xref: /openbmc/u-boot/drivers/net/e1000.c (revision 3dc23f7852158fafde9eb736060f9e8131997f19)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12  * SPDX-License-Identifier:	GPL-2.0+
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include "e1000.h"
33 
34 #define TOUT_LOOP   100000
35 
36 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
37 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
38 
39 #define E1000_DEFAULT_PCI_PBA	0x00000030
40 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
41 
42 /* NIC specific static variables go here */
43 
44 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
45 #define E1000_BUFFER_ALIGN	128
46 
47 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
48 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
49 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
50 
51 static int tx_tail;
52 static int rx_tail, rx_last;
53 
54 static struct pci_device_id e1000_supported[] = {
55 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
64 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
65 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
68 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
69 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
72 	/* E1000 PCIe card */
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
89 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
90 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
95 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER},
96 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS},
97 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES},
98 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS},
99 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX},
100 
101 	{}
102 };
103 
104 /* Function forward declarations */
105 static int e1000_setup_link(struct eth_device *nic);
106 static int e1000_setup_fiber_link(struct eth_device *nic);
107 static int e1000_setup_copper_link(struct eth_device *nic);
108 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
109 static void e1000_config_collision_dist(struct e1000_hw *hw);
110 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
111 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
112 static int e1000_check_for_link(struct eth_device *nic);
113 static int e1000_wait_autoneg(struct e1000_hw *hw);
114 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
115 				       uint16_t * duplex);
116 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
117 			      uint16_t * phy_data);
118 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
119 			       uint16_t phy_data);
120 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
121 static int e1000_phy_reset(struct e1000_hw *hw);
122 static int e1000_detect_gig_phy(struct e1000_hw *hw);
123 static void e1000_set_media_type(struct e1000_hw *hw);
124 
125 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
126 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
127 
128 #ifndef CONFIG_E1000_NO_NVM
129 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
130 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
131 		uint16_t words,
132 		uint16_t *data);
133 /******************************************************************************
134  * Raises the EEPROM's clock input.
135  *
136  * hw - Struct containing variables accessed by shared code
137  * eecd - EECD's current value
138  *****************************************************************************/
139 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
140 {
141 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
142 	 * wait 50 microseconds.
143 	 */
144 	*eecd = *eecd | E1000_EECD_SK;
145 	E1000_WRITE_REG(hw, EECD, *eecd);
146 	E1000_WRITE_FLUSH(hw);
147 	udelay(50);
148 }
149 
150 /******************************************************************************
151  * Lowers the EEPROM's clock input.
152  *
153  * hw - Struct containing variables accessed by shared code
154  * eecd - EECD's current value
155  *****************************************************************************/
156 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
157 {
158 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
159 	 * wait 50 microseconds.
160 	 */
161 	*eecd = *eecd & ~E1000_EECD_SK;
162 	E1000_WRITE_REG(hw, EECD, *eecd);
163 	E1000_WRITE_FLUSH(hw);
164 	udelay(50);
165 }
166 
167 /******************************************************************************
168  * Shift data bits out to the EEPROM.
169  *
170  * hw - Struct containing variables accessed by shared code
171  * data - data to send to the EEPROM
172  * count - number of bits to shift out
173  *****************************************************************************/
174 static void
175 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
176 {
177 	uint32_t eecd;
178 	uint32_t mask;
179 
180 	/* We need to shift "count" bits out to the EEPROM. So, value in the
181 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
182 	 * In order to do this, "data" must be broken down into bits.
183 	 */
184 	mask = 0x01 << (count - 1);
185 	eecd = E1000_READ_REG(hw, EECD);
186 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
187 	do {
188 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
189 		 * and then raising and then lowering the clock (the SK bit controls
190 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
191 		 * by setting "DI" to "0" and then raising and then lowering the clock.
192 		 */
193 		eecd &= ~E1000_EECD_DI;
194 
195 		if (data & mask)
196 			eecd |= E1000_EECD_DI;
197 
198 		E1000_WRITE_REG(hw, EECD, eecd);
199 		E1000_WRITE_FLUSH(hw);
200 
201 		udelay(50);
202 
203 		e1000_raise_ee_clk(hw, &eecd);
204 		e1000_lower_ee_clk(hw, &eecd);
205 
206 		mask = mask >> 1;
207 
208 	} while (mask);
209 
210 	/* We leave the "DI" bit set to "0" when we leave this routine. */
211 	eecd &= ~E1000_EECD_DI;
212 	E1000_WRITE_REG(hw, EECD, eecd);
213 }
214 
215 /******************************************************************************
216  * Shift data bits in from the EEPROM
217  *
218  * hw - Struct containing variables accessed by shared code
219  *****************************************************************************/
220 static uint16_t
221 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
222 {
223 	uint32_t eecd;
224 	uint32_t i;
225 	uint16_t data;
226 
227 	/* In order to read a register from the EEPROM, we need to shift 'count'
228 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
229 	 * input to the EEPROM (setting the SK bit), and then reading the
230 	 * value of the "DO" bit.  During this "shifting in" process the
231 	 * "DI" bit should always be clear.
232 	 */
233 
234 	eecd = E1000_READ_REG(hw, EECD);
235 
236 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
237 	data = 0;
238 
239 	for (i = 0; i < count; i++) {
240 		data = data << 1;
241 		e1000_raise_ee_clk(hw, &eecd);
242 
243 		eecd = E1000_READ_REG(hw, EECD);
244 
245 		eecd &= ~(E1000_EECD_DI);
246 		if (eecd & E1000_EECD_DO)
247 			data |= 1;
248 
249 		e1000_lower_ee_clk(hw, &eecd);
250 	}
251 
252 	return data;
253 }
254 
255 /******************************************************************************
256  * Returns EEPROM to a "standby" state
257  *
258  * hw - Struct containing variables accessed by shared code
259  *****************************************************************************/
260 void e1000_standby_eeprom(struct e1000_hw *hw)
261 {
262 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
263 	uint32_t eecd;
264 
265 	eecd = E1000_READ_REG(hw, EECD);
266 
267 	if (eeprom->type == e1000_eeprom_microwire) {
268 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
269 		E1000_WRITE_REG(hw, EECD, eecd);
270 		E1000_WRITE_FLUSH(hw);
271 		udelay(eeprom->delay_usec);
272 
273 		/* Clock high */
274 		eecd |= E1000_EECD_SK;
275 		E1000_WRITE_REG(hw, EECD, eecd);
276 		E1000_WRITE_FLUSH(hw);
277 		udelay(eeprom->delay_usec);
278 
279 		/* Select EEPROM */
280 		eecd |= E1000_EECD_CS;
281 		E1000_WRITE_REG(hw, EECD, eecd);
282 		E1000_WRITE_FLUSH(hw);
283 		udelay(eeprom->delay_usec);
284 
285 		/* Clock low */
286 		eecd &= ~E1000_EECD_SK;
287 		E1000_WRITE_REG(hw, EECD, eecd);
288 		E1000_WRITE_FLUSH(hw);
289 		udelay(eeprom->delay_usec);
290 	} else if (eeprom->type == e1000_eeprom_spi) {
291 		/* Toggle CS to flush commands */
292 		eecd |= E1000_EECD_CS;
293 		E1000_WRITE_REG(hw, EECD, eecd);
294 		E1000_WRITE_FLUSH(hw);
295 		udelay(eeprom->delay_usec);
296 		eecd &= ~E1000_EECD_CS;
297 		E1000_WRITE_REG(hw, EECD, eecd);
298 		E1000_WRITE_FLUSH(hw);
299 		udelay(eeprom->delay_usec);
300 	}
301 }
302 
303 /***************************************************************************
304 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
305 *
306 * hw - Struct containing variables accessed by shared code
307 ****************************************************************************/
308 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
309 {
310 	uint32_t eecd = 0;
311 
312 	DEBUGFUNC();
313 
314 	if (hw->mac_type == e1000_ich8lan)
315 		return false;
316 
317 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
318 		eecd = E1000_READ_REG(hw, EECD);
319 
320 		/* Isolate bits 15 & 16 */
321 		eecd = ((eecd >> 15) & 0x03);
322 
323 		/* If both bits are set, device is Flash type */
324 		if (eecd == 0x03)
325 			return false;
326 	}
327 	return true;
328 }
329 
330 /******************************************************************************
331  * Prepares EEPROM for access
332  *
333  * hw - Struct containing variables accessed by shared code
334  *
335  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
336  * function should be called before issuing a command to the EEPROM.
337  *****************************************************************************/
338 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
339 {
340 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
341 	uint32_t eecd, i = 0;
342 
343 	DEBUGFUNC();
344 
345 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
346 		return -E1000_ERR_SWFW_SYNC;
347 	eecd = E1000_READ_REG(hw, EECD);
348 
349 	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
350 		/* Request EEPROM Access */
351 		if (hw->mac_type > e1000_82544) {
352 			eecd |= E1000_EECD_REQ;
353 			E1000_WRITE_REG(hw, EECD, eecd);
354 			eecd = E1000_READ_REG(hw, EECD);
355 			while ((!(eecd & E1000_EECD_GNT)) &&
356 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
357 				i++;
358 				udelay(5);
359 				eecd = E1000_READ_REG(hw, EECD);
360 			}
361 			if (!(eecd & E1000_EECD_GNT)) {
362 				eecd &= ~E1000_EECD_REQ;
363 				E1000_WRITE_REG(hw, EECD, eecd);
364 				DEBUGOUT("Could not acquire EEPROM grant\n");
365 				return -E1000_ERR_EEPROM;
366 			}
367 		}
368 	}
369 
370 	/* Setup EEPROM for Read/Write */
371 
372 	if (eeprom->type == e1000_eeprom_microwire) {
373 		/* Clear SK and DI */
374 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
375 		E1000_WRITE_REG(hw, EECD, eecd);
376 
377 		/* Set CS */
378 		eecd |= E1000_EECD_CS;
379 		E1000_WRITE_REG(hw, EECD, eecd);
380 	} else if (eeprom->type == e1000_eeprom_spi) {
381 		/* Clear SK and CS */
382 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
383 		E1000_WRITE_REG(hw, EECD, eecd);
384 		udelay(1);
385 	}
386 
387 	return E1000_SUCCESS;
388 }
389 
390 /******************************************************************************
391  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
392  * is configured.  Additionally, if this is ICH8, the flash controller GbE
393  * registers must be mapped, or this will crash.
394  *
395  * hw - Struct containing variables accessed by shared code
396  *****************************************************************************/
397 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
398 {
399 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
400 	uint32_t eecd;
401 	int32_t ret_val = E1000_SUCCESS;
402 	uint16_t eeprom_size;
403 
404 	if (hw->mac_type == e1000_igb)
405 		eecd = E1000_READ_REG(hw, I210_EECD);
406 	else
407 		eecd = E1000_READ_REG(hw, EECD);
408 
409 	DEBUGFUNC();
410 
411 	switch (hw->mac_type) {
412 	case e1000_82542_rev2_0:
413 	case e1000_82542_rev2_1:
414 	case e1000_82543:
415 	case e1000_82544:
416 		eeprom->type = e1000_eeprom_microwire;
417 		eeprom->word_size = 64;
418 		eeprom->opcode_bits = 3;
419 		eeprom->address_bits = 6;
420 		eeprom->delay_usec = 50;
421 		eeprom->use_eerd = false;
422 		eeprom->use_eewr = false;
423 	break;
424 	case e1000_82540:
425 	case e1000_82545:
426 	case e1000_82545_rev_3:
427 	case e1000_82546:
428 	case e1000_82546_rev_3:
429 		eeprom->type = e1000_eeprom_microwire;
430 		eeprom->opcode_bits = 3;
431 		eeprom->delay_usec = 50;
432 		if (eecd & E1000_EECD_SIZE) {
433 			eeprom->word_size = 256;
434 			eeprom->address_bits = 8;
435 		} else {
436 			eeprom->word_size = 64;
437 			eeprom->address_bits = 6;
438 		}
439 		eeprom->use_eerd = false;
440 		eeprom->use_eewr = false;
441 		break;
442 	case e1000_82541:
443 	case e1000_82541_rev_2:
444 	case e1000_82547:
445 	case e1000_82547_rev_2:
446 		if (eecd & E1000_EECD_TYPE) {
447 			eeprom->type = e1000_eeprom_spi;
448 			eeprom->opcode_bits = 8;
449 			eeprom->delay_usec = 1;
450 			if (eecd & E1000_EECD_ADDR_BITS) {
451 				eeprom->page_size = 32;
452 				eeprom->address_bits = 16;
453 			} else {
454 				eeprom->page_size = 8;
455 				eeprom->address_bits = 8;
456 			}
457 		} else {
458 			eeprom->type = e1000_eeprom_microwire;
459 			eeprom->opcode_bits = 3;
460 			eeprom->delay_usec = 50;
461 			if (eecd & E1000_EECD_ADDR_BITS) {
462 				eeprom->word_size = 256;
463 				eeprom->address_bits = 8;
464 			} else {
465 				eeprom->word_size = 64;
466 				eeprom->address_bits = 6;
467 			}
468 		}
469 		eeprom->use_eerd = false;
470 		eeprom->use_eewr = false;
471 		break;
472 	case e1000_82571:
473 	case e1000_82572:
474 		eeprom->type = e1000_eeprom_spi;
475 		eeprom->opcode_bits = 8;
476 		eeprom->delay_usec = 1;
477 		if (eecd & E1000_EECD_ADDR_BITS) {
478 			eeprom->page_size = 32;
479 			eeprom->address_bits = 16;
480 		} else {
481 			eeprom->page_size = 8;
482 			eeprom->address_bits = 8;
483 		}
484 		eeprom->use_eerd = false;
485 		eeprom->use_eewr = false;
486 		break;
487 	case e1000_82573:
488 	case e1000_82574:
489 		eeprom->type = e1000_eeprom_spi;
490 		eeprom->opcode_bits = 8;
491 		eeprom->delay_usec = 1;
492 		if (eecd & E1000_EECD_ADDR_BITS) {
493 			eeprom->page_size = 32;
494 			eeprom->address_bits = 16;
495 		} else {
496 			eeprom->page_size = 8;
497 			eeprom->address_bits = 8;
498 		}
499 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
500 			eeprom->use_eerd = true;
501 			eeprom->use_eewr = true;
502 
503 			eeprom->type = e1000_eeprom_flash;
504 			eeprom->word_size = 2048;
505 
506 		/* Ensure that the Autonomous FLASH update bit is cleared due to
507 		 * Flash update issue on parts which use a FLASH for NVM. */
508 			eecd &= ~E1000_EECD_AUPDEN;
509 			E1000_WRITE_REG(hw, EECD, eecd);
510 		}
511 		break;
512 	case e1000_80003es2lan:
513 		eeprom->type = e1000_eeprom_spi;
514 		eeprom->opcode_bits = 8;
515 		eeprom->delay_usec = 1;
516 		if (eecd & E1000_EECD_ADDR_BITS) {
517 			eeprom->page_size = 32;
518 			eeprom->address_bits = 16;
519 		} else {
520 			eeprom->page_size = 8;
521 			eeprom->address_bits = 8;
522 		}
523 		eeprom->use_eerd = true;
524 		eeprom->use_eewr = false;
525 		break;
526 	case e1000_igb:
527 		/* i210 has 4k of iNVM mapped as EEPROM */
528 		eeprom->type = e1000_eeprom_invm;
529 		eeprom->opcode_bits = 8;
530 		eeprom->delay_usec = 1;
531 		eeprom->page_size = 32;
532 		eeprom->address_bits = 16;
533 		eeprom->use_eerd = true;
534 		eeprom->use_eewr = false;
535 		break;
536 
537 	/* ich8lan does not support currently. if needed, please
538 	 * add corresponding code and functions.
539 	 */
540 #if 0
541 	case e1000_ich8lan:
542 		{
543 		int32_t  i = 0;
544 
545 		eeprom->type = e1000_eeprom_ich8;
546 		eeprom->use_eerd = false;
547 		eeprom->use_eewr = false;
548 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
549 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
550 				ICH_FLASH_GFPREG);
551 		/* Zero the shadow RAM structure. But don't load it from NVM
552 		 * so as to save time for driver init */
553 		if (hw->eeprom_shadow_ram != NULL) {
554 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
555 				hw->eeprom_shadow_ram[i].modified = false;
556 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
557 			}
558 		}
559 
560 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
561 				ICH_FLASH_SECTOR_SIZE;
562 
563 		hw->flash_bank_size = ((flash_size >> 16)
564 				& ICH_GFPREG_BASE_MASK) + 1;
565 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
566 
567 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
568 
569 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
570 		break;
571 		}
572 #endif
573 	default:
574 		break;
575 	}
576 
577 	if (eeprom->type == e1000_eeprom_spi ||
578 	    eeprom->type == e1000_eeprom_invm) {
579 		/* eeprom_size will be an enum [0..8] that maps
580 		 * to eeprom sizes 128B to
581 		 * 32KB (incremented by powers of 2).
582 		 */
583 		if (hw->mac_type <= e1000_82547_rev_2) {
584 			/* Set to default value for initial eeprom read. */
585 			eeprom->word_size = 64;
586 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
587 					&eeprom_size);
588 			if (ret_val)
589 				return ret_val;
590 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
591 				>> EEPROM_SIZE_SHIFT;
592 			/* 256B eeprom size was not supported in earlier
593 			 * hardware, so we bump eeprom_size up one to
594 			 * ensure that "1" (which maps to 256B) is never
595 			 * the result used in the shifting logic below. */
596 			if (eeprom_size)
597 				eeprom_size++;
598 		} else {
599 			eeprom_size = (uint16_t)((eecd &
600 				E1000_EECD_SIZE_EX_MASK) >>
601 				E1000_EECD_SIZE_EX_SHIFT);
602 		}
603 
604 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
605 	}
606 	return ret_val;
607 }
608 
609 /******************************************************************************
610  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
611  *
612  * hw - Struct containing variables accessed by shared code
613  *****************************************************************************/
614 static int32_t
615 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
616 {
617 	uint32_t attempts = 100000;
618 	uint32_t i, reg = 0;
619 	int32_t done = E1000_ERR_EEPROM;
620 
621 	for (i = 0; i < attempts; i++) {
622 		if (eerd == E1000_EEPROM_POLL_READ) {
623 			if (hw->mac_type == e1000_igb)
624 				reg = E1000_READ_REG(hw, I210_EERD);
625 			else
626 				reg = E1000_READ_REG(hw, EERD);
627 		} else {
628 			if (hw->mac_type == e1000_igb)
629 				reg = E1000_READ_REG(hw, I210_EEWR);
630 			else
631 				reg = E1000_READ_REG(hw, EEWR);
632 		}
633 
634 		if (reg & E1000_EEPROM_RW_REG_DONE) {
635 			done = E1000_SUCCESS;
636 			break;
637 		}
638 		udelay(5);
639 	}
640 
641 	return done;
642 }
643 
644 /******************************************************************************
645  * Reads a 16 bit word from the EEPROM using the EERD register.
646  *
647  * hw - Struct containing variables accessed by shared code
648  * offset - offset of  word in the EEPROM to read
649  * data - word read from the EEPROM
650  * words - number of words to read
651  *****************************************************************************/
652 static int32_t
653 e1000_read_eeprom_eerd(struct e1000_hw *hw,
654 			uint16_t offset,
655 			uint16_t words,
656 			uint16_t *data)
657 {
658 	uint32_t i, eerd = 0;
659 	int32_t error = 0;
660 
661 	for (i = 0; i < words; i++) {
662 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
663 			E1000_EEPROM_RW_REG_START;
664 
665 		if (hw->mac_type == e1000_igb)
666 			E1000_WRITE_REG(hw, I210_EERD, eerd);
667 		else
668 			E1000_WRITE_REG(hw, EERD, eerd);
669 
670 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
671 
672 		if (error)
673 			break;
674 
675 		if (hw->mac_type == e1000_igb) {
676 			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
677 				E1000_EEPROM_RW_REG_DATA);
678 		} else {
679 			data[i] = (E1000_READ_REG(hw, EERD) >>
680 				E1000_EEPROM_RW_REG_DATA);
681 		}
682 
683 	}
684 
685 	return error;
686 }
687 
688 void e1000_release_eeprom(struct e1000_hw *hw)
689 {
690 	uint32_t eecd;
691 
692 	DEBUGFUNC();
693 
694 	eecd = E1000_READ_REG(hw, EECD);
695 
696 	if (hw->eeprom.type == e1000_eeprom_spi) {
697 		eecd |= E1000_EECD_CS;  /* Pull CS high */
698 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
699 
700 		E1000_WRITE_REG(hw, EECD, eecd);
701 
702 		udelay(hw->eeprom.delay_usec);
703 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
704 		/* cleanup eeprom */
705 
706 		/* CS on Microwire is active-high */
707 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
708 
709 		E1000_WRITE_REG(hw, EECD, eecd);
710 
711 		/* Rising edge of clock */
712 		eecd |= E1000_EECD_SK;
713 		E1000_WRITE_REG(hw, EECD, eecd);
714 		E1000_WRITE_FLUSH(hw);
715 		udelay(hw->eeprom.delay_usec);
716 
717 		/* Falling edge of clock */
718 		eecd &= ~E1000_EECD_SK;
719 		E1000_WRITE_REG(hw, EECD, eecd);
720 		E1000_WRITE_FLUSH(hw);
721 		udelay(hw->eeprom.delay_usec);
722 	}
723 
724 	/* Stop requesting EEPROM access */
725 	if (hw->mac_type > e1000_82544) {
726 		eecd &= ~E1000_EECD_REQ;
727 		E1000_WRITE_REG(hw, EECD, eecd);
728 	}
729 }
730 /******************************************************************************
731  * Reads a 16 bit word from the EEPROM.
732  *
733  * hw - Struct containing variables accessed by shared code
734  *****************************************************************************/
735 static int32_t
736 e1000_spi_eeprom_ready(struct e1000_hw *hw)
737 {
738 	uint16_t retry_count = 0;
739 	uint8_t spi_stat_reg;
740 
741 	DEBUGFUNC();
742 
743 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
744 	 * EEPROM will signal that the command has been completed by clearing
745 	 * bit 0 of the internal status register.  If it's not cleared within
746 	 * 5 milliseconds, then error out.
