mode
1207 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1208 	 */
1209 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1210 	switch (hw->mdix) {
1211 	case 1:
1212 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1213 		break;
1214 	case 2:
1215 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1216 		break;
1217 	case 3:
1218 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1219 		break;
1220 	case 0:
1221 	default:
1222 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1223 		break;
1224 	}
1225 #else
1226 	phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1227 #endif
1228 
1229 #if 0
1230 	/* Options:
1231 	 *   disable_polarity_correction = 0 (default)
1232 	 *	 Automatic Correction for Reversed Cable Polarity
1233 	 *   0 - Disabled
1234 	 *   1 - Enabled
1235 	 */
1236 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1237 	if (hw->disable_polarity_correction == 1)
1238 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1239 #else
1240 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1241 #endif
1242 	if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
1243 		DEBUGOUT("PHY Write Error\n");
1244 		return -E1000_ERR_PHY;
1245 	}
1246 
1247 	/* Force TX_CLK in the Extended PHY Specific Control Register
1248 	 * to 25MHz clock.
1249 	 */
1250 	if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
1251 		DEBUGOUT("PHY Read Error\n");
1252 		return -E1000_ERR_PHY;
1253 	}
1254 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1255 	/* Configure Master and Slave downshift values */
1256 	phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1257 		      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1258 	phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1259 		     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1260 	if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
1261 		DEBUGOUT("PHY Write Error\n");
1262 		return -E1000_ERR_PHY;
1263 	}
1264 
1265 	/* SW Reset the PHY so all changes take effect */
1266 	ret_val = e1000_phy_reset(hw);
1267 	if (ret_val < 0) {
1268 		DEBUGOUT("Error Resetting the PHY\n");
1269 		return ret_val;
1270 	}
1271 
1272 	/* Options:
1273 	 *   autoneg = 1 (default)
1274 	 *	PHY will advertise value(s) parsed from
1275 	 *	autoneg_advertised and fc
1276 	 *   autoneg = 0
1277 	 *	PHY will be set to 10H, 10F, 100H, or 100F
1278 	 *	depending on value parsed from forced_speed_duplex.
1279 	 */
1280 
1281 	/* Is autoneg enabled?	This is enabled by default or by software override.
1282 	 * If so, call e1000_phy_setup_autoneg routine to parse the
1283 	 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
1284 	 * user should have provided a speed/duplex override.  If so, then call
1285 	 * e1000_phy_force_speed_duplex to parse and set this up.
1286 	 */
1287 	/* Perform some bounds checking on the hw->autoneg_advertised
1288 	 * parameter.  If this variable is zero, then set it to the default.
1289 	 */
1290 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1291 
1292 	/* If autoneg_advertised is zero, we assume it was not defaulted
1293 	 * by the calling code so we set to advertise full capability.
1294 	 */
1295 	if (hw->autoneg_advertised == 0)
1296 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1297 
1298 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1299 	ret_val = e1000_phy_setup_autoneg(hw);
1300 	if (ret_val < 0) {
1301 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
1302 		return ret_val;
1303 	}
1304 	DEBUGOUT("Restarting Auto-Neg\n");
1305 
1306 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1307 	 * the Auto Neg Restart bit in the PHY control register.
1308 	 */
1309 	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
1310 		DEBUGOUT("PHY Read Error\n");
1311 		return -E1000_ERR_PHY;
1312 	}
1313 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1314 	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
1315 		DEBUGOUT("PHY Write Error\n");
1316 		return -E1000_ERR_PHY;
1317 	}
1318 #if 0
1319 	/* Does the user want to wait for Auto-Neg to complete here, or
1320 	 * check at a later time (for example, callback routine).
1321 	 */
1322 	if (hw->wait_autoneg_complete) {
1323 		ret_val = e1000_wait_autoneg(hw);
1324 		if (ret_val < 0) {
1325 			DEBUGOUT
1326 			    ("Error while waiting for autoneg to complete\n");
1327 			return ret_val;
1328 		}
1329 	}
1330 #else
1331 	/* If we do not wait for autonegtation to complete I
1332 	 * do not see a valid link status.
1333 	 */
1334 	ret_val = e1000_wait_autoneg(hw);
1335 	if (ret_val < 0) {
1336 		DEBUGOUT("Error while waiting for autoneg to complete\n");
1337 		return ret_val;
1338 	}
1339 #endif
1340 
1341 	/* Check link status. Wait up to 100 microseconds for link to become
1342 	 * valid.
1343 	 */
1344 	for (i = 0; i < 10; i++) {
1345 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1346 			DEBUGOUT("PHY Read Error\n");
1347 			return -E1000_ERR_PHY;
1348 		}
1349 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1350 			DEBUGOUT("PHY Read Error\n");
1351 			return -E1000_ERR_PHY;
1352 		}
1353 		if (phy_data & MII_SR_LINK_STATUS) {
1354 			/* We have link, so we need to finish the config process:
1355 			 *   1) Set up the MAC to the current PHY speed/duplex
1356 			 *	if we are on 82543.  If we
1357 			 *	are on newer silicon, we only need to configure
1358 			 *	collision distance in the Transmit Control Register.
1359 			 *   2) Set up flow control on the MAC to that established with
1360 			 *	the link partner.
1361 			 */
1362 			if (hw->mac_type >= e1000_82544) {
1363 				e1000_config_collision_dist(hw);
1364 			} else {
1365 				ret_val = e1000_config_mac_to_phy(hw);
1366 				if (ret_val < 0) {
1367 					DEBUGOUT
1368 					    ("Error configuring MAC to PHY settings\n");
1369 					return ret_val;
1370 				}
1371 			}
1372 			ret_val = e1000_config_fc_after_link_up(hw);
1373 			if (ret_val < 0) {
1374 				DEBUGOUT("Error Configuring Flow Control\n");
1375 				return ret_val;
1376 			}
1377 			DEBUGOUT("Valid link established!!!\n");
1378 			return 0;
1379 		}
1380 		udelay(10);
1381 	}
1382 
1383 	DEBUGOUT("Unable to establish link!!!\n");
1384 	return -E1000_ERR_NOLINK;
1385 }
1386 
1387 /******************************************************************************
1388 * Configures PHY autoneg and flow control advertisement settings
1389 *
1390 * hw - Struct containing variables accessed by shared code
1391 ******************************************************************************/
1392 static int
1393 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1394 {
1395 	uint16_t mii_autoneg_adv_reg;
1396 	uint16_t mii_1000t_ctrl_reg;
1397 
1398 	DEBUGFUNC();
1399 
1400 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1401 	if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
1402 		DEBUGOUT("PHY Read Error\n");
1403 		return -E1000_ERR_PHY;
1404 	}
1405 
1406 	/* Read the MII 1000Base-T Control Register (Address 9). */
1407 	if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
1408 		DEBUGOUT("PHY Read Error\n");
1409 		return -E1000_ERR_PHY;
1410 	}
1411 
1412 	/* Need to parse both autoneg_advertised and fc and set up
1413 	 * the appropriate PHY registers.  First we will parse for
1414 	 * autoneg_advertised software override.  Since we can advertise
1415 	 * a plethora of combinations, we need to check each bit
1416 	 * individually.
1417 	 */
1418 
1419 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1420 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1421 	 * the	1000Base-T Control Register (Address 9).
1422 	 */
1423 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1424 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1425 
1426 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
1427 
1428 	/* Do we want to advertise 10 Mb Half Duplex? */
1429 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1430 		DEBUGOUT("Advertise 10mb Half duplex\n");
1431 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1432 	}
1433 
1434 	/* Do we want to advertise 10 Mb Full Duplex? */
1435 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1436 		DEBUGOUT("Advertise 10mb Full duplex\n");
1437 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1438 	}
1439 
1440 	/* Do we want to advertise 100 Mb Half Duplex? */
1441 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1442 		DEBUGOUT("Advertise 100mb Half duplex\n");
1443 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1444 	}
1445 
1446 	/* Do we want to advertise 100 Mb Full Duplex? */
1447 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1448 		DEBUGOUT("Advertise 100mb Full duplex\n");
1449 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1450 	}
1451 
1452 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1453 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1454 		DEBUGOUT
1455 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1456 	}
1457 
1458 	/* Do we want to advertise 1000 Mb Full Duplex? */
1459 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1460 		DEBUGOUT("Advertise 1000mb Full duplex\n");
1461 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1462 	}
1463 
1464 	/* Check for a software override of the flow control settings, and
1465 	 * setup the PHY advertisement registers accordingly.  If
1466 	 * auto-negotiation is enabled, then software will have to set the
1467 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1468 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1469 	 *
1470 	 * The possible values of the "fc" parameter are:
1471 	 *	0:  Flow control is completely disabled
1472 	 *	1:  Rx flow control is enabled (we can receive pause frames
1473 	 *	    but not send pause frames).
