xref: /openbmc/u-boot/drivers/net/e1000.c (revision 3765b3e7)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12  * SPDX-License-Identifier:	GPL-2.0+
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include "e1000.h"
33 
34 #define TOUT_LOOP   100000
35 
36 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
37 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
38 
39 #define E1000_DEFAULT_PCI_PBA	0x00000030
40 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
41 
42 /* NIC specific static variables go here */
43 
44 static char tx_pool[128 + 16];
45 static char rx_pool[128 + 16];
46 static char packet[2096];
47 
48 static struct e1000_tx_desc *tx_base;
49 static struct e1000_rx_desc *rx_base;
50 
51 static int tx_tail;
52 static int rx_tail, rx_last;
53 
54 static struct pci_device_id e1000_supported[] = {
55 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
64 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
65 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
68 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
69 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
70 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
71 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
72 	/* E1000 PCIe card */
73 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
75 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
76 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
89 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
90 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
95 	{}
96 };
97 
98 /* Function forward declarations */
99 static int e1000_setup_link(struct eth_device *nic);
100 static int e1000_setup_fiber_link(struct eth_device *nic);
101 static int e1000_setup_copper_link(struct eth_device *nic);
102 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
103 static void e1000_config_collision_dist(struct e1000_hw *hw);
104 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
105 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
106 static int e1000_check_for_link(struct eth_device *nic);
107 static int e1000_wait_autoneg(struct e1000_hw *hw);
108 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
109 				       uint16_t * duplex);
110 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
111 			      uint16_t * phy_data);
112 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
113 			       uint16_t phy_data);
114 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
115 static int e1000_phy_reset(struct e1000_hw *hw);
116 static int e1000_detect_gig_phy(struct e1000_hw *hw);
117 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
118 static void e1000_set_media_type(struct e1000_hw *hw);
119 
120 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
121 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
122 
123 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
124 		uint16_t words,
125 		uint16_t *data);
126 /******************************************************************************
127  * Raises the EEPROM's clock input.
128  *
129  * hw - Struct containing variables accessed by shared code
130  * eecd - EECD's current value
131  *****************************************************************************/
132 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
133 {
134 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
135 	 * wait 50 microseconds.
136 	 */
137 	*eecd = *eecd | E1000_EECD_SK;
138 	E1000_WRITE_REG(hw, EECD, *eecd);
139 	E1000_WRITE_FLUSH(hw);
140 	udelay(50);
141 }
142 
143 /******************************************************************************
144  * Lowers the EEPROM's clock input.
145  *
146  * hw - Struct containing variables accessed by shared code
147  * eecd - EECD's current value
148  *****************************************************************************/
149 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
150 {
151 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
152 	 * wait 50 microseconds.
153 	 */
154 	*eecd = *eecd & ~E1000_EECD_SK;
155 	E1000_WRITE_REG(hw, EECD, *eecd);
156 	E1000_WRITE_FLUSH(hw);
157 	udelay(50);
158 }
159 
160 /******************************************************************************
161  * Shift data bits out to the EEPROM.
162  *
163  * hw - Struct containing variables accessed by shared code
164  * data - data to send to the EEPROM
165  * count - number of bits to shift out
166  *****************************************************************************/
167 static void
168 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
169 {
170 	uint32_t eecd;
171 	uint32_t mask;
172 
173 	/* We need to shift "count" bits out to the EEPROM. So, value in the
174 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
175 	 * In order to do this, "data" must be broken down into bits.
176 	 */
177 	mask = 0x01 << (count - 1);
178 	eecd = E1000_READ_REG(hw, EECD);
179 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
180 	do {
181 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
182 		 * and then raising and then lowering the clock (the SK bit controls
183 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
184 		 * by setting "DI" to "0" and then raising and then lowering the clock.
185 		 */
186 		eecd &= ~E1000_EECD_DI;
187 
188 		if (data & mask)
189 			eecd |= E1000_EECD_DI;
190 
191 		E1000_WRITE_REG(hw, EECD, eecd);
192 		E1000_WRITE_FLUSH(hw);
193 
194 		udelay(50);
195 
196 		e1000_raise_ee_clk(hw, &eecd);
197 		e1000_lower_ee_clk(hw, &eecd);
198 
199 		mask = mask >> 1;
200 
201 	} while (mask);
202 
203 	/* We leave the "DI" bit set to "0" when we leave this routine. */
204 	eecd &= ~E1000_EECD_DI;
205 	E1000_WRITE_REG(hw, EECD, eecd);
206 }
207 
208 /******************************************************************************
209  * Shift data bits in from the EEPROM
210  *
211  * hw - Struct containing variables accessed by shared code
212  *****************************************************************************/
213 static uint16_t
214 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
215 {
216 	uint32_t eecd;
217 	uint32_t i;
218 	uint16_t data;
219 
220 	/* In order to read a register from the EEPROM, we need to shift 'count'
221 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
222 	 * input to the EEPROM (setting the SK bit), and then reading the
223 	 * value of the "DO" bit.  During this "shifting in" process the
224 	 * "DI" bit should always be clear.
225 	 */
226 
227 	eecd = E1000_READ_REG(hw, EECD);
228 
229 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
230 	data = 0;
231 
232 	for (i = 0; i < count; i++) {
233 		data = data << 1;
234 		e1000_raise_ee_clk(hw, &eecd);
235 
236 		eecd = E1000_READ_REG(hw, EECD);
237 
238 		eecd &= ~(E1000_EECD_DI);
239 		if (eecd & E1000_EECD_DO)
240 			data |= 1;
241 
242 		e1000_lower_ee_clk(hw, &eecd);
243 	}
244 
245 	return data;
246 }
247 
248 /******************************************************************************
249  * Returns EEPROM to a "standby" state
250  *
251  * hw - Struct containing variables accessed by shared code
252  *****************************************************************************/
253 void e1000_standby_eeprom(struct e1000_hw *hw)
254 {
255 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
256 	uint32_t eecd;
257 
258 	eecd = E1000_READ_REG(hw, EECD);
259 
260 	if (eeprom->type == e1000_eeprom_microwire) {
261 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
262 		E1000_WRITE_REG(hw, EECD, eecd);
263 		E1000_WRITE_FLUSH(hw);
264 		udelay(eeprom->delay_usec);
265 
266 		/* Clock high */
267 		eecd |= E1000_EECD_SK;
268 		E1000_WRITE_REG(hw, EECD, eecd);
269 		E1000_WRITE_FLUSH(hw);
270 		udelay(eeprom->delay_usec);
271 
272 		/* Select EEPROM */
273 		eecd |= E1000_EECD_CS;
274 		E1000_WRITE_REG(hw, EECD, eecd);
275 		E1000_WRITE_FLUSH(hw);
276 		udelay(eeprom->delay_usec);
277 
278 		/* Clock low */
279 		eecd &= ~E1000_EECD_SK;
280 		E1000_WRITE_REG(hw, EECD, eecd);
281 		E1000_WRITE_FLUSH(hw);
282 		udelay(eeprom->delay_usec);
283 	} else if (eeprom->type == e1000_eeprom_spi) {
284 		/* Toggle CS to flush commands */
285 		eecd |= E1000_EECD_CS;
286 		E1000_WRITE_REG(hw, EECD, eecd);
287 		E1000_WRITE_FLUSH(hw);
288 		udelay(eeprom->delay_usec);
289 		eecd &= ~E1000_EECD_CS;
290 		E1000_WRITE_REG(hw, EECD, eecd);
291 		E1000_WRITE_FLUSH(hw);
292 		udelay(eeprom->delay_usec);
293 	}
294 }
295 
296 /***************************************************************************
297 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
298 *
299 * hw - Struct containing variables accessed by shared code
300 ****************************************************************************/
301 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
302 {
303 	uint32_t eecd = 0;
304 
305 	DEBUGFUNC();
306 
307 	if (hw->mac_type == e1000_ich8lan)
308 		return false;
309 
310 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
311 		eecd = E1000_READ_REG(hw, EECD);
312 
313 		/* Isolate bits 15 & 16 */
314 		eecd = ((eecd >> 15) & 0x03);
315 
316 		/* If both bits are set, device is Flash type */
317 		if (eecd == 0x03)
318 			return false;
319 	}
320 	return true;
321 }
322 
323 /******************************************************************************
324  * Prepares EEPROM for access
325  *
326  * hw - Struct containing variables accessed by shared code
327  *
328  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
329  * function should be called before issuing a command to the EEPROM.
330  *****************************************************************************/
331 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
332 {
333 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
334 	uint32_t eecd, i = 0;
335 
336 	DEBUGFUNC();
337 
338 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
339 		return -E1000_ERR_SWFW_SYNC;
340 	eecd = E1000_READ_REG(hw, EECD);
341 
342 	if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
343 		/* Request EEPROM Access */
344 		if (hw->mac_type > e1000_82544) {
345 			eecd |= E1000_EECD_REQ;
346 			E1000_WRITE_REG(hw, EECD, eecd);
347 			eecd = E1000_READ_REG(hw, EECD);
348 			while ((!(eecd & E1000_EECD_GNT)) &&
349 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
350 				i++;
351 				udelay(5);
352 				eecd = E1000_READ_REG(hw, EECD);
353 			}
354 			if (!(eecd & E1000_EECD_GNT)) {
355 				eecd &= ~E1000_EECD_REQ;
356 				E1000_WRITE_REG(hw, EECD, eecd);
357 				DEBUGOUT("Could not acquire EEPROM grant\n");
358 				return -E1000_ERR_EEPROM;
359 			}
360 		}
361 	}
362 
363 	/* Setup EEPROM for Read/Write */
364 
365 	if (eeprom->type == e1000_eeprom_microwire) {
366 		/* Clear SK and DI */
367 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
368 		E1000_WRITE_REG(hw, EECD, eecd);
369 
370 		/* Set CS */
371 		eecd |= E1000_EECD_CS;
372 		E1000_WRITE_REG(hw, EECD, eecd);
373 	} else if (eeprom->type == e1000_eeprom_spi) {
374 		/* Clear SK and CS */
375 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
376 		E1000_WRITE_REG(hw, EECD, eecd);
377 		udelay(1);
378 	}
379 
380 	return E1000_SUCCESS;
381 }
382 
383 /******************************************************************************
384  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
385  * is configured.  Additionally, if this is ICH8, the flash controller GbE
386  * registers must be mapped, or this will crash.