747 	 */
748 	retry_count = 0;
749 	do {
750 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
751 			hw->eeprom.opcode_bits);
752 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
753 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
754 			break;
755 
756 		udelay(5);
757 		retry_count += 5;
758 
759 		e1000_standby_eeprom(hw);
760 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
761 
762 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
763 	 * only 0-5mSec on 5V devices)
764 	 */
765 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
766 		DEBUGOUT("SPI EEPROM Status error\n");
767 		return -E1000_ERR_EEPROM;
768 	}
769 
770 	return E1000_SUCCESS;
771 }
772 
773 /******************************************************************************
774  * Reads a 16 bit word from the EEPROM.
775  *
776  * hw - Struct containing variables accessed by shared code
777  * offset - offset of  word in the EEPROM to read
778  * data - word read from the EEPROM
779  *****************************************************************************/
780 static int32_t
781 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
782 		uint16_t words, uint16_t *data)
783 {
784 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
785 	uint32_t i = 0;
786 
787 	DEBUGFUNC();
788 
789 	/* If eeprom is not yet detected, do so now */
790 	if (eeprom->word_size == 0)
791 		e1000_init_eeprom_params(hw);
792 
793 	/* A check for invalid values:  offset too large, too many words,
794 	 * and not enough words.
795 	 */
796 	if ((offset >= eeprom->word_size) ||
797 		(words > eeprom->word_size - offset) ||
798 		(words == 0)) {
799 		DEBUGOUT("\"words\" parameter out of bounds."
800 			"Words = %d, size = %d\n", offset, eeprom->word_size);
801 		return -E1000_ERR_EEPROM;
802 	}
803 
804 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
805 	 * directly. In this case, we need to acquire the EEPROM so that
806 	 * FW or other port software does not interrupt.
807 	 */
808 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
809 		hw->eeprom.use_eerd == false) {
810 
811 		/* Prepare the EEPROM for bit-bang reading */
812 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
813 			return -E1000_ERR_EEPROM;
814 	}
815 
816 	/* Eerd register EEPROM access requires no eeprom aquire/release */
817 	if (eeprom->use_eerd == true)
818 		return e1000_read_eeprom_eerd(hw, offset, words, data);
819 
820 	/* ich8lan does not support currently. if needed, please
821 	 * add corresponding code and functions.
822 	 */
823 #if 0
824 	/* ICH EEPROM access is done via the ICH flash controller */
825 	if (eeprom->type == e1000_eeprom_ich8)
826 		return e1000_read_eeprom_ich8(hw, offset, words, data);
827 #endif
828 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
829 	 * acquired the EEPROM at this point, so any returns should relase it */
830 	if (eeprom->type == e1000_eeprom_spi) {
831 		uint16_t word_in;
832 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
833 
834 		if (e1000_spi_eeprom_ready(hw)) {
835 			e1000_release_eeprom(hw);
836 			return -E1000_ERR_EEPROM;
837 		}
838 
839 		e1000_standby_eeprom(hw);
840 
841 		/* Some SPI eeproms use the 8th address bit embedded in
842 		 * the opcode */
843 		if ((eeprom->address_bits == 8) && (offset >= 128))
844 			read_opcode |= EEPROM_A8_OPCODE_SPI;
845 
846 		/* Send the READ command (opcode + addr)  */
847 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
848 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
849 				eeprom->address_bits);
850 
851 		/* Read the data.  The address of the eeprom internally
852 		 * increments with each byte (spi) being read, saving on the
853 		 * overhead of eeprom setup and tear-down.  The address
854 		 * counter will roll over if reading beyond the size of
855 		 * the eeprom, thus allowing the entire memory to be read
856 		 * starting from any offset. */
857 		for (i = 0; i < words; i++) {
858 			word_in = e1000_shift_in_ee_bits(hw, 16);
859 			data[i] = (word_in >> 8) | (word_in << 8);
860 		}
861 	} else if (eeprom->type == e1000_eeprom_microwire) {
862 		for (i = 0; i < words; i++) {
863 			/* Send the READ command (opcode + addr)  */
864 			e1000_shift_out_ee_bits(hw,
865 				EEPROM_READ_OPCODE_MICROWIRE,
866 				eeprom->opcode_bits);
867 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
868 				eeprom->address_bits);
869 
870 			/* Read the data.  For microwire, each word requires
871 			 * the overhead of eeprom setup and tear-down. */
872 			data[i] = e1000_shift_in_ee_bits(hw, 16);
873 			e1000_standby_eeprom(hw);
874 		}
875 	}
876 
877 	/* End this read operation */
878 	e1000_release_eeprom(hw);
879 
880 	return E1000_SUCCESS;
881 }
882 
883 /******************************************************************************
884  * Verifies that the EEPROM has a valid checksum
885  *
886  * hw - Struct containing variables accessed by shared code
887  *
888  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
889  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
890  * valid.
891  *****************************************************************************/
892 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
893 {
894 	uint16_t i, checksum, checksum_reg, *buf;
895 
896 	DEBUGFUNC();
897 
898 	/* Allocate a temporary buffer */
899 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
900 	if (!buf) {
901 		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
902 		return -E1000_ERR_EEPROM;
903 	}
904 
905 	/* Read the EEPROM */
906 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
907 		E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
908 		return -E1000_ERR_EEPROM;
909 	}
910 
911 	/* Compute the checksum */
912 	checksum = 0;
913 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
914 		checksum += buf[i];
915 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
916 	checksum_reg = buf[i];
917 
918 	/* Verify it! */
919 	if (checksum == checksum_reg)
920 		return 0;
921 
922 	/* Hrm, verification failed, print an error */
923 	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
924 	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
925 			checksum_reg, checksum);
926 
927 	return -E1000_ERR_EEPROM;
928 }
929 #endif /* CONFIG_E1000_NO_NVM */
930 
931 /*****************************************************************************
932  * Set PHY to class A mode
933  * Assumes the following operations will follow to enable the new class mode.
934  *  1. Do a PHY soft reset
935  *  2. Restart auto-negotiation or force link.
936  *
937  * hw - Struct containing variables accessed by shared code
938  ****************************************************************************/
939 static int32_t
940 e1000_set_phy_mode(struct e1000_hw *hw)
941 {
942 #ifndef CONFIG_E1000_NO_NVM
943 	int32_t ret_val;
944 	uint16_t eeprom_data;
945 
946 	DEBUGFUNC();
947 
948 	if ((hw->mac_type == e1000_82545_rev_3) &&
949 		(hw->media_type == e1000_media_type_copper)) {
950 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
951 				1, &eeprom_data);
952 		if (ret_val)
953 			return ret_val;
954 
955 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
956 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
957 			ret_val = e1000_write_phy_reg(hw,
958 					M88E1000_PHY_PAGE_SELECT, 0x000B);
959 			if (ret_val)
960 				return ret_val;
961 			ret_val = e1000_write_phy_reg(hw,
962 					M88E1000_PHY_GEN_CONTROL, 0x8104);
963 			if (ret_val)
964 				return ret_val;
965 
966 			hw->phy_reset_disable = false;
967 		}
968 	}
969 #endif
970 	return E1000_SUCCESS;
971 }
972 
973 #ifndef CONFIG_E1000_NO_NVM
974 /***************************************************************************
975  *
976  * Obtaining software semaphore bit (SMBI) before resetting PHY.
977  *
978  * hw: Struct containing variables accessed by shared code
979  *
980  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
981  *            E1000_SUCCESS at any other case.
982  *
983  ***************************************************************************/
984 static int32_t
985 e1000_get_software_semaphore(struct e1000_hw *hw)
986 {
987 	 int32_t timeout = hw->eeprom.word_size + 1;
988 	 uint32_t swsm;
989 
990 	DEBUGFUNC();
991 
992 		swsm = E1000_READ_REG(hw, SWSM);
993 		swsm &= ~E1000_SWSM_SMBI;
994 		E1000_WRITE_REG(hw, SWSM, swsm);
995 
996 	if (hw->mac_type != e1000_80003es2lan)
997 		return E1000_SUCCESS;
998 
999 	while (timeout) {
1000 		swsm = E1000_READ_REG(hw, SWSM);
1001 		/* If SMBI bit cleared, it is now set and we hold
1002 		 * the semaphore */
1003 		if (!(swsm & E1000_SWSM_SMBI))
1004 			break;
1005 		mdelay(1);
1006 		timeout--;
1007 	}
1008 
1009 	if (!timeout) {
1010 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1011 		return -E1000_ERR_RESET;
1012 	}
1013 
1014 	return E1000_SUCCESS;
1015 }
1016 #endif
1017 
1018 /***************************************************************************
1019  * This function clears HW semaphore bits.
1020  *
1021  * hw: Struct containing variables accessed by shared code
1022  *
1023  * returns: - None.
1024  *
1025  ***************************************************************************/
1026 static void
1027 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1028 {
1029 #ifndef CONFIG_E1000_NO_NVM
1030 	 uint32_t swsm;
1031 
1032 	DEBUGFUNC();
1033 
1034 	if (!hw->eeprom_semaphore_present)
1035 		return;
1036 
1037 	swsm = E1000_READ_REG(hw, SWSM);
1038 	if (hw->mac_type == e1000_80003es2lan) {
1039 		/* Release both semaphores. */
1040 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1041 	} else
1042 		swsm &= ~(E1000_SWSM_SWESMBI);
1043 	E1000_WRITE_REG(hw, SWSM, swsm);
1044 #endif
1045 }
1046 
1047 /***************************************************************************
1048  *
1049  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1050  * adapter or Eeprom access.
1051  *
1052  * hw: Struct containing variables accessed by shared code
1053  *
1054  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1055  *            E1000_SUCCESS at any other case.
1056  *
1057  ***************************************************************************/
1058 static int32_t
1059 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1060 {
1061 #ifndef CONFIG_E1000_NO_NVM
1062 	int32_t timeout;
1063 	uint32_t swsm;
1064 
1065 	DEBUGFUNC();
1066 
1067 	if (!hw->eeprom_semaphore_present)
1068 		return E1000_SUCCESS;
1069 
1070 	if (hw->mac_type == e1000_80003es2lan) {
1071 		/* Get the SW semaphore. */
1072 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1073 			return -E1000_ERR_EEPROM;
1074 	}
1075 
1076 	/* Get the FW semaphore. */
1077 	timeout = hw->eeprom.word_size + 1;
1078 	while (timeout) {
1079 		swsm = E1000_READ_REG(hw, SWSM);
1080 		swsm |= E1000_SWSM_SWESMBI;
1081 		E1000_WRITE_REG(hw, SWSM, swsm);
1082 		/* if we managed to set the bit we got the semaphore. */
1083 		swsm = E1000_READ_REG(hw, SWSM);
1084 		if (swsm & E1000_SWSM_SWESMBI)
1085 			break;
1086 
1087 		udelay(50);
1088 		timeout--;
1089 	}
1090 
1091 	if (!timeout) {
1092 		/* Release semaphores */
1093 		e1000_put_hw_eeprom_semaphore(hw);
1094 		DEBUGOUT("Driver can't access the Eeprom - "
1095 				"SWESMBI bit is set.\n");
1096 		return -E1000_ERR_EEPROM;
1097 	}
1098 #endif
1099 	return E1000_SUCCESS;
1100 }
1101 
1102 static int32_t
1103 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1104 {
1105 	uint32_t swfw_sync = 0;
1106 	uint32_t swmask = mask;
1107 	uint32_t fwmask = mask << 16;
1108 	int32_t timeout = 200;
1109 
1110 	DEBUGFUNC();
1111 	while (timeout) {
1112 		if (e1000_get_hw_eeprom_semaphore(hw))
1113 			return -E1000_ERR_SWFW_SYNC;
1114 
1115 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1116 		if ((swfw_sync & swmask) && !(swfw_sync & fwmask))
1117 			break;
1118 
1119 		/* firmware currently using resource (fwmask) */
1120 		/* or other software thread currently using resource (swmask) */
1121 		e1000_put_hw_eeprom_semaphore(hw);
1122 		mdelay(5);
1123 		timeout--;
1124 	}
1125 
1126 	if (!timeout) {
1127 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1128 		return -E1000_ERR_SWFW_SYNC;
1129 	}
1130 
1131 	swfw_sync |= swmask;
1132 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1133 
1134 	e1000_put_hw_eeprom_semaphore(hw);
1135 	return E1000_SUCCESS;
1136 }
1137 
1138 static bool e1000_is_second_port(struct e1000_hw *hw)
1139 {
1140 	switch (hw->mac_type) {
1141 	case e1000_80003es2lan:
1142 	case e1000_82546:
1143 	case e1000_82571:
1144 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1145 			return true;
1146 		/* Fallthrough */
1147 	default:
1148 		return false;
1149 	}
1150 }
1151 
1152 #ifndef CONFIG_E1000_NO_NVM
1153 /******************************************************************************
1154  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1155  * second function of dual function devices
1156  *
1157  * nic - Struct containing variables accessed by shared code
1158  *****************************************************************************/
1159 static int
1160 e1000_read_mac_addr(struct eth_device *nic)
1161 {
1162 	struct e1000_hw *hw = nic->priv;
1163 	uint16_t offset;
1164 	uint16_t eeprom_data;
1165 	uint32_t reg_data = 0;
1166 	int i;
1167 
1168 	DEBUGFUNC();
1169 
1170 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1171 		offset = i >> 1;
1172 		if (hw->mac_type == e1000_igb) {
1173 			/* i210 preloads MAC address into RAL/RAH registers */
1174 			if (offset == 0)
1175 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1176 			else if (offset == 1)
1177 				reg_data >>= 16;
1178 			else if (offset == 2)
1179 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1180 			eeprom_data = reg_data & 0xffff;
1181 		} else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1182 			DEBUGOUT("EEPROM Read Error\n");
1183 			return -E1000_ERR_EEPROM;
1184 		}
1185 		nic->enetaddr[i] = eeprom_data & 0xff;
1186 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1187 	}
1188 
1189 	/* Invert the last bit if this is the second device */
1190 	if (e1000_is_second_port(hw))
1191 		nic->enetaddr[5] ^= 1;
1192 
1193 #ifdef CONFIG_E1000_FALLBACK_MAC
1194 	if (!is_valid_ether_addr(nic->enetaddr)) {
1195 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1196 
1197 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1198 	}
1199 #endif
1200 	return 0;
1201 }
1202 #endif
1203 
1204 /******************************************************************************
1205  * Initializes receive address filters.
1206  *
1207  * hw - Struct containing variables accessed by shared code
1208  *
1209  * Places the MAC address in receive address register 0 and clears the rest
1210  * of the receive addresss registers. Clears the multicast table. Assumes
1211  * the receiver is in reset when the routine is called.
1212  *****************************************************************************/
1213 static void
1214 e1000_init_rx_addrs(struct eth_device *nic)
1215 {
1216 	struct e1000_hw *hw = nic->priv;
1217 	uint32_t i;
1218 	uint32_t addr_low;
1219 	uint32_t addr_high;
1220 
1221 	DEBUGFUNC();
1222 
1223 	/* Setup the receive address. */
1224 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1225 	addr_low = (nic->enetaddr[0] |
1226 		    (nic->enetaddr[1] << 8) |
1227 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1228 
1229 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1230 
1231 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1232 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1233 
1234 	/* Zero out the other 15 receive addresses. */
1235 	DEBUGOUT("Clearing RAR[1-15]\n");
1236 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1237 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1238 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1239 	}
1240 }
1241 
1242 /******************************************************************************
1243  * Clears the VLAN filer table
1244  *
1245  * hw - Struct containing variables accessed by shared code
1246  *****************************************************************************/
1247 static void
1248 e1000_clear_vfta(struct e1000_hw *hw)
1249 {
1250 	uint32_t offset;
1251 
1252 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1253 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1254 }
1255 
1256 /******************************************************************************
1257  * Set the mac type member in the hw struct.
1258  *
1259  * hw - Struct containing variables accessed by shared code
1260  *****************************************************************************/
1261 int32_t
1262 e1000_set_mac_type(struct e1000_hw *hw)
1263 {
1264 	DEBUGFUNC();
1265 
1266 	switch (hw->device_id) {
1267 	case E1000_DEV_ID_82542:
1268 		switch (hw->revision_id) {
1269 		case E1000_82542_2_0_REV_ID:
1270 			hw->mac_type = e1000_82542_rev2_0;
1271 			break;
1272 		case E1000_82542_2_1_REV_ID:
1273 			hw->mac_type = e1000_82542_rev2_1;
1274 			break;
1275 		default:
1276 			/* Invalid 82542 revision ID */
1277 			return -E1000_ERR_MAC_TYPE;
1278 		}
1279 		break;
1280 	case E1000_DEV_ID_82543GC_FIBER:
1281 	case E1000_DEV_ID_82543GC_COPPER:
1282 		hw->mac_type = e1000_82543;
1283 		break;
1284 	case E1000_DEV_ID_82544EI_COPPER:
1285 	case E1000_DEV_ID_82544EI_FIBER:
1286 	case E1000_DEV_ID_82544GC_COPPER:
1287 	case E1000_DEV_ID_82544GC_LOM:
1288 		hw->mac_type = e1000_82544;
1289 		break;
1290 	case E1000_DEV_ID_82540EM:
1291 	case E1000_DEV_ID_82540EM_LOM:
1292 	case E1000_DEV_ID_82540EP:
1293 	case E1000_DEV_ID_82540EP_LOM:
1294 	case E1000_DEV_ID_82540EP_LP:
1295 		hw->mac_type = e1000_82540;
1296 		break;
1297 	case E1000_DEV_ID_82545EM_COPPER:
1298 	case E1000_DEV_ID_82545EM_FIBER:
1299 		hw->mac_type = e1000_82545;
1300 		break;
1301 	case E1000_DEV_ID_82545GM_COPPER:
1302 	case E1000_DEV_ID_82545GM_FIBER:
1303 	case E1000_DEV_ID_82545GM_SERDES:
1304 		hw->mac_type = e1000_82545_rev_3;
1305 		break;
1306 	case E1000_DEV_ID_82546EB_COPPER:
1307 	case E1000_DEV_ID_82546EB_FIBER:
1308 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1309 		hw->mac_type = e1000_82546;
1310 		break;
1311 	case E1000_DEV_ID_82546GB_COPPER:
1312 	case E1000_DEV_ID_82546GB_FIBER:
1313 	case E1000_DEV_ID_82546GB_SERDES:
1314 	case E1000_DEV_ID_82546GB_PCIE:
1315 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1316 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1317 		hw->mac_type = e1000_82546_rev_3;
1318 		break;
1319 	case E1000_DEV_ID_82541EI:
1320 	case E1000_DEV_ID_82541EI_MOBILE:
1321 	case E1000_DEV_ID_82541ER_LOM:
1322 		hw->mac_type = e1000_82541;
1323 		break;
1324 	case E1000_DEV_ID_82541ER:
1325 	case E1000_DEV_ID_82541GI:
1326 	case E1000_DEV_ID_82541GI_LF:
1327 	case E1000_DEV_ID_82541GI_MOBILE:
1328 		hw->mac_type = e1000_82541_rev_2;
1329 		break;
1330 	case E1000_DEV_ID_82547EI:
1331 	case E1000_DEV_ID_82547EI_MOBILE:
1332 		hw->mac_type = e1000_82547;
1333 		break;
1334 	case E1000_DEV_ID_82547GI:
1335 		hw->mac_type = e1000_82547_rev_2;
1336 		break;
1337 	case E1000_DEV_ID_82571EB_COPPER:
1338 	case E1000_DEV_ID_82571EB_FIBER:
1339 	case E1000_DEV_ID_82571EB_SERDES:
1340 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1341 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1342 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1343 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1344 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1345 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1346 		hw->mac_type = e1000_82571;
1347 		break;
1348 	case E1000_DEV_ID_82572EI_COPPER:
1349 	case E1000_DEV_ID_82572EI_FIBER:
1350 	case E1000_DEV_ID_82572EI_SERDES:
1351 	case E1000_DEV_ID_82572EI:
1352 		hw->mac_type = e1000_82572;
1353 		break;
1354 	case E1000_DEV_ID_82573E:
1355 	case E1000_DEV_ID_82573E_IAMT:
1356 	case E1000_DEV_ID_82573L:
1357 		hw->mac_type = e1000_82573;
1358 		break;
1359 	case E1000_DEV_ID_82574L:
1360 		hw->mac_type = e1000_82574;
1361 		break;
1362 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1363 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1364 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1365 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1366 		hw->mac_type = e1000_80003es2lan;
1367 		break;
1368 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1369 	case E1000_DEV_ID_ICH8_IGP_AMT:
1370 	case E1000_DEV_ID_ICH8_IGP_C:
1371 	case E1000_DEV_ID_ICH8_IFE:
1372 	case E1000_DEV_ID_ICH8_IFE_GT:
1373 	case E1000_DEV_ID_ICH8_IFE_G:
1374 	case E1000_DEV_ID_ICH8_IGP_M:
1375 		hw->mac_type = e1000_ich8lan;
1376 		break;
1377 	case PCI_DEVICE_ID_INTEL_I210_COPPER:
1378 	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1379 	case PCI_DEVICE_ID_INTEL_I210_SERDES:
1380 	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1381 	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1382 		hw->mac_type = e1000_igb;
1383 		break;
1384 	default:
1385 		/* Should never have loaded on this device */
1386 		return -E1000_ERR_MAC_TYPE;
1387 	}
1388 	return E1000_SUCCESS;
1389 }
1390 
1391 /******************************************************************************
1392  * Reset the transmit and receive units; mask and clear all interrupts.