1474 	 *	2:  Tx flow control is enabled (we can send pause frames
1475 	 *	    but we do not support receiving pause frames).
1476 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1477 	 *  other:  No software override.  The flow control configuration
1478 	 *	    in the EEPROM is used.
1479 	 */
1480 	switch (hw->fc) {
1481 	case e1000_fc_none:	/* 0 */
1482 		/* Flow control (RX & TX) is completely disabled by a
1483 		 * software over-ride.
1484 		 */
1485 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1486 		break;
1487 	case e1000_fc_rx_pause:	/* 1 */
1488 		/* RX Flow control is enabled, and TX Flow control is
1489 		 * disabled, by a software over-ride.
1490 		 */
1491 		/* Since there really isn't a way to advertise that we are
1492 		 * capable of RX Pause ONLY, we will advertise that we
1493 		 * support both symmetric and asymmetric RX PAUSE.  Later
1494 		 * (in e1000_config_fc_after_link_up) we will disable the
1495 		 *hw's ability to send PAUSE frames.
1496 		 */
1497 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1498 		break;
1499 	case e1000_fc_tx_pause:	/* 2 */
1500 		/* TX Flow control is enabled, and RX Flow control is
1501 		 * disabled, by a software over-ride.
1502 		 */
1503 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1504 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1505 		break;
1506 	case e1000_fc_full:	/* 3 */
1507 		/* Flow control (both RX and TX) is enabled by a software
1508 		 * over-ride.
1509 		 */
1510 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1511 		break;
1512 	default:
1513 		DEBUGOUT("Flow control param set incorrectly\n");
1514 		return -E1000_ERR_CONFIG;
1515 	}
1516 
1517 	if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
1518 		DEBUGOUT("PHY Write Error\n");
1519 		return -E1000_ERR_PHY;
1520 	}
1521 
1522 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1523 
1524 	if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
1525 		DEBUGOUT("PHY Write Error\n");
1526 		return -E1000_ERR_PHY;
1527 	}
1528 	return 0;
1529 }
1530 
1531 /******************************************************************************
1532 * Sets the collision distance in the Transmit Control register
1533 *
1534 * hw - Struct containing variables accessed by shared code
1535 *
1536 * Link should have been established previously. Reads the speed and duplex
1537 * information from the Device Status register.
1538 ******************************************************************************/
1539 static void
1540 e1000_config_collision_dist(struct e1000_hw *hw)
1541 {
1542 	uint32_t tctl;
1543 
1544 	tctl = E1000_READ_REG(hw, TCTL);
1545 
1546 	tctl &= ~E1000_TCTL_COLD;
1547 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1548 
1549 	E1000_WRITE_REG(hw, TCTL, tctl);
1550 	E1000_WRITE_FLUSH(hw);
1551 }
1552 
1553 /******************************************************************************
1554 * Sets MAC speed and duplex settings to reflect the those in the PHY
1555 *
1556 * hw - Struct containing variables accessed by shared code
1557 * mii_reg - data to write to the MII control register
1558 *
1559 * The contents of the PHY register containing the needed information need to
1560 * be passed in.
1561 ******************************************************************************/
1562 static int
1563 e1000_config_mac_to_phy(struct e1000_hw *hw)
1564 {
1565 	uint32_t ctrl;
1566 	uint16_t phy_data;
1567 
1568 	DEBUGFUNC();
1569 
1570 	/* Read the Device Control Register and set the bits to Force Speed
1571 	 * and Duplex.
1572 	 */
1573 	ctrl = E1000_READ_REG(hw, CTRL);
1574 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1575 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1576 
1577 	/* Set up duplex in the Device Control and Transmit Control
1578 	 * registers depending on negotiated values.
1579 	 */
1580 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
1581 		DEBUGOUT("PHY Read Error\n");
1582 		return -E1000_ERR_PHY;
1583 	}
1584 	if (phy_data & M88E1000_PSSR_DPLX)
1585 		ctrl |= E1000_CTRL_FD;
1586 	else
1587 		ctrl &= ~E1000_CTRL_FD;
1588 
1589 	e1000_config_collision_dist(hw);
1590 
1591 	/* Set up speed in the Device Control register depending on
1592 	 * negotiated values.
1593 	 */
1594 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1595 		ctrl |= E1000_CTRL_SPD_1000;
1596 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1597 		ctrl |= E1000_CTRL_SPD_100;
1598 	/* Write the configured values back to the Device Control Reg. */
1599 	E1000_WRITE_REG(hw, CTRL, ctrl);
1600 	return 0;
1601 }
1602 
1603 /******************************************************************************
1604  * Forces the MAC's flow control settings.
1605  *
1606  * hw - Struct containing variables accessed by shared code
1607  *
1608  * Sets the TFCE and RFCE bits in the device control register to reflect
1609  * the adapter settings. TFCE and RFCE need to be explicitly set by
1610  * software when a Copper PHY is used because autonegotiation is managed
1611  * by the PHY rather than the MAC. Software must also configure these
1612  * bits when link is forced on a fiber connection.
1613  *****************************************************************************/
1614 static int
1615 e1000_force_mac_fc(struct e1000_hw *hw)
1616 {
1617 	uint32_t ctrl;
1618 
1619 	DEBUGFUNC();
1620 
1621 	/* Get the current configuration of the Device Control Register */
1622 	ctrl = E1000_READ_REG(hw, CTRL);
1623 
1624 	/* Because we didn't get link via the internal auto-negotiation
1625 	 * mechanism (we either forced link or we got link via PHY
1626 	 * auto-neg), we have to manually enable/disable transmit an
1627 	 * receive flow control.
1628 	 *
1629 	 * The "Case" statement below enables/disable flow control
1630 	 * according to the "hw->fc" parameter.
1631 	 *
1632 	 * The possible values of the "fc" parameter are:
1633 	 *	0:  Flow control is completely disabled
1634 	 *	1:  Rx flow control is enabled (we can receive pause
1635 	 *	    frames but not send pause frames).
1636 	 *	2:  Tx flow control is enabled (we can send pause frames
1637 	 *	    frames but we do not receive pause frames).
1638 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
1639 	 *  other:  No other values should be possible at this point.
1640 	 */
1641 
1642 	switch (hw->fc) {
1643 	case e1000_fc_none:
1644 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1645 		break;
1646 	case e1000_fc_rx_pause:
1647 		ctrl &= (~E1000_CTRL_TFCE);
1648 		ctrl |= E1000_CTRL_RFCE;
1649 		break;
1650 	case e1000_fc_tx_pause:
1651 		ctrl &= (~E1000_CTRL_RFCE);
1652 		ctrl |= E1000_CTRL_TFCE;
1653 		break;
1654 	case e1000_fc_full:
1655 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1656 		break;
1657 	default:
1658 		DEBUGOUT("Flow control param set incorrectly\n");
1659 		return -E1000_ERR_CONFIG;
1660 	}
1661 
1662 	/* Disable TX Flow Control for 82542 (rev 2.0) */
1663 	if (hw->mac_type == e1000_82542_rev2_0)
1664 		ctrl &= (~E1000_CTRL_TFCE);
1665 
1666 	E1000_WRITE_REG(hw, CTRL, ctrl);
1667 	return 0;
1668 }
1669 
1670 /******************************************************************************
1671  * Configures flow control settings after link is established
1672  *
1673  * hw - Struct containing variables accessed by shared code
1674  *
1675  * Should be called immediately after a valid link has been established.