387  *
388  * hw - Struct containing variables accessed by shared code
389  *****************************************************************************/
390 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
391 {
392 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
393 	uint32_t eecd = E1000_READ_REG(hw, EECD);
394 	int32_t ret_val = E1000_SUCCESS;
395 	uint16_t eeprom_size;
396 
397 	DEBUGFUNC();
398 
399 	switch (hw->mac_type) {
400 	case e1000_82542_rev2_0:
401 	case e1000_82542_rev2_1:
402 	case e1000_82543:
403 	case e1000_82544:
404 		eeprom->type = e1000_eeprom_microwire;
405 		eeprom->word_size = 64;
406 		eeprom->opcode_bits = 3;
407 		eeprom->address_bits = 6;
408 		eeprom->delay_usec = 50;
409 		eeprom->use_eerd = false;
410 		eeprom->use_eewr = false;
411 	break;
412 	case e1000_82540:
413 	case e1000_82545:
414 	case e1000_82545_rev_3:
415 	case e1000_82546:
416 	case e1000_82546_rev_3:
417 		eeprom->type = e1000_eeprom_microwire;
418 		eeprom->opcode_bits = 3;
419 		eeprom->delay_usec = 50;
420 		if (eecd & E1000_EECD_SIZE) {
421 			eeprom->word_size = 256;
422 			eeprom->address_bits = 8;
423 		} else {
424 			eeprom->word_size = 64;
425 			eeprom->address_bits = 6;
426 		}
427 		eeprom->use_eerd = false;
428 		eeprom->use_eewr = false;
429 		break;
430 	case e1000_82541:
431 	case e1000_82541_rev_2:
432 	case e1000_82547:
433 	case e1000_82547_rev_2:
434 		if (eecd & E1000_EECD_TYPE) {
435 			eeprom->type = e1000_eeprom_spi;
436 			eeprom->opcode_bits = 8;
437 			eeprom->delay_usec = 1;
438 			if (eecd & E1000_EECD_ADDR_BITS) {
439 				eeprom->page_size = 32;
440 				eeprom->address_bits = 16;
441 			} else {
442 				eeprom->page_size = 8;
443 				eeprom->address_bits = 8;
444 			}
445 		} else {
446 			eeprom->type = e1000_eeprom_microwire;
447 			eeprom->opcode_bits = 3;
448 			eeprom->delay_usec = 50;
449 			if (eecd & E1000_EECD_ADDR_BITS) {
450 				eeprom->word_size = 256;
451 				eeprom->address_bits = 8;
452 			} else {
453 				eeprom->word_size = 64;
454 				eeprom->address_bits = 6;
455 			}
456 		}
457 		eeprom->use_eerd = false;
458 		eeprom->use_eewr = false;
459 		break;
460 	case e1000_82571:
461 	case e1000_82572:
462 		eeprom->type = e1000_eeprom_spi;
463 		eeprom->opcode_bits = 8;
464 		eeprom->delay_usec = 1;
465 		if (eecd & E1000_EECD_ADDR_BITS) {
466 			eeprom->page_size = 32;
467 			eeprom->address_bits = 16;
468 		} else {
469 			eeprom->page_size = 8;
470 			eeprom->address_bits = 8;
471 		}
472 		eeprom->use_eerd = false;
473 		eeprom->use_eewr = false;
474 		break;
475 	case e1000_82573:
476 	case e1000_82574:
477 		eeprom->type = e1000_eeprom_spi;
478 		eeprom->opcode_bits = 8;
479 		eeprom->delay_usec = 1;
480 		if (eecd & E1000_EECD_ADDR_BITS) {
481 			eeprom->page_size = 32;
482 			eeprom->address_bits = 16;
483 		} else {
484 			eeprom->page_size = 8;
485 			eeprom->address_bits = 8;
486 		}
487 		eeprom->use_eerd = true;
488 		eeprom->use_eewr = true;
489 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
490 			eeprom->type = e1000_eeprom_flash;
491 			eeprom->word_size = 2048;
492 
493 		/* Ensure that the Autonomous FLASH update bit is cleared due to
494 		 * Flash update issue on parts which use a FLASH for NVM. */
495 			eecd &= ~E1000_EECD_AUPDEN;
496 			E1000_WRITE_REG(hw, EECD, eecd);
497 		}
498 		break;
499 	case e1000_80003es2lan:
500 		eeprom->type = e1000_eeprom_spi;
501 		eeprom->opcode_bits = 8;
502 		eeprom->delay_usec = 1;
503 		if (eecd & E1000_EECD_ADDR_BITS) {
504 			eeprom->page_size = 32;
505 			eeprom->address_bits = 16;
506 		} else {
507 			eeprom->page_size = 8;
508 			eeprom->address_bits = 8;
509 		}
510 		eeprom->use_eerd = true;
511 		eeprom->use_eewr = false;
512 		break;
513 
514 	/* ich8lan does not support currently. if needed, please
515 	 * add corresponding code and functions.
516 	 */
517 #if 0
518 	case e1000_ich8lan:
519 		{
520 		int32_t  i = 0;
521 
522 		eeprom->type = e1000_eeprom_ich8;
523 		eeprom->use_eerd = false;
524 		eeprom->use_eewr = false;
525 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
526 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
527 				ICH_FLASH_GFPREG);
528 		/* Zero the shadow RAM structure. But don't load it from NVM
529 		 * so as to save time for driver init */
530 		if (hw->eeprom_shadow_ram != NULL) {
531 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
532 				hw->eeprom_shadow_ram[i].modified = false;
533 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
534 			}
535 		}
536 
537 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
538 				ICH_FLASH_SECTOR_SIZE;
539 
540 		hw->flash_bank_size = ((flash_size >> 16)
541 				& ICH_GFPREG_BASE_MASK) + 1;
542 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
543 
544 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
545 
546 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
547 		break;
548 		}
549 #endif
550 	default:
551 		break;
552 	}
553 
554 	if (eeprom->type == e1000_eeprom_spi) {
555 		/* eeprom_size will be an enum [0..8] that maps
556 		 * to eeprom sizes 128B to
557 		 * 32KB (incremented by powers of 2).
558 		 */
559 		if (hw->mac_type <= e1000_82547_rev_2) {
560 			/* Set to default value for initial eeprom read. */
561 			eeprom->word_size = 64;
562 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
563 					&eeprom_size);
564 			if (ret_val)
565 				return ret_val;
566 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
567 				>> EEPROM_SIZE_SHIFT;
568 			/* 256B eeprom size was not supported in earlier
569 			 * hardware, so we bump eeprom_size up one to
570 			 * ensure that "1" (which maps to 256B) is never
571 			 * the result used in the shifting logic below. */
572 			if (eeprom_size)
573 				eeprom_size++;
574 		} else {
575 			eeprom_size = (uint16_t)((eecd &
576 				E1000_EECD_SIZE_EX_MASK) >>
577 				E1000_EECD_SIZE_EX_SHIFT);
578 		}
579 
580 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
581 	}
582 	return ret_val;
583 }
584 
585 /******************************************************************************
586  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
587  *
588  * hw - Struct containing variables accessed by shared code
589  *****************************************************************************/
590 static int32_t
591 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
592 {
593 	uint32_t attempts = 100000;
594 	uint32_t i, reg = 0;
595 	int32_t done = E1000_ERR_EEPROM;
596 
597 	for (i = 0; i < attempts; i++) {
598 		if (eerd == E1000_EEPROM_POLL_READ)
599 			reg = E1000_READ_REG(hw, EERD);
600 		else
601 			reg = E1000_READ_REG(hw, EEWR);
602 
603 		if (reg & E1000_EEPROM_RW_REG_DONE) {
604 			done = E1000_SUCCESS;
605 			break;
606 		}
607 		udelay(5);
608 	}
609 
610 	return done;
611 }
612 
613 /******************************************************************************
614  * Reads a 16 bit word from the EEPROM using the EERD register.
615  *
616  * hw - Struct containing variables accessed by shared code
617  * offset - offset of  word in the EEPROM to read
618  * data - word read from the EEPROM
619  * words - number of words to read
620  *****************************************************************************/
621 static int32_t
622 e1000_read_eeprom_eerd(struct e1000_hw *hw,
623 			uint16_t offset,
624 			uint16_t words,
625 			uint16_t *data)
626 {
627 	uint32_t i, eerd = 0;
628 	int32_t error = 0;
629 
630 	for (i = 0; i < words; i++) {
631 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
632 			E1000_EEPROM_RW_REG_START;
633 
634 		E1000_WRITE_REG(hw, EERD, eerd);
635 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
636 
637 		if (error)
638 			break;
639 		data[i] = (E1000_READ_REG(hw, EERD) >>
640 				E1000_EEPROM_RW_REG_DATA);
641 
642 	}
643 
644 	return error;
645 }
646 
647 void e1000_release_eeprom(struct e1000_hw *hw)
648 {
649 	uint32_t eecd;
650 
651 	DEBUGFUNC();
652 
653 	eecd = E1000_READ_REG(hw, EECD);
654 
655 	if (hw->eeprom.type == e1000_eeprom_spi) {
656 		eecd |= E1000_EECD_CS;  /* Pull CS high */
657 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
658 
659 		E1000_WRITE_REG(hw, EECD, eecd);
660 
661 		udelay(hw->eeprom.delay_usec);
662 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
663 		/* cleanup eeprom */
664 
665 		/* CS on Microwire is active-high */
666 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
667 
668 		E1000_WRITE_REG(hw, EECD, eecd);
669 
670 		/* Rising edge of clock */
671 		eecd |= E1000_EECD_SK;
672 		E1000_WRITE_REG(hw, EECD, eecd);
673 		E1000_WRITE_FLUSH(hw);
674 		udelay(hw->eeprom.delay_usec);
675 
676 		/* Falling edge of clock */
677 		eecd &= ~E1000_EECD_SK;
678 		E1000_WRITE_REG(hw, EECD, eecd);
679 		E1000_WRITE_FLUSH(hw);
680 		udelay(hw->eeprom.delay_usec);
681 	}
682 
683 	/* Stop requesting EEPROM access */
684 	if (hw->mac_type > e1000_82544) {
685 		eecd &= ~E1000_EECD_REQ;
686 		E1000_WRITE_REG(hw, EECD, eecd);
687 	}
688 }
689 /******************************************************************************
690  * Reads a 16 bit word from the EEPROM.
691  *
692  * hw - Struct containing variables accessed by shared code
693  *****************************************************************************/
694 static int32_t
695 e1000_spi_eeprom_ready(struct e1000_hw *hw)
696 {
697 	uint16_t retry_count = 0;
698 	uint8_t spi_stat_reg;
699 
700 	DEBUGFUNC();
701 
702 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
703 	 * EEPROM will signal that the command has been completed by clearing
704 	 * bit 0 of the internal status register.  If it's not cleared within
705 	 * 5 milliseconds, then error out.
706 	 */
707 	retry_count = 0;
708 	do {
709 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
710 			hw->eeprom.opcode_bits);
711 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
712 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
713 			break;
714 
715 		udelay(5);
716 		retry_count += 5;
717 
718 		e1000_standby_eeprom(hw);
719 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
720 
721 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
722 	 * only 0-5mSec on 5V devices)
723 	 */
724 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
725 		DEBUGOUT("SPI EEPROM Status error\n");
726 		return -E1000_ERR_EEPROM;
727 	}
728 
729 	return E1000_SUCCESS;
730 }
731 
732 /******************************************************************************
733  * Reads a 16 bit word from the EEPROM.
734  *
735  * hw - Struct containing variables accessed by shared code
736  * offset - offset of  word in the EEPROM to read
737  * data - word read from the EEPROM
738  *****************************************************************************/
739 static int32_t
740 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
741 		uint16_t words, uint16_t *data)
742 {
743 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
744 	uint32_t i = 0;
745 
746 	DEBUGFUNC();
747 
748 	/* If eeprom is not yet detected, do so now */
749 	if (eeprom->word_size == 0)
750 		e1000_init_eeprom_params(hw);
751 
752 	/* A check for invalid values:  offset too large, too many words,
753 	 * and not enough words.
754 	 */
755 	if ((offset >= eeprom->word_size) ||
756 		(words > eeprom->word_size - offset) ||
757 		(words == 0)) {
758 		DEBUGOUT("\"words\" parameter out of bounds."
759 			"Words = %d, size = %d\n", offset, eeprom->word_size);
760 		return -E1000_ERR_EEPROM;
761 	}
762 
763 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
764 	 * directly. In this case, we need to acquire the EEPROM so that
765 	 * FW or other port software does not interrupt.
766 	 */
767 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
768 		hw->eeprom.use_eerd == false) {
769 
770 		/* Prepare the EEPROM for bit-bang reading */
771 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
772 			return -E1000_ERR_EEPROM;
773 	}
774 
775 	/* Eerd register EEPROM access requires no eeprom aquire/release */
776 	if (eeprom->use_eerd == true)
777 		return e1000_read_eeprom_eerd(hw, offset, words, data);
778 
779 	/* ich8lan does not support currently. if needed, please
780 	 * add corresponding code and functions.
781 	 */
782 #if 0
783 	/* ICH EEPROM access is done via the ICH flash controller */
784 	if (eeprom->type == e1000_eeprom_ich8)
785 		return e1000_read_eeprom_ich8(hw, offset, words, data);
786 #endif
787 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
788 	 * acquired the EEPROM at this point, so any returns should relase it */
789 	if (eeprom->type == e1000_eeprom_spi) {
790 		uint16_t word_in;
791 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
792 
793 		if (e1000_spi_eeprom_ready(hw)) {
794 			e1000_release_eeprom(hw);
795 			return -E1000_ERR_EEPROM;
796 		}
797 
798 		e1000_standby_eeprom(hw);
799 
800 		/* Some SPI eeproms use the 8th address bit embedded in
801 		 * the opcode */
802 		if ((eeprom->address_bits == 8) && (offset >= 128))
803 			read_opcode |= EEPROM_A8_OPCODE_SPI;
804 
805 		/* Send the READ command (opcode + addr)  */
806 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
807 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
808 				eeprom->address_bits);
809 
810 		/* Read the data.  The address of the eeprom internally
811 		 * increments with each byte (spi) being read, saving on the
812 		 * overhead of eeprom setup and tear-down.  The address
813 		 * counter will roll over if reading beyond the size of
814 		 * the eeprom, thus allowing the entire memory to be read
815 		 * starting from any offset. */
816 		for (i = 0; i < words; i++) {
817 			word_in = e1000_shift_in_ee_bits(hw, 16);
818 			data[i] = (word_in >> 8) | (word_in << 8);
819 		}
820 	} else if (eeprom->type == e1000_eeprom_microwire) {
821 		for (i = 0; i < words; i++) {
822 			/* Send the READ command (opcode + addr)  */
823 			e1000_shift_out_ee_bits(hw,
824 				EEPROM_READ_OPCODE_MICROWIRE,
825 				eeprom->opcode_bits);
826 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
827 				eeprom->address_bits);
828 
829 			/* Read the data.  For microwire, each word requires
830 			 * the overhead of eeprom setup and tear-down. */
831 			data[i] = e1000_shift_in_ee_bits(hw, 16);
832 			e1000_standby_eeprom(hw);
833 		}
834 	}
835 
836 	/* End this read operation */
837 	e1000_release_eeprom(hw);
838 
839 	return E1000_SUCCESS;
840 }
841 
842 /******************************************************************************
843  * Verifies that the EEPROM has a valid checksum
844  *
845  * hw - Struct containing variables accessed by shared code
846  *
847  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
848  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
849  * valid.