1393  *
1394  * hw - Struct containing variables accessed by shared code
1395  *****************************************************************************/
1396 void
1397 e1000_reset_hw(struct e1000_hw *hw)
1398 {
1399 	uint32_t ctrl;
1400 	uint32_t ctrl_ext;
1401 	uint32_t manc;
1402 	uint32_t pba = 0;
1403 	uint32_t reg;
1404 
1405 	DEBUGFUNC();
1406 
1407 	/* get the correct pba value for both PCI and PCIe*/
1408 	if (hw->mac_type <  e1000_82571)
1409 		pba = E1000_DEFAULT_PCI_PBA;
1410 	else
1411 		pba = E1000_DEFAULT_PCIE_PBA;
1412 
1413 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1414 	if (hw->mac_type == e1000_82542_rev2_0) {
1415 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1416 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1417 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1418 	}
1419 
1420 	/* Clear interrupt mask to stop board from generating interrupts */
1421 	DEBUGOUT("Masking off all interrupts\n");
1422 	if (hw->mac_type == e1000_igb)
1423 		E1000_WRITE_REG(hw, I210_IAM, 0);
1424 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1425 
1426 	/* Disable the Transmit and Receive units.  Then delay to allow
1427 	 * any pending transactions to complete before we hit the MAC with
1428 	 * the global reset.
1429 	 */
1430 	E1000_WRITE_REG(hw, RCTL, 0);
1431 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1432 	E1000_WRITE_FLUSH(hw);
1433 
1434 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1435 	hw->tbi_compatibility_on = false;
1436 
1437 	/* Delay to allow any outstanding PCI transactions to complete before
1438 	 * resetting the device
1439 	 */
1440 	mdelay(10);
1441 
1442 	/* Issue a global reset to the MAC.  This will reset the chip's
1443 	 * transmit, receive, DMA, and link units.  It will not effect
1444 	 * the current PCI configuration.  The global reset bit is self-
1445 	 * clearing, and should clear within a microsecond.
1446 	 */
1447 	DEBUGOUT("Issuing a global reset to MAC\n");
1448 	ctrl = E1000_READ_REG(hw, CTRL);
1449 
1450 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1451 
1452 	/* Force a reload from the EEPROM if necessary */
1453 	if (hw->mac_type == e1000_igb) {
1454 		mdelay(20);
1455 		reg = E1000_READ_REG(hw, STATUS);
1456 		if (reg & E1000_STATUS_PF_RST_DONE)
1457 			DEBUGOUT("PF OK\n");
1458 		reg = E1000_READ_REG(hw, I210_EECD);
1459 		if (reg & E1000_EECD_AUTO_RD)
1460 			DEBUGOUT("EEC OK\n");
1461 	} else if (hw->mac_type < e1000_82540) {
1462 		/* Wait for reset to complete */
1463 		udelay(10);
1464 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1465 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1466 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1467 		E1000_WRITE_FLUSH(hw);
1468 		/* Wait for EEPROM reload */
1469 		mdelay(2);
1470 	} else {
1471 		/* Wait for EEPROM reload (it happens automatically) */
1472 		mdelay(4);
1473 		/* Dissable HW ARPs on ASF enabled adapters */
1474 		manc = E1000_READ_REG(hw, MANC);
1475 		manc &= ~(E1000_MANC_ARP_EN);
1476 		E1000_WRITE_REG(hw, MANC, manc);
1477 	}
1478 
1479 	/* Clear interrupt mask to stop board from generating interrupts */
1480 	DEBUGOUT("Masking off all interrupts\n");
1481 	if (hw->mac_type == e1000_igb)
1482 		E1000_WRITE_REG(hw, I210_IAM, 0);
1483 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1484 
1485 	/* Clear any pending interrupt events. */
1486 	E1000_READ_REG(hw, ICR);
1487 
1488 	/* If MWI was previously enabled, reenable it. */
1489 	if (hw->mac_type == e1000_82542_rev2_0) {
1490 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1491 	}
1492 	if (hw->mac_type != e1000_igb)
1493 		E1000_WRITE_REG(hw, PBA, pba);
1494 }
1495 
1496 /******************************************************************************
1497  *
1498  * Initialize a number of hardware-dependent bits
1499  *
1500  * hw: Struct containing variables accessed by shared code
1501  *
1502  * This function contains hardware limitation workarounds for PCI-E adapters
1503  *
1504  *****************************************************************************/
1505 static void
1506 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1507 {
1508 	if ((hw->mac_type >= e1000_82571) &&
1509 			(!hw->initialize_hw_bits_disable)) {
1510 		/* Settings common to all PCI-express silicon */
1511 		uint32_t reg_ctrl, reg_ctrl_ext;
1512 		uint32_t reg_tarc0, reg_tarc1;
1513 		uint32_t reg_tctl;
1514 		uint32_t reg_txdctl, reg_txdctl1;
1515 
1516 		/* link autonegotiation/sync workarounds */
1517 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1518 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1519 
1520 		/* Enable not-done TX descriptor counting */
1521 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1522 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1523 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1524 
1525 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1526 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1527 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1528 
1529 	/* IGB is cool */
1530 	if (hw->mac_type == e1000_igb)
1531 		return;
1532 
1533 		switch (hw->mac_type) {
1534 		case e1000_82571:
1535 		case e1000_82572:
1536 			/* Clear PHY TX compatible mode bits */
1537 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1538 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1539 
1540 			/* link autonegotiation/sync workarounds */
1541 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1542 
1543 			/* TX ring control fixes */
1544 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1545 
1546 			/* Multiple read bit is reversed polarity */
1547 			reg_tctl = E1000_READ_REG(hw, TCTL);
1548 			if (reg_tctl & E1000_TCTL_MULR)
1549 				reg_tarc1 &= ~(1 << 28);
1550 			else
1551 				reg_tarc1 |= (1 << 28);
1552 
1553 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1554 			break;
1555 		case e1000_82573:
1556 		case e1000_82574:
1557 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1558 			reg_ctrl_ext &= ~(1 << 23);
1559 			reg_ctrl_ext |= (1 << 22);
1560 
1561 			/* TX byte count fix */
1562 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1563 			reg_ctrl &= ~(1 << 29);
1564 
1565 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1566 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1567 			break;
1568 		case e1000_80003es2lan:
1569 	/* improve small packet performace for fiber/serdes */
1570 			if ((hw->media_type == e1000_media_type_fiber)
1571 			|| (hw->media_type ==
1572 				e1000_media_type_internal_serdes)) {
1573 				reg_tarc0 &= ~(1 << 20);
1574 			}
1575 
1576 		/* Multiple read bit is reversed polarity */
1577 			reg_tctl = E1000_READ_REG(hw, TCTL);
1578 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1579 			if (reg_tctl & E1000_TCTL_MULR)
1580 				reg_tarc1 &= ~(1 << 28);
1581 			else
1582 				reg_tarc1 |= (1 << 28);
1583 
1584 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1585 			break;
1586 		case e1000_ich8lan:
1587 			/* Reduce concurrent DMA requests to 3 from 4 */
1588 			if ((hw->revision_id < 3) ||
1589 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1590 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1591 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1592 
1593 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1594 			reg_ctrl_ext |= (1 << 22);
1595 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1596 
1597 			/* workaround TX hang with TSO=on */
1598 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1599 
1600 			/* Multiple read bit is reversed polarity */
1601 			reg_tctl = E1000_READ_REG(hw, TCTL);
1602 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1603 			if (reg_tctl & E1000_TCTL_MULR)
1604 				reg_tarc1 &= ~(1 << 28);
1605 			else
1606 				reg_tarc1 |= (1 << 28);
1607 
1608 			/* workaround TX hang with TSO=on */
1609 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1610 
1611 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1612 			break;
1613 		default:
1614 			break;
1615 		}
1616 
1617 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1618 	}
1619 }
1620 
1621 /******************************************************************************
1622  * Performs basic configuration of the adapter.
1623  *
1624  * hw - Struct containing variables accessed by shared code
1625  *
1626  * Assumes that the controller has previously been reset and is in a
1627  * post-reset uninitialized state. Initializes the receive address registers,
1628  * multicast table, and VLAN filter table. Calls routines to setup link
1629  * configuration and flow control settings. Clears all on-chip counters. Leaves
1630  * the transmit and receive units disabled and uninitialized.
1631  *****************************************************************************/
1632 static int
1633 e1000_init_hw(struct eth_device *nic)
1634 {
1635 	struct e1000_hw *hw = nic->priv;
1636 	uint32_t ctrl;
1637 	uint32_t i;
1638 	int32_t ret_val;
1639 	uint16_t pcix_cmd_word;
1640 	uint16_t pcix_stat_hi_word;
1641 	uint16_t cmd_mmrbc;
1642 	uint16_t stat_mmrbc;
1643 	uint32_t mta_size;
1644 	uint32_t reg_data;
1645 	uint32_t ctrl_ext;
1646 	DEBUGFUNC();
1647 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1648 	if ((hw->mac_type == e1000_ich8lan) &&
1649 		((hw->revision_id < 3) ||
1650 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1651 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1652 			reg_data = E1000_READ_REG(hw, STATUS);
1653 			reg_data &= ~0x80000000;
1654 			E1000_WRITE_REG(hw, STATUS, reg_data);
1655 	}
1656 	/* Do not need initialize Identification LED */
1657 
1658 	/* Set the media type and TBI compatibility */
1659 	e1000_set_media_type(hw);
1660 
1661 	/* Must be called after e1000_set_media_type
1662 	 * because media_type is used */
1663 	e1000_initialize_hardware_bits(hw);
1664 
1665 	/* Disabling VLAN filtering. */
1666 	DEBUGOUT("Initializing the IEEE VLAN\n");
1667 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1668 	if (hw->mac_type != e1000_ich8lan) {
1669 		if (hw->mac_type < e1000_82545_rev_3)
1670 			E1000_WRITE_REG(hw, VET, 0);
1671 		e1000_clear_vfta(hw);
1672 	}
1673 
1674 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1675 	if (hw->mac_type == e1000_82542_rev2_0) {
1676 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1677 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1678 				      hw->
1679 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1680 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1681 		E1000_WRITE_FLUSH(hw);
1682 		mdelay(5);
1683 	}
1684 
1685 	/* Setup the receive address. This involves initializing all of the Receive
1686 	 * Address Registers (RARs 0 - 15).
1687 	 */
1688 	e1000_init_rx_addrs(nic);
1689 
1690 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1691 	if (hw->mac_type == e1000_82542_rev2_0) {
1692 		E1000_WRITE_REG(hw, RCTL, 0);
1693 		E1000_WRITE_FLUSH(hw);
1694 		mdelay(1);
1695 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1696 	}
1697 
1698 	/* Zero out the Multicast HASH table */
1699 	DEBUGOUT("Zeroing the MTA\n");
1700 	mta_size = E1000_MC_TBL_SIZE;
1701 	if (hw->mac_type == e1000_ich8lan)
1702 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1703 	for (i = 0; i < mta_size; i++) {
1704 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1705 		/* use write flush to prevent Memory Write Block (MWB) from
1706 		 * occuring when accessing our register space */
1707 		E1000_WRITE_FLUSH(hw);
1708 	}
1709 #if 0
1710 	/* Set the PCI priority bit correctly in the CTRL register.  This
1711 	 * determines if the adapter gives priority to receives, or if it
1712 	 * gives equal priority to transmits and receives.  Valid only on
1713 	 * 82542 and 82543 silicon.
1714 	 */
1715 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1716 		ctrl = E1000_READ_REG(hw, CTRL);
1717 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1718 	}
1719 #endif
1720 	switch (hw->mac_type) {
1721 	case e1000_82545_rev_3:
1722 	case e1000_82546_rev_3:
1723 	case e1000_igb:
1724 		break;
1725 	default:
1726 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1727 	if (hw->bus_type == e1000_bus_type_pcix) {
1728 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1729 				     &pcix_cmd_word);
1730 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1731 				     &pcix_stat_hi_word);
1732 		cmd_mmrbc =
1733 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1734 		    PCIX_COMMAND_MMRBC_SHIFT;
1735 		stat_mmrbc =
1736 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1737 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1738 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1739 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1740 		if (cmd_mmrbc > stat_mmrbc) {
1741 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1742 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1743 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1744 					      pcix_cmd_word);
1745 		}
1746 	}
1747 		break;
1748 	}
1749 
1750 	/* More time needed for PHY to initialize */
1751 	if (hw->mac_type == e1000_ich8lan)
1752 		mdelay(15);
1753 	if (hw->mac_type == e1000_igb)
1754 		mdelay(15);
1755 
1756 	/* Call a subroutine to configure the link and setup flow control. */
1757 	ret_val = e1000_setup_link(nic);
1758 
1759 	/* Set the transmit descriptor write-back policy */
1760 	if (hw->mac_type > e1000_82544) {
1761 		ctrl = E1000_READ_REG(hw, TXDCTL);
1762 		ctrl =
1763 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1764 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1765 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1766 	}
1767 
1768 	/* Set the receive descriptor write back policy */
1769 	if (hw->mac_type >= e1000_82571) {
1770 		ctrl = E1000_READ_REG(hw, RXDCTL);
1771 		ctrl =
1772 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1773 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1774 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1775 	}
1776 
1777 	switch (hw->mac_type) {
1778 	default:
1779 		break;
1780 	case e1000_80003es2lan:
1781 		/* Enable retransmit on late collisions */
1782 		reg_data = E1000_READ_REG(hw, TCTL);
1783 		reg_data |= E1000_TCTL_RTLC;
1784 		E1000_WRITE_REG(hw, TCTL, reg_data);
1785 
1786 		/* Configure Gigabit Carry Extend Padding */
1787 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1788 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1789 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1790 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1791 
1792 		/* Configure Transmit Inter-Packet Gap */
1793 		reg_data = E1000_READ_REG(hw, TIPG);
1794 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1795 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1796 		E1000_WRITE_REG(hw, TIPG, reg_data);
1797 
1798 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1799 		reg_data &= ~0x00100000;
1800 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1801 		/* Fall through */
1802 	case e1000_82571:
1803 	case e1000_82572:
1804 	case e1000_ich8lan:
1805 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1806 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1807 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1808 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1809 		break;
1810 	case e1000_82573:
1811 	case e1000_82574:
1812 		reg_data = E1000_READ_REG(hw, GCR);
1813 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1814 		E1000_WRITE_REG(hw, GCR, reg_data);
1815 	case e1000_igb:
1816 		break;
1817 	}
1818 
1819 #if 0
1820 	/* Clear all of the statistics registers (clear on read).  It is
1821 	 * important that we do this after we have tried to establish link
1822 	 * because the symbol error count will increment wildly if there
1823 	 * is no link.
1824 	 */
1825 	e1000_clear_hw_cntrs(hw);
1826 
1827 	/* ICH8 No-snoop bits are opposite polarity.
1828 	 * Set to snoop by default after reset. */
1829 	if (hw->mac_type == e1000_ich8lan)
1830 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1831 #endif
1832 
1833 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1834 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1835 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1836 		/* Relaxed ordering must be disabled to avoid a parity
1837 		 * error crash in a PCI slot. */
1838 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1839 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1840 	}
1841 
1842 	return ret_val;
1843 }
1844 
1845 /******************************************************************************
1846  * Configures flow control and link settings.
1847  *
1848  * hw - Struct containing variables accessed by shared code
1849  *
1850  * Determines which flow control settings to use. Calls the apropriate media-
1851  * specific link configuration function. Configures the flow control settings.
1852  * Assuming the adapter has a valid link partner, a valid link should be
1853  * established. Assumes the hardware has previously been reset and the
1854  * transmitter and receiver are not enabled.
1855  *****************************************************************************/
1856 static int
1857 e1000_setup_link(struct eth_device *nic)
1858 {
1859 	struct e1000_hw *hw = nic->priv;
1860 	int32_t ret_val;
1861 #ifndef CONFIG_E1000_NO_NVM
1862 	uint32_t ctrl_ext;
1863 	uint16_t eeprom_data;
1864 #endif
1865 
1866 	DEBUGFUNC();
1867 
1868 	/* In the case of the phy reset being blocked, we already have a link.
1869 	 * We do not have to set it up again. */
1870 	if (e1000_check_phy_reset_block(hw))
1871 		return E1000_SUCCESS;
1872 
1873 #ifndef CONFIG_E1000_NO_NVM
1874 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1875 	 * that determine the hardware's default PAUSE (flow control) mode,
1876 	 * a bit that determines whether the HW defaults to enabling or
1877 	 * disabling auto-negotiation, and the direction of the
1878 	 * SW defined pins. If there is no SW over-ride of the flow
1879 	 * control setting, then the variable hw->fc will
1880 	 * be initialized based on a value in the EEPROM.
1881 	 */
1882 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1883 				&eeprom_data) < 0) {
1884 		DEBUGOUT("EEPROM Read Error\n");
1885 		return -E1000_ERR_EEPROM;
1886 	}
1887 #endif
1888 	if (hw->fc == e1000_fc_default) {
1889 		switch (hw->mac_type) {
1890 		case e1000_ich8lan:
1891 		case e1000_82573:
1892 		case e1000_82574:
1893 		case e1000_igb:
1894 			hw->fc = e1000_fc_full;
1895 			break;
1896 		default:
1897 #ifndef CONFIG_E1000_NO_NVM
1898 			ret_val = e1000_read_eeprom(hw,
1899 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1900 			if (ret_val) {
1901 				DEBUGOUT("EEPROM Read Error\n");
1902 				return -E1000_ERR_EEPROM;
1903 			}
1904 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1905 				hw->fc = e1000_fc_none;
1906 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1907 				    EEPROM_WORD0F_ASM_DIR)
1908 				hw->fc = e1000_fc_tx_pause;
1909 			else
1910 #endif
1911 				hw->fc = e1000_fc_full;
1912 			break;
1913 		}
1914 	}
1915 
1916 	/* We want to save off the original Flow Control configuration just
1917 	 * in case we get disconnected and then reconnected into a different
1918 	 * hub or switch with different Flow Control capabilities.
1919 	 */
1920 	if (hw->mac_type == e1000_82542_rev2_0)
1921 		hw->fc &= (~e1000_fc_tx_pause);
1922 
1923 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1924 		hw->fc &= (~e1000_fc_rx_pause);
1925 
1926 	hw->original_fc = hw->fc;
1927 
1928 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1929 
1930 #ifndef CONFIG_E1000_NO_NVM
1931 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1932 	 * polarity value for the SW controlled pins, and setup the
1933 	 * Extended Device Control reg with that info.
1934 	 * This is needed because one of the SW controlled pins is used for
1935 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1936 	 * or e1000_phy_setup() is called.
1937 	 */
1938 	if (hw->mac_type == e1000_82543) {
1939 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1940 			    SWDPIO__EXT_SHIFT);
1941 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1942 	}
1943 #endif
1944 
1945 	/* Call the necessary subroutine to configure the link. */
1946 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1947 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1948 	if (ret_val < 0) {
1949 		return ret_val;
1950 	}
1951 
1952 	/* Initialize the flow control address, type, and PAUSE timer
1953 	 * registers to their default values.  This is done even if flow
1954 	 * control is disabled, because it does not hurt anything to
1955 	 * initialize these registers.
1956 	 */
1957 	DEBUGOUT("Initializing the Flow Control address, type"
1958 			"and timer regs\n");
1959 
1960 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1961 	if (hw->mac_type != e1000_ich8lan) {
1962 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1963 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1964 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1965 	}
1966 
1967 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1968 
1969 	/* Set the flow control receive threshold registers.  Normally,
1970 	 * these registers will be set to a default threshold that may be
1971 	 * adjusted later by the driver's runtime code.  However, if the
1972 	 * ability to transmit pause frames in not enabled, then these
1973 	 * registers will be set to 0.
1974 	 */
1975 	if (!(hw->fc & e1000_fc_tx_pause)) {
1976 		E1000_WRITE_REG(hw, FCRTL, 0);
1977 		E1000_WRITE_REG(hw, FCRTH, 0);
1978 	} else {
1979 		/* We need to set up the Receive Threshold high and low water marks
1980 		 * as well as (optionally) enabling the transmission of XON frames.
1981 		 */
1982 		if (hw->fc_send_xon) {
1983 			E1000_WRITE_REG(hw, FCRTL,
1984 					(hw->fc_low_water | E1000_FCRTL_XONE));
1985 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1986 		} else {
1987 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1988 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1989 		}
1990 	}
1991 	return ret_val;
1992 }
1993 
1994 /******************************************************************************
1995  * Sets up link for a fiber based adapter
1996  *
1997  * hw - Struct containing variables accessed by shared code
1998  *
1999  * Manipulates Physical Coding Sublayer functions in order to configure
2000  * link. Assumes the hardware has been previously reset and the transmitter
2001  * and receiver are not enabled.
2002  *****************************************************************************/
2003 static int
2004 e1000_setup_fiber_link(struct eth_device *nic)
2005 {
2006 	struct e1000_hw *hw = nic->priv;
2007 	uint32_t ctrl;
2008 	uint32_t status;
2009 	uint32_t txcw = 0;
2010 	uint32_t i;
2011 	uint32_t signal;
2012 	int32_t ret_val;
2013 
2014 	DEBUGFUNC();
2015 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2016 	 * set when the optics detect a signal. On older adapters, it will be
2017 	 * cleared when there is a signal
2018 	 */
2019 	ctrl = E1000_READ_REG(hw, CTRL);
2020 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2021 		signal = E1000_CTRL_SWDPIN1;
2022 	else
2023 		signal = 0;
2024 
2025 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
2026 	       ctrl);
2027 	/* Take the link out of reset */
2028 	ctrl &= ~(E1000_CTRL_LRST);
2029 
2030 	e1000_config_collision_dist(hw);
2031 
2032 	/* Check for a software override of the flow control settings, and setup
2033 	 * the device accordingly.  If auto-negotiation is enabled, then software
2034 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2035 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2036 	 * auto-negotiation is disabled, then software will have to manually
2037 	 * configure the two flow control enable bits in the CTRL register.
2038 	 *
2039 	 * The possible values of the "fc" parameter are:
2040 	 *	0:  Flow control is completely disabled
2041 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
2042 	 *	    not send pause frames).
2043 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
2044 	 *	    not support receiving pause frames).
2045 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
2046 	 */
2047 	switch (hw->fc) {
2048 	case e1000_fc_none:
2049 		/* Flow control is completely disabled by a software over-ride. */
2050 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2051 		break;
2052 	case e1000_fc_rx_pause:
2053 		/* RX Flow control is enabled and TX Flow control is disabled by a
2054 		 * software over-ride. Since there really isn't a way to advertise
2055 		 * that we are capable of RX Pause ONLY, we will advertise that we
2056 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
2057 		 *  disable the adapter's ability to send PAUSE frames.