1676  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1677  * and autonegotiation is enabled, the MAC flow control settings will be set
1678  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1679  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1680  *****************************************************************************/
1681 static int
1682 e1000_config_fc_after_link_up(struct e1000_hw *hw)
1683 {
1684 	int32_t ret_val;
1685 	uint16_t mii_status_reg;
1686 	uint16_t mii_nway_adv_reg;
1687 	uint16_t mii_nway_lp_ability_reg;
1688 	uint16_t speed;
1689 	uint16_t duplex;
1690 
1691 	DEBUGFUNC();
1692 
1693 	/* Check for the case where we have fiber media and auto-neg failed
1694 	 * so we had to force link.  In this case, we need to force the
1695 	 * configuration of the MAC to match the "fc" parameter.
1696 	 */
1697 	if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
1698 		ret_val = e1000_force_mac_fc(hw);
1699 		if (ret_val < 0) {
1700 			DEBUGOUT("Error forcing flow control settings\n");
1701 			return ret_val;
1702 		}
1703 	}
1704 
1705 	/* Check for the case where we have copper media and auto-neg is
1706 	 * enabled.  In this case, we need to check and see if Auto-Neg
1707 	 * has completed, and if so, how the PHY and link partner has
1708 	 * flow control configured.
1709 	 */
1710 	if (hw->media_type == e1000_media_type_copper) {
1711 		/* Read the MII Status Register and check to see if AutoNeg
1712 		 * has completed.  We read this twice because this reg has
1713 		 * some "sticky" (latched) bits.
1714 		 */
1715 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1716 			DEBUGOUT("PHY Read Error \n");
1717 			return -E1000_ERR_PHY;
1718 		}
1719 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
1720 			DEBUGOUT("PHY Read Error \n");
1721 			return -E1000_ERR_PHY;
1722 		}
1723 
1724 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
1725 			/* The AutoNeg process has completed, so we now need to
1726 			 * read both the Auto Negotiation Advertisement Register
1727 			 * (Address 4) and the Auto_Negotiation Base Page Ability
1728 			 * Register (Address 5) to determine how flow control was
1729 			 * negotiated.
1730 			 */
1731 			if (e1000_read_phy_reg
1732 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
1733 				DEBUGOUT("PHY Read Error\n");
1734 				return -E1000_ERR_PHY;
1735 			}
1736 			if (e1000_read_phy_reg
1737 			    (hw, PHY_LP_ABILITY,
1738 			     &mii_nway_lp_ability_reg) < 0) {
1739 				DEBUGOUT("PHY Read Error\n");
1740 				return -E1000_ERR_PHY;
1741 			}
1742 
1743 			/* Two bits in the Auto Negotiation Advertisement Register
1744 			 * (Address 4) and two bits in the Auto Negotiation Base
1745 			 * Page Ability Register (Address 5) determine flow control
1746 			 * for both the PHY and the link partner.  The following
1747 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1748 			 * 1999, describes these PAUSE resolution bits and how flow
1749 			 * control is determined based upon these settings.
1750 			 * NOTE:  DC = Don't Care
1751 			 *
1752 			 *   LOCAL DEVICE  |   LINK PARTNER
1753 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1754 			 *-------|---------|-------|---------|--------------------
1755 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
1756 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
1757 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
1758 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
1759 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
1760 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
1761 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
1762 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
1763 			 *
1764 			 */
1765 			/* Are both PAUSE bits set to 1?  If so, this implies
1766 			 * Symmetric Flow Control is enabled at both ends.  The
1767 			 * ASM_DIR bits are irrelevant per the spec.
1768 			 *
1769 			 * For Symmetric Flow Control:
1770 			 *
1771 			 *   LOCAL DEVICE  |   LINK PARTNER
1772 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1773 			 *-------|---------|-------|---------|--------------------
1774 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
1775 			 *
1776 			 */
1777 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1778 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1779 				/* Now we need to check if the user selected RX ONLY
1780 				 * of pause frames.  In this case, we had to advertise
1781 				 * FULL flow control because we could not advertise RX
1782 				 * ONLY. Hence, we must now check to see if we need to
1783 				 * turn OFF  the TRANSMISSION of PAUSE frames.
1784 				 */
1785 				if (hw->original_fc == e1000_fc_full) {
1786 					hw->fc = e1000_fc_full;
1787 					DEBUGOUT("Flow Control = FULL.\r\n");
1788 				} else {
1789 					hw->fc = e1000_fc_rx_pause;
1790 					DEBUGOUT
1791 					    ("Flow Control = RX PAUSE frames only.\r\n");
1792 				}
1793 			}
1794 			/* For receiving PAUSE frames ONLY.
1795 			 *
1796 			 *   LOCAL DEVICE  |   LINK PARTNER
1797 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1798 			 *-------|---------|-------|---------|--------------------
1799 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
1800 			 *
1801 			 */
1802 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1803 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1804 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1805 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1806 			{
1807 				hw->fc = e1000_fc_tx_pause;
1808 				DEBUGOUT
1809 				    ("Flow Control = TX PAUSE frames only.\r\n");
1810 			}
1811 			/* For transmitting PAUSE frames ONLY.
1812 			 *
1813 			 *   LOCAL DEVICE  |   LINK PARTNER
1814 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1815 			 *-------|---------|-------|---------|--------------------
1816 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
1817 			 *
1818 			 */
1819 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1820 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1821 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1822 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
1823 			{
1824 				hw->fc = e1000_fc_rx_pause;
1825 				DEBUGOUT
1826 				    ("Flow Control = RX PAUSE frames only.\r\n");
1827 			}
1828 			/* Per the IEEE spec, at this point flow control should be
1829 			 * disabled.  However, we want to consider that we could
1830 			 * be connected to a legacy switch that doesn't advertise
1831 			 * desired flow control, but can be forced on the link
1832 			 * partner.  So if we advertised no flow control, that is
1833 			 * what we will resolve to.  If we advertised some kind of
1834 			 * receive capability (Rx Pause Only or Full Flow Control)
1835 			 * and the link partner advertised none, we will configure
1836 			 * ourselves to enable Rx Flow Control only.  We can do
1837 			 * this safely for two reasons:  If the link partner really
1838 			 * didn't want flow control enabled, and we enable Rx, no
1839 			 * harm done since we won't be receiving any PAUSE frames
1840 			 * anyway.  If the intent on the link partner was to have
1841 			 * flow control enabled, then by us enabling RX only, we
1842 			 * can at least receive pause frames and process them.
1843 			 * This is a good idea because in most cases, since we are
1844 			 * predominantly a server NIC, more times than not we will
1845 			 * be asked to delay transmission of packets than asking
1846 			 * our link partner to pause transmission of frames.
1847 			 */
1848 			else if (hw->original_fc == e1000_fc_none ||
1849 				 hw->original_fc == e1000_fc_tx_pause) {
1850 				hw->fc = e1000_fc_none;
1851 				DEBUGOUT("Flow Control = NONE.\r\n");
1852 			} else {
1853 				hw->fc = e1000_fc_rx_pause;
1854 				DEBUGOUT
1855 				    ("Flow Control = RX PAUSE frames only.\r\n");
1856 			}
1857 
1858 			/* Now we need to do one last check...	If we auto-
1859 			 * negotiated to HALF DUPLEX, flow control should not be
1860 			 * enabled per IEEE 802.3 spec.
1861 			 */
1862 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
1863 
1864 			if (duplex == HALF_DUPLEX)
1865 				hw->fc = e1000_fc_none;
1866 
1867 			/* Now we call a subroutine to actually force the MAC
1868 			 * controller to use the correct flow control settings.
1869 			 */
1870 			ret_val = e1000_force_mac_fc(hw);
1871 			if (ret_val < 0) {
1872 				DEBUGOUT
1873 				    ("Error forcing flow control settings\n");
1874 				return ret_val;
1875 			}
1876 		} else {
1877 			DEBUGOUT
1878 			    ("Copper PHY and Auto Neg has not completed.\r\n");
1879 		}
1880 	}
1881 	return 0;
1882 }
1883 
1884 /******************************************************************************
1885  * Checks to see if the link status of the hardware has changed.
1886  *
1887  * hw - Struct containing variables accessed by shared code
1888  *
1889  * Called by any function that needs to check the link status of the adapter.