850  *****************************************************************************/
851 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
852 {
853 	uint16_t i, checksum, checksum_reg, *buf;
854 
855 	DEBUGFUNC();
856 
857 	/* Allocate a temporary buffer */
858 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
859 	if (!buf) {
860 		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
861 		return -E1000_ERR_EEPROM;
862 	}
863 
864 	/* Read the EEPROM */
865 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
866 		E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
867 		return -E1000_ERR_EEPROM;
868 	}
869 
870 	/* Compute the checksum */
871 	checksum = 0;
872 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
873 		checksum += buf[i];
874 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
875 	checksum_reg = buf[i];
876 
877 	/* Verify it! */
878 	if (checksum == checksum_reg)
879 		return 0;
880 
881 	/* Hrm, verification failed, print an error */
882 	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
883 	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
884 			checksum_reg, checksum);
885 
886 	return -E1000_ERR_EEPROM;
887 }
888 
889 /*****************************************************************************
890  * Set PHY to class A mode
891  * Assumes the following operations will follow to enable the new class mode.
892  *  1. Do a PHY soft reset
893  *  2. Restart auto-negotiation or force link.
894  *
895  * hw - Struct containing variables accessed by shared code
896  ****************************************************************************/
897 static int32_t
898 e1000_set_phy_mode(struct e1000_hw *hw)
899 {
900 	int32_t ret_val;
901 	uint16_t eeprom_data;
902 
903 	DEBUGFUNC();
904 
905 	if ((hw->mac_type == e1000_82545_rev_3) &&
906 		(hw->media_type == e1000_media_type_copper)) {
907 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
908 				1, &eeprom_data);
909 		if (ret_val)
910 			return ret_val;
911 
912 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
913 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
914 			ret_val = e1000_write_phy_reg(hw,
915 					M88E1000_PHY_PAGE_SELECT, 0x000B);
916 			if (ret_val)
917 				return ret_val;
918 			ret_val = e1000_write_phy_reg(hw,
919 					M88E1000_PHY_GEN_CONTROL, 0x8104);
920 			if (ret_val)
921 				return ret_val;
922 
923 			hw->phy_reset_disable = false;
924 		}
925 	}
926 
927 	return E1000_SUCCESS;
928 }
929 
930 /***************************************************************************
931  *
932  * Obtaining software semaphore bit (SMBI) before resetting PHY.
933  *
934  * hw: Struct containing variables accessed by shared code
935  *
936  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
937  *            E1000_SUCCESS at any other case.
938  *
939  ***************************************************************************/
940 static int32_t
941 e1000_get_software_semaphore(struct e1000_hw *hw)
942 {
943 	 int32_t timeout = hw->eeprom.word_size + 1;
944 	 uint32_t swsm;
945 
946 	DEBUGFUNC();
947 
948 	if (hw->mac_type != e1000_80003es2lan)
949 		return E1000_SUCCESS;
950 
951 	while (timeout) {
952 		swsm = E1000_READ_REG(hw, SWSM);
953 		/* If SMBI bit cleared, it is now set and we hold
954 		 * the semaphore */
955 		if (!(swsm & E1000_SWSM_SMBI))
956 			break;
957 		mdelay(1);
958 		timeout--;
959 	}
960 
961 	if (!timeout) {
962 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
963 		return -E1000_ERR_RESET;
964 	}
965 
966 	return E1000_SUCCESS;
967 }
968 
969 /***************************************************************************
970  * This function clears HW semaphore bits.
971  *
972  * hw: Struct containing variables accessed by shared code
973  *
974  * returns: - None.
975  *
976  ***************************************************************************/
977 static void
978 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
979 {
980 	 uint32_t swsm;
981 
982 	DEBUGFUNC();
983 
984 	if (!hw->eeprom_semaphore_present)
985 		return;
986 
987 	swsm = E1000_READ_REG(hw, SWSM);
988 	if (hw->mac_type == e1000_80003es2lan) {
989 		/* Release both semaphores. */
990 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
991 	} else
992 		swsm &= ~(E1000_SWSM_SWESMBI);
993 	E1000_WRITE_REG(hw, SWSM, swsm);
994 }
995 
996 /***************************************************************************
997  *
998  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
999  * adapter or Eeprom access.
1000  *
1001  * hw: Struct containing variables accessed by shared code
1002  *
1003  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1004  *            E1000_SUCCESS at any other case.
1005  *
1006  ***************************************************************************/
1007 static int32_t
1008 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1009 {
1010 	int32_t timeout;
1011 	uint32_t swsm;
1012 
1013 	DEBUGFUNC();
1014 
1015 	if (!hw->eeprom_semaphore_present)
1016 		return E1000_SUCCESS;
1017 
1018 	if (hw->mac_type == e1000_80003es2lan) {
1019 		/* Get the SW semaphore. */
1020 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1021 			return -E1000_ERR_EEPROM;
1022 	}
1023 
1024 	/* Get the FW semaphore. */
1025 	timeout = hw->eeprom.word_size + 1;
1026 	while (timeout) {
1027 		swsm = E1000_READ_REG(hw, SWSM);
1028 		swsm |= E1000_SWSM_SWESMBI;
1029 		E1000_WRITE_REG(hw, SWSM, swsm);
1030 		/* if we managed to set the bit we got the semaphore. */
1031 		swsm = E1000_READ_REG(hw, SWSM);
1032 		if (swsm & E1000_SWSM_SWESMBI)
1033 			break;
1034 
1035 		udelay(50);
1036 		timeout--;
1037 	}
1038 
1039 	if (!timeout) {
1040 		/* Release semaphores */
1041 		e1000_put_hw_eeprom_semaphore(hw);
1042 		DEBUGOUT("Driver can't access the Eeprom - "
1043 				"SWESMBI bit is set.\n");
1044 		return -E1000_ERR_EEPROM;
1045 	}
1046 
1047 	return E1000_SUCCESS;
1048 }
1049 
1050 static int32_t
1051 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1052 {
1053 	uint32_t swfw_sync = 0;
1054 	uint32_t swmask = mask;
1055 	uint32_t fwmask = mask << 16;
1056 	int32_t timeout = 200;
1057 
1058 	DEBUGFUNC();
1059 	while (timeout) {
1060 		if (e1000_get_hw_eeprom_semaphore(hw))
1061 			return -E1000_ERR_SWFW_SYNC;
1062 
1063 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1064 		if (!(swfw_sync & (fwmask | swmask)))
1065 			break;
1066 
1067 		/* firmware currently using resource (fwmask) */
1068 		/* or other software thread currently using resource (swmask) */
1069 		e1000_put_hw_eeprom_semaphore(hw);
1070 		mdelay(5);
1071 		timeout--;
1072 	}
1073 
1074 	if (!timeout) {
1075 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1076 		return -E1000_ERR_SWFW_SYNC;
1077 	}
1078 
1079 	swfw_sync |= swmask;
1080 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1081 
1082 	e1000_put_hw_eeprom_semaphore(hw);
1083 	return E1000_SUCCESS;
1084 }
1085 
1086 static bool e1000_is_second_port(struct e1000_hw *hw)
1087 {
1088 	switch (hw->mac_type) {
1089 	case e1000_80003es2lan:
1090 	case e1000_82546:
1091 	case e1000_82571:
1092 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1093 			return true;
1094 		/* Fallthrough */
1095 	default:
1096 		return false;
1097 	}
1098 }
1099 
1100 /******************************************************************************
1101  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1102  * second function of dual function devices
1103  *
1104  * nic - Struct containing variables accessed by shared code
1105  *****************************************************************************/
1106 static int
1107 e1000_read_mac_addr(struct eth_device *nic)
1108 {
1109 	struct e1000_hw *hw = nic->priv;
1110 	uint16_t offset;
1111 	uint16_t eeprom_data;
1112 	int i;
1113 
1114 	DEBUGFUNC();
1115 
1116 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1117 		offset = i >> 1;
1118 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1119 			DEBUGOUT("EEPROM Read Error\n");
1120 			return -E1000_ERR_EEPROM;
1121 		}
1122 		nic->enetaddr[i] = eeprom_data & 0xff;
1123 		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1124 	}
1125 
1126 	/* Invert the last bit if this is the second device */
1127 	if (e1000_is_second_port(hw))
1128 		nic->enetaddr[5] ^= 1;
1129 
1130 #ifdef CONFIG_E1000_FALLBACK_MAC
1131 	if (!is_valid_ether_addr(nic->enetaddr)) {
1132 		unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1133 
1134 		memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1135 	}
1136 #endif
1137 	return 0;
1138 }
1139 
1140 /******************************************************************************
1141  * Initializes receive address filters.
1142  *
1143  * hw - Struct containing variables accessed by shared code
1144  *
1145  * Places the MAC address in receive address register 0 and clears the rest
1146  * of the receive addresss registers. Clears the multicast table. Assumes
1147  * the receiver is in reset when the routine is called.
1148  *****************************************************************************/
1149 static void
1150 e1000_init_rx_addrs(struct eth_device *nic)
1151 {
1152 	struct e1000_hw *hw = nic->priv;
1153 	uint32_t i;
1154 	uint32_t addr_low;
1155 	uint32_t addr_high;
1156 
1157 	DEBUGFUNC();
1158 
1159 	/* Setup the receive address. */
1160 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1161 	addr_low = (nic->enetaddr[0] |
1162 		    (nic->enetaddr[1] << 8) |
1163 		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1164 
1165 	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1166 
1167 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1168 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1169 
1170 	/* Zero out the other 15 receive addresses. */
1171 	DEBUGOUT("Clearing RAR[1-15]\n");
1172 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1173 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1174 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1175 	}
1176 }
1177 
1178 /******************************************************************************
1179  * Clears the VLAN filer table
1180  *
1181  * hw - Struct containing variables accessed by shared code
1182  *****************************************************************************/
1183 static void
1184 e1000_clear_vfta(struct e1000_hw *hw)
1185 {
1186 	uint32_t offset;
1187 
1188 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1189 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1190 }
1191 
1192 /******************************************************************************
1193  * Set the mac type member in the hw struct.