2058 		 */
2059 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2060 		break;
2061 	case e1000_fc_tx_pause:
2062 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
2063 		 * software over-ride.
2064 		 */
2065 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2066 		break;
2067 	case e1000_fc_full:
2068 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
2069 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2070 		break;
2071 	default:
2072 		DEBUGOUT("Flow control param set incorrectly\n");
2073 		return -E1000_ERR_CONFIG;
2074 		break;
2075 	}
2076 
2077 	/* Since auto-negotiation is enabled, take the link out of reset (the link
2078 	 * will be in reset, because we previously reset the chip). This will
2079 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2080 	 * link-up status bit will be set and the flow control enable bits (RFCE
2081 	 * and TFCE) will be set according to their negotiated value.
2082 	 */
2083 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2084 
2085 	E1000_WRITE_REG(hw, TXCW, txcw);
2086 	E1000_WRITE_REG(hw, CTRL, ctrl);
2087 	E1000_WRITE_FLUSH(hw);
2088 
2089 	hw->txcw = txcw;
2090 	mdelay(1);
2091 
2092 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2093 	 * indication in the Device Status Register.  Time-out if a link isn't
2094 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2095 	 * less than 500 milliseconds even if the other end is doing it in SW).
2096 	 */
2097 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2098 		DEBUGOUT("Looking for Link\n");
2099 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2100 			mdelay(10);
2101 			status = E1000_READ_REG(hw, STATUS);
2102 			if (status & E1000_STATUS_LU)
2103 				break;
2104 		}
2105 		if (i == (LINK_UP_TIMEOUT / 10)) {
2106 			/* AutoNeg failed to achieve a link, so we'll call
2107 			 * e1000_check_for_link. This routine will force the link up if we
2108 			 * detect a signal. This will allow us to communicate with
2109 			 * non-autonegotiating link partners.
2110 			 */
2111 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2112 			hw->autoneg_failed = 1;
2113 			ret_val = e1000_check_for_link(nic);
2114 			if (ret_val < 0) {
2115 				DEBUGOUT("Error while checking for link\n");
2116 				return ret_val;
2117 			}
2118 			hw->autoneg_failed = 0;
2119 		} else {
2120 			hw->autoneg_failed = 0;
2121 			DEBUGOUT("Valid Link Found\n");
2122 		}
2123 	} else {
2124 		DEBUGOUT("No Signal Detected\n");
2125 		return -E1000_ERR_NOLINK;
2126 	}
2127 	return 0;
2128 }
2129 
2130 /******************************************************************************
2131 * Make sure we have a valid PHY and change PHY mode before link setup.
2132 *
2133 * hw - Struct containing variables accessed by shared code
2134 ******************************************************************************/
2135 static int32_t
2136 e1000_copper_link_preconfig(struct e1000_hw *hw)
2137 {
2138 	uint32_t ctrl;
2139 	int32_t ret_val;
2140 	uint16_t phy_data;
2141 
2142 	DEBUGFUNC();
2143 
2144 	ctrl = E1000_READ_REG(hw, CTRL);
2145 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2146 	 * the PHY speed and duplex configuration is. In addition, we need to
2147 	 * perform a hardware reset on the PHY to take it out of reset.
2148 	 */
2149 	if (hw->mac_type > e1000_82543) {
2150 		ctrl |= E1000_CTRL_SLU;
2151 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2152 		E1000_WRITE_REG(hw, CTRL, ctrl);
2153 	} else {
2154 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2155 				| E1000_CTRL_SLU);
2156 		E1000_WRITE_REG(hw, CTRL, ctrl);
2157 		ret_val = e1000_phy_hw_reset(hw);
2158 		if (ret_val)
2159 			return ret_val;
2160 	}
2161 
2162 	/* Make sure we have a valid PHY */
2163 	ret_val = e1000_detect_gig_phy(hw);
2164 	if (ret_val) {
2165 		DEBUGOUT("Error, did not detect valid phy.\n");
2166 		return ret_val;
2167 	}
2168 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2169 
2170 	/* Set PHY to class A mode (if necessary) */
2171 	ret_val = e1000_set_phy_mode(hw);
2172 	if (ret_val)
2173 		return ret_val;
2174 	if ((hw->mac_type == e1000_82545_rev_3) ||
2175 		(hw->mac_type == e1000_82546_rev_3)) {
2176 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2177 				&phy_data);
2178 		phy_data |= 0x00000008;
2179 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2180 				phy_data);
2181 	}
2182 
2183 	if (hw->mac_type <= e1000_82543 ||
2184 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2185 		hw->mac_type == e1000_82541_rev_2
2186 		|| hw->mac_type == e1000_82547_rev_2)
2187 			hw->phy_reset_disable = false;
2188 
2189 	return E1000_SUCCESS;
2190 }
2191 
2192 /*****************************************************************************
2193  *
2194  * This function sets the lplu state according to the active flag.  When
2195  * activating lplu this function also disables smart speed and vise versa.
2196  * lplu will not be activated unless the device autonegotiation advertisment
2197  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2198  * hw: Struct containing variables accessed by shared code
2199  * active - true to enable lplu false to disable lplu.
2200  *
2201  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2202  *            E1000_SUCCESS at any other case.
2203  *
2204  ****************************************************************************/
2205 
2206 static int32_t
2207 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2208 {
2209 	uint32_t phy_ctrl = 0;
2210 	int32_t ret_val;
2211 	uint16_t phy_data;
2212 	DEBUGFUNC();
2213 
2214 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2215 	    && hw->phy_type != e1000_phy_igp_3)
2216 		return E1000_SUCCESS;
2217 
2218 	/* During driver activity LPLU should not be used or it will attain link
2219 	 * from the lowest speeds starting from 10Mbps. The capability is used
2220 	 * for Dx transitions and states */
2221 	if (hw->mac_type == e1000_82541_rev_2
2222 			|| hw->mac_type == e1000_82547_rev_2) {
2223 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2224 				&phy_data);
2225 		if (ret_val)
2226 			return ret_val;
2227 	} else if (hw->mac_type == e1000_ich8lan) {
2228 		/* MAC writes into PHY register based on the state transition
2229 		 * and start auto-negotiation. SW driver can overwrite the
2230 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2231 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2232 	} else {
2233 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2234 				&phy_data);
2235 		if (ret_val)
2236 			return ret_val;
2237 	}
2238 
2239 	if (!active) {
2240 		if (hw->mac_type == e1000_82541_rev_2 ||
2241 			hw->mac_type == e1000_82547_rev_2) {
2242 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2243 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2244 					phy_data);
2245 			if (ret_val)
2246 				return ret_val;
2247 		} else {
2248 			if (hw->mac_type == e1000_ich8lan) {
2249 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2250 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2251 			} else {
2252 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2253 				ret_val = e1000_write_phy_reg(hw,
2254 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2255 				if (ret_val)
2256 					return ret_val;
2257 			}
2258 		}
2259 
2260 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2261 	 * Dx states where the power conservation is most important.  During
2262 	 * driver activity we should enable SmartSpeed, so performance is
2263 	 * maintained. */
2264 		if (hw->smart_speed == e1000_smart_speed_on) {
2265 			ret_val = e1000_read_phy_reg(hw,
2266 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2267 			if (ret_val)
2268 				return ret_val;
2269 
2270 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2271 			ret_val = e1000_write_phy_reg(hw,
2272 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2273 			if (ret_val)
2274 				return ret_val;
2275 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2276 			ret_val = e1000_read_phy_reg(hw,
2277 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2278 			if (ret_val)
2279 				return ret_val;
2280 
2281 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2282 			ret_val = e1000_write_phy_reg(hw,
2283 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2284 			if (ret_val)
2285 				return ret_val;
2286 		}
2287 
2288 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2289 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2290 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2291 
2292 		if (hw->mac_type == e1000_82541_rev_2 ||
2293 		    hw->mac_type == e1000_82547_rev_2) {
2294 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2295 			ret_val = e1000_write_phy_reg(hw,
2296 					IGP01E1000_GMII_FIFO, phy_data);
2297 			if (ret_val)
2298 				return ret_val;
2299 		} else {
2300 			if (hw->mac_type == e1000_ich8lan) {
2301 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2302 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2303 			} else {
2304 				phy_data |= IGP02E1000_PM_D3_LPLU;
2305 				ret_val = e1000_write_phy_reg(hw,
2306 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2307 				if (ret_val)
2308 					return ret_val;
2309 			}
2310 		}
2311 
2312 		/* When LPLU is enabled we should disable SmartSpeed */
2313 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2314 				&phy_data);
2315 		if (ret_val)
2316 			return ret_val;
2317 
2318 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2319 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2320 				phy_data);
2321 		if (ret_val)
2322 			return ret_val;
2323 	}
2324 	return E1000_SUCCESS;
2325 }
2326 
2327 /*****************************************************************************
2328  *
2329  * This function sets the lplu d0 state according to the active flag.  When
2330  * activating lplu this function also disables smart speed and vise versa.
2331  * lplu will not be activated unless the device autonegotiation advertisment
2332  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2333  * hw: Struct containing variables accessed by shared code
2334  * active - true to enable lplu false to disable lplu.
2335  *
2336  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2337  *            E1000_SUCCESS at any other case.
2338  *
2339  ****************************************************************************/
2340 
2341 static int32_t
2342 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2343 {
2344 	uint32_t phy_ctrl = 0;
2345 	int32_t ret_val;
2346 	uint16_t phy_data;
2347 	DEBUGFUNC();
2348 
2349 	if (hw->mac_type <= e1000_82547_rev_2)
2350 		return E1000_SUCCESS;
2351 
2352 	if (hw->mac_type == e1000_ich8lan) {
2353 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2354 	} else if (hw->mac_type == e1000_igb) {
2355 		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2356 	} else {
2357 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2358 				&phy_data);
2359 		if (ret_val)
2360 			return ret_val;
2361 	}
2362 
2363 	if (!active) {
2364 		if (hw->mac_type == e1000_ich8lan) {
2365 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2366 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2367 		} else if (hw->mac_type == e1000_igb) {
2368 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2369 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2370 		} else {
2371 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2372 			ret_val = e1000_write_phy_reg(hw,
2373 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2374 			if (ret_val)
2375 				return ret_val;
2376 		}
2377 
2378 		if (hw->mac_type == e1000_igb)
2379 			return E1000_SUCCESS;
2380 
2381 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2382 	 * Dx states where the power conservation is most important.  During
2383 	 * driver activity we should enable SmartSpeed, so performance is
2384 	 * maintained. */
2385 		if (hw->smart_speed == e1000_smart_speed_on) {
2386 			ret_val = e1000_read_phy_reg(hw,
2387 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2388 			if (ret_val)
2389 				return ret_val;
2390 
2391 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2392 			ret_val = e1000_write_phy_reg(hw,
2393 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2394 			if (ret_val)
2395 				return ret_val;
2396 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2397 			ret_val = e1000_read_phy_reg(hw,
2398 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2399 			if (ret_val)
2400 				return ret_val;
2401 
2402 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2403 			ret_val = e1000_write_phy_reg(hw,
2404 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2405 			if (ret_val)
2406 				return ret_val;
2407 		}
2408 
2409 
2410 	} else {
2411 
2412 		if (hw->mac_type == e1000_ich8lan) {
2413 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2414 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2415 		} else if (hw->mac_type == e1000_igb) {
2416 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2417 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2418 		} else {
2419 			phy_data |= IGP02E1000_PM_D0_LPLU;
2420 			ret_val = e1000_write_phy_reg(hw,
2421 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2422 			if (ret_val)
2423 				return ret_val;
2424 		}
2425 
2426 		if (hw->mac_type == e1000_igb)
2427 			return E1000_SUCCESS;
2428 
2429 		/* When LPLU is enabled we should disable SmartSpeed */
2430 		ret_val = e1000_read_phy_reg(hw,
2431 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2432 		if (ret_val)
2433 			return ret_val;
2434 
2435 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2436 		ret_val = e1000_write_phy_reg(hw,
2437 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2438 		if (ret_val)
2439 			return ret_val;
2440 
2441 	}
2442 	return E1000_SUCCESS;
2443 }
2444 
2445 /********************************************************************
2446 * Copper link setup for e1000_phy_igp series.
2447 *
2448 * hw - Struct containing variables accessed by shared code
2449 *********************************************************************/
2450 static int32_t
2451 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2452 {
2453 	uint32_t led_ctrl;
2454 	int32_t ret_val;
2455 	uint16_t phy_data;
2456 
2457 	DEBUGFUNC();
2458 
2459 	if (hw->phy_reset_disable)
2460 		return E1000_SUCCESS;
2461 
2462 	ret_val = e1000_phy_reset(hw);
2463 	if (ret_val) {
2464 		DEBUGOUT("Error Resetting the PHY\n");
2465 		return ret_val;
2466 	}
2467 
2468 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2469 	mdelay(15);
2470 	if (hw->mac_type != e1000_ich8lan) {
2471 		/* Configure activity LED after PHY reset */
2472 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2473 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2474 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2475 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2476 	}
2477 
2478 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2479 	if (hw->phy_type == e1000_phy_igp) {
2480 		/* disable lplu d3 during driver init */
2481 		ret_val = e1000_set_d3_lplu_state(hw, false);
2482 		if (ret_val) {
2483 			DEBUGOUT("Error Disabling LPLU D3\n");
2484 			return ret_val;
2485 		}
2486 	}
2487 
2488 	/* disable lplu d0 during driver init */
2489 	ret_val = e1000_set_d0_lplu_state(hw, false);
2490 	if (ret_val) {
2491 		DEBUGOUT("Error Disabling LPLU D0\n");
2492 		return ret_val;
2493 	}
2494 	/* Configure mdi-mdix settings */
2495 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2496 	if (ret_val)
2497 		return ret_val;
2498 
2499 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2500 		hw->dsp_config_state = e1000_dsp_config_disabled;
2501 		/* Force MDI for earlier revs of the IGP PHY */
2502 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2503 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2504 		hw->mdix = 1;
2505 
2506 	} else {
2507 		hw->dsp_config_state = e1000_dsp_config_enabled;
2508 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2509 
2510 		switch (hw->mdix) {
2511 		case 1:
2512 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2513 			break;
2514 		case 2:
2515 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2516 			break;
2517 		case 0:
2518 		default:
2519 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2520 			break;
2521 		}
2522 	}
2523 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2524 	if (ret_val)
2525 		return ret_val;
2526 
2527 	/* set auto-master slave resolution settings */
2528 	if (hw->autoneg) {
2529 		e1000_ms_type phy_ms_setting = hw->master_slave;
2530 
2531 		if (hw->ffe_config_state == e1000_ffe_config_active)
2532 			hw->ffe_config_state = e1000_ffe_config_enabled;
2533 
2534 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2535 			hw->dsp_config_state = e1000_dsp_config_enabled;
2536 
2537 		/* when autonegotiation advertisment is only 1000Mbps then we
2538 		  * should disable SmartSpeed and enable Auto MasterSlave
2539 		  * resolution as hardware default. */
2540 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2541 			/* Disable SmartSpeed */
2542 			ret_val = e1000_read_phy_reg(hw,
2543 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2544 			if (ret_val)
2545 				return ret_val;
2546 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2547 			ret_val = e1000_write_phy_reg(hw,
2548 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2549 			if (ret_val)
2550 				return ret_val;
2551 			/* Set auto Master/Slave resolution process */
2552 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2553 					&phy_data);
2554 			if (ret_val)
2555 				return ret_val;
2556 			phy_data &= ~CR_1000T_MS_ENABLE;
2557 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2558 					phy_data);
2559 			if (ret_val)
2560 				return ret_val;
2561 		}
2562 
2563 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2564 		if (ret_val)
2565 			return ret_val;
2566 
2567 		/* load defaults for future use */
2568 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2569 				((phy_data & CR_1000T_MS_VALUE) ?
2570 				e1000_ms_force_master :
2571 				e1000_ms_force_slave) :
2572 				e1000_ms_auto;
2573 
2574 		switch (phy_ms_setting) {
2575 		case e1000_ms_force_master:
2576 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2577 			break;
2578 		case e1000_ms_force_slave:
2579 			phy_data |= CR_1000T_MS_ENABLE;
2580 			phy_data &= ~(CR_1000T_MS_VALUE);
2581 			break;
2582 		case e1000_ms_auto:
2583 			phy_data &= ~CR_1000T_MS_ENABLE;
2584 		default:
2585 			break;
2586 		}
2587 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2588 		if (ret_val)
2589 			return ret_val;
2590 	}
2591 
2592 	return E1000_SUCCESS;
2593 }
2594 
2595 /*****************************************************************************
2596  * This function checks the mode of the firmware.
2597  *
2598  * returns  - true when the mode is IAMT or false.
2599  ****************************************************************************/
2600 bool
2601 e1000_check_mng_mode(struct e1000_hw *hw)
2602 {
2603 	uint32_t fwsm;
2604 	DEBUGFUNC();
2605 
2606 	fwsm = E1000_READ_REG(hw, FWSM);
2607 
2608 	if (hw->mac_type == e1000_ich8lan) {
2609 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2610 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2611 			return true;
2612 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2613 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2614 			return true;
2615 
2616 	return false;
2617 }
2618 
2619 static int32_t
2620 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2621 {
2622 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2623 	uint32_t reg_val;
2624 	DEBUGFUNC();
2625 
2626 	if (e1000_is_second_port(hw))
2627 		swfw = E1000_SWFW_PHY1_SM;
2628 
2629 	if (e1000_swfw_sync_acquire(hw, swfw))
2630 		return -E1000_ERR_SWFW_SYNC;
2631 
2632 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2633 			& E1000_KUMCTRLSTA_OFFSET) | data;
2634 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2635 	udelay(2);
2636 
2637 	return E1000_SUCCESS;
2638 }
2639 
2640 static int32_t
2641 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2642 {
2643 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2644 	uint32_t reg_val;
2645 	DEBUGFUNC();
2646 
2647 	if (e1000_is_second_port(hw))
2648 		swfw = E1000_SWFW_PHY1_SM;
2649 
2650 	if (e1000_swfw_sync_acquire(hw, swfw)) {
2651 		debug("%s[%i]\n", __func__, __LINE__);
2652 		return -E1000_ERR_SWFW_SYNC;
2653 	}
2654 
2655 	/* Write register address */
2656 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2657 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2658 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2659 	udelay(2);
2660 
2661 	/* Read the data returned */
2662 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2663 	*data = (uint16_t)reg_val;
2664 
2665 	return E1000_SUCCESS;
2666 }
2667 
2668 /********************************************************************
2669 * Copper link setup for e1000_phy_gg82563 series.
2670 *
2671 * hw - Struct containing variables accessed by shared code
2672 *********************************************************************/
2673 static int32_t
2674 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2675 {
2676 	int32_t ret_val;
2677 	uint16_t phy_data;
2678 	uint32_t reg_data;
2679 
2680 	DEBUGFUNC();
2681 
2682 	if (!hw->phy_reset_disable) {
2683 		/* Enable CRS on TX for half-duplex operation. */
2684 		ret_val = e1000_read_phy_reg(hw,
2685 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2686 		if (ret_val)
2687 			return ret_val;
2688 
2689 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2690 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2691 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2692 
2693 		ret_val = e1000_write_phy_reg(hw,
2694 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2695 		if (ret_val)
2696 			return ret_val;
2697 
2698 		/* Options:
2699 		 *   MDI/MDI-X = 0 (default)
2700 		 *   0 - Auto for all speeds
2701 		 *   1 - MDI mode
2702 		 *   2 - MDI-X mode
2703 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2704 		 */
2705 		ret_val = e1000_read_phy_reg(hw,
2706 				GG82563_PHY_SPEC_CTRL, &phy_data);
2707 		if (ret_val)
2708 			return ret_val;
2709 
2710 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2711 
2712 		switch (hw->mdix) {
2713 		case 1:
2714 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2715 			break;
2716 		case 2:
2717 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2718 			break;
2719 		case 0:
2720 		default:
2721 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2722 			break;
2723 		}
2724 
2725 		/* Options:
2726 		 *   disable_polarity_correction = 0 (default)
2727 		 *       Automatic Correction for Reversed Cable Polarity
2728 		 *   0 - Disabled
2729 		 *   1 - Enabled
2730 		 */
2731 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2732 		ret_val = e1000_write_phy_reg(hw,
2733 				GG82563_PHY_SPEC_CTRL, phy_data);
2734 
2735 		if (ret_val)
2736 			return ret_val;
2737 
2738 		/* SW Reset the PHY so all changes take effect */
2739 		ret_val = e1000_phy_reset(hw);
2740 		if (ret_val) {
2741 			DEBUGOUT("Error Resetting the PHY\n");
2742 			return ret_val;
2743 		}
2744 	} /* phy_reset_disable */
2745 
2746 	if (hw->mac_type == e1000_80003es2lan) {
2747 		/* Bypass RX and TX FIFO's */
2748 		ret_val = e1000_write_kmrn_reg(hw,
2749 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2750 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2751 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2752 		if (ret_val)
2753 			return ret_val;
2754 
2755 		ret_val = e1000_read_phy_reg(hw,
2756 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2757 		if (ret_val)
2758 			return ret_val;
2759 
2760 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2761 		ret_val = e1000_write_phy_reg(hw,
2762 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2763 
2764 		if (ret_val)
2765 			return ret_val;
2766 
2767 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2768 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2769 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2770 
2771 		ret_val = e1000_read_phy_reg(hw,
2772 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2773 		if (ret_val)
2774 			return ret_val;
2775 
2776 	/* Do not init these registers when the HW is in IAMT mode, since the
2777 	 * firmware will have already initialized them.  We only initialize
2778 	 * them if the HW is not in IAMT mode.