1890  *****************************************************************************/
1891 static int
1892 e1000_check_for_link(struct eth_device *nic)
1893 {
1894 	struct e1000_hw *hw = nic->priv;
1895 	uint32_t rxcw;
1896 	uint32_t ctrl;
1897 	uint32_t status;
1898 	uint32_t rctl;
1899 	uint32_t signal;
1900 	int32_t ret_val;
1901 	uint16_t phy_data;
1902 	uint16_t lp_capability;
1903 
1904 	DEBUGFUNC();
1905 
1906 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1907 	 * set when the optics detect a signal. On older adapters, it will be
1908 	 * cleared when there is a signal
1909 	 */
1910 	ctrl = E1000_READ_REG(hw, CTRL);
1911 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1912 		signal = E1000_CTRL_SWDPIN1;
1913 	else
1914 		signal = 0;
1915 
1916 	status = E1000_READ_REG(hw, STATUS);
1917 	rxcw = E1000_READ_REG(hw, RXCW);
1918 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
1919 
1920 	/* If we have a copper PHY then we only want to go out to the PHY
1921 	 * registers to see if Auto-Neg has completed and/or if our link
1922 	 * status has changed.	The get_link_status flag will be set if we
1923 	 * receive a Link Status Change interrupt or we have Rx Sequence
1924 	 * Errors.
1925 	 */
1926 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
1927 		/* First we want to see if the MII Status Register reports
1928 		 * link.  If so, then we want to get the current speed/duplex
1929 		 * of the PHY.
1930 		 * Read the register twice since the link bit is sticky.
1931 		 */
1932 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1933 			DEBUGOUT("PHY Read Error\n");
1934 			return -E1000_ERR_PHY;
1935 		}
1936 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
1937 			DEBUGOUT("PHY Read Error\n");
1938 			return -E1000_ERR_PHY;
1939 		}
1940 
1941 		if (phy_data & MII_SR_LINK_STATUS) {
1942 			hw->get_link_status = FALSE;
1943 		} else {
1944 			/* No link detected */
1945 			return -E1000_ERR_NOLINK;
1946 		}
1947 
1948 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1949 		 * have Si on board that is 82544 or newer, Auto
1950 		 * Speed Detection takes care of MAC speed/duplex
1951 		 * configuration.  So we only need to configure Collision
1952 		 * Distance in the MAC.  Otherwise, we need to force
1953 		 * speed/duplex on the MAC to the current PHY speed/duplex
1954 		 * settings.
1955 		 */
1956 		if (hw->mac_type >= e1000_82544)
1957 			e1000_config_collision_dist(hw);
1958 		else {
1959 			ret_val = e1000_config_mac_to_phy(hw);
1960 			if (ret_val < 0) {
1961 				DEBUGOUT
1962 				    ("Error configuring MAC to PHY settings\n");
1963 				return ret_val;
1964 			}
1965 		}
1966 
1967 		/* Configure Flow Control now that Auto-Neg has completed. First, we
1968 		 * need to restore the desired flow control settings because we may
1969 		 * have had to re-autoneg with a different link partner.
1970 		 */
1971 		ret_val = e1000_config_fc_after_link_up(hw);
1972 		if (ret_val < 0) {
1973 			DEBUGOUT("Error configuring flow control\n");
1974 			return ret_val;
1975 		}
1976 
1977 		/* At this point we know that we are on copper and we have
1978 		 * auto-negotiated link.  These are conditions for checking the link
1979 		 * parter capability register.	We use the link partner capability to
1980 		 * determine if TBI Compatibility needs to be turned on or off.  If
1981 		 * the link partner advertises any speed in addition to Gigabit, then
1982 		 * we assume that they are GMII-based, and TBI compatibility is not
1983 		 * needed. If no other speeds are advertised, we assume the link
1984 		 * partner is TBI-based, and we turn on TBI Compatibility.
1985 		 */
1986 		if (hw->tbi_compatibility_en) {
1987 			if (e1000_read_phy_reg
1988 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
1989 				DEBUGOUT("PHY Read Error\n");
1990 				return -E1000_ERR_PHY;
1991 			}
1992 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
1993 					     NWAY_LPAR_10T_FD_CAPS |
1994 					     NWAY_LPAR_100TX_HD_CAPS |
1995 					     NWAY_LPAR_100TX_FD_CAPS |
1996 					     NWAY_LPAR_100T4_CAPS)) {
1997 				/* If our link partner advertises anything in addition to
1998 				 * gigabit, we do not need to enable TBI compatibility.
1999 				 */
2000 				if (hw->tbi_compatibility_on) {
2001 					/* If we previously were in the mode, turn it off. */
2002 					rctl = E1000_READ_REG(hw, RCTL);
2003 					rctl &= ~E1000_RCTL_SBP;
2004 					E1000_WRITE_REG(hw, RCTL, rctl);
2005 					hw->tbi_compatibility_on = FALSE;
2006 				}
2007 			} else {
2008 				/* If TBI compatibility is was previously off, turn it on. For
2009 				 * compatibility with a TBI link partner, we will store bad
2010 				 * packets. Some frames have an additional byte on the end and
2011 				 * will look like CRC errors to to the hardware.
2012 				 */
2013 				if (!hw->tbi_compatibility_on) {
2014 					hw->tbi_compatibility_on = TRUE;
2015 					rctl = E1000_READ_REG(hw, RCTL);
2016 					rctl |= E1000_RCTL_SBP;
2017 					E1000_WRITE_REG(hw, RCTL, rctl);
2018 				}
2019 			}
2020 		}
2021 	}
2022 	/* If we don't have link (auto-negotiation failed or link partner cannot
2023 	 * auto-negotiate), the cable is plugged in (we have signal), and our
2024 	 * link partner is not trying to auto-negotiate with us (we are receiving
2025 	 * idles or data), we need to force link up. We also need to give
2026 	 * auto-negotiation time to complete, in case the cable was just plugged
2027 	 * in. The autoneg_failed flag does this.
2028 	 */
2029 	else if ((hw->media_type == e1000_media_type_fiber) &&
2030 		 (!(status & E1000_STATUS_LU)) &&
2031 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
2032 		 (!(rxcw & E1000_RXCW_C))) {
2033 		if (hw->autoneg_failed == 0) {
2034 			hw->autoneg_failed = 1;
2035 			return 0;
2036 		}
2037 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2038 
2039 		/* Disable auto-negotiation in the TXCW register */
2040 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2041 
2042 		/* Force link-up and also force full-duplex. */
2043 		ctrl = E1000_READ_REG(hw, CTRL);
2044 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2045 		E1000_WRITE_REG(hw, CTRL, ctrl);
2046 
2047 		/* Configure Flow Control after forcing link up. */
2048 		ret_val = e1000_config_fc_after_link_up(hw);
2049 		if (ret_val < 0) {
2050 			DEBUGOUT("Error configuring flow control\n");
2051 			return ret_val;
2052 		}
2053 	}
2054 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2055 	 * auto-negotiation in the TXCW register and disable forced link in the
2056 	 * Device Control register in an attempt to auto-negotiate with our link
2057 	 * partner.
2058 	 */
2059 	else if ((hw->media_type == e1000_media_type_fiber) &&
2060 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2061 		DEBUGOUT
2062 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2063 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
2064 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2065 	}
2066 	return 0;
2067 }
2068 
2069 /******************************************************************************
2070  * Detects the current speed and duplex settings of the hardware.