1194  *
1195  * hw - Struct containing variables accessed by shared code
1196  *****************************************************************************/
1197 int32_t
1198 e1000_set_mac_type(struct e1000_hw *hw)
1199 {
1200 	DEBUGFUNC();
1201 
1202 	switch (hw->device_id) {
1203 	case E1000_DEV_ID_82542:
1204 		switch (hw->revision_id) {
1205 		case E1000_82542_2_0_REV_ID:
1206 			hw->mac_type = e1000_82542_rev2_0;
1207 			break;
1208 		case E1000_82542_2_1_REV_ID:
1209 			hw->mac_type = e1000_82542_rev2_1;
1210 			break;
1211 		default:
1212 			/* Invalid 82542 revision ID */
1213 			return -E1000_ERR_MAC_TYPE;
1214 		}
1215 		break;
1216 	case E1000_DEV_ID_82543GC_FIBER:
1217 	case E1000_DEV_ID_82543GC_COPPER:
1218 		hw->mac_type = e1000_82543;
1219 		break;
1220 	case E1000_DEV_ID_82544EI_COPPER:
1221 	case E1000_DEV_ID_82544EI_FIBER:
1222 	case E1000_DEV_ID_82544GC_COPPER:
1223 	case E1000_DEV_ID_82544GC_LOM:
1224 		hw->mac_type = e1000_82544;
1225 		break;
1226 	case E1000_DEV_ID_82540EM:
1227 	case E1000_DEV_ID_82540EM_LOM:
1228 	case E1000_DEV_ID_82540EP:
1229 	case E1000_DEV_ID_82540EP_LOM:
1230 	case E1000_DEV_ID_82540EP_LP:
1231 		hw->mac_type = e1000_82540;
1232 		break;
1233 	case E1000_DEV_ID_82545EM_COPPER:
1234 	case E1000_DEV_ID_82545EM_FIBER:
1235 		hw->mac_type = e1000_82545;
1236 		break;
1237 	case E1000_DEV_ID_82545GM_COPPER:
1238 	case E1000_DEV_ID_82545GM_FIBER:
1239 	case E1000_DEV_ID_82545GM_SERDES:
1240 		hw->mac_type = e1000_82545_rev_3;
1241 		break;
1242 	case E1000_DEV_ID_82546EB_COPPER:
1243 	case E1000_DEV_ID_82546EB_FIBER:
1244 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1245 		hw->mac_type = e1000_82546;
1246 		break;
1247 	case E1000_DEV_ID_82546GB_COPPER:
1248 	case E1000_DEV_ID_82546GB_FIBER:
1249 	case E1000_DEV_ID_82546GB_SERDES:
1250 	case E1000_DEV_ID_82546GB_PCIE:
1251 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1252 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1253 		hw->mac_type = e1000_82546_rev_3;
1254 		break;
1255 	case E1000_DEV_ID_82541EI:
1256 	case E1000_DEV_ID_82541EI_MOBILE:
1257 	case E1000_DEV_ID_82541ER_LOM:
1258 		hw->mac_type = e1000_82541;
1259 		break;
1260 	case E1000_DEV_ID_82541ER:
1261 	case E1000_DEV_ID_82541GI:
1262 	case E1000_DEV_ID_82541GI_LF:
1263 	case E1000_DEV_ID_82541GI_MOBILE:
1264 		hw->mac_type = e1000_82541_rev_2;
1265 		break;
1266 	case E1000_DEV_ID_82547EI:
1267 	case E1000_DEV_ID_82547EI_MOBILE:
1268 		hw->mac_type = e1000_82547;
1269 		break;
1270 	case E1000_DEV_ID_82547GI:
1271 		hw->mac_type = e1000_82547_rev_2;
1272 		break;
1273 	case E1000_DEV_ID_82571EB_COPPER:
1274 	case E1000_DEV_ID_82571EB_FIBER:
1275 	case E1000_DEV_ID_82571EB_SERDES:
1276 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1277 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1278 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1279 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1280 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1281 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1282 		hw->mac_type = e1000_82571;
1283 		break;
1284 	case E1000_DEV_ID_82572EI_COPPER:
1285 	case E1000_DEV_ID_82572EI_FIBER:
1286 	case E1000_DEV_ID_82572EI_SERDES:
1287 	case E1000_DEV_ID_82572EI:
1288 		hw->mac_type = e1000_82572;
1289 		break;
1290 	case E1000_DEV_ID_82573E:
1291 	case E1000_DEV_ID_82573E_IAMT:
1292 	case E1000_DEV_ID_82573L:
1293 		hw->mac_type = e1000_82573;
1294 		break;
1295 	case E1000_DEV_ID_82574L:
1296 		hw->mac_type = e1000_82574;
1297 		break;
1298 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1299 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1300 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1301 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1302 		hw->mac_type = e1000_80003es2lan;
1303 		break;
1304 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1305 	case E1000_DEV_ID_ICH8_IGP_AMT:
1306 	case E1000_DEV_ID_ICH8_IGP_C:
1307 	case E1000_DEV_ID_ICH8_IFE:
1308 	case E1000_DEV_ID_ICH8_IFE_GT:
1309 	case E1000_DEV_ID_ICH8_IFE_G:
1310 	case E1000_DEV_ID_ICH8_IGP_M:
1311 		hw->mac_type = e1000_ich8lan;
1312 		break;
1313 	default:
1314 		/* Should never have loaded on this device */
1315 		return -E1000_ERR_MAC_TYPE;
1316 	}
1317 	return E1000_SUCCESS;
1318 }
1319 
1320 /******************************************************************************
1321  * Reset the transmit and receive units; mask and clear all interrupts.
1322  *
1323  * hw - Struct containing variables accessed by shared code
1324  *****************************************************************************/
1325 void
1326 e1000_reset_hw(struct e1000_hw *hw)
1327 {
1328 	uint32_t ctrl;
1329 	uint32_t ctrl_ext;
1330 	uint32_t manc;
1331 	uint32_t pba = 0;
1332 
1333 	DEBUGFUNC();
1334 
1335 	/* get the correct pba value for both PCI and PCIe*/
1336 	if (hw->mac_type <  e1000_82571)
1337 		pba = E1000_DEFAULT_PCI_PBA;
1338 	else
1339 		pba = E1000_DEFAULT_PCIE_PBA;
1340 
1341 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1342 	if (hw->mac_type == e1000_82542_rev2_0) {
1343 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1344 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1345 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1346 	}
1347 
1348 	/* Clear interrupt mask to stop board from generating interrupts */
1349 	DEBUGOUT("Masking off all interrupts\n");
1350 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1351 
1352 	/* Disable the Transmit and Receive units.  Then delay to allow
1353 	 * any pending transactions to complete before we hit the MAC with
1354 	 * the global reset.
1355 	 */
1356 	E1000_WRITE_REG(hw, RCTL, 0);
1357 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1358 	E1000_WRITE_FLUSH(hw);
1359 
1360 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1361 	hw->tbi_compatibility_on = false;
1362 
1363 	/* Delay to allow any outstanding PCI transactions to complete before
1364 	 * resetting the device
1365 	 */
1366 	mdelay(10);
1367 
1368 	/* Issue a global reset to the MAC.  This will reset the chip's
1369 	 * transmit, receive, DMA, and link units.  It will not effect
1370 	 * the current PCI configuration.  The global reset bit is self-
1371 	 * clearing, and should clear within a microsecond.
1372 	 */
1373 	DEBUGOUT("Issuing a global reset to MAC\n");
1374 	ctrl = E1000_READ_REG(hw, CTRL);
1375 
1376 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1377 
1378 	/* Force a reload from the EEPROM if necessary */
1379 	if (hw->mac_type < e1000_82540) {
1380 		/* Wait for reset to complete */
1381 		udelay(10);
1382 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1383 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1384 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1385 		E1000_WRITE_FLUSH(hw);
1386 		/* Wait for EEPROM reload */
1387 		mdelay(2);
1388 	} else {
1389 		/* Wait for EEPROM reload (it happens automatically) */
1390 		mdelay(4);
1391 		/* Dissable HW ARPs on ASF enabled adapters */
1392 		manc = E1000_READ_REG(hw, MANC);
1393 		manc &= ~(E1000_MANC_ARP_EN);
1394 		E1000_WRITE_REG(hw, MANC, manc);
1395 	}
1396 
1397 	/* Clear interrupt mask to stop board from generating interrupts */
1398 	DEBUGOUT("Masking off all interrupts\n");
1399 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1400 
1401 	/* Clear any pending interrupt events. */
1402 	E1000_READ_REG(hw, ICR);
1403 
1404 	/* If MWI was previously enabled, reenable it. */
1405 	if (hw->mac_type == e1000_82542_rev2_0) {
1406 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1407 	}
1408 	E1000_WRITE_REG(hw, PBA, pba);
1409 }
1410 
1411 /******************************************************************************
1412  *
1413  * Initialize a number of hardware-dependent bits
1414  *
1415  * hw: Struct containing variables accessed by shared code
1416  *
1417  * This function contains hardware limitation workarounds for PCI-E adapters
1418  *
1419  *****************************************************************************/
1420 static void
1421 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1422 {
1423 	if ((hw->mac_type >= e1000_82571) &&
1424 			(!hw->initialize_hw_bits_disable)) {
1425 		/* Settings common to all PCI-express silicon */
1426 		uint32_t reg_ctrl, reg_ctrl_ext;
1427 		uint32_t reg_tarc0, reg_tarc1;
1428 		uint32_t reg_tctl;
1429 		uint32_t reg_txdctl, reg_txdctl1;
1430 
1431 		/* link autonegotiation/sync workarounds */
1432 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1433 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1434 
1435 		/* Enable not-done TX descriptor counting */
1436 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1437 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1438 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1439 
1440 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1441 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1442 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1443 
1444 		switch (hw->mac_type) {
1445 		case e1000_82571:
1446 		case e1000_82572:
1447 			/* Clear PHY TX compatible mode bits */
1448 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1449 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1450 
1451 			/* link autonegotiation/sync workarounds */
1452 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1453 
1454 			/* TX ring control fixes */
1455 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1456 
1457 			/* Multiple read bit is reversed polarity */
1458 			reg_tctl = E1000_READ_REG(hw, TCTL);
1459 			if (reg_tctl & E1000_TCTL_MULR)
1460 				reg_tarc1 &= ~(1 << 28);
1461 			else
1462 				reg_tarc1 |= (1 << 28);
1463 
1464 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1465 			break;
1466 		case e1000_82573:
1467 		case e1000_82574:
1468 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1469 			reg_ctrl_ext &= ~(1 << 23);
1470 			reg_ctrl_ext |= (1 << 22);
1471 
1472 			/* TX byte count fix */
1473 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1474 			reg_ctrl &= ~(1 << 29);
1475 
1476 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1477 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1478 			break;
1479 		case e1000_80003es2lan:
1480 	/* improve small packet performace for fiber/serdes */
1481 			if ((hw->media_type == e1000_media_type_fiber)
1482 			|| (hw->media_type ==
1483 				e1000_media_type_internal_serdes)) {
1484 				reg_tarc0 &= ~(1 << 20);
1485 			}
1486 
1487 		/* Multiple read bit is reversed polarity */
1488 			reg_tctl = E1000_READ_REG(hw, TCTL);
1489 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1490 			if (reg_tctl & E1000_TCTL_MULR)
1491 				reg_tarc1 &= ~(1 << 28);
1492 			else
1493 				reg_tarc1 |= (1 << 28);
1494 
1495 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1496 			break;
1497 		case e1000_ich8lan:
1498 			/* Reduce concurrent DMA requests to 3 from 4 */
1499 			if ((hw->revision_id < 3) ||
1500 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1501 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1502 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1503 
1504 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1505 			reg_ctrl_ext |= (1 << 22);
1506 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1507 
1508 			/* workaround TX hang with TSO=on */
1509 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1510 
1511 			/* Multiple read bit is reversed polarity */
1512 			reg_tctl = E1000_READ_REG(hw, TCTL);
1513 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1514 			if (reg_tctl & E1000_TCTL_MULR)
1515 				reg_tarc1 &= ~(1 << 28);
1516 			else
1517 				reg_tarc1 |= (1 << 28);
1518 
1519 			/* workaround TX hang with TSO=on */
1520 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1521 
1522 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1523 			break;
1524 		default:
1525 			break;
1526 		}
1527 
1528 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1529 	}
1530 }
1531 
1532 /******************************************************************************
1533  * Performs basic configuration of the adapter.
1534  *
1535  * hw - Struct containing variables accessed by shared code
1536  *
1537  * Assumes that the controller has previously been reset and is in a
1538  * post-reset uninitialized state. Initializes the receive address registers,
1539  * multicast table, and VLAN filter table. Calls routines to setup link
1540  * configuration and flow control settings. Clears all on-chip counters. Leaves
1541  * the transmit and receive units disabled and uninitialized.
1542  *****************************************************************************/
1543 static int
1544 e1000_init_hw(struct eth_device *nic)
1545 {
1546 	struct e1000_hw *hw = nic->priv;
1547 	uint32_t ctrl;
1548 	uint32_t i;
1549 	int32_t ret_val;
1550 	uint16_t pcix_cmd_word;
1551 	uint16_t pcix_stat_hi_word;
1552 	uint16_t cmd_mmrbc;
1553 	uint16_t stat_mmrbc;
1554 	uint32_t mta_size;
1555 	uint32_t reg_data;
1556 	uint32_t ctrl_ext;
1557 	DEBUGFUNC();
1558 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1559 	if ((hw->mac_type == e1000_ich8lan) &&
1560 		((hw->revision_id < 3) ||
1561 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1562 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1563 			reg_data = E1000_READ_REG(hw, STATUS);
1564 			reg_data &= ~0x80000000;
1565 			E1000_WRITE_REG(hw, STATUS, reg_data);
1566 	}
1567 	/* Do not need initialize Identification LED */
1568 
1569 	/* Set the media type and TBI compatibility */
1570 	e1000_set_media_type(hw);
1571 
1572 	/* Must be called after e1000_set_media_type
1573 	 * because media_type is used */
1574 	e1000_initialize_hardware_bits(hw);
1575 
1576 	/* Disabling VLAN filtering. */
1577 	DEBUGOUT("Initializing the IEEE VLAN\n");
1578 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1579 	if (hw->mac_type != e1000_ich8lan) {
1580 		if (hw->mac_type < e1000_82545_rev_3)
1581 			E1000_WRITE_REG(hw, VET, 0);
1582 		e1000_clear_vfta(hw);
1583 	}
1584 
1585 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1586 	if (hw->mac_type == e1000_82542_rev2_0) {
1587 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1588 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1589 				      hw->
1590 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1591 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1592 		E1000_WRITE_FLUSH(hw);
1593 		mdelay(5);
1594 	}
1595 
1596 	/* Setup the receive address. This involves initializing all of the Receive
1597 	 * Address Registers (RARs 0 - 15).