2779 	 */
2780 		if (e1000_check_mng_mode(hw) == false) {
2781 			/* Enable Electrical Idle on the PHY */
2782 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2783 			ret_val = e1000_write_phy_reg(hw,
2784 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2785 			if (ret_val)
2786 				return ret_val;
2787 
2788 			ret_val = e1000_read_phy_reg(hw,
2789 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2790 			if (ret_val)
2791 				return ret_val;
2792 
2793 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2794 			ret_val = e1000_write_phy_reg(hw,
2795 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2796 
2797 			if (ret_val)
2798 				return ret_val;
2799 		}
2800 
2801 		/* Workaround: Disable padding in Kumeran interface in the MAC
2802 		 * and in the PHY to avoid CRC errors.
2803 		 */
2804 		ret_val = e1000_read_phy_reg(hw,
2805 				GG82563_PHY_INBAND_CTRL, &phy_data);
2806 		if (ret_val)
2807 			return ret_val;
2808 		phy_data |= GG82563_ICR_DIS_PADDING;
2809 		ret_val = e1000_write_phy_reg(hw,
2810 				GG82563_PHY_INBAND_CTRL, phy_data);
2811 		if (ret_val)
2812 			return ret_val;
2813 	}
2814 	return E1000_SUCCESS;
2815 }
2816 
2817 /********************************************************************
2818 * Copper link setup for e1000_phy_m88 series.
2819 *
2820 * hw - Struct containing variables accessed by shared code
2821 *********************************************************************/
2822 static int32_t
2823 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2824 {
2825 	int32_t ret_val;
2826 	uint16_t phy_data;
2827 
2828 	DEBUGFUNC();
2829 
2830 	if (hw->phy_reset_disable)
2831 		return E1000_SUCCESS;
2832 
2833 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2834 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2835 	if (ret_val)
2836 		return ret_val;
2837 
2838 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2839 
2840 	/* Options:
2841 	 *   MDI/MDI-X = 0 (default)
2842 	 *   0 - Auto for all speeds
2843 	 *   1 - MDI mode
2844 	 *   2 - MDI-X mode
2845 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2846 	 */
2847 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2848 
2849 	switch (hw->mdix) {
2850 	case 1:
2851 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2852 		break;
2853 	case 2:
2854 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2855 		break;
2856 	case 3:
2857 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2858 		break;
2859 	case 0:
2860 	default:
2861 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2862 		break;
2863 	}
2864 
2865 	/* Options:
2866 	 *   disable_polarity_correction = 0 (default)
2867 	 *       Automatic Correction for Reversed Cable Polarity
2868 	 *   0 - Disabled
2869 	 *   1 - Enabled
2870 	 */
2871 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2872 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2873 	if (ret_val)
2874 		return ret_val;
2875 
2876 	if (hw->phy_revision < M88E1011_I_REV_4) {
2877 		/* Force TX_CLK in the Extended PHY Specific Control Register
2878 		 * to 25MHz clock.
2879 		 */
2880 		ret_val = e1000_read_phy_reg(hw,
2881 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2882 		if (ret_val)
2883 			return ret_val;
2884 
2885 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2886 
2887 		if ((hw->phy_revision == E1000_REVISION_2) &&
2888 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2889 			/* Vidalia Phy, set the downshift counter to 5x */
2890 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2891 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2892 			ret_val = e1000_write_phy_reg(hw,
2893 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2894 			if (ret_val)
2895 				return ret_val;
2896 		} else {
2897 			/* Configure Master and Slave downshift values */
2898 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2899 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2900 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2901 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2902 			ret_val = e1000_write_phy_reg(hw,
2903 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2904 			if (ret_val)
2905 				return ret_val;
2906 		}
2907 	}
2908 
2909 	/* SW Reset the PHY so all changes take effect */
2910 	ret_val = e1000_phy_reset(hw);
2911 	if (ret_val) {
2912 		DEBUGOUT("Error Resetting the PHY\n");
2913 		return ret_val;
2914 	}
2915 
2916 	return E1000_SUCCESS;
2917 }
2918 
2919 /********************************************************************
2920 * Setup auto-negotiation and flow control advertisements,
2921 * and then perform auto-negotiation.
2922 *
2923 * hw - Struct containing variables accessed by shared code
2924 *********************************************************************/
2925 static int32_t
2926 e1000_copper_link_autoneg(struct e1000_hw *hw)
2927 {
2928 	int32_t ret_val;
2929 	uint16_t phy_data;
2930 
2931 	DEBUGFUNC();
2932 
2933 	/* Perform some bounds checking on the hw->autoneg_advertised
2934 	 * parameter.  If this variable is zero, then set it to the default.
2935 	 */
2936 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2937 
2938 	/* If autoneg_advertised is zero, we assume it was not defaulted
2939 	 * by the calling code so we set to advertise full capability.
2940 	 */
2941 	if (hw->autoneg_advertised == 0)
2942 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2943 
2944 	/* IFE phy only supports 10/100 */
2945 	if (hw->phy_type == e1000_phy_ife)
2946 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2947 
2948 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2949 	ret_val = e1000_phy_setup_autoneg(hw);
2950 	if (ret_val) {
2951 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2952 		return ret_val;
2953 	}
2954 	DEBUGOUT("Restarting Auto-Neg\n");
2955 
2956 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2957 	 * the Auto Neg Restart bit in the PHY control register.
2958 	 */
2959 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2960 	if (ret_val)
2961 		return ret_val;
2962 
2963 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2964 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2965 	if (ret_val)
2966 		return ret_val;
2967 
2968 	/* Does the user want to wait for Auto-Neg to complete here, or
2969 	 * check at a later time (for example, callback routine).
2970 	 */
2971 	/* If we do not wait for autonegtation to complete I
2972 	 * do not see a valid link status.
2973 	 * wait_autoneg_complete = 1 .
2974 	 */
2975 	if (hw->wait_autoneg_complete) {
2976 		ret_val = e1000_wait_autoneg(hw);
2977 		if (ret_val) {
2978 			DEBUGOUT("Error while waiting for autoneg"
2979 					"to complete\n");
2980 			return ret_val;
2981 		}
2982 	}
2983 
2984 	hw->get_link_status = true;
2985 
2986 	return E1000_SUCCESS;
2987 }
2988 
2989 /******************************************************************************
2990 * Config the MAC and the PHY after link is up.
2991 *   1) Set up the MAC to the current PHY speed/duplex
2992 *      if we are on 82543.  If we
2993 *      are on newer silicon, we only need to configure
2994 *      collision distance in the Transmit Control Register.
2995 *   2) Set up flow control on the MAC to that established with
2996 *      the link partner.
2997 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2998 *
2999 * hw - Struct containing variables accessed by shared code
3000 ******************************************************************************/
3001 static int32_t
3002 e1000_copper_link_postconfig(struct e1000_hw *hw)
3003 {
3004 	int32_t ret_val;
3005 	DEBUGFUNC();
3006 
3007 	if (hw->mac_type >= e1000_82544) {
3008 		e1000_config_collision_dist(hw);
3009 	} else {
3010 		ret_val = e1000_config_mac_to_phy(hw);
3011 		if (ret_val) {
3012 			DEBUGOUT("Error configuring MAC to PHY settings\n");
3013 			return ret_val;
3014 		}
3015 	}
3016 	ret_val = e1000_config_fc_after_link_up(hw);
3017 	if (ret_val) {
3018 		DEBUGOUT("Error Configuring Flow Control\n");
3019 		return ret_val;
3020 	}
3021 	return E1000_SUCCESS;
3022 }
3023 
3024 /******************************************************************************
3025 * Detects which PHY is present and setup the speed and duplex
3026 *
3027 * hw - Struct containing variables accessed by shared code
3028 ******************************************************************************/
3029 static int
3030 e1000_setup_copper_link(struct eth_device *nic)
3031 {
3032 	struct e1000_hw *hw = nic->priv;
3033 	int32_t ret_val;
3034 	uint16_t i;
3035 	uint16_t phy_data;
3036 	uint16_t reg_data;
3037 
3038 	DEBUGFUNC();
3039 
3040 	switch (hw->mac_type) {
3041 	case e1000_80003es2lan:
3042 	case e1000_ich8lan:
3043 		/* Set the mac to wait the maximum time between each
3044 		 * iteration and increase the max iterations when
3045 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3046 		ret_val = e1000_write_kmrn_reg(hw,
3047 				GG82563_REG(0x34, 4), 0xFFFF);
3048 		if (ret_val)
3049 			return ret_val;
3050 		ret_val = e1000_read_kmrn_reg(hw,
3051 				GG82563_REG(0x34, 9), &reg_data);
3052 		if (ret_val)
3053 			return ret_val;
3054 		reg_data |= 0x3F;
3055 		ret_val = e1000_write_kmrn_reg(hw,
3056 				GG82563_REG(0x34, 9), reg_data);
3057 		if (ret_val)
3058 			return ret_val;
3059 	default:
3060 		break;
3061 	}
3062 
3063 	/* Check if it is a valid PHY and set PHY mode if necessary. */
3064 	ret_val = e1000_copper_link_preconfig(hw);
3065 	if (ret_val)
3066 		return ret_val;
3067 	switch (hw->mac_type) {
3068 	case e1000_80003es2lan:
3069 		/* Kumeran registers are written-only */
3070 		reg_data =
3071 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3072 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3073 		ret_val = e1000_write_kmrn_reg(hw,
3074 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3075 		if (ret_val)
3076 			return ret_val;
3077 		break;
3078 	default:
3079 		break;
3080 	}
3081 
3082 	if (hw->phy_type == e1000_phy_igp ||
3083 		hw->phy_type == e1000_phy_igp_3 ||
3084 		hw->phy_type == e1000_phy_igp_2) {
3085 		ret_val = e1000_copper_link_igp_setup(hw);
3086 		if (ret_val)
3087 			return ret_val;
3088 	} else if (hw->phy_type == e1000_phy_m88 ||
3089 		hw->phy_type == e1000_phy_igb) {
3090 		ret_val = e1000_copper_link_mgp_setup(hw);
3091 		if (ret_val)
3092 			return ret_val;
3093 	} else if (hw->phy_type == e1000_phy_gg82563) {
3094 		ret_val = e1000_copper_link_ggp_setup(hw);
3095 		if (ret_val)
3096 			return ret_val;
3097 	}
3098 
3099 	/* always auto */
3100 	/* Setup autoneg and flow control advertisement
3101 	  * and perform autonegotiation */
3102 	ret_val = e1000_copper_link_autoneg(hw);
3103 	if (ret_val)
3104 		return ret_val;
3105 
3106 	/* Check link status. Wait up to 100 microseconds for link to become
3107 	 * valid.
3108 	 */
3109 	for (i = 0; i < 10; i++) {
3110 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3111 		if (ret_val)
3112 			return ret_val;
3113 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3114 		if (ret_val)
3115 			return ret_val;
3116 
3117 		if (phy_data & MII_SR_LINK_STATUS) {
3118 			/* Config the MAC and PHY after link is up */
3119 			ret_val = e1000_copper_link_postconfig(hw);
3120 			if (ret_val)
3121 				return ret_val;
3122 
3123 			DEBUGOUT("Valid link established!!!\n");
3124 			return E1000_SUCCESS;
3125 		}
3126 		udelay(10);
3127 	}
3128 
3129 	DEBUGOUT("Unable to establish link!!!\n");
3130 	return E1000_SUCCESS;
3131 }
3132 
3133 /******************************************************************************
3134 * Configures PHY autoneg and flow control advertisement settings
3135 *
3136 * hw - Struct containing variables accessed by shared code
3137 ******************************************************************************/
3138 int32_t
3139 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3140 {
3141 	int32_t ret_val;
3142 	uint16_t mii_autoneg_adv_reg;
3143 	uint16_t mii_1000t_ctrl_reg;
3144 
3145 	DEBUGFUNC();
3146 
3147 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3148 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3149 	if (ret_val)
3150 		return ret_val;
3151 
3152 	if (hw->phy_type != e1000_phy_ife) {
3153 		/* Read the MII 1000Base-T Control Register (Address 9). */
3154 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3155 				&mii_1000t_ctrl_reg);
3156 		if (ret_val)
3157 			return ret_val;
3158 	} else
3159 		mii_1000t_ctrl_reg = 0;
3160 
3161 	/* Need to parse both autoneg_advertised and fc and set up
3162 	 * the appropriate PHY registers.  First we will parse for
3163 	 * autoneg_advertised software override.  Since we can advertise
3164 	 * a plethora of combinations, we need to check each bit
3165 	 * individually.
3166 	 */
3167 
3168 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3169 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3170 	 * the  1000Base-T Control Register (Address 9).
3171 	 */
3172 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3173 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3174 
3175 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3176 
3177 	/* Do we want to advertise 10 Mb Half Duplex? */
3178 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3179 		DEBUGOUT("Advertise 10mb Half duplex\n");
3180 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3181 	}
3182 
3183 	/* Do we want to advertise 10 Mb Full Duplex? */
3184 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3185 		DEBUGOUT("Advertise 10mb Full duplex\n");
3186 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3187 	}
3188 
3189 	/* Do we want to advertise 100 Mb Half Duplex? */
3190 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3191 		DEBUGOUT("Advertise 100mb Half duplex\n");
3192 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3193 	}
3194 
3195 	/* Do we want to advertise 100 Mb Full Duplex? */
3196 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3197 		DEBUGOUT("Advertise 100mb Full duplex\n");
3198 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3199 	}
3200 
3201 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3202 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3203 		DEBUGOUT
3204 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3205 	}
3206 
3207 	/* Do we want to advertise 1000 Mb Full Duplex? */
3208 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3209 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3210 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3211 	}
3212 
3213 	/* Check for a software override of the flow control settings, and
3214 	 * setup the PHY advertisement registers accordingly.  If
3215 	 * auto-negotiation is enabled, then software will have to set the
3216 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3217 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3218 	 *
3219 	 * The possible values of the "fc" parameter are:
3220 	 *	0:  Flow control is completely disabled
3221 	 *	1:  Rx flow control is enabled (we can receive pause frames
3222 	 *	    but not send pause frames).
3223 	 *	2:  Tx flow control is enabled (we can send pause frames
3224 	 *	    but we do not support receiving pause frames).
3225 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3226 	 *  other:  No software override.  The flow control configuration
3227 	 *	    in the EEPROM is used.
3228 	 */
3229 	switch (hw->fc) {
3230 	case e1000_fc_none:	/* 0 */
3231 		/* Flow control (RX & TX) is completely disabled by a
3232 		 * software over-ride.
3233 		 */
3234 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3235 		break;
3236 	case e1000_fc_rx_pause:	/* 1 */
3237 		/* RX Flow control is enabled, and TX Flow control is
3238 		 * disabled, by a software over-ride.
3239 		 */
3240 		/* Since there really isn't a way to advertise that we are
3241 		 * capable of RX Pause ONLY, we will advertise that we
3242 		 * support both symmetric and asymmetric RX PAUSE.  Later
3243 		 * (in e1000_config_fc_after_link_up) we will disable the
3244 		 *hw's ability to send PAUSE frames.
3245 		 */
3246 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3247 		break;
3248 	case e1000_fc_tx_pause:	/* 2 */
3249 		/* TX Flow control is enabled, and RX Flow control is
3250 		 * disabled, by a software over-ride.
3251 		 */
3252 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3253 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3254 		break;
3255 	case e1000_fc_full:	/* 3 */
3256 		/* Flow control (both RX and TX) is enabled by a software
3257 		 * over-ride.
3258 		 */
3259 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3260 		break;
3261 	default:
3262 		DEBUGOUT("Flow control param set incorrectly\n");
3263 		return -E1000_ERR_CONFIG;
3264 	}
3265 
3266 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3267 	if (ret_val)
3268 		return ret_val;
3269 
3270 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3271 
3272 	if (hw->phy_type != e1000_phy_ife) {
3273 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3274 				mii_1000t_ctrl_reg);
3275 		if (ret_val)
3276 			return ret_val;
3277 	}
3278 
3279 	return E1000_SUCCESS;
3280 }
3281 
3282 /******************************************************************************
3283 * Sets the collision distance in the Transmit Control register
3284 *
3285 * hw - Struct containing variables accessed by shared code
3286 *
3287 * Link should have been established previously. Reads the speed and duplex
3288 * information from the Device Status register.
3289 ******************************************************************************/
3290 static void
3291 e1000_config_collision_dist(struct e1000_hw *hw)
3292 {
3293 	uint32_t tctl, coll_dist;
3294 
3295 	DEBUGFUNC();
3296 
3297 	if (hw->mac_type < e1000_82543)
3298 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3299 	else
3300 		coll_dist = E1000_COLLISION_DISTANCE;
3301 
3302 	tctl = E1000_READ_REG(hw, TCTL);
3303 
3304 	tctl &= ~E1000_TCTL_COLD;
3305 	tctl |= coll_dist << E1000_COLD_SHIFT;
3306 
3307 	E1000_WRITE_REG(hw, TCTL, tctl);
3308 	E1000_WRITE_FLUSH(hw);
3309 }
3310 
3311 /******************************************************************************
3312 * Sets MAC speed and duplex settings to reflect the those in the PHY
3313 *
3314 * hw - Struct containing variables accessed by shared code
3315 * mii_reg - data to write to the MII control register
3316 *
3317 * The contents of the PHY register containing the needed information need to
3318 * be passed in.
3319 ******************************************************************************/
3320 static int
3321 e1000_config_mac_to_phy(struct e1000_hw *hw)
3322 {
3323 	uint32_t ctrl;
3324 	uint16_t phy_data;
3325 
3326 	DEBUGFUNC();
3327 
3328 	/* Read the Device Control Register and set the bits to Force Speed
3329 	 * and Duplex.
3330 	 */
3331 	ctrl = E1000_READ_REG(hw, CTRL);
3332 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3333 	ctrl &= ~(E1000_CTRL_ILOS);
3334 	ctrl |= (E1000_CTRL_SPD_SEL);
3335 
3336 	/* Set up duplex in the Device Control and Transmit Control
3337 	 * registers depending on negotiated values.
3338 	 */
3339 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3340 		DEBUGOUT("PHY Read Error\n");
3341 		return -E1000_ERR_PHY;
3342 	}
3343 	if (phy_data & M88E1000_PSSR_DPLX)
3344 		ctrl |= E1000_CTRL_FD;
3345 	else
3346 		ctrl &= ~E1000_CTRL_FD;
3347 
3348 	e1000_config_collision_dist(hw);
3349 
3350 	/* Set up speed in the Device Control register depending on
3351 	 * negotiated values.
3352 	 */
3353 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3354 		ctrl |= E1000_CTRL_SPD_1000;
3355 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3356 		ctrl |= E1000_CTRL_SPD_100;
3357 	/* Write the configured values back to the Device Control Reg. */
3358 	E1000_WRITE_REG(hw, CTRL, ctrl);
3359 	return 0;
3360 }
3361 
3362 /******************************************************************************
3363  * Forces the MAC's flow control settings.
3364  *
3365  * hw - Struct containing variables accessed by shared code
3366  *
3367  * Sets the TFCE and RFCE bits in the device control register to reflect
3368  * the adapter settings. TFCE and RFCE need to be explicitly set by
3369  * software when a Copper PHY is used because autonegotiation is managed
3370  * by the PHY rather than the MAC. Software must also configure these
3371  * bits when link is forced on a fiber connection.
3372  *****************************************************************************/
3373 static int
3374 e1000_force_mac_fc(struct e1000_hw *hw)
3375 {
3376 	uint32_t ctrl;
3377 
3378 	DEBUGFUNC();
3379 
3380 	/* Get the current configuration of the Device Control Register */
3381 	ctrl = E1000_READ_REG(hw, CTRL);
3382 
3383 	/* Because we didn't get link via the internal auto-negotiation
3384 	 * mechanism (we either forced link or we got link via PHY
3385 	 * auto-neg), we have to manually enable/disable transmit an
3386 	 * receive flow control.
3387 	 *
3388 	 * The "Case" statement below enables/disable flow control
3389 	 * according to the "hw->fc" parameter.
3390 	 *
3391 	 * The possible values of the "fc" parameter are:
3392 	 *	0:  Flow control is completely disabled
3393 	 *	1:  Rx flow control is enabled (we can receive pause
3394 	 *	    frames but not send pause frames).
3395 	 *	2:  Tx flow control is enabled (we can send pause frames
3396 	 *	    frames but we do not receive pause frames).
3397 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3398 	 *  other:  No other values should be possible at this point.
3399 	 */
3400 
3401 	switch (hw->fc) {
3402 	case e1000_fc_none:
3403 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3404 		break;
3405 	case e1000_fc_rx_pause:
3406 		ctrl &= (~E1000_CTRL_TFCE);
3407 		ctrl |= E1000_CTRL_RFCE;
3408 		break;
3409 	case e1000_fc_tx_pause:
3410 		ctrl &= (~E1000_CTRL_RFCE);
3411 		ctrl |= E1000_CTRL_TFCE;
3412 		break;
3413 	case e1000_fc_full:
3414 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3415 		break;
3416 	default:
3417 		DEBUGOUT("Flow control param set incorrectly\n");
3418 		return -E1000_ERR_CONFIG;
3419 	}
3420 
3421 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3422 	if (hw->mac_type == e1000_82542_rev2_0)
3423 		ctrl &= (~E1000_CTRL_TFCE);
3424 
3425 	E1000_WRITE_REG(hw, CTRL, ctrl);
3426 	return 0;
3427 }
3428 
3429 /******************************************************************************
3430  * Configures flow control settings after link is established
3431  *
3432  * hw - Struct containing variables accessed by shared code
3433  *
3434  * Should be called immediately after a valid link has been established.
3435  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3436  * and autonegotiation is enabled, the MAC flow control settings will be set
3437  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3438  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3439  *****************************************************************************/
3440 static int32_t
3441 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3442 {
3443 	int32_t ret_val;
3444 	uint16_t mii_status_reg;
3445 	uint16_t mii_nway_adv_reg;
3446 	uint16_t mii_nway_lp_ability_reg;
3447 	uint16_t speed;
3448 	uint16_t duplex;
3449 
3450 	DEBUGFUNC();
3451 
3452 	/* Check for the case where we have fiber media and auto-neg failed
3453 	 * so we had to force link.  In this case, we need to force the
3454 	 * configuration of the MAC to match the "fc" parameter.