2071  *
2072  * hw - Struct containing variables accessed by shared code
2073  * speed - Speed of the connection
2074  * duplex - Duplex setting of the connection
2075  *****************************************************************************/
2076 static void
2077 e1000_get_speed_and_duplex(struct e1000_hw *hw,
2078 			   uint16_t * speed, uint16_t * duplex)
2079 {
2080 	uint32_t status;
2081 
2082 	DEBUGFUNC();
2083 
2084 	if (hw->mac_type >= e1000_82543) {
2085 		status = E1000_READ_REG(hw, STATUS);
2086 		if (status & E1000_STATUS_SPEED_1000) {
2087 			*speed = SPEED_1000;
2088 			DEBUGOUT("1000 Mbs, ");
2089 		} else if (status & E1000_STATUS_SPEED_100) {
2090 			*speed = SPEED_100;
2091 			DEBUGOUT("100 Mbs, ");
2092 		} else {
2093 			*speed = SPEED_10;
2094 			DEBUGOUT("10 Mbs, ");
2095 		}
2096 
2097 		if (status & E1000_STATUS_FD) {
2098 			*duplex = FULL_DUPLEX;
2099 			DEBUGOUT("Full Duplex\r\n");
2100 		} else {
2101 			*duplex = HALF_DUPLEX;
2102 			DEBUGOUT(" Half Duplex\r\n");
2103 		}
2104 	} else {
2105 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2106 		*speed = SPEED_1000;
2107 		*duplex = FULL_DUPLEX;
2108 	}
2109 }
2110 
2111 /******************************************************************************
2112 * Blocks until autoneg completes or times out (~4.5 seconds)
2113 *
2114 * hw - Struct containing variables accessed by shared code
2115 ******************************************************************************/
2116 static int
2117 e1000_wait_autoneg(struct e1000_hw *hw)
2118 {
2119 	uint16_t i;
2120 	uint16_t phy_data;
2121 
2122 	DEBUGFUNC();
2123 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2124 
2125 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2126 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2127 		/* Read the MII Status Register and wait for Auto-Neg
2128 		 * Complete bit to be set.
2129 		 */
2130 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2131 			DEBUGOUT("PHY Read Error\n");
2132 			return -E1000_ERR_PHY;
2133 		}
2134 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
2135 			DEBUGOUT("PHY Read Error\n");
2136 			return -E1000_ERR_PHY;
2137 		}
2138 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2139 			DEBUGOUT("Auto-Neg complete.\n");
2140 			return 0;
2141 		}
2142 		mdelay(100);
2143 	}
2144 	DEBUGOUT("Auto-Neg timedout.\n");
2145 	return -E1000_ERR_TIMEOUT;
2146 }
2147 
2148 /******************************************************************************
2149 * Raises the Management Data Clock
2150 *
2151 * hw - Struct containing variables accessed by shared code
2152 * ctrl - Device control register's current value
2153 ******************************************************************************/
2154 static void
2155 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2156 {
2157 	/* Raise the clock input to the Management Data Clock (by setting the MDC
2158 	 * bit), and then delay 2 microseconds.
2159 	 */
2160 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2161 	E1000_WRITE_FLUSH(hw);
2162 	udelay(2);
2163 }
2164 
2165 /******************************************************************************
2166 * Lowers the Management Data Clock
2167 *
2168 * hw - Struct containing variables accessed by shared code
2169 * ctrl - Device control register's current value
2170 ******************************************************************************/
2171 static void
2172 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
2173 {
2174 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
2175 	 * bit), and then delay 2 microseconds.
2176 	 */
2177 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2178 	E1000_WRITE_FLUSH(hw);
2179 	udelay(2);
2180 }
2181 
2182 /******************************************************************************
2183 * Shifts data bits out to the PHY
2184 *
2185 * hw - Struct containing variables accessed by shared code
2186 * data - Data to send out to the PHY
2187 * count - Number of bits to shift out
2188 *
2189 * Bits are shifted out in MSB to LSB order.
2190 ******************************************************************************/
2191 static void
2192 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
2193 {
2194 	uint32_t ctrl;
2195 	uint32_t mask;
2196 
2197 	/* We need to shift "count" number of bits out to the PHY. So, the value
2198 	 * in the "data" parameter will be shifted out to the PHY one bit at a
2199 	 * time. In order to do this, "data" must be broken down into bits.
2200 	 */
2201 	mask = 0x01;
2202 	mask <<= (count - 1);
2203 
2204 	ctrl = E1000_READ_REG(hw, CTRL);
2205 
2206 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2207 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2208 
2209 	while (mask) {
2210 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2211 		 * then raising and lowering the Management Data Clock. A "0" is
2212 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
2213 		 * raising and lowering the clock.
2214 		 */
2215 		if (data & mask)
2216 			ctrl |= E1000_CTRL_MDIO;
2217 		else
2218 			ctrl &= ~E1000_CTRL_MDIO;
2219 
2220 		E1000_WRITE_REG(hw, CTRL, ctrl);
2221 		E1000_WRITE_FLUSH(hw);
2222 
2223 		udelay(2);
2224 
2225 		e1000_raise_mdi_clk(hw, &ctrl);
2226 		e1000_lower_mdi_clk(hw, &ctrl);
2227 
2228 		mask = mask >> 1;
2229 	}
2230 }
2231 
2232 /******************************************************************************
2233 * Shifts data bits in from the PHY
2234 *
2235 * hw - Struct containing variables accessed by shared code
2236 *
2237 * Bits are shifted in in MSB to LSB order.
2238 ******************************************************************************/
2239 static uint16_t
2240 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2241 {
2242 	uint32_t ctrl;
2243 	uint16_t data = 0;
2244 	uint8_t i;
2245 
2246 	/* In order to read a register from the PHY, we need to shift in a total
2247 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2248 	 * to avoid contention on the MDIO pin when a read operation is performed.
2249 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2250 	 * by raising the input to the Management Data Clock (setting the MDC bit),
2251 	 * and then reading the value of the MDIO bit.
2252 	 */
2253 	ctrl = E1000_READ_REG(hw, CTRL);
2254 
2255 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2256 	ctrl &= ~E1000_CTRL_MDIO_DIR;
2257 	ctrl &= ~E1000_CTRL_MDIO;
2258 
2259 	E1000_WRITE_REG(hw, CTRL, ctrl);
2260 	E1000_WRITE_FLUSH(hw);
2261 
2262 	/* Raise and Lower the clock before reading in the data. This accounts for
2263 	 * the turnaround bits. The first clock occurred when we clocked out the
2264 	 * last bit of the Register Address.
2265 	 */
2266 	e1000_raise_mdi_clk(hw, &ctrl);
2267 	e1000_lower_mdi_clk(hw, &ctrl);
2268 
2269 	for (data = 0, i = 0; i < 16; i++) {
2270 		data = data << 1;
2271 		e1000_raise_mdi_clk(hw, &ctrl);
2272 		ctrl = E1000_READ_REG(hw, CTRL);
2273 		/* Check to see if we shifted in a "1". */
2274 		if (ctrl & E1000_CTRL_MDIO)
2275 			data |= 1;
2276 		e1000_lower_mdi_clk(hw, &ctrl);
2277 	}
2278 
2279 	e1000_raise_mdi_clk(hw, &ctrl);
2280 	e1000_lower_mdi_clk(hw, &ctrl);
2281 
2282 	return data;
2283 }
2284 
2285 /*****************************************************************************
2286 * Reads the value from a PHY register
2287 *
2288 * hw - Struct containing variables accessed by shared code
2289 * reg_addr - address of the PHY register to read
2290 ******************************************************************************/
2291 static int
2292 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
2293 {
2294 	uint32_t i;
2295 	uint32_t mdic = 0;
2296 	const uint32_t phy_addr = 1;
2297 
2298 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2299 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2300 		return -E1000_ERR_PARAM;
2301 	}
2302 
2303 	if (hw->mac_type > e1000_82543) {
2304 		/* Set up Op-code, Phy Address, and register address in the MDI
2305 		 * Control register.  The MAC will take care of interfacing with the
2306 		 * PHY to retrieve the desired data.
2307 		 */
2308 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2309 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
2310 			(E1000_MDIC_OP_READ));
2311 
2312 		E1000_WRITE_REG(hw, MDIC, mdic);
2313 
2314 		/* Poll the ready bit to see if the MDI read completed */
2315 		for (i = 0; i < 64; i++) {
2316 			udelay(10);
2317 			mdic = E1000_READ_REG(hw, MDIC);
2318 			if (mdic & E1000_MDIC_READY)
2319 				break;
2320 		}
2321 		if (!(mdic & E1000_MDIC_READY)) {
2322 			DEBUGOUT("MDI Read did not complete\n");
2323 			return -E1000_ERR_PHY;
2324 		}
2325 		if (mdic & E1000_MDIC_ERROR) {
2326 			DEBUGOUT("MDI Error\n");
2327 			return -E1000_ERR_PHY;
2328 		}
2329 		*phy_data = (uint16_t) mdic;
2330 	} else {
2331 		/* We must first send a preamble through the MDIO pin to signal the
2332 		 * beginning of an MII instruction.  This is done by sending 32
2333 		 * consecutive "1" bits.