1598 	 */
1599 	e1000_init_rx_addrs(nic);
1600 
1601 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1602 	if (hw->mac_type == e1000_82542_rev2_0) {
1603 		E1000_WRITE_REG(hw, RCTL, 0);
1604 		E1000_WRITE_FLUSH(hw);
1605 		mdelay(1);
1606 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1607 	}
1608 
1609 	/* Zero out the Multicast HASH table */
1610 	DEBUGOUT("Zeroing the MTA\n");
1611 	mta_size = E1000_MC_TBL_SIZE;
1612 	if (hw->mac_type == e1000_ich8lan)
1613 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1614 	for (i = 0; i < mta_size; i++) {
1615 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1616 		/* use write flush to prevent Memory Write Block (MWB) from
1617 		 * occuring when accessing our register space */
1618 		E1000_WRITE_FLUSH(hw);
1619 	}
1620 #if 0
1621 	/* Set the PCI priority bit correctly in the CTRL register.  This
1622 	 * determines if the adapter gives priority to receives, or if it
1623 	 * gives equal priority to transmits and receives.  Valid only on
1624 	 * 82542 and 82543 silicon.
1625 	 */
1626 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1627 		ctrl = E1000_READ_REG(hw, CTRL);
1628 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1629 	}
1630 #endif
1631 	switch (hw->mac_type) {
1632 	case e1000_82545_rev_3:
1633 	case e1000_82546_rev_3:
1634 		break;
1635 	default:
1636 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1637 	if (hw->bus_type == e1000_bus_type_pcix) {
1638 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1639 				     &pcix_cmd_word);
1640 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1641 				     &pcix_stat_hi_word);
1642 		cmd_mmrbc =
1643 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1644 		    PCIX_COMMAND_MMRBC_SHIFT;
1645 		stat_mmrbc =
1646 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1647 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1648 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1649 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1650 		if (cmd_mmrbc > stat_mmrbc) {
1651 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1652 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1653 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1654 					      pcix_cmd_word);
1655 		}
1656 	}
1657 		break;
1658 	}
1659 
1660 	/* More time needed for PHY to initialize */
1661 	if (hw->mac_type == e1000_ich8lan)
1662 		mdelay(15);
1663 
1664 	/* Call a subroutine to configure the link and setup flow control. */
1665 	ret_val = e1000_setup_link(nic);
1666 
1667 	/* Set the transmit descriptor write-back policy */
1668 	if (hw->mac_type > e1000_82544) {
1669 		ctrl = E1000_READ_REG(hw, TXDCTL);
1670 		ctrl =
1671 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1672 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1673 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1674 	}
1675 
1676 	/* Set the receive descriptor write back policy */
1677 
1678 	if (hw->mac_type >= e1000_82571) {
1679 		ctrl = E1000_READ_REG(hw, RXDCTL);
1680 		ctrl =
1681 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1682 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1683 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1684 	}
1685 
1686 	switch (hw->mac_type) {
1687 	default:
1688 		break;
1689 	case e1000_80003es2lan:
1690 		/* Enable retransmit on late collisions */
1691 		reg_data = E1000_READ_REG(hw, TCTL);
1692 		reg_data |= E1000_TCTL_RTLC;
1693 		E1000_WRITE_REG(hw, TCTL, reg_data);
1694 
1695 		/* Configure Gigabit Carry Extend Padding */
1696 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1697 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1698 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1699 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1700 
1701 		/* Configure Transmit Inter-Packet Gap */
1702 		reg_data = E1000_READ_REG(hw, TIPG);
1703 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1704 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1705 		E1000_WRITE_REG(hw, TIPG, reg_data);
1706 
1707 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1708 		reg_data &= ~0x00100000;
1709 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1710 		/* Fall through */
1711 	case e1000_82571:
1712 	case e1000_82572:
1713 	case e1000_ich8lan:
1714 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1715 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1716 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1717 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1718 		break;
1719 	case e1000_82573:
1720 	case e1000_82574:
1721 		reg_data = E1000_READ_REG(hw, GCR);
1722 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1723 		E1000_WRITE_REG(hw, GCR, reg_data);
1724 	}
1725 
1726 #if 0
1727 	/* Clear all of the statistics registers (clear on read).  It is
1728 	 * important that we do this after we have tried to establish link
1729 	 * because the symbol error count will increment wildly if there
1730 	 * is no link.
1731 	 */
1732 	e1000_clear_hw_cntrs(hw);
1733 
1734 	/* ICH8 No-snoop bits are opposite polarity.
1735 	 * Set to snoop by default after reset. */
1736 	if (hw->mac_type == e1000_ich8lan)
1737 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1738 #endif
1739 
1740 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1741 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1742 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1743 		/* Relaxed ordering must be disabled to avoid a parity
1744 		 * error crash in a PCI slot. */
1745 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1746 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1747 	}
1748 
1749 	return ret_val;
1750 }
1751 
1752 /******************************************************************************
1753  * Configures flow control and link settings.
1754  *
1755  * hw - Struct containing variables accessed by shared code
1756  *
1757  * Determines which flow control settings to use. Calls the apropriate media-
1758  * specific link configuration function. Configures the flow control settings.
1759  * Assuming the adapter has a valid link partner, a valid link should be
1760  * established. Assumes the hardware has previously been reset and the
1761  * transmitter and receiver are not enabled.
1762  *****************************************************************************/
1763 static int
1764 e1000_setup_link(struct eth_device *nic)
1765 {
1766 	struct e1000_hw *hw = nic->priv;
1767 	uint32_t ctrl_ext;
1768 	int32_t ret_val;
1769 	uint16_t eeprom_data;
1770 
1771 	DEBUGFUNC();
1772 
1773 	/* In the case of the phy reset being blocked, we already have a link.
1774 	 * We do not have to set it up again. */
1775 	if (e1000_check_phy_reset_block(hw))
1776 		return E1000_SUCCESS;
1777 
1778 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1779 	 * that determine the hardware's default PAUSE (flow control) mode,
1780 	 * a bit that determines whether the HW defaults to enabling or
1781 	 * disabling auto-negotiation, and the direction of the
1782 	 * SW defined pins. If there is no SW over-ride of the flow
1783 	 * control setting, then the variable hw->fc will
1784 	 * be initialized based on a value in the EEPROM.
1785 	 */
1786 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1787 				&eeprom_data) < 0) {
1788 		DEBUGOUT("EEPROM Read Error\n");
1789 		return -E1000_ERR_EEPROM;
1790 	}
1791 
1792 	if (hw->fc == e1000_fc_default) {
1793 		switch (hw->mac_type) {
1794 		case e1000_ich8lan:
1795 		case e1000_82573:
1796 		case e1000_82574:
1797 			hw->fc = e1000_fc_full;
1798 			break;
1799 		default:
1800 			ret_val = e1000_read_eeprom(hw,
1801 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1802 			if (ret_val) {
1803 				DEBUGOUT("EEPROM Read Error\n");
1804 				return -E1000_ERR_EEPROM;
1805 			}
1806 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1807 				hw->fc = e1000_fc_none;
1808 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1809 				    EEPROM_WORD0F_ASM_DIR)
1810 				hw->fc = e1000_fc_tx_pause;
1811 			else
1812 				hw->fc = e1000_fc_full;
1813 			break;
1814 		}
1815 	}
1816 
1817 	/* We want to save off the original Flow Control configuration just
1818 	 * in case we get disconnected and then reconnected into a different
1819 	 * hub or switch with different Flow Control capabilities.
1820 	 */
1821 	if (hw->mac_type == e1000_82542_rev2_0)
1822 		hw->fc &= (~e1000_fc_tx_pause);
1823 
1824 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1825 		hw->fc &= (~e1000_fc_rx_pause);
1826 
1827 	hw->original_fc = hw->fc;
1828 
1829 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1830 
1831 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1832 	 * polarity value for the SW controlled pins, and setup the
1833 	 * Extended Device Control reg with that info.
1834 	 * This is needed because one of the SW controlled pins is used for
1835 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1836 	 * or e1000_phy_setup() is called.
1837 	 */
1838 	if (hw->mac_type == e1000_82543) {
1839 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1840 			    SWDPIO__EXT_SHIFT);
1841 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1842 	}
1843 
1844 	/* Call the necessary subroutine to configure the link. */
1845 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1846 	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1847 	if (ret_val < 0) {
1848 		return ret_val;
1849 	}
1850 
1851 	/* Initialize the flow control address, type, and PAUSE timer
1852 	 * registers to their default values.  This is done even if flow
1853 	 * control is disabled, because it does not hurt anything to
1854 	 * initialize these registers.
1855 	 */
1856 	DEBUGOUT("Initializing the Flow Control address, type"
1857 			"and timer regs\n");
1858 
1859 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1860 	if (hw->mac_type != e1000_ich8lan) {
1861 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1862 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1863 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1864 	}
1865 
1866 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1867 
1868 	/* Set the flow control receive threshold registers.  Normally,
1869 	 * these registers will be set to a default threshold that may be
1870 	 * adjusted later by the driver's runtime code.  However, if the
1871 	 * ability to transmit pause frames in not enabled, then these
1872 	 * registers will be set to 0.
1873 	 */
1874 	if (!(hw->fc & e1000_fc_tx_pause)) {
1875 		E1000_WRITE_REG(hw, FCRTL, 0);
1876 		E1000_WRITE_REG(hw, FCRTH, 0);
1877 	} else {
1878 		/* We need to set up the Receive Threshold high and low water marks
1879 		 * as well as (optionally) enabling the transmission of XON frames.
1880 		 */
1881 		if (hw->fc_send_xon) {
1882 			E1000_WRITE_REG(hw, FCRTL,
1883 					(hw->fc_low_water | E1000_FCRTL_XONE));
1884 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1885 		} else {
1886 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1887 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1888 		}
1889 	}
1890 	return ret_val;
1891 }
1892 
1893 /******************************************************************************
1894  * Sets up link for a fiber based adapter
1895  *
1896  * hw - Struct containing variables accessed by shared code
1897  *
1898  * Manipulates Physical Coding Sublayer functions in order to configure
1899  * link. Assumes the hardware has been previously reset and the transmitter
1900  * and receiver are not enabled.
1901  *****************************************************************************/
1902 static int
1903 e1000_setup_fiber_link(struct eth_device *nic)
1904 {
1905 	struct e1000_hw *hw = nic->priv;
1906 	uint32_t ctrl;
1907 	uint32_t status;
1908 	uint32_t txcw = 0;
1909 	uint32_t i;
1910 	uint32_t signal;
1911 	int32_t ret_val;
1912 
1913 	DEBUGFUNC();
1914 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1915 	 * set when the optics detect a signal. On older adapters, it will be
1916 	 * cleared when there is a signal
1917 	 */
1918 	ctrl = E1000_READ_REG(hw, CTRL);
1919 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1920 		signal = E1000_CTRL_SWDPIN1;
1921 	else
1922 		signal = 0;
1923 
1924 	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1925 	       ctrl);
1926 	/* Take the link out of reset */
1927 	ctrl &= ~(E1000_CTRL_LRST);
1928 
1929 	e1000_config_collision_dist(hw);
1930 
1931 	/* Check for a software override of the flow control settings, and setup
1932 	 * the device accordingly.  If auto-negotiation is enabled, then software
1933 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1934 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1935 	 * auto-negotiation is disabled, then software will have to manually
1936 	 * configure the two flow control enable bits in the CTRL register.
1937 	 *
1938 	 * The possible values of the "fc" parameter are:
1939 	 *	0:  Flow control is completely disabled
1940 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
1941 	 *	    not send pause frames).
1942 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
1943 	 *	    not support receiving pause frames).
1944 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
1945 	 */
1946 	switch (hw->fc) {
1947 	case e1000_fc_none:
1948 		/* Flow control is completely disabled by a software over-ride. */
1949 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1950 		break;
1951 	case e1000_fc_rx_pause:
1952 		/* RX Flow control is enabled and TX Flow control is disabled by a
1953 		 * software over-ride. Since there really isn't a way to advertise
1954 		 * that we are capable of RX Pause ONLY, we will advertise that we
1955 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
1956 		 *  disable the adapter's ability to send PAUSE frames.
1957 		 */
1958 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1959 		break;
1960 	case e1000_fc_tx_pause:
1961 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
1962 		 * software over-ride.
1963 		 */
1964 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1965 		break;
1966 	case e1000_fc_full:
1967 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
1968 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1969 		break;
1970 	default:
1971 		DEBUGOUT("Flow control param set incorrectly\n");
1972 		return -E1000_ERR_CONFIG;
1973 		break;
1974 	}
1975 
1976 	/* Since auto-negotiation is enabled, take the link out of reset (the link
1977 	 * will be in reset, because we previously reset the chip). This will
1978 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
1979 	 * link-up status bit will be set and the flow control enable bits (RFCE
1980 	 * and TFCE) will be set according to their negotiated value.