3455 	 */
3456 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3457 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3458 		&& (hw->autoneg_failed))
3459 		|| ((hw->media_type == e1000_media_type_copper)
3460 		&& (!hw->autoneg))) {
3461 		ret_val = e1000_force_mac_fc(hw);
3462 		if (ret_val < 0) {
3463 			DEBUGOUT("Error forcing flow control settings\n");
3464 			return ret_val;
3465 		}
3466 	}
3467 
3468 	/* Check for the case where we have copper media and auto-neg is
3469 	 * enabled.  In this case, we need to check and see if Auto-Neg
3470 	 * has completed, and if so, how the PHY and link partner has
3471 	 * flow control configured.
3472 	 */
3473 	if (hw->media_type == e1000_media_type_copper) {
3474 		/* Read the MII Status Register and check to see if AutoNeg
3475 		 * has completed.  We read this twice because this reg has
3476 		 * some "sticky" (latched) bits.
3477 		 */
3478 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3479 			DEBUGOUT("PHY Read Error \n");
3480 			return -E1000_ERR_PHY;
3481 		}
3482 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3483 			DEBUGOUT("PHY Read Error \n");
3484 			return -E1000_ERR_PHY;
3485 		}
3486 
3487 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3488 			/* The AutoNeg process has completed, so we now need to
3489 			 * read both the Auto Negotiation Advertisement Register
3490 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3491 			 * Register (Address 5) to determine how flow control was
3492 			 * negotiated.
3493 			 */
3494 			if (e1000_read_phy_reg
3495 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3496 				DEBUGOUT("PHY Read Error\n");
3497 				return -E1000_ERR_PHY;
3498 			}
3499 			if (e1000_read_phy_reg
3500 			    (hw, PHY_LP_ABILITY,
3501 			     &mii_nway_lp_ability_reg) < 0) {
3502 				DEBUGOUT("PHY Read Error\n");
3503 				return -E1000_ERR_PHY;
3504 			}
3505 
3506 			/* Two bits in the Auto Negotiation Advertisement Register
3507 			 * (Address 4) and two bits in the Auto Negotiation Base
3508 			 * Page Ability Register (Address 5) determine flow control
3509 			 * for both the PHY and the link partner.  The following
3510 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3511 			 * 1999, describes these PAUSE resolution bits and how flow
3512 			 * control is determined based upon these settings.
3513 			 * NOTE:  DC = Don't Care
3514 			 *
3515 			 *   LOCAL DEVICE  |   LINK PARTNER
3516 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3517 			 *-------|---------|-------|---------|--------------------
3518 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3519 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3520 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3521 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3522 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3523 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3524 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3525 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3526 			 *
3527 			 */
3528 			/* Are both PAUSE bits set to 1?  If so, this implies
3529 			 * Symmetric Flow Control is enabled at both ends.  The
3530 			 * ASM_DIR bits are irrelevant per the spec.
3531 			 *
3532 			 * For Symmetric Flow Control:
3533 			 *
3534 			 *   LOCAL DEVICE  |   LINK PARTNER
3535 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3536 			 *-------|---------|-------|---------|--------------------
3537 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3538 			 *
3539 			 */
3540 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3541 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3542 				/* Now we need to check if the user selected RX ONLY
3543 				 * of pause frames.  In this case, we had to advertise
3544 				 * FULL flow control because we could not advertise RX
3545 				 * ONLY. Hence, we must now check to see if we need to
3546 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3547 				 */
3548 				if (hw->original_fc == e1000_fc_full) {
3549 					hw->fc = e1000_fc_full;
3550 					DEBUGOUT("Flow Control = FULL.\r\n");
3551 				} else {
3552 					hw->fc = e1000_fc_rx_pause;
3553 					DEBUGOUT
3554 					    ("Flow Control = RX PAUSE frames only.\r\n");
3555 				}
3556 			}
3557 			/* For receiving PAUSE frames ONLY.
3558 			 *
3559 			 *   LOCAL DEVICE  |   LINK PARTNER
3560 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3561 			 *-------|---------|-------|---------|--------------------
3562 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3563 			 *
3564 			 */
3565 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3566 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3567 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3568 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3569 			{
3570 				hw->fc = e1000_fc_tx_pause;
3571 				DEBUGOUT
3572 				    ("Flow Control = TX PAUSE frames only.\r\n");
3573 			}
3574 			/* For transmitting PAUSE frames ONLY.
3575 			 *
3576 			 *   LOCAL DEVICE  |   LINK PARTNER
3577 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3578 			 *-------|---------|-------|---------|--------------------
3579 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3580 			 *
3581 			 */
3582 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3583 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3584 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3585 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3586 			{
3587 				hw->fc = e1000_fc_rx_pause;
3588 				DEBUGOUT
3589 				    ("Flow Control = RX PAUSE frames only.\r\n");
3590 			}
3591 			/* Per the IEEE spec, at this point flow control should be
3592 			 * disabled.  However, we want to consider that we could
3593 			 * be connected to a legacy switch that doesn't advertise
3594 			 * desired flow control, but can be forced on the link
3595 			 * partner.  So if we advertised no flow control, that is
3596 			 * what we will resolve to.  If we advertised some kind of
3597 			 * receive capability (Rx Pause Only or Full Flow Control)
3598 			 * and the link partner advertised none, we will configure
3599 			 * ourselves to enable Rx Flow Control only.  We can do
3600 			 * this safely for two reasons:  If the link partner really
3601 			 * didn't want flow control enabled, and we enable Rx, no
3602 			 * harm done since we won't be receiving any PAUSE frames
3603 			 * anyway.  If the intent on the link partner was to have
3604 			 * flow control enabled, then by us enabling RX only, we
3605 			 * can at least receive pause frames and process them.
3606 			 * This is a good idea because in most cases, since we are
3607 			 * predominantly a server NIC, more times than not we will
3608 			 * be asked to delay transmission of packets than asking
3609 			 * our link partner to pause transmission of frames.
3610 			 */
3611 			else if (hw->original_fc == e1000_fc_none ||
3612 				 hw->original_fc == e1000_fc_tx_pause) {
3613 				hw->fc = e1000_fc_none;
3614 				DEBUGOUT("Flow Control = NONE.\r\n");
3615 			} else {
3616 				hw->fc = e1000_fc_rx_pause;
3617 				DEBUGOUT
3618 				    ("Flow Control = RX PAUSE frames only.\r\n");
3619 			}
3620 
3621 			/* Now we need to do one last check...	If we auto-
3622 			 * negotiated to HALF DUPLEX, flow control should not be
3623 			 * enabled per IEEE 802.3 spec.
3624 			 */
3625 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3626 
3627 			if (duplex == HALF_DUPLEX)
3628 				hw->fc = e1000_fc_none;
3629 
3630 			/* Now we call a subroutine to actually force the MAC
3631 			 * controller to use the correct flow control settings.
3632 			 */
3633 			ret_val = e1000_force_mac_fc(hw);
3634 			if (ret_val < 0) {
3635 				DEBUGOUT
3636 				    ("Error forcing flow control settings\n");
3637 				return ret_val;
3638 			}
3639 		} else {
3640 			DEBUGOUT
3641 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3642 		}
3643 	}
3644 	return E1000_SUCCESS;
3645 }
3646 
3647 /******************************************************************************
3648  * Checks to see if the link status of the hardware has changed.
3649  *
3650  * hw - Struct containing variables accessed by shared code
3651  *
3652  * Called by any function that needs to check the link status of the adapter.
3653  *****************************************************************************/
3654 static int
3655 e1000_check_for_link(struct eth_device *nic)
3656 {
3657 	struct e1000_hw *hw = nic->priv;
3658 	uint32_t rxcw;
3659 	uint32_t ctrl;
3660 	uint32_t status;
3661 	uint32_t rctl;
3662 	uint32_t signal;
3663 	int32_t ret_val;
3664 	uint16_t phy_data;
3665 	uint16_t lp_capability;
3666 
3667 	DEBUGFUNC();
3668 
3669 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3670 	 * set when the optics detect a signal. On older adapters, it will be
3671 	 * cleared when there is a signal
3672 	 */
3673 	ctrl = E1000_READ_REG(hw, CTRL);
3674 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3675 		signal = E1000_CTRL_SWDPIN1;
3676 	else
3677 		signal = 0;
3678 
3679 	status = E1000_READ_REG(hw, STATUS);
3680 	rxcw = E1000_READ_REG(hw, RXCW);
3681 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3682 
3683 	/* If we have a copper PHY then we only want to go out to the PHY
3684 	 * registers to see if Auto-Neg has completed and/or if our link
3685 	 * status has changed.	The get_link_status flag will be set if we
3686 	 * receive a Link Status Change interrupt or we have Rx Sequence
3687 	 * Errors.
3688 	 */
3689 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3690 		/* First we want to see if the MII Status Register reports
3691 		 * link.  If so, then we want to get the current speed/duplex
3692 		 * of the PHY.
3693 		 * Read the register twice since the link bit is sticky.
3694 		 */
3695 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3696 			DEBUGOUT("PHY Read Error\n");
3697 			return -E1000_ERR_PHY;
3698 		}
3699 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3700 			DEBUGOUT("PHY Read Error\n");
3701 			return -E1000_ERR_PHY;
3702 		}
3703 
3704 		if (phy_data & MII_SR_LINK_STATUS) {
3705 			hw->get_link_status = false;
3706 		} else {
3707 			/* No link detected */
3708 			return -E1000_ERR_NOLINK;
3709 		}
3710 
3711 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3712 		 * have Si on board that is 82544 or newer, Auto
3713 		 * Speed Detection takes care of MAC speed/duplex
3714 		 * configuration.  So we only need to configure Collision
3715 		 * Distance in the MAC.  Otherwise, we need to force
3716 		 * speed/duplex on the MAC to the current PHY speed/duplex
3717 		 * settings.
3718 		 */
3719 		if (hw->mac_type >= e1000_82544)
3720 			e1000_config_collision_dist(hw);
3721 		else {
3722 			ret_val = e1000_config_mac_to_phy(hw);
3723 			if (ret_val < 0) {
3724 				DEBUGOUT
3725 				    ("Error configuring MAC to PHY settings\n");
3726 				return ret_val;
3727 			}
3728 		}
3729 
3730 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3731 		 * need to restore the desired flow control settings because we may
3732 		 * have had to re-autoneg with a different link partner.
3733 		 */
3734 		ret_val = e1000_config_fc_after_link_up(hw);
3735 		if (ret_val < 0) {
3736 			DEBUGOUT("Error configuring flow control\n");
3737 			return ret_val;
3738 		}
3739 
3740 		/* At this point we know that we are on copper and we have
3741 		 * auto-negotiated link.  These are conditions for checking the link
3742 		 * parter capability register.	We use the link partner capability to
3743 		 * determine if TBI Compatibility needs to be turned on or off.  If
3744 		 * the link partner advertises any speed in addition to Gigabit, then
3745 		 * we assume that they are GMII-based, and TBI compatibility is not
3746 		 * needed. If no other speeds are advertised, we assume the link
3747 		 * partner is TBI-based, and we turn on TBI Compatibility.
3748 		 */
3749 		if (hw->tbi_compatibility_en) {
3750 			if (e1000_read_phy_reg
3751 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3752 				DEBUGOUT("PHY Read Error\n");
3753 				return -E1000_ERR_PHY;
3754 			}
3755 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3756 					     NWAY_LPAR_10T_FD_CAPS |
3757 					     NWAY_LPAR_100TX_HD_CAPS |
3758 					     NWAY_LPAR_100TX_FD_CAPS |
3759 					     NWAY_LPAR_100T4_CAPS)) {
3760 				/* If our link partner advertises anything in addition to
3761 				 * gigabit, we do not need to enable TBI compatibility.
3762 				 */
3763 				if (hw->tbi_compatibility_on) {
3764 					/* If we previously were in the mode, turn it off. */
3765 					rctl = E1000_READ_REG(hw, RCTL);
3766 					rctl &= ~E1000_RCTL_SBP;
3767 					E1000_WRITE_REG(hw, RCTL, rctl);
3768 					hw->tbi_compatibility_on = false;
3769 				}
3770 			} else {
3771 				/* If TBI compatibility is was previously off, turn it on. For
3772 				 * compatibility with a TBI link partner, we will store bad
3773 				 * packets. Some frames have an additional byte on the end and
3774 				 * will look like CRC errors to to the hardware.
3775 				 */
3776 				if (!hw->tbi_compatibility_on) {
3777 					hw->tbi_compatibility_on = true;
3778 					rctl = E1000_READ_REG(hw, RCTL);
3779 					rctl |= E1000_RCTL_SBP;
3780 					E1000_WRITE_REG(hw, RCTL, rctl);
3781 				}
3782 			}
3783 		}
3784 	}
3785 	/* If we don't have link (auto-negotiation failed or link partner cannot
3786 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3787 	 * link partner is not trying to auto-negotiate with us (we are receiving
3788 	 * idles or data), we need to force link up. We also need to give
3789 	 * auto-negotiation time to complete, in case the cable was just plugged
3790 	 * in. The autoneg_failed flag does this.
3791 	 */
3792 	else if ((hw->media_type == e1000_media_type_fiber) &&
3793 		 (!(status & E1000_STATUS_LU)) &&
3794 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3795 		 (!(rxcw & E1000_RXCW_C))) {
3796 		if (hw->autoneg_failed == 0) {
3797 			hw->autoneg_failed = 1;
3798 			return 0;
3799 		}
3800 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3801 
3802 		/* Disable auto-negotiation in the TXCW register */
3803 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3804 
3805 		/* Force link-up and also force full-duplex. */
3806 		ctrl = E1000_READ_REG(hw, CTRL);
3807 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3808 		E1000_WRITE_REG(hw, CTRL, ctrl);
3809 
3810 		/* Configure Flow Control after forcing link up. */
3811 		ret_val = e1000_config_fc_after_link_up(hw);
3812 		if (ret_val < 0) {
3813 			DEBUGOUT("Error configuring flow control\n");
3814 			return ret_val;
3815 		}
3816 	}
3817 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3818 	 * auto-negotiation in the TXCW register and disable forced link in the
3819 	 * Device Control register in an attempt to auto-negotiate with our link
3820 	 * partner.
3821 	 */
3822 	else if ((hw->media_type == e1000_media_type_fiber) &&
3823 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3824 		DEBUGOUT
3825 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3826 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3827 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3828 	}
3829 	return 0;
3830 }
3831 
3832 /******************************************************************************
3833 * Configure the MAC-to-PHY interface for 10/100Mbps
3834 *
3835 * hw - Struct containing variables accessed by shared code
3836 ******************************************************************************/
3837 static int32_t
3838 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3839 {
3840 	int32_t ret_val = E1000_SUCCESS;
3841 	uint32_t tipg;
3842 	uint16_t reg_data;
3843 
3844 	DEBUGFUNC();
3845 
3846 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3847 	ret_val = e1000_write_kmrn_reg(hw,
3848 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3849 	if (ret_val)
3850 		return ret_val;
3851 
3852 	/* Configure Transmit Inter-Packet Gap */
3853 	tipg = E1000_READ_REG(hw, TIPG);
3854 	tipg &= ~E1000_TIPG_IPGT_MASK;
3855 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3856 	E1000_WRITE_REG(hw, TIPG, tipg);
3857 
3858 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3859 
3860 	if (ret_val)
3861 		return ret_val;
3862 
3863 	if (duplex == HALF_DUPLEX)
3864 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3865 	else
3866 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3867 
3868 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3869 
3870 	return ret_val;
3871 }
3872 
3873 static int32_t
3874 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3875 {
3876 	int32_t ret_val = E1000_SUCCESS;
3877 	uint16_t reg_data;
3878 	uint32_t tipg;
3879 
3880 	DEBUGFUNC();
3881 
3882 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3883 	ret_val = e1000_write_kmrn_reg(hw,
3884 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3885 	if (ret_val)
3886 		return ret_val;
3887 
3888 	/* Configure Transmit Inter-Packet Gap */
3889 	tipg = E1000_READ_REG(hw, TIPG);
3890 	tipg &= ~E1000_TIPG_IPGT_MASK;
3891 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3892 	E1000_WRITE_REG(hw, TIPG, tipg);
3893 
3894 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3895 
3896 	if (ret_val)
3897 		return ret_val;
3898 
3899 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3900 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3901 
3902 	return ret_val;
3903 }
3904 
3905 /******************************************************************************
3906  * Detects the current speed and duplex settings of the hardware.
3907  *
3908  * hw - Struct containing variables accessed by shared code
3909  * speed - Speed of the connection
3910  * duplex - Duplex setting of the connection
3911  *****************************************************************************/
3912 static int
3913 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3914 		uint16_t *duplex)
3915 {
3916 	uint32_t status;
3917 	int32_t ret_val;
3918 	uint16_t phy_data;
3919 
3920 	DEBUGFUNC();
3921 
3922 	if (hw->mac_type >= e1000_82543) {
3923 		status = E1000_READ_REG(hw, STATUS);
3924 		if (status & E1000_STATUS_SPEED_1000) {
3925 			*speed = SPEED_1000;
3926 			DEBUGOUT("1000 Mbs, ");
3927 		} else if (status & E1000_STATUS_SPEED_100) {
3928 			*speed = SPEED_100;
3929 			DEBUGOUT("100 Mbs, ");
3930 		} else {
3931 			*speed = SPEED_10;
3932 			DEBUGOUT("10 Mbs, ");
3933 		}
3934 
3935 		if (status & E1000_STATUS_FD) {
3936 			*duplex = FULL_DUPLEX;
3937 			DEBUGOUT("Full Duplex\r\n");
3938 		} else {
3939 			*duplex = HALF_DUPLEX;
3940 			DEBUGOUT(" Half Duplex\r\n");
3941 		}
3942 	} else {
3943 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3944 		*speed = SPEED_1000;
3945 		*duplex = FULL_DUPLEX;
3946 	}
3947 
3948 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3949 	 * even if it is operating at half duplex.  Here we set the duplex
3950 	 * settings to match the duplex in the link partner's capabilities.
3951 	 */
3952 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3953 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3954 		if (ret_val)
3955 			return ret_val;
3956 
3957 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3958 			*duplex = HALF_DUPLEX;
3959 		else {
3960 			ret_val = e1000_read_phy_reg(hw,
3961 					PHY_LP_ABILITY, &phy_data);
3962 			if (ret_val)
3963 				return ret_val;
3964 			if ((*speed == SPEED_100 &&
3965 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3966 				|| (*speed == SPEED_10
3967 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3968 				*duplex = HALF_DUPLEX;
3969 		}
3970 	}
3971 
3972 	if ((hw->mac_type == e1000_80003es2lan) &&
3973 		(hw->media_type == e1000_media_type_copper)) {
3974 		if (*speed == SPEED_1000)
3975 			ret_val = e1000_configure_kmrn_for_1000(hw);
3976 		else
3977 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3978 		if (ret_val)
3979 			return ret_val;
3980 	}
3981 	return E1000_SUCCESS;
3982 }
3983 
3984 /******************************************************************************
3985 * Blocks until autoneg completes or times out (~4.5 seconds)
3986 *
3987 * hw - Struct containing variables accessed by shared code
3988 ******************************************************************************/
3989 static int
3990 e1000_wait_autoneg(struct e1000_hw *hw)
3991 {
3992 	uint16_t i;
3993 	uint16_t phy_data;
3994 
3995 	DEBUGFUNC();
3996 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3997 
3998 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
3999 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4000 		/* Read the MII Status Register and wait for Auto-Neg
4001 		 * Complete bit to be set.
4002 		 */
4003 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4004 			DEBUGOUT("PHY Read Error\n");
4005 			return -E1000_ERR_PHY;
4006 		}
4007 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4008 			DEBUGOUT("PHY Read Error\n");
4009 			return -E1000_ERR_PHY;
4010 		}
4011 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4012 			DEBUGOUT("Auto-Neg complete.\n");
4013 			return 0;
4014 		}
4015 		mdelay(100);
4016 	}
4017 	DEBUGOUT("Auto-Neg timedout.\n");
4018 	return -E1000_ERR_TIMEOUT;
4019 }
4020 
4021 /******************************************************************************
4022 * Raises the Management Data Clock
4023 *
4024 * hw - Struct containing variables accessed by shared code
4025 * ctrl - Device control register's current value
4026 ******************************************************************************/
4027 static void
4028 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4029 {
4030 	/* Raise the clock input to the Management Data Clock (by setting the MDC
4031 	 * bit), and then delay 2 microseconds.
4032 	 */
4033 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4034 	E1000_WRITE_FLUSH(hw);
4035 	udelay(2);
4036 }
4037 
4038 /******************************************************************************
4039 * Lowers the Management Data Clock
4040 *
4041 * hw - Struct containing variables accessed by shared code
4042 * ctrl - Device control register's current value
4043 ******************************************************************************/
4044 static void
4045 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4046 {
4047 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
4048 	 * bit), and then delay 2 microseconds.
4049 	 */
4050 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4051 	E1000_WRITE_FLUSH(hw);
4052 	udelay(2);
4053 }
4054 
4055 /******************************************************************************
4056 * Shifts data bits out to the PHY
4057 *
4058 * hw - Struct containing variables accessed by shared code
4059 * data - Data to send out to the PHY
4060 * count - Number of bits to shift out
4061 *
4062 * Bits are shifted out in MSB to LSB order.
4063 ******************************************************************************/
4064 static void
4065 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4066 {
4067 	uint32_t ctrl;
4068 	uint32_t mask;
4069 
4070 	/* We need to shift "count" number of bits out to the PHY. So, the value
4071 	 * in the "data" parameter will be shifted out to the PHY one bit at a
4072 	 * time. In order to do this, "data" must be broken down into bits.
4073 	 */
4074 	mask = 0x01;
4075 	mask <<= (count - 1);
4076 
4077 	ctrl = E1000_READ_REG(hw, CTRL);
4078 
4079 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4080 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4081 
4082 	while (mask) {
4083 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4084 		 * then raising and lowering the Management Data Clock. A "0" is
4085 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
4086 		 * raising and lowering the clock.