2334 		 */
2335 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2336 
2337 		/* Now combine the next few fields that are required for a read
2338 		 * operation.  We use this method instead of calling the
2339 		 * e1000_shift_out_mdi_bits routine five different times. The format of
2340 		 * a MII read instruction consists of a shift out of 14 bits and is
2341 		 * defined as follows:
2342 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2343 		 * followed by a shift in of 18 bits.  This first two bits shifted in
2344 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
2345 		 * READ operation is performed.  These two bits are thrown away
2346 		 * followed by a shift in of 16 bits which contains the desired data.
2347 		 */
2348 		mdic = ((reg_addr) | (phy_addr << 5) |
2349 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2350 
2351 		e1000_shift_out_mdi_bits(hw, mdic, 14);
2352 
2353 		/* Now that we've shifted out the read command to the MII, we need to
2354 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2355 		 * register address.
2356 		 */
2357 		*phy_data = e1000_shift_in_mdi_bits(hw);
2358 	}
2359 	return 0;
2360 }
2361 
2362 /******************************************************************************
2363 * Writes a value to a PHY register
2364 *
2365 * hw - Struct containing variables accessed by shared code
2366 * reg_addr - address of the PHY register to write
2367 * data - data to write to the PHY
2368 ******************************************************************************/
2369 static int
2370 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
2371 {
2372 	uint32_t i;
2373 	uint32_t mdic = 0;
2374 	const uint32_t phy_addr = 1;
2375 
2376 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2377 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
2378 		return -E1000_ERR_PARAM;
2379 	}
2380 
2381 	if (hw->mac_type > e1000_82543) {
2382 		/* Set up Op-code, Phy Address, register address, and data intended
2383 		 * for the PHY register in the MDI Control register.  The MAC will take
2384 		 * care of interfacing with the PHY to send the desired data.
2385 		 */
2386 		mdic = (((uint32_t) phy_data) |
2387 			(reg_addr << E1000_MDIC_REG_SHIFT) |
2388 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
2389 			(E1000_MDIC_OP_WRITE));
2390 
2391 		E1000_WRITE_REG(hw, MDIC, mdic);
2392 
2393 		/* Poll the ready bit to see if the MDI read completed */
2394 		for (i = 0; i < 64; i++) {
2395 			udelay(10);
2396 			mdic = E1000_READ_REG(hw, MDIC);
2397 			if (mdic & E1000_MDIC_READY)
2398 				break;
2399 		}
2400 		if (!(mdic & E1000_MDIC_READY)) {
2401 			DEBUGOUT("MDI Write did not complete\n");
2402 			return -E1000_ERR_PHY;
2403 		}
2404 	} else {
2405 		/* We'll need to use the SW defined pins to shift the write command
2406 		 * out to the PHY. We first send a preamble to the PHY to signal the
2407 		 * beginning of the MII instruction.  This is done by sending 32
2408 		 * consecutive "1" bits.
2409 		 */
2410 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2411 
2412 		/* Now combine the remaining required fields that will indicate a
2413 		 * write operation. We use this method instead of calling the
2414 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
2415 		 * format of a MII write instruction is as follows:
2416 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2417 		 */
2418 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2419 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2420 		mdic <<= 16;
2421 		mdic |= (uint32_t) phy_data;
2422 
2423 		e1000_shift_out_mdi_bits(hw, mdic, 32);
2424 	}
2425 	return 0;
2426 }
2427 
2428 /******************************************************************************
2429 * Returns the PHY to the power-on reset state
2430 *
2431 * hw - Struct containing variables accessed by shared code
2432 ******************************************************************************/
2433 static void
2434 e1000_phy_hw_reset(struct e1000_hw *hw)
2435 {
2436 	uint32_t ctrl;
2437 	uint32_t ctrl_ext;
2438 
2439 	DEBUGFUNC();
2440 
2441 	DEBUGOUT("Resetting Phy...\n");
2442 
2443 	if (hw->mac_type > e1000_82543) {
2444 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
2445 		 * bit. Then, take it out of reset.
2446 		 */
2447 		ctrl = E1000_READ_REG(hw, CTRL);
2448 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2449 		E1000_WRITE_FLUSH(hw);
2450 		mdelay(10);
2451 		E1000_WRITE_REG(hw, CTRL, ctrl);
2452 		E1000_WRITE_FLUSH(hw);
2453 	} else {
2454 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2455 		 * bit to put the PHY into reset. Then, take it out of reset.
2456 		 */
2457 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2458 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2459 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2460 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2461 		E1000_WRITE_FLUSH(hw);
2462 		mdelay(10);
2463 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2464 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2465 		E1000_WRITE_FLUSH(hw);
2466 	}
2467 	udelay(150);
2468 }
2469 
2470 /******************************************************************************
2471 * Resets the PHY
2472 *
2473 * hw - Struct containing variables accessed by shared code
2474 *
2475 * Sets bit 15 of the MII Control regiser
2476 ******************************************************************************/
2477 static int
2478 e1000_phy_reset(struct e1000_hw *hw)
2479 {
2480 	uint16_t phy_data;
2481 
2482 	DEBUGFUNC();
2483 
2484 	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
2485 		DEBUGOUT("PHY Read Error\n");
2486 		return -E1000_ERR_PHY;
2487 	}
2488 	phy_data |= MII_CR_RESET;
2489 	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
2490 		DEBUGOUT("PHY Write Error\n");
2491 		return -E1000_ERR_PHY;
2492 	}
2493 	udelay(1);
2494 	return 0;
2495 }
2496 
2497 static int e1000_set_phy_type (struct e1000_hw *hw)
2498 {
2499 	DEBUGFUNC ();
2500 
2501 	if (hw->mac_type == e1000_undefined)
2502 		return -E1000_ERR_PHY_TYPE;
2503 
2504 	switch (hw->phy_id) {
2505 	case M88E1000_E_PHY_ID:
2506 	case M88E1000_I_PHY_ID:
2507 	case M88E1011_I_PHY_ID:
2508 		hw->phy_type = e1000_phy_m88;
2509 		break;
2510 	case IGP01E1000_I_PHY_ID:
2511 		if (hw->mac_type == e1000_82541 ||
2512 		    hw->mac_type == e1000_82541_rev_2) {
2513 			hw->phy_type = e1000_phy_igp;
2514 			break;
2515 		}
2516 		/* Fall Through */
2517 	default:
2518 		/* Should never have loaded on this device */
2519 		hw->phy_type = e1000_phy_undefined;
2520 		return -E1000_ERR_PHY_TYPE;
2521 	}
2522 
2523 	return E1000_SUCCESS;
2524 }
2525 
2526 /******************************************************************************
2527 * Probes the expected PHY address for known PHY IDs
2528 *
2529 * hw - Struct containing variables accessed by shared code
2530 ******************************************************************************/
2531 static int
2532 e1000_detect_gig_phy(struct e1000_hw *hw)
2533 {
2534 	int32_t phy_init_status;
2535 	uint16_t phy_id_high, phy_id_low;
2536 	int match = FALSE;
2537 
2538 	DEBUGFUNC();
2539 
2540 	/* Read the PHY ID Registers to identify which PHY is onboard. */
2541 	if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
2542 		DEBUGOUT("PHY Read Error\n");
2543 		return -E1000_ERR_PHY;
2544 	}
2545 	hw->phy_id = (uint32_t) (phy_id_high << 16);
2546 	udelay(2);
2547 	if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
2548 		DEBUGOUT("PHY Read Error\n");
2549 		return -E1000_ERR_PHY;
2550 	}
2551 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2552 
2553 	switch (hw->mac_type) {
2554 	case e1000_82543:
2555 		if (hw->phy_id == M88E1000_E_PHY_ID)
2556 			match = TRUE;
2557 		break;
2558 	case e1000_82544:
2559 		if (hw->phy_id == M88E1000_I_PHY_ID)
2560 			match = TRUE;
2561 		break;
2562 	case e1000_82540:
2563 	case e1000_82545:
2564 	case e1000_82546:
2565 		if (hw->phy_id == M88E1011_I_PHY_ID)
2566 			match = TRUE;
2567 		break;
2568 	case e1000_82541_rev_2:
2569 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
2570 			match = TRUE;
2571 
2572 		break;
2573 	default:
2574 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
2575 		return -E1000_ERR_CONFIG;
2576 	}
2577 
2578 	phy_init_status = e1000_set_phy_type(hw);
2579 
2580 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
2581 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
2582 		return 0;
2583 	}
2584 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
2585 	return -E1000_ERR_PHY;
2586 }
2587 
2588 /**
2589  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2590  *
2591  * e1000_sw_init initializes the Adapter private data structure.