1981 	 */
1982 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1983 
1984 	E1000_WRITE_REG(hw, TXCW, txcw);
1985 	E1000_WRITE_REG(hw, CTRL, ctrl);
1986 	E1000_WRITE_FLUSH(hw);
1987 
1988 	hw->txcw = txcw;
1989 	mdelay(1);
1990 
1991 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1992 	 * indication in the Device Status Register.  Time-out if a link isn't
1993 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1994 	 * less than 500 milliseconds even if the other end is doing it in SW).
1995 	 */
1996 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1997 		DEBUGOUT("Looking for Link\n");
1998 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1999 			mdelay(10);
2000 			status = E1000_READ_REG(hw, STATUS);
2001 			if (status & E1000_STATUS_LU)
2002 				break;
2003 		}
2004 		if (i == (LINK_UP_TIMEOUT / 10)) {
2005 			/* AutoNeg failed to achieve a link, so we'll call
2006 			 * e1000_check_for_link. This routine will force the link up if we
2007 			 * detect a signal. This will allow us to communicate with
2008 			 * non-autonegotiating link partners.
2009 			 */
2010 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2011 			hw->autoneg_failed = 1;
2012 			ret_val = e1000_check_for_link(nic);
2013 			if (ret_val < 0) {
2014 				DEBUGOUT("Error while checking for link\n");
2015 				return ret_val;
2016 			}
2017 			hw->autoneg_failed = 0;
2018 		} else {
2019 			hw->autoneg_failed = 0;
2020 			DEBUGOUT("Valid Link Found\n");
2021 		}
2022 	} else {
2023 		DEBUGOUT("No Signal Detected\n");
2024 		return -E1000_ERR_NOLINK;
2025 	}
2026 	return 0;
2027 }
2028 
2029 /******************************************************************************
2030 * Make sure we have a valid PHY and change PHY mode before link setup.
2031 *
2032 * hw - Struct containing variables accessed by shared code
2033 ******************************************************************************/
2034 static int32_t
2035 e1000_copper_link_preconfig(struct e1000_hw *hw)
2036 {
2037 	uint32_t ctrl;
2038 	int32_t ret_val;
2039 	uint16_t phy_data;
2040 
2041 	DEBUGFUNC();
2042 
2043 	ctrl = E1000_READ_REG(hw, CTRL);
2044 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2045 	 * the PHY speed and duplex configuration is. In addition, we need to
2046 	 * perform a hardware reset on the PHY to take it out of reset.
2047 	 */
2048 	if (hw->mac_type > e1000_82543) {
2049 		ctrl |= E1000_CTRL_SLU;
2050 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2051 		E1000_WRITE_REG(hw, CTRL, ctrl);
2052 	} else {
2053 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2054 				| E1000_CTRL_SLU);
2055 		E1000_WRITE_REG(hw, CTRL, ctrl);
2056 		ret_val = e1000_phy_hw_reset(hw);
2057 		if (ret_val)
2058 			return ret_val;
2059 	}
2060 
2061 	/* Make sure we have a valid PHY */
2062 	ret_val = e1000_detect_gig_phy(hw);
2063 	if (ret_val) {
2064 		DEBUGOUT("Error, did not detect valid phy.\n");
2065 		return ret_val;
2066 	}
2067 	DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2068 
2069 	/* Set PHY to class A mode (if necessary) */
2070 	ret_val = e1000_set_phy_mode(hw);
2071 	if (ret_val)
2072 		return ret_val;
2073 	if ((hw->mac_type == e1000_82545_rev_3) ||
2074 		(hw->mac_type == e1000_82546_rev_3)) {
2075 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2076 				&phy_data);
2077 		phy_data |= 0x00000008;
2078 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2079 				phy_data);
2080 	}
2081 
2082 	if (hw->mac_type <= e1000_82543 ||
2083 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2084 		hw->mac_type == e1000_82541_rev_2
2085 		|| hw->mac_type == e1000_82547_rev_2)
2086 			hw->phy_reset_disable = false;
2087 
2088 	return E1000_SUCCESS;
2089 }
2090 
2091 /*****************************************************************************
2092  *
2093  * This function sets the lplu state according to the active flag.  When
2094  * activating lplu this function also disables smart speed and vise versa.
2095  * lplu will not be activated unless the device autonegotiation advertisment
2096  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2097  * hw: Struct containing variables accessed by shared code
2098  * active - true to enable lplu false to disable lplu.
2099  *
2100  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2101  *            E1000_SUCCESS at any other case.
2102  *
2103  ****************************************************************************/
2104 
2105 static int32_t
2106 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2107 {
2108 	uint32_t phy_ctrl = 0;
2109 	int32_t ret_val;
2110 	uint16_t phy_data;
2111 	DEBUGFUNC();
2112 
2113 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2114 	    && hw->phy_type != e1000_phy_igp_3)
2115 		return E1000_SUCCESS;
2116 
2117 	/* During driver activity LPLU should not be used or it will attain link
2118 	 * from the lowest speeds starting from 10Mbps. The capability is used
2119 	 * for Dx transitions and states */
2120 	if (hw->mac_type == e1000_82541_rev_2
2121 			|| hw->mac_type == e1000_82547_rev_2) {
2122 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2123 				&phy_data);
2124 		if (ret_val)
2125 			return ret_val;
2126 	} else if (hw->mac_type == e1000_ich8lan) {
2127 		/* MAC writes into PHY register based on the state transition
2128 		 * and start auto-negotiation. SW driver can overwrite the
2129 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2130 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2131 	} else {
2132 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2133 				&phy_data);
2134 		if (ret_val)
2135 			return ret_val;
2136 	}
2137 
2138 	if (!active) {
2139 		if (hw->mac_type == e1000_82541_rev_2 ||
2140 			hw->mac_type == e1000_82547_rev_2) {
2141 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2142 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2143 					phy_data);
2144 			if (ret_val)
2145 				return ret_val;
2146 		} else {
2147 			if (hw->mac_type == e1000_ich8lan) {
2148 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2149 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2150 			} else {
2151 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2152 				ret_val = e1000_write_phy_reg(hw,
2153 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2154 				if (ret_val)
2155 					return ret_val;
2156 			}
2157 		}
2158 
2159 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2160 	 * Dx states where the power conservation is most important.  During
2161 	 * driver activity we should enable SmartSpeed, so performance is
2162 	 * maintained. */
2163 		if (hw->smart_speed == e1000_smart_speed_on) {
2164 			ret_val = e1000_read_phy_reg(hw,
2165 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2166 			if (ret_val)
2167 				return ret_val;
2168 
2169 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2170 			ret_val = e1000_write_phy_reg(hw,
2171 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2172 			if (ret_val)
2173 				return ret_val;
2174 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2175 			ret_val = e1000_read_phy_reg(hw,
2176 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2177 			if (ret_val)
2178 				return ret_val;
2179 
2180 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2181 			ret_val = e1000_write_phy_reg(hw,
2182 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2183 			if (ret_val)
2184 				return ret_val;
2185 		}
2186 
2187 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2188 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2189 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2190 
2191 		if (hw->mac_type == e1000_82541_rev_2 ||
2192 		    hw->mac_type == e1000_82547_rev_2) {
2193 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2194 			ret_val = e1000_write_phy_reg(hw,
2195 					IGP01E1000_GMII_FIFO, phy_data);
2196 			if (ret_val)
2197 				return ret_val;
2198 		} else {
2199 			if (hw->mac_type == e1000_ich8lan) {
2200 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2201 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2202 			} else {
2203 				phy_data |= IGP02E1000_PM_D3_LPLU;
2204 				ret_val = e1000_write_phy_reg(hw,
2205 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2206 				if (ret_val)
2207 					return ret_val;
2208 			}
2209 		}
2210 
2211 		/* When LPLU is enabled we should disable SmartSpeed */
2212 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2213 				&phy_data);
2214 		if (ret_val)
2215 			return ret_val;
2216 
2217 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2218 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2219 				phy_data);
2220 		if (ret_val)
2221 			return ret_val;
2222 	}
2223 	return E1000_SUCCESS;
2224 }
2225 
2226 /*****************************************************************************
2227  *
2228  * This function sets the lplu d0 state according to the active flag.  When
2229  * activating lplu this function also disables smart speed and vise versa.
2230  * lplu will not be activated unless the device autonegotiation advertisment
2231  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2232  * hw: Struct containing variables accessed by shared code
2233  * active - true to enable lplu false to disable lplu.
2234  *
2235  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2236  *            E1000_SUCCESS at any other case.
2237  *
2238  ****************************************************************************/
2239 
2240 static int32_t
2241 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2242 {
2243 	uint32_t phy_ctrl = 0;
2244 	int32_t ret_val;
2245 	uint16_t phy_data;
2246 	DEBUGFUNC();
2247 
2248 	if (hw->mac_type <= e1000_82547_rev_2)
2249 		return E1000_SUCCESS;
2250 
2251 	if (hw->mac_type == e1000_ich8lan) {
2252 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2253 	} else {
2254 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2255 				&phy_data);
2256 		if (ret_val)
2257 			return ret_val;
2258 	}
2259 
2260 	if (!active) {
2261 		if (hw->mac_type == e1000_ich8lan) {
2262 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2263 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2264 		} else {
2265 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2266 			ret_val = e1000_write_phy_reg(hw,
2267 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2268 			if (ret_val)
2269 				return ret_val;
2270 		}
2271 
2272 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2273 	 * Dx states where the power conservation is most important.  During
2274 	 * driver activity we should enable SmartSpeed, so performance is
2275 	 * maintained. */
2276 		if (hw->smart_speed == e1000_smart_speed_on) {
2277 			ret_val = e1000_read_phy_reg(hw,
2278 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2279 			if (ret_val)
2280 				return ret_val;
2281 
2282 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2283 			ret_val = e1000_write_phy_reg(hw,
2284 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2285 			if (ret_val)
2286 				return ret_val;
2287 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2288 			ret_val = e1000_read_phy_reg(hw,
2289 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2290 			if (ret_val)
2291 				return ret_val;
2292 
2293 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2294 			ret_val = e1000_write_phy_reg(hw,
2295 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2296 			if (ret_val)
2297 				return ret_val;
2298 		}
2299 
2300 
2301 	} else {
2302 
2303 		if (hw->mac_type == e1000_ich8lan) {
2304 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2305 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2306 		} else {
2307 			phy_data |= IGP02E1000_PM_D0_LPLU;
2308 			ret_val = e1000_write_phy_reg(hw,
2309 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2310 			if (ret_val)
2311 				return ret_val;
2312 		}
2313 
2314 		/* When LPLU is enabled we should disable SmartSpeed */
2315 		ret_val = e1000_read_phy_reg(hw,
2316 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2317 		if (ret_val)
2318 			return ret_val;
2319 
2320 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2321 		ret_val = e1000_write_phy_reg(hw,
2322 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2323 		if (ret_val)
2324 			return ret_val;
2325 
2326 	}
2327 	return E1000_SUCCESS;
2328 }
2329 
2330 /********************************************************************
2331 * Copper link setup for e1000_phy_igp series.