4087 		 */
4088 		if (data & mask)
4089 			ctrl |= E1000_CTRL_MDIO;
4090 		else
4091 			ctrl &= ~E1000_CTRL_MDIO;
4092 
4093 		E1000_WRITE_REG(hw, CTRL, ctrl);
4094 		E1000_WRITE_FLUSH(hw);
4095 
4096 		udelay(2);
4097 
4098 		e1000_raise_mdi_clk(hw, &ctrl);
4099 		e1000_lower_mdi_clk(hw, &ctrl);
4100 
4101 		mask = mask >> 1;
4102 	}
4103 }
4104 
4105 /******************************************************************************
4106 * Shifts data bits in from the PHY
4107 *
4108 * hw - Struct containing variables accessed by shared code
4109 *
4110 * Bits are shifted in in MSB to LSB order.
4111 ******************************************************************************/
4112 static uint16_t
4113 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4114 {
4115 	uint32_t ctrl;
4116 	uint16_t data = 0;
4117 	uint8_t i;
4118 
4119 	/* In order to read a register from the PHY, we need to shift in a total
4120 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4121 	 * to avoid contention on the MDIO pin when a read operation is performed.
4122 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4123 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4124 	 * and then reading the value of the MDIO bit.
4125 	 */
4126 	ctrl = E1000_READ_REG(hw, CTRL);
4127 
4128 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4129 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4130 	ctrl &= ~E1000_CTRL_MDIO;
4131 
4132 	E1000_WRITE_REG(hw, CTRL, ctrl);
4133 	E1000_WRITE_FLUSH(hw);
4134 
4135 	/* Raise and Lower the clock before reading in the data. This accounts for
4136 	 * the turnaround bits. The first clock occurred when we clocked out the
4137 	 * last bit of the Register Address.
4138 	 */
4139 	e1000_raise_mdi_clk(hw, &ctrl);
4140 	e1000_lower_mdi_clk(hw, &ctrl);
4141 
4142 	for (data = 0, i = 0; i < 16; i++) {
4143 		data = data << 1;
4144 		e1000_raise_mdi_clk(hw, &ctrl);
4145 		ctrl = E1000_READ_REG(hw, CTRL);
4146 		/* Check to see if we shifted in a "1". */
4147 		if (ctrl & E1000_CTRL_MDIO)
4148 			data |= 1;
4149 		e1000_lower_mdi_clk(hw, &ctrl);
4150 	}
4151 
4152 	e1000_raise_mdi_clk(hw, &ctrl);
4153 	e1000_lower_mdi_clk(hw, &ctrl);
4154 
4155 	return data;
4156 }
4157 
4158 /*****************************************************************************
4159 * Reads the value from a PHY register
4160 *
4161 * hw - Struct containing variables accessed by shared code
4162 * reg_addr - address of the PHY register to read
4163 ******************************************************************************/
4164 static int
4165 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4166 {
4167 	uint32_t i;
4168 	uint32_t mdic = 0;
4169 	const uint32_t phy_addr = 1;
4170 
4171 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4172 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4173 		return -E1000_ERR_PARAM;
4174 	}
4175 
4176 	if (hw->mac_type > e1000_82543) {
4177 		/* Set up Op-code, Phy Address, and register address in the MDI
4178 		 * Control register.  The MAC will take care of interfacing with the
4179 		 * PHY to retrieve the desired data.
4180 		 */
4181 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4182 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4183 			(E1000_MDIC_OP_READ));
4184 
4185 		E1000_WRITE_REG(hw, MDIC, mdic);
4186 
4187 		/* Poll the ready bit to see if the MDI read completed */
4188 		for (i = 0; i < 64; i++) {
4189 			udelay(10);
4190 			mdic = E1000_READ_REG(hw, MDIC);
4191 			if (mdic & E1000_MDIC_READY)
4192 				break;
4193 		}
4194 		if (!(mdic & E1000_MDIC_READY)) {
4195 			DEBUGOUT("MDI Read did not complete\n");
4196 			return -E1000_ERR_PHY;
4197 		}
4198 		if (mdic & E1000_MDIC_ERROR) {
4199 			DEBUGOUT("MDI Error\n");
4200 			return -E1000_ERR_PHY;
4201 		}
4202 		*phy_data = (uint16_t) mdic;
4203 	} else {
4204 		/* We must first send a preamble through the MDIO pin to signal the
4205 		 * beginning of an MII instruction.  This is done by sending 32
4206 		 * consecutive "1" bits.
4207 		 */
4208 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4209 
4210 		/* Now combine the next few fields that are required for a read
4211 		 * operation.  We use this method instead of calling the
4212 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4213 		 * a MII read instruction consists of a shift out of 14 bits and is
4214 		 * defined as follows:
4215 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4216 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4217 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4218 		 * READ operation is performed.  These two bits are thrown away
4219 		 * followed by a shift in of 16 bits which contains the desired data.
4220 		 */
4221 		mdic = ((reg_addr) | (phy_addr << 5) |
4222 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4223 
4224 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4225 
4226 		/* Now that we've shifted out the read command to the MII, we need to
4227 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4228 		 * register address.
4229 		 */
4230 		*phy_data = e1000_shift_in_mdi_bits(hw);
4231 	}
4232 	return 0;
4233 }
4234 
4235 /******************************************************************************
4236 * Writes a value to a PHY register
4237 *
4238 * hw - Struct containing variables accessed by shared code
4239 * reg_addr - address of the PHY register to write
4240 * data - data to write to the PHY
4241 ******************************************************************************/
4242 static int
4243 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4244 {
4245 	uint32_t i;
4246 	uint32_t mdic = 0;
4247 	const uint32_t phy_addr = 1;
4248 
4249 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4250 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4251 		return -E1000_ERR_PARAM;
4252 	}
4253 
4254 	if (hw->mac_type > e1000_82543) {
4255 		/* Set up Op-code, Phy Address, register address, and data intended
4256 		 * for the PHY register in the MDI Control register.  The MAC will take
4257 		 * care of interfacing with the PHY to send the desired data.
4258 		 */
4259 		mdic = (((uint32_t) phy_data) |
4260 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4261 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4262 			(E1000_MDIC_OP_WRITE));
4263 
4264 		E1000_WRITE_REG(hw, MDIC, mdic);
4265 
4266 		/* Poll the ready bit to see if the MDI read completed */
4267 		for (i = 0; i < 64; i++) {
4268 			udelay(10);
4269 			mdic = E1000_READ_REG(hw, MDIC);
4270 			if (mdic & E1000_MDIC_READY)
4271 				break;
4272 		}
4273 		if (!(mdic & E1000_MDIC_READY)) {
4274 			DEBUGOUT("MDI Write did not complete\n");
4275 			return -E1000_ERR_PHY;
4276 		}
4277 	} else {
4278 		/* We'll need to use the SW defined pins to shift the write command
4279 		 * out to the PHY. We first send a preamble to the PHY to signal the
4280 		 * beginning of the MII instruction.  This is done by sending 32
4281 		 * consecutive "1" bits.
4282 		 */
4283 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4284 
4285 		/* Now combine the remaining required fields that will indicate a
4286 		 * write operation. We use this method instead of calling the
4287 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4288 		 * format of a MII write instruction is as follows:
4289 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4290 		 */
4291 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4292 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4293 		mdic <<= 16;
4294 		mdic |= (uint32_t) phy_data;
4295 
4296 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4297 	}
4298 	return 0;
4299 }
4300 
4301 /******************************************************************************
4302  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4303  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4304  * the caller to figure out how to deal with it.
4305  *
4306  * hw - Struct containing variables accessed by shared code
4307  *
4308  * returns: - E1000_BLK_PHY_RESET
4309  *            E1000_SUCCESS
4310  *
4311  *****************************************************************************/
4312 int32_t
4313 e1000_check_phy_reset_block(struct e1000_hw *hw)
4314 {
4315 	uint32_t manc = 0;
4316 	uint32_t fwsm = 0;
4317 
4318 	if (hw->mac_type == e1000_ich8lan) {
4319 		fwsm = E1000_READ_REG(hw, FWSM);
4320 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4321 						: E1000_BLK_PHY_RESET;
4322 	}
4323 
4324 	if (hw->mac_type > e1000_82547_rev_2)
4325 		manc = E1000_READ_REG(hw, MANC);
4326 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4327 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4328 }
4329 
4330 /***************************************************************************
4331  * Checks if the PHY configuration is done
4332  *
4333  * hw: Struct containing variables accessed by shared code
4334  *
4335  * returns: - E1000_ERR_RESET if fail to reset MAC
4336  *            E1000_SUCCESS at any other case.
4337  *
4338  ***************************************************************************/
4339 static int32_t
4340 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4341 {
4342 	int32_t timeout = PHY_CFG_TIMEOUT;
4343 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4344 
4345 	DEBUGFUNC();
4346 
4347 	switch (hw->mac_type) {
4348 	default:
4349 		mdelay(10);
4350 		break;
4351 
4352 	case e1000_80003es2lan:
4353 		/* Separate *_CFG_DONE_* bit for each port */
4354 		if (e1000_is_second_port(hw))
4355 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4356 		/* Fall Through */
4357 
4358 	case e1000_82571:
4359 	case e1000_82572:
4360 	case e1000_igb:
4361 		while (timeout) {
4362 			if (hw->mac_type == e1000_igb) {
4363 				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4364 					break;
4365 			} else {
4366 				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4367 					break;
4368 			}
4369 			mdelay(1);
4370 			timeout--;
4371 		}
4372 		if (!timeout) {
4373 			DEBUGOUT("MNG configuration cycle has not "
4374 					"completed.\n");
4375 			return -E1000_ERR_RESET;
4376 		}
4377 		break;
4378 	}
4379 
4380 	return E1000_SUCCESS;
4381 }
4382 
4383 /******************************************************************************
4384 * Returns the PHY to the power-on reset state
4385 *
4386 * hw - Struct containing variables accessed by shared code
4387 ******************************************************************************/
4388 int32_t
4389 e1000_phy_hw_reset(struct e1000_hw *hw)
4390 {
4391 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4392 	uint32_t ctrl, ctrl_ext;
4393 	uint32_t led_ctrl;
4394 	int32_t ret_val;
4395 
4396 	DEBUGFUNC();
4397 
4398 	/* In the case of the phy reset being blocked, it's not an error, we
4399 	 * simply return success without performing the reset. */
4400 	ret_val = e1000_check_phy_reset_block(hw);
4401 	if (ret_val)
4402 		return E1000_SUCCESS;
4403 
4404 	DEBUGOUT("Resetting Phy...\n");
4405 
4406 	if (hw->mac_type > e1000_82543) {
4407 		if (e1000_is_second_port(hw))
4408 			swfw = E1000_SWFW_PHY1_SM;
4409 
4410 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4411 			DEBUGOUT("Unable to acquire swfw sync\n");
4412 			return -E1000_ERR_SWFW_SYNC;
4413 		}
4414 
4415 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4416 		 * bit. Then, take it out of reset.
4417 		 */
4418 		ctrl = E1000_READ_REG(hw, CTRL);
4419 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4420 		E1000_WRITE_FLUSH(hw);
4421 
4422 		if (hw->mac_type < e1000_82571)
4423 			udelay(10);
4424 		else
4425 			udelay(100);
4426 
4427 		E1000_WRITE_REG(hw, CTRL, ctrl);
4428 		E1000_WRITE_FLUSH(hw);
4429 
4430 		if (hw->mac_type >= e1000_82571)
4431 			mdelay(10);
4432 
4433 	} else {
4434 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4435 		 * bit to put the PHY into reset. Then, take it out of reset.
4436 		 */
4437 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4438 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4439 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4440 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4441 		E1000_WRITE_FLUSH(hw);
4442 		mdelay(10);
4443 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4444 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4445 		E1000_WRITE_FLUSH(hw);
4446 	}
4447 	udelay(150);
4448 
4449 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4450 		/* Configure activity LED after PHY reset */
4451 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4452 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4453 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4454 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4455 	}
4456 
4457 	/* Wait for FW to finish PHY configuration. */
4458 	ret_val = e1000_get_phy_cfg_done(hw);
4459 	if (ret_val != E1000_SUCCESS)
4460 		return ret_val;
4461 
4462 	return ret_val;
4463 }
4464 
4465 /******************************************************************************
4466  * IGP phy init script - initializes the GbE PHY
4467  *
4468  * hw - Struct containing variables accessed by shared code
4469  *****************************************************************************/
4470 static void
4471 e1000_phy_init_script(struct e1000_hw *hw)
4472 {
4473 	uint32_t ret_val;
4474 	uint16_t phy_saved_data;
4475 	DEBUGFUNC();
4476 
4477 	if (hw->phy_init_script) {
4478 		mdelay(20);
4479 
4480 		/* Save off the current value of register 0x2F5B to be
4481 		 * restored at the end of this routine. */
4482 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4483 
4484 		/* Disabled the PHY transmitter */
4485 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4486 
4487 		mdelay(20);
4488 
4489 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4490 
4491 		mdelay(5);
4492 
4493 		switch (hw->mac_type) {
4494 		case e1000_82541:
4495 		case e1000_82547:
4496 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4497 
4498 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4499 
4500 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4501 
4502 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4503 
4504 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4505 
4506 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4507 
4508 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4509 
4510 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4511 
4512 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4513 			break;
4514 
4515 		case e1000_82541_rev_2:
4516 		case e1000_82547_rev_2:
4517 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4518 			break;
4519 		default:
4520 			break;
4521 		}
4522 
4523 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4524 
4525 		mdelay(20);
4526 
4527 		/* Now enable the transmitter */
4528 		if (!ret_val)
4529 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4530 
4531 		if (hw->mac_type == e1000_82547) {
4532 			uint16_t fused, fine, coarse;
4533 
4534 			/* Move to analog registers page */
4535 			e1000_read_phy_reg(hw,
4536 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4537 
4538 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4539 				e1000_read_phy_reg(hw,
4540 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4541 
4542 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4543 				coarse = fused
4544 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4545 
4546 				if (coarse >
4547 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4548 					coarse -=
4549 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4550 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4551 				} else if (coarse
4552 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4553 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4554 
4555 				fused = (fused
4556 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4557 					(fine
4558 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4559 					(coarse
4560 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4561 
4562 				e1000_write_phy_reg(hw,
4563 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4564 				e1000_write_phy_reg(hw,
4565 					IGP01E1000_ANALOG_FUSE_BYPASS,
4566 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4567 			}
4568 		}
4569 	}
4570 }
4571 
4572 /******************************************************************************
4573 * Resets the PHY
4574 *
4575 * hw - Struct containing variables accessed by shared code
4576 *
4577 * Sets bit 15 of the MII Control register
4578 ******************************************************************************/
4579 int32_t
4580 e1000_phy_reset(struct e1000_hw *hw)
4581 {
4582 	int32_t ret_val;
4583 	uint16_t phy_data;
4584 
4585 	DEBUGFUNC();
4586 
4587 	/* In the case of the phy reset being blocked, it's not an error, we
4588 	 * simply return success without performing the reset. */
4589 	ret_val = e1000_check_phy_reset_block(hw);
4590 	if (ret_val)
4591 		return E1000_SUCCESS;
4592 
4593 	switch (hw->phy_type) {
4594 	case e1000_phy_igp:
4595 	case e1000_phy_igp_2:
4596 	case e1000_phy_igp_3:
4597 	case e1000_phy_ife:
4598 	case e1000_phy_igb:
4599 		ret_val = e1000_phy_hw_reset(hw);
4600 		if (ret_val)
4601 			return ret_val;
4602 		break;
4603 	default:
4604 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4605 		if (ret_val)
4606 			return ret_val;
4607 
4608 		phy_data |= MII_CR_RESET;
4609 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4610 		if (ret_val)
4611 			return ret_val;
4612 
4613 		udelay(1);
4614 		break;
4615 	}
4616 
4617 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4618 		e1000_phy_init_script(hw);
4619 
4620 	return E1000_SUCCESS;
4621 }
4622 
4623 static int e1000_set_phy_type (struct e1000_hw *hw)
4624 {
4625 	DEBUGFUNC ();
4626 
4627 	if (hw->mac_type == e1000_undefined)
4628 		return -E1000_ERR_PHY_TYPE;
4629 
4630 	switch (hw->phy_id) {
4631 	case M88E1000_E_PHY_ID:
4632 	case M88E1000_I_PHY_ID:
4633 	case M88E1011_I_PHY_ID:
4634 	case M88E1111_I_PHY_ID:
4635 		hw->phy_type = e1000_phy_m88;
4636 		break;
4637 	case IGP01E1000_I_PHY_ID:
4638 		if (hw->mac_type == e1000_82541 ||
4639 			hw->mac_type == e1000_82541_rev_2 ||
4640 			hw->mac_type == e1000_82547 ||
4641 			hw->mac_type == e1000_82547_rev_2) {
4642 			hw->phy_type = e1000_phy_igp;
4643 			break;
4644 		}
4645 	case IGP03E1000_E_PHY_ID:
4646 		hw->phy_type = e1000_phy_igp_3;
4647 		break;
4648 	case IFE_E_PHY_ID:
4649 	case IFE_PLUS_E_PHY_ID:
4650 	case IFE_C_E_PHY_ID:
4651 		hw->phy_type = e1000_phy_ife;
4652 		break;
4653 	case GG82563_E_PHY_ID:
4654 		if (hw->mac_type == e1000_80003es2lan) {
4655 			hw->phy_type = e1000_phy_gg82563;
4656 			break;
4657 		}
4658 	case BME1000_E_PHY_ID:
4659 		hw->phy_type = e1000_phy_bm;
4660 		break;
4661 	case I210_I_PHY_ID:
4662 		hw->phy_type = e1000_phy_igb;
4663 		break;
4664 		/* Fall Through */
4665 	default:
4666 		/* Should never have loaded on this device */
4667 		hw->phy_type = e1000_phy_undefined;
4668 		return -E1000_ERR_PHY_TYPE;
4669 	}
4670 
4671 	return E1000_SUCCESS;
4672 }
4673 
4674 /******************************************************************************
4675 * Probes the expected PHY address for known PHY IDs
4676 *
4677 * hw - Struct containing variables accessed by shared code
4678 ******************************************************************************/
4679 static int32_t
4680 e1000_detect_gig_phy(struct e1000_hw *hw)
4681 {
4682 	int32_t phy_init_status, ret_val;
4683 	uint16_t phy_id_high, phy_id_low;
4684 	bool match = false;
4685 
4686 	DEBUGFUNC();
4687 
4688 	/* The 82571 firmware may still be configuring the PHY.  In this
4689 	 * case, we cannot access the PHY until the configuration is done.  So
4690 	 * we explicitly set the PHY values. */
4691 	if (hw->mac_type == e1000_82571 ||
4692 		hw->mac_type == e1000_82572) {
4693 		hw->phy_id = IGP01E1000_I_PHY_ID;
4694 		hw->phy_type = e1000_phy_igp_2;
4695 		return E1000_SUCCESS;
4696 	}
4697 
4698 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4699 	 * work- around that forces PHY page 0 to be set or the reads fail.
4700 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4701 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4702 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4703 	 * the routines below will figure this out as well. */
4704 	if (hw->mac_type == e1000_80003es2lan)
4705 		hw->phy_type = e1000_phy_gg82563;
4706 
4707 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4708 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4709 	if (ret_val)
4710 		return ret_val;
4711 
4712 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4713 	udelay(20);
4714 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4715 	if (ret_val)
4716 		return ret_val;
4717 
4718 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4719 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4720 
4721 	switch (hw->mac_type) {
4722 	case e1000_82543:
4723 		if (hw->phy_id == M88E1000_E_PHY_ID)
4724 			match = true;
4725 		break;
4726 	case e1000_82544:
4727 		if (hw->phy_id == M88E1000_I_PHY_ID)
4728 			match = true;
4729 		break;
4730 	case e1000_82540:
4731 	case e1000_82545:
4732 	case e1000_82545_rev_3:
4733 	case e1000_82546:
4734 	case e1000_82546_rev_3:
4735 		if (hw->phy_id == M88E1011_I_PHY_ID)
4736 			match = true;
4737 		break;
4738 	case e1000_82541:
4739 	case e1000_82541_rev_2:
4740 	case e1000_82547:
4741 	case e1000_82547_rev_2:
4742 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4743 			match = true;
4744 
4745 		break;
4746 	case e1000_82573:
4747 		if (hw->phy_id == M88E1111_I_PHY_ID)
4748 			match = true;
4749 		break;
4750 	case e1000_82574:
4751 		if (hw->phy_id == BME1000_E_PHY_ID)
4752 			match = true;
4753 		break;
4754 	case e1000_80003es2lan:
4755 		if (hw->phy_id == GG82563_E_PHY_ID)
4756 			match = true;
4757 		break;
4758 	case e1000_ich8lan:
4759 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4760 			match = true;
4761 		if (hw->phy_id == IFE_E_PHY_ID)
4762 			match = true;
4763 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4764 			match = true;
4765 		if (hw->phy_id == IFE_C_E_PHY_ID)
4766 			match = true;
4767 		break;
4768 	case e1000_igb:
4769 		if (hw->phy_id == I210_I_PHY_ID)
4770 			match = true;
4771 		break;
4772 	default:
4773 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4774 		return -E1000_ERR_CONFIG;
4775 	}
4776 
4777 	phy_init_status = e1000_set_phy_type(hw);
4778 
4779 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4780 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4781 		return 0;
4782 	}
4783 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4784 	return -E1000_ERR_PHY;
4785 }
4786 
4787 /*****************************************************************************
4788  * Set media type and TBI compatibility.
4789  *
4790  * hw - Struct containing variables accessed by shared code
4791  * **************************************************************************/
4792 void
4793 e1000_set_media_type(struct e1000_hw *hw)
4794 {
4795 	uint32_t status;
4796 
4797 	DEBUGFUNC();
4798 
4799 	if (hw->mac_type != e1000_82543) {
4800 		/* tbi_compatibility is only valid on 82543 */
4801 		hw->tbi_compatibility_en = false;
4802 	}
4803 
4804 	switch (hw->device_id) {
4805 	case E1000_DEV_ID_82545GM_SERDES:
4806 	case E1000_DEV_ID_82546GB_SERDES:
4807 	case E1000_DEV_ID_82571EB_SERDES:
4808 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4809 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4810 	case E1000_DEV_ID_82572EI_SERDES:
4811 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4812 		hw->media_type = e1000_media_type_internal_serdes;
4813 		break;
4814 	default:
4815 		switch (hw->mac_type) {
4816 		case e1000_82542_rev2_0:
4817 		case e1000_82542_rev2_1:
4818 			hw->media_type = e1000_media_type_fiber;
4819 			break;
4820 		case e1000_ich8lan:
4821 		case e1000_82573:
4822 		case e1000_82574:
4823 		case e1000_igb:
4824 			/* The STATUS_TBIMODE bit is reserved or reused
4825 			 * for the this device.