2592  * Fields are initialized based on PCI device information and
2593  * OS network device settings (MTU size).
2594  **/
2595 
2596 static int
2597 e1000_sw_init(struct eth_device *nic, int cardnum)
2598 {
2599 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
2600 	int result;
2601 
2602 	/* PCI config space info */
2603 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
2604 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
2605 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
2606 			     &hw->subsystem_vendor_id);
2607 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
2608 
2609 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
2610 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
2611 
2612 	/* identify the MAC */
2613 	result = e1000_set_mac_type(hw);
2614 	if (result) {
2615 		E1000_ERR("Unknown MAC Type\n");
2616 		return result;
2617 	}
2618 
2619 	/* lan a vs. lan b settings */
2620 	if (hw->mac_type == e1000_82546)
2621 		/*this also works w/ multiple 82546 cards */
2622 		/*but not if they're intermingled /w other e1000s */
2623 		hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
2624 	else
2625 		hw->lan_loc = e1000_lan_a;
2626 
2627 	/* flow control settings */
2628 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
2629 	hw->fc_low_water = E1000_FC_LOW_THRESH;
2630 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
2631 	hw->fc_send_xon = 1;
2632 
2633 	/* Media type - copper or fiber */
2634 
2635 	if (hw->mac_type >= e1000_82543) {
2636 		uint32_t status = E1000_READ_REG(hw, STATUS);
2637 
2638 		if (status & E1000_STATUS_TBIMODE) {
2639 			DEBUGOUT("fiber interface\n");
2640 			hw->media_type = e1000_media_type_fiber;
2641 		} else {
2642 			DEBUGOUT("copper interface\n");
2643 			hw->media_type = e1000_media_type_copper;
2644 		}
2645 	} else {
2646 		hw->media_type = e1000_media_type_fiber;
2647 	}
2648 
2649 	if (hw->mac_type < e1000_82543)
2650 		hw->report_tx_early = 0;
2651 	else
2652 		hw->report_tx_early = 1;
2653 
2654 	hw->tbi_compatibility_en = TRUE;
2655 #if 0
2656 	hw->wait_autoneg_complete = FALSE;
2657 	hw->adaptive_ifs = TRUE;
2658 
2659 	/* Copper options */
2660 	if (hw->media_type == e1000_media_type_copper) {
2661 		hw->mdix = AUTO_ALL_MODES;
2662 		hw->disable_polarity_correction = FALSE;
2663 	}
2664 #endif
2665 	return E1000_SUCCESS;
2666 }
2667 
2668 void
2669 fill_rx(struct e1000_hw *hw)
2670 {
2671 	struct e1000_rx_desc *rd;
2672 
2673 	rx_last = rx_tail;
2674 	rd = rx_base + rx_tail;
2675 	rx_tail = (rx_tail + 1) % 8;
2676 	memset(rd, 0, 16);
2677 	rd->buffer_addr = cpu_to_le64((u32) & packet);
2678 	E1000_WRITE_REG(hw, RDT, rx_tail);
2679 }
2680 
2681 /**
2682  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2683  * @adapter: board private structure
2684  *
2685  * Configure the Tx unit of the MAC after a reset.
2686  **/
2687 
2688 static void
2689 e1000_configure_tx(struct e1000_hw *hw)
2690 {
2691 	unsigned long ptr;
2692 	unsigned long tctl;
2693 	unsigned long tipg;
2694 
2695 	ptr = (u32) tx_pool;
2696 	if (ptr & 0xf)
2697 		ptr = (ptr + 0x10) & (~0xf);
2698 
2699 	tx_base = (typeof(tx_base)) ptr;
2700 
2701 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
2702 	E1000_WRITE_REG(hw, TDBAH, 0);
2703 
2704 	E1000_WRITE_REG(hw, TDLEN, 128);
2705 
2706 	/* Setup the HW Tx Head and Tail descriptor pointers */
2707 	E1000_WRITE_REG(hw, TDH, 0);
2708 	E1000_WRITE_REG(hw, TDT, 0);
2709 	tx_tail = 0;
2710 
2711 	/* Set the default values for the Tx Inter Packet Gap timer */
2712 	switch (hw->mac_type) {
2713 	case e1000_82542_rev2_0:
2714 	case e1000_82542_rev2_1:
2715 		tipg = DEFAULT_82542_TIPG_IPGT;
2716 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2717 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2718 		break;
2719 	default:
2720 		if (hw->media_type == e1000_media_type_fiber)
2721 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2722 		else
2723 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2724 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2725 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2726 	}
2727 	E1000_WRITE_REG(hw, TIPG, tipg);
2728 #if 0
2729 	/* Set the Tx Interrupt Delay register */
2730 	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
2731 	if (hw->mac_type >= e1000_82540)
2732 		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
2733 #endif
2734 	/* Program the Transmit Control Register */
2735 	tctl = E1000_READ_REG(hw, TCTL);
2736 	tctl &= ~E1000_TCTL_CT;
2737 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
2738 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2739 	E1000_WRITE_REG(hw, TCTL, tctl);
2740 
2741 	e1000_config_collision_dist(hw);
2742 #if 0
2743 	/* Setup Transmit Descriptor Settings for this adapter */
2744 	adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
2745 
2746 	if (adapter->hw.report_tx_early == 1)
2747 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
2748 	else
2749 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
2750 #endif
2751 }
2752 
2753 /**
2754  * e1000_setup_rctl - configure the receive control register
2755  * @adapter: Board private structure
2756  **/
2757 static void
2758 e1000_setup_rctl(struct e1000_hw *hw)
2759 {
2760 	uint32_t rctl;
2761 
2762 	rctl = E1000_READ_REG(hw, RCTL);
2763 
2764 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2765 
2766 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF;	/* |
2767 												   (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
2768 
2769 	if (hw->tbi_compatibility_on == 1)
2770 		rctl |= E1000_RCTL_SBP;
2771 	else
2772 		rctl &= ~E1000_RCTL_SBP;
2773 
2774 	rctl &= ~(E1000_RCTL_SZ_4096);
2775 #if 0
2776 	switch (adapter->rx_buffer_len) {
2777 	case E1000_RXBUFFER_2048:
2778 	default:
2779 #endif
2780 		rctl |= E1000_RCTL_SZ_2048;
2781 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
2782 #if 0
2783 		break;
2784 	case E1000_RXBUFFER_4096:
2785 		rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2786 		break;
2787 	case E1000_RXBUFFER_8192:
2788 		rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2789 		break;
2790 	case E1000_RXBUFFER_16384:
2791 		rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
2792 		break;
2793 	}
2794 #endif
2795 	E1000_WRITE_REG(hw, RCTL, rctl);
2796 }
2797 
2798 /**
2799  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2800  * @adapter: board private structure
2801  *
2802  * Configure the Rx unit of the MAC after a reset.