2332 *
2333 * hw - Struct containing variables accessed by shared code
2334 *********************************************************************/
2335 static int32_t
2336 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2337 {
2338 	uint32_t led_ctrl;
2339 	int32_t ret_val;
2340 	uint16_t phy_data;
2341 
2342 	DEBUGFUNC();
2343 
2344 	if (hw->phy_reset_disable)
2345 		return E1000_SUCCESS;
2346 
2347 	ret_val = e1000_phy_reset(hw);
2348 	if (ret_val) {
2349 		DEBUGOUT("Error Resetting the PHY\n");
2350 		return ret_val;
2351 	}
2352 
2353 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2354 	mdelay(15);
2355 	if (hw->mac_type != e1000_ich8lan) {
2356 		/* Configure activity LED after PHY reset */
2357 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2358 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2359 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2360 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2361 	}
2362 
2363 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2364 	if (hw->phy_type == e1000_phy_igp) {
2365 		/* disable lplu d3 during driver init */
2366 		ret_val = e1000_set_d3_lplu_state(hw, false);
2367 		if (ret_val) {
2368 			DEBUGOUT("Error Disabling LPLU D3\n");
2369 			return ret_val;
2370 		}
2371 	}
2372 
2373 	/* disable lplu d0 during driver init */
2374 	ret_val = e1000_set_d0_lplu_state(hw, false);
2375 	if (ret_val) {
2376 		DEBUGOUT("Error Disabling LPLU D0\n");
2377 		return ret_val;
2378 	}
2379 	/* Configure mdi-mdix settings */
2380 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2381 	if (ret_val)
2382 		return ret_val;
2383 
2384 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2385 		hw->dsp_config_state = e1000_dsp_config_disabled;
2386 		/* Force MDI for earlier revs of the IGP PHY */
2387 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2388 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2389 		hw->mdix = 1;
2390 
2391 	} else {
2392 		hw->dsp_config_state = e1000_dsp_config_enabled;
2393 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2394 
2395 		switch (hw->mdix) {
2396 		case 1:
2397 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2398 			break;
2399 		case 2:
2400 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2401 			break;
2402 		case 0:
2403 		default:
2404 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2405 			break;
2406 		}
2407 	}
2408 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2409 	if (ret_val)
2410 		return ret_val;
2411 
2412 	/* set auto-master slave resolution settings */
2413 	if (hw->autoneg) {
2414 		e1000_ms_type phy_ms_setting = hw->master_slave;
2415 
2416 		if (hw->ffe_config_state == e1000_ffe_config_active)
2417 			hw->ffe_config_state = e1000_ffe_config_enabled;
2418 
2419 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2420 			hw->dsp_config_state = e1000_dsp_config_enabled;
2421 
2422 		/* when autonegotiation advertisment is only 1000Mbps then we
2423 		  * should disable SmartSpeed and enable Auto MasterSlave
2424 		  * resolution as hardware default. */
2425 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2426 			/* Disable SmartSpeed */
2427 			ret_val = e1000_read_phy_reg(hw,
2428 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2429 			if (ret_val)
2430 				return ret_val;
2431 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2432 			ret_val = e1000_write_phy_reg(hw,
2433 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2434 			if (ret_val)
2435 				return ret_val;
2436 			/* Set auto Master/Slave resolution process */
2437 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2438 					&phy_data);
2439 			if (ret_val)
2440 				return ret_val;
2441 			phy_data &= ~CR_1000T_MS_ENABLE;
2442 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2443 					phy_data);
2444 			if (ret_val)
2445 				return ret_val;
2446 		}
2447 
2448 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2449 		if (ret_val)
2450 			return ret_val;
2451 
2452 		/* load defaults for future use */
2453 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2454 				((phy_data & CR_1000T_MS_VALUE) ?
2455 				e1000_ms_force_master :
2456 				e1000_ms_force_slave) :
2457 				e1000_ms_auto;
2458 
2459 		switch (phy_ms_setting) {
2460 		case e1000_ms_force_master:
2461 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2462 			break;
2463 		case e1000_ms_force_slave:
2464 			phy_data |= CR_1000T_MS_ENABLE;
2465 			phy_data &= ~(CR_1000T_MS_VALUE);
2466 			break;
2467 		case e1000_ms_auto:
2468 			phy_data &= ~CR_1000T_MS_ENABLE;
2469 		default:
2470 			break;
2471 		}
2472 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2473 		if (ret_val)
2474 			return ret_val;
2475 	}
2476 
2477 	return E1000_SUCCESS;
2478 }
2479 
2480 /*****************************************************************************
2481  * This function checks the mode of the firmware.
2482  *
2483  * returns  - true when the mode is IAMT or false.
2484  ****************************************************************************/
2485 bool
2486 e1000_check_mng_mode(struct e1000_hw *hw)
2487 {
2488 	uint32_t fwsm;
2489 	DEBUGFUNC();
2490 
2491 	fwsm = E1000_READ_REG(hw, FWSM);
2492 
2493 	if (hw->mac_type == e1000_ich8lan) {
2494 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2495 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2496 			return true;
2497 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2498 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2499 			return true;
2500 
2501 	return false;
2502 }
2503 
2504 static int32_t
2505 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2506 {
2507 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2508 	uint32_t reg_val;
2509 	DEBUGFUNC();
2510 
2511 	if (e1000_is_second_port(hw))
2512 		swfw = E1000_SWFW_PHY1_SM;
2513 
2514 	if (e1000_swfw_sync_acquire(hw, swfw))
2515 		return -E1000_ERR_SWFW_SYNC;
2516 
2517 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2518 			& E1000_KUMCTRLSTA_OFFSET) | data;
2519 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2520 	udelay(2);
2521 
2522 	return E1000_SUCCESS;
2523 }
2524 
2525 static int32_t
2526 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2527 {
2528 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2529 	uint32_t reg_val;
2530 	DEBUGFUNC();
2531 
2532 	if (e1000_is_second_port(hw))
2533 		swfw = E1000_SWFW_PHY1_SM;
2534 
2535 	if (e1000_swfw_sync_acquire(hw, swfw))
2536 		return -E1000_ERR_SWFW_SYNC;
2537 
2538 	/* Write register address */
2539 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2540 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2541 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2542 	udelay(2);
2543 
2544 	/* Read the data returned */
2545 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2546 	*data = (uint16_t)reg_val;
2547 
2548 	return E1000_SUCCESS;
2549 }
2550 
2551 /********************************************************************
2552 * Copper link setup for e1000_phy_gg82563 series.
2553 *
2554 * hw - Struct containing variables accessed by shared code
2555 *********************************************************************/
2556 static int32_t
2557 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2558 {
2559 	int32_t ret_val;
2560 	uint16_t phy_data;
2561 	uint32_t reg_data;
2562 
2563 	DEBUGFUNC();
2564 
2565 	if (!hw->phy_reset_disable) {
2566 		/* Enable CRS on TX for half-duplex operation. */
2567 		ret_val = e1000_read_phy_reg(hw,
2568 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2569 		if (ret_val)
2570 			return ret_val;
2571 
2572 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2573 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2574 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2575 
2576 		ret_val = e1000_write_phy_reg(hw,
2577 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2578 		if (ret_val)
2579 			return ret_val;
2580 
2581 		/* Options:
2582 		 *   MDI/MDI-X = 0 (default)
2583 		 *   0 - Auto for all speeds
2584 		 *   1 - MDI mode
2585 		 *   2 - MDI-X mode
2586 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2587 		 */
2588 		ret_val = e1000_read_phy_reg(hw,
2589 				GG82563_PHY_SPEC_CTRL, &phy_data);
2590 		if (ret_val)
2591 			return ret_val;
2592 
2593 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2594 
2595 		switch (hw->mdix) {
2596 		case 1:
2597 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2598 			break;
2599 		case 2:
2600 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2601 			break;
2602 		case 0:
2603 		default:
2604 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2605 			break;
2606 		}
2607 
2608 		/* Options:
2609 		 *   disable_polarity_correction = 0 (default)
2610 		 *       Automatic Correction for Reversed Cable Polarity
2611 		 *   0 - Disabled
2612 		 *   1 - Enabled
2613 		 */
2614 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2615 		ret_val = e1000_write_phy_reg(hw,
2616 				GG82563_PHY_SPEC_CTRL, phy_data);
2617 
2618 		if (ret_val)
2619 			return ret_val;
2620 
2621 		/* SW Reset the PHY so all changes take effect */
2622 		ret_val = e1000_phy_reset(hw);
2623 		if (ret_val) {
2624 			DEBUGOUT("Error Resetting the PHY\n");
2625 			return ret_val;
2626 		}
2627 	} /* phy_reset_disable */
2628 
2629 	if (hw->mac_type == e1000_80003es2lan) {
2630 		/* Bypass RX and TX FIFO's */
2631 		ret_val = e1000_write_kmrn_reg(hw,
2632 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2633 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2634 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2635 		if (ret_val)
2636 			return ret_val;
2637 
2638 		ret_val = e1000_read_phy_reg(hw,
2639 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2640 		if (ret_val)
2641 			return ret_val;
2642 
2643 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2644 		ret_val = e1000_write_phy_reg(hw,
2645 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2646 
2647 		if (ret_val)
2648 			return ret_val;
2649 
2650 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2651 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2652 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2653 
2654 		ret_val = e1000_read_phy_reg(hw,
2655 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2656 		if (ret_val)
2657 			return ret_val;
2658 
2659 	/* Do not init these registers when the HW is in IAMT mode, since the
2660 	 * firmware will have already initialized them.  We only initialize
2661 	 * them if the HW is not in IAMT mode.
2662 	 */
2663 		if (e1000_check_mng_mode(hw) == false) {
2664 			/* Enable Electrical Idle on the PHY */
2665 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2666 			ret_val = e1000_write_phy_reg(hw,
2667 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2668 			if (ret_val)
2669 				return ret_val;
2670 
2671 			ret_val = e1000_read_phy_reg(hw,
2672 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2673 			if (ret_val)
2674 				return ret_val;
2675 
2676 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2677 			ret_val = e1000_write_phy_reg(hw,
2678 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2679 
2680 			if (ret_val)
2681 				return ret_val;
2682 		}
2683 
2684 		/* Workaround: Disable padding in Kumeran interface in the MAC
2685 		 * and in the PHY to avoid CRC errors.
2686 		 */
2687 		ret_val = e1000_read_phy_reg(hw,
2688 				GG82563_PHY_INBAND_CTRL, &phy_data);
2689 		if (ret_val)
2690 			return ret_val;
2691 		phy_data |= GG82563_ICR_DIS_PADDING;
2692 		ret_val = e1000_write_phy_reg(hw,
2693 				GG82563_PHY_INBAND_CTRL, phy_data);
2694 		if (ret_val)
2695 			return ret_val;
2696 	}
2697 	return E1000_SUCCESS;
2698 }
2699 
2700 /********************************************************************
2701 * Copper link setup for e1000_phy_m88 series.
2702 *
2703 * hw - Struct containing variables accessed by shared code
2704 *********************************************************************/
2705 static int32_t
2706 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2707 {
2708 	int32_t ret_val;
2709 	uint16_t phy_data;
2710 
2711 	DEBUGFUNC();
2712 
2713 	if (hw->phy_reset_disable)
2714 		return E1000_SUCCESS;
2715 
2716 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2717 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2718 	if (ret_val)
2719 		return ret_val;
2720 
2721 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2722 
2723 	/* Options:
2724 	 *   MDI/MDI-X = 0 (default)
2725 	 *   0 - Auto for all speeds
2726 	 *   1 - MDI mode
2727 	 *   2 - MDI-X mode
2728 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2729 	 */
2730 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2731 
2732 	switch (hw->mdix) {
2733 	case 1:
2734 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2735 		break;
2736 	case 2:
2737 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2738 		break;
2739 	case 3:
2740 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2741 		break;
2742 	case 0:
2743 	default:
2744 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2745 		break;
2746 	}
2747 
2748 	/* Options:
2749 	 *   disable_polarity_correction = 0 (default)
2750 	 *       Automatic Correction for Reversed Cable Polarity
2751 	 *   0 - Disabled
2752 	 *   1 - Enabled
2753 	 */
2754 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2755 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2756 	if (ret_val)
2757 		return ret_val;
2758 
2759 	if (hw->phy_revision < M88E1011_I_REV_4) {
2760 		/* Force TX_CLK in the Extended PHY Specific Control Register
2761 		 * to 25MHz clock.
2762 		 */
2763 		ret_val = e1000_read_phy_reg(hw,
2764 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2765 		if (ret_val)
2766 			return ret_val;
2767 
2768 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2769 
2770 		if ((hw->phy_revision == E1000_REVISION_2) &&
2771 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2772 			/* Vidalia Phy, set the downshift counter to 5x */
2773 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2774 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2775 			ret_val = e1000_write_phy_reg(hw,
2776 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2777 			if (ret_val)
2778 				return ret_val;
2779 		} else {
2780 			/* Configure Master and Slave downshift values */
2781 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2782 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2783 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2784 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2785 			ret_val = e1000_write_phy_reg(hw,
2786 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2787 			if (ret_val)
2788 				return ret_val;
2789 		}
2790 	}
2791 
2792 	/* SW Reset the PHY so all changes take effect */
2793 	ret_val = e1000_phy_reset(hw);
2794 	if (ret_val) {
2795 		DEBUGOUT("Error Resetting the PHY\n");
2796 		return ret_val;
2797 	}
2798 
2799 	return E1000_SUCCESS;
2800 }
2801 
2802 /********************************************************************
2803 * Setup auto-negotiation and flow control advertisements,
2804 * and then perform auto-negotiation.
2805 *
2806 * hw - Struct containing variables accessed by shared code
2807 *********************************************************************/
2808 static int32_t
2809 e1000_copper_link_autoneg(struct e1000_hw *hw)
2810 {
2811 	int32_t ret_val;
2812 	uint16_t phy_data;
2813 
2814 	DEBUGFUNC();
2815 
2816 	/* Perform some bounds checking on the hw->autoneg_advertised
2817 	 * parameter.  If this variable is zero, then set it to the default.