4826 			 */
4827 			hw->media_type = e1000_media_type_copper;
4828 			break;
4829 		default:
4830 			status = E1000_READ_REG(hw, STATUS);
4831 			if (status & E1000_STATUS_TBIMODE) {
4832 				hw->media_type = e1000_media_type_fiber;
4833 				/* tbi_compatibility not valid on fiber */
4834 				hw->tbi_compatibility_en = false;
4835 			} else {
4836 				hw->media_type = e1000_media_type_copper;
4837 			}
4838 			break;
4839 		}
4840 	}
4841 }
4842 
4843 /**
4844  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4845  *
4846  * e1000_sw_init initializes the Adapter private data structure.
4847  * Fields are initialized based on PCI device information and
4848  * OS network device settings (MTU size).
4849  **/
4850 
4851 static int
4852 e1000_sw_init(struct eth_device *nic)
4853 {
4854 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
4855 	int result;
4856 
4857 	/* PCI config space info */
4858 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4859 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4860 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4861 			     &hw->subsystem_vendor_id);
4862 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4863 
4864 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4865 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4866 
4867 	/* identify the MAC */
4868 	result = e1000_set_mac_type(hw);
4869 	if (result) {
4870 		E1000_ERR(hw->nic, "Unknown MAC Type\n");
4871 		return result;
4872 	}
4873 
4874 	switch (hw->mac_type) {
4875 	default:
4876 		break;
4877 	case e1000_82541:
4878 	case e1000_82547:
4879 	case e1000_82541_rev_2:
4880 	case e1000_82547_rev_2:
4881 		hw->phy_init_script = 1;
4882 		break;
4883 	}
4884 
4885 	/* flow control settings */
4886 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4887 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4888 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4889 	hw->fc_send_xon = 1;
4890 
4891 	/* Media type - copper or fiber */
4892 	hw->tbi_compatibility_en = true;
4893 	e1000_set_media_type(hw);
4894 
4895 	if (hw->mac_type >= e1000_82543) {
4896 		uint32_t status = E1000_READ_REG(hw, STATUS);
4897 
4898 		if (status & E1000_STATUS_TBIMODE) {
4899 			DEBUGOUT("fiber interface\n");
4900 			hw->media_type = e1000_media_type_fiber;
4901 		} else {
4902 			DEBUGOUT("copper interface\n");
4903 			hw->media_type = e1000_media_type_copper;
4904 		}
4905 	} else {
4906 		hw->media_type = e1000_media_type_fiber;
4907 	}
4908 
4909 	hw->wait_autoneg_complete = true;
4910 	if (hw->mac_type < e1000_82543)
4911 		hw->report_tx_early = 0;
4912 	else
4913 		hw->report_tx_early = 1;
4914 
4915 	return E1000_SUCCESS;
4916 }
4917 
4918 void
4919 fill_rx(struct e1000_hw *hw)
4920 {
4921 	struct e1000_rx_desc *rd;
4922 	uint32_t flush_start, flush_end;
4923 
4924 	rx_last = rx_tail;
4925 	rd = rx_base + rx_tail;
4926 	rx_tail = (rx_tail + 1) % 8;
4927 	memset(rd, 0, 16);
4928 	rd->buffer_addr = cpu_to_le64((u32)packet);
4929 
4930 	/*
4931 	 * Make sure there are no stale data in WB over this area, which
4932 	 * might get written into the memory while the e1000 also writes
4933 	 * into the same memory area.
4934 	 */
4935 	invalidate_dcache_range((u32)packet, (u32)packet + 4096);
4936 	/* Dump the DMA descriptor into RAM. */
4937 	flush_start = ((u32)rd) & ~(ARCH_DMA_MINALIGN - 1);
4938 	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4939 	flush_dcache_range(flush_start, flush_end);
4940 
4941 	E1000_WRITE_REG(hw, RDT, rx_tail);
4942 }
4943 
4944 /**
4945  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4946  * @adapter: board private structure
4947  *
4948  * Configure the Tx unit of the MAC after a reset.
4949  **/
4950 
4951 static void
4952 e1000_configure_tx(struct e1000_hw *hw)
4953 {
4954 	unsigned long tctl;
4955 	unsigned long tipg, tarc;
4956 	uint32_t ipgr1, ipgr2;
4957 
4958 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4959 	E1000_WRITE_REG(hw, TDBAH, 0);
4960 
4961 	E1000_WRITE_REG(hw, TDLEN, 128);
4962 
4963 	/* Setup the HW Tx Head and Tail descriptor pointers */
4964 	E1000_WRITE_REG(hw, TDH, 0);
4965 	E1000_WRITE_REG(hw, TDT, 0);
4966 	tx_tail = 0;
4967 
4968 	/* Set the default values for the Tx Inter Packet Gap timer */
4969 	if (hw->mac_type <= e1000_82547_rev_2 &&
4970 	    (hw->media_type == e1000_media_type_fiber ||
4971 	     hw->media_type == e1000_media_type_internal_serdes))
4972 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4973 	else
4974 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4975 
4976 	/* Set the default values for the Tx Inter Packet Gap timer */
4977 	switch (hw->mac_type) {
4978 	case e1000_82542_rev2_0:
4979 	case e1000_82542_rev2_1:
4980 		tipg = DEFAULT_82542_TIPG_IPGT;
4981 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4982 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4983 		break;
4984 	case e1000_80003es2lan:
4985 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4986 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4987 		break;
4988 	default:
4989 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4990 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4991 		break;
4992 	}
4993 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4994 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4995 	E1000_WRITE_REG(hw, TIPG, tipg);
4996 	/* Program the Transmit Control Register */
4997 	tctl = E1000_READ_REG(hw, TCTL);
4998 	tctl &= ~E1000_TCTL_CT;
4999 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5000 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5001 
5002 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5003 		tarc = E1000_READ_REG(hw, TARC0);
5004 		/* set the speed mode bit, we'll clear it if we're not at
5005 		 * gigabit link later */
5006 		/* git bit can be set to 1*/
5007 	} else if (hw->mac_type == e1000_80003es2lan) {
5008 		tarc = E1000_READ_REG(hw, TARC0);
5009 		tarc |= 1;
5010 		E1000_WRITE_REG(hw, TARC0, tarc);
5011 		tarc = E1000_READ_REG(hw, TARC1);
5012 		tarc |= 1;
5013 		E1000_WRITE_REG(hw, TARC1, tarc);
5014 	}
5015 
5016 
5017 	e1000_config_collision_dist(hw);
5018 	/* Setup Transmit Descriptor Settings for eop descriptor */
5019 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5020 
5021 	/* Need to set up RS bit */
5022 	if (hw->mac_type < e1000_82543)
5023 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
5024 	else
5025 		hw->txd_cmd |= E1000_TXD_CMD_RS;
5026 
5027 
5028 	if (hw->mac_type == e1000_igb) {
5029 		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5030 
5031 		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5032 		reg_txdctl |= 1 << 25;
5033 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5034 		mdelay(20);
5035 	}
5036 
5037 
5038 
5039 	E1000_WRITE_REG(hw, TCTL, tctl);
5040 
5041 
5042 }
5043 
5044 /**
5045  * e1000_setup_rctl - configure the receive control register
5046  * @adapter: Board private structure
5047  **/
5048 static void
5049 e1000_setup_rctl(struct e1000_hw *hw)
5050 {
5051 	uint32_t rctl;
5052 
5053 	rctl = E1000_READ_REG(hw, RCTL);
5054 
5055 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5056 
5057 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5058 		| E1000_RCTL_RDMTS_HALF;	/* |
5059 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5060 
5061 	if (hw->tbi_compatibility_on == 1)
5062 		rctl |= E1000_RCTL_SBP;
5063 	else
5064 		rctl &= ~E1000_RCTL_SBP;
5065 
5066 	rctl &= ~(E1000_RCTL_SZ_4096);
5067 		rctl |= E1000_RCTL_SZ_2048;
5068 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5069 	E1000_WRITE_REG(hw, RCTL, rctl);
5070 }
5071 
5072 /**
5073  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5074  * @adapter: board private structure
5075  *
5076  * Configure the Rx unit of the MAC after a reset.
5077  **/
5078 static void
5079 e1000_configure_rx(struct e1000_hw *hw)
5080 {
5081 	unsigned long rctl, ctrl_ext;
5082 	rx_tail = 0;
5083 	/* make sure receives are disabled while setting up the descriptors */
5084 	rctl = E1000_READ_REG(hw, RCTL);
5085 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5086 	if (hw->mac_type >= e1000_82540) {
5087 		/* Set the interrupt throttling rate.  Value is calculated
5088 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5089 #define MAX_INTS_PER_SEC	8000
5090 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
5091 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5092 	}
5093 
5094 	if (hw->mac_type >= e1000_82571) {
5095 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5096 		/* Reset delay timers after every interrupt */
5097 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5098 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5099 		E1000_WRITE_FLUSH(hw);
5100 	}
5101 	/* Setup the Base and Length of the Rx Descriptor Ring */
5102 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
5103 	E1000_WRITE_REG(hw, RDBAH, 0);
5104 
5105 	E1000_WRITE_REG(hw, RDLEN, 128);
5106 
5107 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
5108 	E1000_WRITE_REG(hw, RDH, 0);
5109 	E1000_WRITE_REG(hw, RDT, 0);
5110 	/* Enable Receives */
5111 
5112 	if (hw->mac_type == e1000_igb) {
5113 
5114 		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5115 		reg_rxdctl |= 1 << 25;
5116 		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5117 		mdelay(20);
5118 	}
5119 
5120 	E1000_WRITE_REG(hw, RCTL, rctl);
5121 
5122 	fill_rx(hw);
5123 }
5124 
5125 /**************************************************************************
5126 POLL - Wait for a frame
5127 ***************************************************************************/
5128 static int
5129 e1000_poll(struct eth_device *nic)
5130 {
5131 	struct e1000_hw *hw = nic->priv;
5132 	struct e1000_rx_desc *rd;
5133 	uint32_t inval_start, inval_end;
5134 	uint32_t len;
5135 
5136 	/* return true if there's an ethernet packet ready to read */
5137 	rd = rx_base + rx_last;
5138 
5139 	/* Re-load the descriptor from RAM. */
5140 	inval_start = ((u32)rd) & ~(ARCH_DMA_MINALIGN - 1);
5141 	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5142 	invalidate_dcache_range(inval_start, inval_end);
5143 
5144 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5145 		return 0;
5146 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5147 	/* Packet received, make sure the data are re-loaded from RAM. */
5148 	len = le32_to_cpu(rd->length);
5149 	invalidate_dcache_range((u32)packet,
5150 				(u32)packet + roundup(len, ARCH_DMA_MINALIGN));
5151 	NetReceive((uchar *)packet, len);
5152 	fill_rx(hw);
5153 	return 1;
5154 }
5155 
5156 /**************************************************************************
5157 TRANSMIT - Transmit a frame
5158 ***************************************************************************/
5159 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5160 {
5161 	void *nv_packet = (void *)txpacket;
5162 	struct e1000_hw *hw = nic->priv;
5163 	struct e1000_tx_desc *txp;
5164 	int i = 0;
5165 	uint32_t flush_start, flush_end;
5166 
5167 	txp = tx_base + tx_tail;
5168 	tx_tail = (tx_tail + 1) % 8;
5169 
5170 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5171 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5172 	txp->upper.data = 0;
5173 
5174 	/* Dump the packet into RAM so e1000 can pick them. */
5175 	flush_dcache_range((u32)nv_packet,
5176 			   (u32)nv_packet + roundup(length, ARCH_DMA_MINALIGN));
5177 	/* Dump the descriptor into RAM as well. */
5178 	flush_start = ((u32)txp) & ~(ARCH_DMA_MINALIGN - 1);
5179 	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5180 	flush_dcache_range(flush_start, flush_end);
5181 
5182 	E1000_WRITE_REG(hw, TDT, tx_tail);
5183 
5184 	E1000_WRITE_FLUSH(hw);
5185 	while (1) {
5186 		invalidate_dcache_range(flush_start, flush_end);
5187 		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5188 			break;
5189 		if (i++ > TOUT_LOOP) {
5190 			DEBUGOUT("e1000: tx timeout\n");
5191 			return 0;
5192 		}
5193 		udelay(10);	/* give the nic a chance to write to the register */
5194 	}
5195 	return 1;
5196 }
5197 
5198 /*reset function*/
5199 static inline int
5200 e1000_reset(struct eth_device *nic)
5201 {
5202 	struct e1000_hw *hw = nic->priv;
5203 
5204 	e1000_reset_hw(hw);
5205 	if (hw->mac_type >= e1000_82544) {
5206 		E1000_WRITE_REG(hw, WUC, 0);
5207 	}
5208 	return e1000_init_hw(nic);
5209 }
5210 
5211 /**************************************************************************
5212 DISABLE - Turn off ethernet interface
5213 ***************************************************************************/
5214 static void
5215 e1000_disable(struct eth_device *nic)
5216 {
5217 	struct e1000_hw *hw = nic->priv;
5218 
5219 	/* Turn off the ethernet interface */
5220 	E1000_WRITE_REG(hw, RCTL, 0);
5221 	E1000_WRITE_REG(hw, TCTL, 0);
5222 
5223 	/* Clear the transmit ring */
5224 	E1000_WRITE_REG(hw, TDH, 0);
5225 	E1000_WRITE_REG(hw, TDT, 0);
5226 
5227 	/* Clear the receive ring */
5228 	E1000_WRITE_REG(hw, RDH, 0);
5229 	E1000_WRITE_REG(hw, RDT, 0);
5230 
5231 	/* put the card in its initial state */
5232 #if 0
5233 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5234 #endif
5235 	mdelay(10);
5236 
5237 }
5238 
5239 /**************************************************************************
5240 INIT - set up ethernet interface(s)
5241 ***************************************************************************/
5242 static int
5243 e1000_init(struct eth_device *nic, bd_t * bis)
5244 {
5245 	struct e1000_hw *hw = nic->priv;
5246 	int ret_val = 0;
5247 
5248 	ret_val = e1000_reset(nic);
5249 	if (ret_val < 0) {
5250 		if ((ret_val == -E1000_ERR_NOLINK) ||
5251 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5252 			E1000_ERR(hw->nic, "Valid Link not detected\n");
5253 		} else {
5254 			E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5255 		}
5256 		return 0;
5257 	}
5258 	e1000_configure_tx(hw);
5259 	e1000_setup_rctl(hw);
5260 	e1000_configure_rx(hw);
5261 	return 1;
5262 }
5263 
5264 /******************************************************************************
5265  * Gets the current PCI bus type of hardware
5266  *
5267  * hw - Struct containing variables accessed by shared code
5268  *****************************************************************************/
5269 void e1000_get_bus_type(struct e1000_hw *hw)
5270 {
5271 	uint32_t status;
5272 
5273 	switch (hw->mac_type) {
5274 	case e1000_82542_rev2_0:
5275 	case e1000_82542_rev2_1:
5276 		hw->bus_type = e1000_bus_type_pci;
5277 		break;
5278 	case e1000_82571:
5279 	case e1000_82572:
5280 	case e1000_82573:
5281 	case e1000_82574:
5282 	case e1000_80003es2lan:
5283 	case e1000_ich8lan:
5284 	case e1000_igb:
5285 		hw->bus_type = e1000_bus_type_pci_express;
5286 		break;
5287 	default:
5288 		status = E1000_READ_REG(hw, STATUS);
5289 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5290 				e1000_bus_type_pcix : e1000_bus_type_pci;
5291 		break;
5292 	}
5293 }
5294 
5295 /* A list of all registered e1000 devices */
5296 static LIST_HEAD(e1000_hw_list);
5297 
5298 /**************************************************************************
5299 PROBE - Look for an adapter, this routine's visible to the outside
5300 You should omit the last argument struct pci_device * for a non-PCI NIC
5301 ***************************************************************************/
5302 int
5303 e1000_initialize(bd_t * bis)
5304 {
5305 	unsigned int i;
5306 	pci_dev_t devno;
5307 
5308 	DEBUGFUNC();
5309 
5310 	/* Find and probe all the matching PCI devices */
5311 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5312 		u32 val;
5313 
5314 		/*
5315 		 * These will never get freed due to errors, this allows us to
5316 		 * perform SPI EEPROM programming from U-boot, for example.
5317 		 */
5318 		struct eth_device *nic = malloc(sizeof(*nic));
5319 		struct e1000_hw *hw = malloc(sizeof(*hw));
5320 		if (!nic || !hw) {
5321 			printf("e1000#%u: Out of Memory!\n", i);
5322 			free(nic);
5323 			free(hw);
5324 			continue;
5325 		}
5326 
5327 		/* Make sure all of the fields are initially zeroed */
5328 		memset(nic, 0, sizeof(*nic));
5329 		memset(hw, 0, sizeof(*hw));
5330 
5331 		/* Assign the passed-in values */
5332 		hw->cardnum = i;
5333 		hw->pdev = devno;
5334 		hw->nic = nic;
5335 		nic->priv = hw;
5336 
5337 		/* Generate a card name */
5338 		sprintf(nic->name, "e1000#%u", hw->cardnum);
5339 
5340 		/* Print a debug message with the IO base address */
5341 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5342 		E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5343 
5344 		/* Try to enable I/O accesses and bus-mastering */
5345 		val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5346 		pci_write_config_dword(devno, PCI_COMMAND, val);
5347 
5348 		/* Make sure it worked */
5349 		pci_read_config_dword(devno, PCI_COMMAND, &val);
5350 		if (!(val & PCI_COMMAND_MEMORY)) {
5351 			E1000_ERR(nic, "Can't enable I/O memory\n");
5352 			continue;
5353 		}
5354 		if (!(val & PCI_COMMAND_MASTER)) {
5355 			E1000_ERR(nic, "Can't enable bus-mastering\n");
5356 			continue;
5357 		}
5358 
5359 		/* Are these variables needed? */
5360 		hw->fc = e1000_fc_default;
5361 		hw->original_fc = e1000_fc_default;
5362 		hw->autoneg_failed = 0;
5363 		hw->autoneg = 1;
5364 		hw->get_link_status = true;
5365 #ifndef CONFIG_E1000_NO_NVM
5366 		hw->eeprom_semaphore_present = true;
5367 #endif
5368 		hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5369 							PCI_REGION_MEM);
5370 		hw->mac_type = e1000_undefined;
5371 
5372 		/* MAC and Phy settings */
5373 		if (e1000_sw_init(nic) < 0) {
5374 			E1000_ERR(nic, "Software init failed\n");
5375 			continue;
5376 		}
5377 		if (e1000_check_phy_reset_block(hw))
5378 			E1000_ERR(nic, "PHY Reset is blocked!\n");
5379 
5380 		/* Basic init was OK, reset the hardware and allow SPI access */
5381 		e1000_reset_hw(hw);
5382 		list_add_tail(&hw->list_node, &e1000_hw_list);
5383 
5384 #ifndef CONFIG_E1000_NO_NVM
5385 		/* Validate the EEPROM and get chipset information */
5386 #if !defined(CONFIG_MVBC_1G)
5387 		if (e1000_init_eeprom_params(hw)) {
5388 			E1000_ERR(nic, "EEPROM is invalid!\n");
5389 			continue;
5390 		}
5391 		if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5392 		    e1000_validate_eeprom_checksum(hw))
5393 			continue;
5394 #endif
5395 		e1000_read_mac_addr(nic);
5396 #endif
5397 		e1000_get_bus_type(hw);
5398 
5399 #ifndef CONFIG_E1000_NO_NVM
5400 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5401 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5402 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5403 #else
5404 		memset(nic->enetaddr, 0, 6);
5405 		printf("e1000: no NVM\n");
5406 #endif
5407 
5408 		/* Set up the function pointers and register the device */
5409 		nic->init = e1000_init;
5410 		nic->recv = e1000_poll;
5411 		nic->send = e1000_transmit;
5412 		nic->halt = e1000_disable;
5413 		eth_register(nic);
5414 	}
5415 
5416 	return i;
5417 }
5418 
5419 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5420 {
5421 	struct e1000_hw *hw;
5422 
5423 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5424 		if (hw->cardnum == cardnum)
5425 			return hw;
5426 
5427 	return NULL;
5428 }
5429 
5430 #ifdef CONFIG_CMD_E1000
5431 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5432 		int argc, char * const argv[])
5433 {
5434 	struct e1000_hw *hw;
5435 
5436 	if (argc < 3) {
5437 		cmd_usage(cmdtp);
5438 		return 1;
5439 	}
5440 
5441 	/* Make sure we can find the requested e1000 card */
5442 	hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5443 	if (!hw) {
5444 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5445 		return 1;
5446 	}
5447 
5448 	if (!strcmp(argv[2], "print-mac-address")) {
5449 		unsigned char *mac = hw->nic->enetaddr;
5450 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5451 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5452 		return 0;
5453 	}
5454 
5455 #ifdef CONFIG_E1000_SPI
5456 	/* Handle the "SPI" subcommand */
5457 	if (!strcmp(argv[2], "spi"))
5458 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5459 #endif
5460 
5461 	cmd_usage(cmdtp);
5462 	return 1;
5463 }
5464 
5465 U_BOOT_CMD(
5466 	e1000, 7, 0, do_e1000,
5467 	"Intel e1000 controller management",
5468 	/*  */"<card#> print-mac-address\n"
5469 #ifdef CONFIG_E1000_SPI
5470 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5471 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5472 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5473 	"e1000 <card#> spi checksum [update]\n"
5474 #endif
5475 	"       - Manage the Intel E1000 PCI device"
5476 );
5477 #endif /* not CONFIG_CMD_E1000 */
5478