2803  **/
2804 static void
2805 e1000_configure_rx(struct e1000_hw *hw)
2806 {
2807 	unsigned long ptr;
2808 	unsigned long rctl;
2809 #if 0
2810 	unsigned long rxcsum;
2811 #endif
2812 	rx_tail = 0;
2813 	/* make sure receives are disabled while setting up the descriptors */
2814 	rctl = E1000_READ_REG(hw, RCTL);
2815 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2816 #if 0
2817 	/* set the Receive Delay Timer Register */
2818 
2819 	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2820 #endif
2821 	if (hw->mac_type >= e1000_82540) {
2822 #if 0
2823 		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2824 #endif
2825 		/* Set the interrupt throttling rate.  Value is calculated
2826 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
2827 #define MAX_INTS_PER_SEC	8000
2828 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
2829 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
2830 	}
2831 
2832 	/* Setup the Base and Length of the Rx Descriptor Ring */
2833 	ptr = (u32) rx_pool;
2834 	if (ptr & 0xf)
2835 		ptr = (ptr + 0x10) & (~0xf);
2836 	rx_base = (typeof(rx_base)) ptr;
2837 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
2838 	E1000_WRITE_REG(hw, RDBAH, 0);
2839 
2840 	E1000_WRITE_REG(hw, RDLEN, 128);
2841 
2842 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
2843 	E1000_WRITE_REG(hw, RDH, 0);
2844 	E1000_WRITE_REG(hw, RDT, 0);
2845 #if 0
2846 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2847 	if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
2848 		rxcsum = E1000_READ_REG(hw, RXCSUM);
2849 		rxcsum |= E1000_RXCSUM_TUOFL;
2850 		E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2851 	}
2852 #endif
2853 	/* Enable Receives */
2854 
2855 	E1000_WRITE_REG(hw, RCTL, rctl);
2856 	fill_rx(hw);
2857 }
2858 
2859 /**************************************************************************
2860 POLL - Wait for a frame
2861 ***************************************************************************/
2862 static int
2863 e1000_poll(struct eth_device *nic)
2864 {
2865 	struct e1000_hw *hw = nic->priv;
2866 	struct e1000_rx_desc *rd;
2867 	/* return true if there's an ethernet packet ready to read */
2868 	rd = rx_base + rx_last;
2869 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
2870 		return 0;
2871 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
2872 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
2873 	fill_rx(hw);
2874 	return 1;
2875 }
2876 
2877 /**************************************************************************
2878 TRANSMIT - Transmit a frame
2879 ***************************************************************************/
2880 static int
2881 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
2882 {
2883 	struct e1000_hw *hw = nic->priv;
2884 	struct e1000_tx_desc *txp;
2885 	int i = 0;
2886 
2887 	txp = tx_base + tx_tail;
2888 	tx_tail = (tx_tail + 1) % 8;
2889 
2890 	txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
2891 	txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
2892 				      E1000_TXD_CMD_IFCS | length);
2893 	txp->upper.data = 0;
2894 	E1000_WRITE_REG(hw, TDT, tx_tail);
2895 
2896 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
2897 		if (i++ > TOUT_LOOP) {
2898 			DEBUGOUT("e1000: tx timeout\n");
2899 			return 0;
2900 		}
2901 		udelay(10);	/* give the nic a chance to write to the register */
2902 	}
2903 	return 1;
2904 }
2905 
2906 /*reset function*/
2907 static inline int
2908 e1000_reset(struct eth_device *nic)
2909 {
2910 	struct e1000_hw *hw = nic->priv;
2911 
2912 	e1000_reset_hw(hw);
2913 	if (hw->mac_type >= e1000_82544) {
2914 		E1000_WRITE_REG(hw, WUC, 0);
2915 	}
2916 	return e1000_init_hw(nic);
2917 }
2918 
2919 /**************************************************************************
2920 DISABLE - Turn off ethernet interface
2921 ***************************************************************************/
2922 static void
2923 e1000_disable(struct eth_device *nic)
2924 {
2925 	struct e1000_hw *hw = nic->priv;
2926 
2927 	/* Turn off the ethernet interface */
2928 	E1000_WRITE_REG(hw, RCTL, 0);
2929 	E1000_WRITE_REG(hw, TCTL, 0);
2930 
2931 	/* Clear the transmit ring */
2932 	E1000_WRITE_REG(hw, TDH, 0);
2933 	E1000_WRITE_REG(hw, TDT, 0);
2934 
2935 	/* Clear the receive ring */
2936 	E1000_WRITE_REG(hw, RDH, 0);
2937 	E1000_WRITE_REG(hw, RDT, 0);
2938 
2939 	/* put the card in its initial state */
2940 #if 0
2941 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
2942 #endif
2943 	mdelay(10);
2944 
2945 }
2946 
2947 /**************************************************************************
2948 INIT - set up ethernet interface(s)
2949 ***************************************************************************/
2950 static int
2951 e1000_init(struct eth_device *nic, bd_t * bis)
2952 {
2953 	struct e1000_hw *hw = nic->priv;
2954 	int ret_val = 0;
2955 
2956 	ret_val = e1000_reset(nic);
2957 	if (ret_val < 0) {
2958 		if ((ret_val == -E1000_ERR_NOLINK) ||
2959 		    (ret_val == -E1000_ERR_TIMEOUT)) {
2960 			E1000_ERR("Valid Link not detected\n");
2961 		} else {
2962 			E1000_ERR("Hardware Initialization Failed\n");
2963 		}
2964 		return 0;
2965 	}
2966 	e1000_configure_tx(hw);
2967 	e1000_setup_rctl(hw);
2968 	e1000_configure_rx(hw);
2969 	return 1;
2970 }
2971 
2972 /**************************************************************************
2973 PROBE - Look for an adapter, this routine's visible to the outside
2974 You should omit the last argument struct pci_device * for a non-PCI NIC
2975 ***************************************************************************/
2976 int
2977 e1000_initialize(bd_t * bis)
2978 {
2979 	pci_dev_t devno;
2980 	int card_number = 0;
2981 	struct eth_device *nic = NULL;
2982 	struct e1000_hw *hw = NULL;
2983 	u32 iobase;
2984 	int idx = 0;
2985 	u32 PciCommandWord;
2986 
2987 	while (1) {		/* Find PCI device(s) */
2988 		if ((devno = pci_find_devices(supported, idx++)) < 0) {
2989 			break;
2990 		}
2991 
2992 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
2993 		iobase &= ~0xf;	/* Mask the bits that say "this is an io addr" */
2994 		DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
2995 
2996 		pci_write_config_dword(devno, PCI_COMMAND,
2997 				       PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
2998 		/* Check if I/O accesses and Bus Mastering are enabled. */
2999 		pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
3000 		if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
3001 			printf("Error: Can not enable MEM access.\n");
3002 			continue;
3003 		} else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
3004 			printf("Error: Can not enable Bus Mastering.\n");
3005 			continue;
3006 		}
3007 
3008 		nic = (struct eth_device *) malloc(sizeof (*nic));
3009 		hw = (struct e1000_hw *) malloc(sizeof (*hw));
3010 		hw->pdev = devno;
3011 		nic->priv = hw;
3012 		nic->iobase = bus_to_phys(devno, iobase);
3013 
3014 		sprintf(nic->name, "e1000#%d", card_number);
3015 
3016 		/* Are these variables needed? */
3017 #if 0
3018 		hw->fc = e1000_fc_none;
3019 		hw->original_fc = e1000_fc_none;
3020 #else
3021 		hw->fc = e1000_fc_default;
3022 		hw->original_fc = e1000_fc_default;
3023 #endif
3024 		hw->autoneg_failed = 0;
3025 		hw->get_link_status = TRUE;
3026 		hw->hw_addr = (typeof(hw->hw_addr)) iobase;
3027 		hw->mac_type = e1000_undefined;
3028 
3029 		/* MAC and Phy settings */
3030 		if (e1000_sw_init(nic, card_number) < 0) {
3031 			free(hw);
3032 			free(nic);
3033 			return 0;
3034 		}
3035 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
3036 		if (e1000_validate_eeprom_checksum(nic) < 0) {
3037 			printf("The EEPROM Checksum Is Not Valid\n");
3038 			free(hw);
3039 			free(nic);
3040 			return 0;
3041 		}
3042 #endif
3043 		e1000_read_mac_addr(nic);
3044 
3045 		E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
3046 
3047 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
3048 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
3049 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
3050 
3051 		nic->init = e1000_init;
3052 		nic->recv = e1000_poll;
3053 		nic->send = e1000_transmit;
3054 		nic->halt = e1000_disable;
3055 
3056 		eth_register(nic);
3057 
3058 		card_number++;
3059 	}
3060 	return 1;
3061 }
3062 
3063 #endif
3064