2818 	 */
2819 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2820 
2821 	/* If autoneg_advertised is zero, we assume it was not defaulted
2822 	 * by the calling code so we set to advertise full capability.
2823 	 */
2824 	if (hw->autoneg_advertised == 0)
2825 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2826 
2827 	/* IFE phy only supports 10/100 */
2828 	if (hw->phy_type == e1000_phy_ife)
2829 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2830 
2831 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2832 	ret_val = e1000_phy_setup_autoneg(hw);
2833 	if (ret_val) {
2834 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2835 		return ret_val;
2836 	}
2837 	DEBUGOUT("Restarting Auto-Neg\n");
2838 
2839 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2840 	 * the Auto Neg Restart bit in the PHY control register.
2841 	 */
2842 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2843 	if (ret_val)
2844 		return ret_val;
2845 
2846 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2847 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2848 	if (ret_val)
2849 		return ret_val;
2850 
2851 	/* Does the user want to wait for Auto-Neg to complete here, or
2852 	 * check at a later time (for example, callback routine).
2853 	 */
2854 	/* If we do not wait for autonegtation to complete I
2855 	 * do not see a valid link status.
2856 	 * wait_autoneg_complete = 1 .
2857 	 */
2858 	if (hw->wait_autoneg_complete) {
2859 		ret_val = e1000_wait_autoneg(hw);
2860 		if (ret_val) {
2861 			DEBUGOUT("Error while waiting for autoneg"
2862 					"to complete\n");
2863 			return ret_val;
2864 		}
2865 	}
2866 
2867 	hw->get_link_status = true;
2868 
2869 	return E1000_SUCCESS;
2870 }
2871 
2872 /******************************************************************************
2873 * Config the MAC and the PHY after link is up.
2874 *   1) Set up the MAC to the current PHY speed/duplex
2875 *      if we are on 82543.  If we
2876 *      are on newer silicon, we only need to configure
2877 *      collision distance in the Transmit Control Register.
2878 *   2) Set up flow control on the MAC to that established with
2879 *      the link partner.
2880 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2881 *
2882 * hw - Struct containing variables accessed by shared code
2883 ******************************************************************************/
2884 static int32_t
2885 e1000_copper_link_postconfig(struct e1000_hw *hw)
2886 {
2887 	int32_t ret_val;
2888 	DEBUGFUNC();
2889 
2890 	if (hw->mac_type >= e1000_82544) {
2891 		e1000_config_collision_dist(hw);
2892 	} else {
2893 		ret_val = e1000_config_mac_to_phy(hw);
2894 		if (ret_val) {
2895 			DEBUGOUT("Error configuring MAC to PHY settings\n");
2896 			return ret_val;
2897 		}
2898 	}
2899 	ret_val = e1000_config_fc_after_link_up(hw);
2900 	if (ret_val) {
2901 		DEBUGOUT("Error Configuring Flow Control\n");
2902 		return ret_val;
2903 	}
2904 	return E1000_SUCCESS;
2905 }
2906 
2907 /******************************************************************************
2908 * Detects which PHY is present and setup the speed and duplex
2909 *
2910 * hw - Struct containing variables accessed by shared code
2911 ******************************************************************************/
2912 static int
2913 e1000_setup_copper_link(struct eth_device *nic)
2914 {
2915 	struct e1000_hw *hw = nic->priv;
2916 	int32_t ret_val;
2917 	uint16_t i;
2918 	uint16_t phy_data;
2919 	uint16_t reg_data;
2920 
2921 	DEBUGFUNC();
2922 
2923 	switch (hw->mac_type) {
2924 	case e1000_80003es2lan:
2925 	case e1000_ich8lan:
2926 		/* Set the mac to wait the maximum time between each
2927 		 * iteration and increase the max iterations when
2928 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2929 		ret_val = e1000_write_kmrn_reg(hw,
2930 				GG82563_REG(0x34, 4), 0xFFFF);
2931 		if (ret_val)
2932 			return ret_val;
2933 		ret_val = e1000_read_kmrn_reg(hw,
2934 				GG82563_REG(0x34, 9), &reg_data);
2935 		if (ret_val)
2936 			return ret_val;
2937 		reg_data |= 0x3F;
2938 		ret_val = e1000_write_kmrn_reg(hw,
2939 				GG82563_REG(0x34, 9), reg_data);
2940 		if (ret_val)
2941 			return ret_val;
2942 	default:
2943 		break;
2944 	}
2945 
2946 	/* Check if it is a valid PHY and set PHY mode if necessary. */
2947 	ret_val = e1000_copper_link_preconfig(hw);
2948 	if (ret_val)
2949 		return ret_val;
2950 	switch (hw->mac_type) {
2951 	case e1000_80003es2lan:
2952 		/* Kumeran registers are written-only */
2953 		reg_data =
2954 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2955 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2956 		ret_val = e1000_write_kmrn_reg(hw,
2957 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2958 		if (ret_val)
2959 			return ret_val;
2960 		break;
2961 	default:
2962 		break;
2963 	}
2964 
2965 	if (hw->phy_type == e1000_phy_igp ||
2966 		hw->phy_type == e1000_phy_igp_3 ||
2967 		hw->phy_type == e1000_phy_igp_2) {
2968 		ret_val = e1000_copper_link_igp_setup(hw);
2969 		if (ret_val)
2970 			return ret_val;
2971 	} else if (hw->phy_type == e1000_phy_m88) {
2972 		ret_val = e1000_copper_link_mgp_setup(hw);
2973 		if (ret_val)
2974 			return ret_val;
2975 	} else if (hw->phy_type == e1000_phy_gg82563) {
2976 		ret_val = e1000_copper_link_ggp_setup(hw);
2977 		if (ret_val)
2978 			return ret_val;
2979 	}
2980 
2981 	/* always auto */
2982 	/* Setup autoneg and flow control advertisement
2983 	  * and perform autonegotiation */
2984 	ret_val = e1000_copper_link_autoneg(hw);
2985 	if (ret_val)
2986 		return ret_val;
2987 
2988 	/* Check link status. Wait up to 100 microseconds for link to become
2989 	 * valid.
2990 	 */
2991 	for (i = 0; i < 10; i++) {
2992 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2993 		if (ret_val)
2994 			return ret_val;
2995 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2996 		if (ret_val)
2997 			return ret_val;
2998 
2999 		if (phy_data & MII_SR_LINK_STATUS) {
3000 			/* Config the MAC and PHY after link is up */
3001 			ret_val = e1000_copper_link_postconfig(hw);
3002 			if (ret_val)
3003 				return ret_val;
3004 
3005 			DEBUGOUT("Valid link established!!!\n");
3006 			return E1000_SUCCESS;
3007 		}
3008 		udelay(10);
3009 	}
3010 
3011 	DEBUGOUT("Unable to establish link!!!\n");
3012 	return E1000_SUCCESS;
3013 }
3014 
3015 /******************************************************************************
3016 * Configures PHY autoneg and flow control advertisement settings
3017 *
3018 * hw - Struct containing variables accessed by shared code
3019 ******************************************************************************/
3020 int32_t
3021 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3022 {
3023 	int32_t ret_val;
3024 	uint16_t mii_autoneg_adv_reg;
3025 	uint16_t mii_1000t_ctrl_reg;
3026 
3027 	DEBUGFUNC();
3028 
3029 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3030 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3031 	if (ret_val)
3032 		return ret_val;
3033 
3034 	if (hw->phy_type != e1000_phy_ife) {
3035 		/* Read the MII 1000Base-T Control Register (Address 9). */
3036 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3037 				&mii_1000t_ctrl_reg);
3038 		if (ret_val)
3039 			return ret_val;
3040 	} else
3041 		mii_1000t_ctrl_reg = 0;
3042 
3043 	/* Need to parse both autoneg_advertised and fc and set up
3044 	 * the appropriate PHY registers.  First we will parse for
3045 	 * autoneg_advertised software override.  Since we can advertise
3046 	 * a plethora of combinations, we need to check each bit
3047 	 * individually.
3048 	 */
3049 
3050 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3051 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3052 	 * the  1000Base-T Control Register (Address 9).
3053 	 */
3054 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3055 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3056 
3057 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3058 
3059 	/* Do we want to advertise 10 Mb Half Duplex? */
3060 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3061 		DEBUGOUT("Advertise 10mb Half duplex\n");
3062 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3063 	}
3064 
3065 	/* Do we want to advertise 10 Mb Full Duplex? */
3066 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3067 		DEBUGOUT("Advertise 10mb Full duplex\n");
3068 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3069 	}
3070 
3071 	/* Do we want to advertise 100 Mb Half Duplex? */
3072 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3073 		DEBUGOUT("Advertise 100mb Half duplex\n");
3074 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3075 	}
3076 
3077 	/* Do we want to advertise 100 Mb Full Duplex? */
3078 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3079 		DEBUGOUT("Advertise 100mb Full duplex\n");
3080 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3081 	}
3082 
3083 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3084 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3085 		DEBUGOUT
3086 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3087 	}
3088 
3089 	/* Do we want to advertise 1000 Mb Full Duplex? */
3090 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3091 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3092 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3093 	}
3094 
3095 	/* Check for a software override of the flow control settings, and
3096 	 * setup the PHY advertisement registers accordingly.  If
3097 	 * auto-negotiation is enabled, then software will have to set the
3098 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3099 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3100 	 *
3101 	 * The possible values of the "fc" parameter are:
3102 	 *	0:  Flow control is completely disabled
3103 	 *	1:  Rx flow control is enabled (we can receive pause frames
3104 	 *	    but not send pause frames).
3105 	 *	2:  Tx flow control is enabled (we can send pause frames
3106 	 *	    but we do not support receiving pause frames).
3107 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3108 	 *  other:  No software override.  The flow control configuration
3109 	 *	    in the EEPROM is used.
3110 	 */
3111 	switch (hw->fc) {
3112 	case e1000_fc_none:	/* 0 */
3113 		/* Flow control (RX & TX) is completely disabled by a
3114 		 * software over-ride.
3115 		 */
3116 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3117 		break;
3118 	case e1000_fc_rx_pause:	/* 1 */
3119 		/* RX Flow control is enabled, and TX Flow control is
3120 		 * disabled, by a software over-ride.
3121 		 */
3122 		/* Since there really isn't a way to advertise that we are
3123 		 * capable of RX Pause ONLY, we will advertise that we
3124 		 * support both symmetric and asymmetric RX PAUSE.  Later
3125 		 * (in e1000_config_fc_after_link_up) we will disable the
3126 		 *hw's ability to send PAUSE frames.
3127 		 */
3128 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3129 		break;
3130 	case e1000_fc_tx_pause:	/* 2 */
3131 		/* TX Flow control is enabled, and RX Flow control is
3132 		 * disabled, by a software over-ride.
3133 		 */
3134 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3135 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3136 		break;
3137 	case e1000_fc_full:	/* 3 */
3138 		/* Flow control (both RX and TX) is enabled by a software
3139 		 * over-ride.
3140 		 */
3141 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3142 		break;
3143 	default:
3144 		DEBUGOUT("Flow control param set incorrectly\n");
3145 		return -E1000_ERR_CONFIG;
3146 	}
3147 
3148 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3149 	if (ret_val)
3150 		return ret_val;
3151 
3152 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3153 
3154 	if (hw->phy_type != e1000_phy_ife) {
3155 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3156 				mii_1000t_ctrl_reg);
3157 		if (ret_val)
3158 			return ret_val;
3159 	}
3160 
3161 	return E1000_SUCCESS;
3162 }
3163 
3164 /******************************************************************************
3165 * Sets the collision distance in the Transmit Control register
3166 *
3167 * hw - Struct containing variables accessed by shared code
3168 *
3169 * Link should have been established previously. Reads the speed and duplex
3170 * information from the Device Status register.
3171 ******************************************************************************/
3172 static void
3173 e1000_config_collision_dist(struct e1000_hw *hw)
3174 {
3175 	uint32_t tctl, coll_dist;
3176 
3177 	DEBUGFUNC();
3178 
3179 	if (hw->mac_type < e1000_82543)
3180 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3181 	else
3182 		coll_dist = E1000_COLLISION_DISTANCE;
3183 
3184 	tctl = E1000_READ_REG(hw, TCTL);
3185 
3186 	tctl &= ~E1000_TCTL_COLD;
3187 	tctl |= coll_dist << E1000_COLD_SHIFT;
3188 
3189 	E1000_WRITE_REG(hw, TCTL, tctl);
3190 	E1000_WRITE_FLUSH(hw);
3191 }
3192 
3193 /******************************************************************************
3194 * Sets MAC speed and duplex settings to reflect the those in the PHY
3195 *
3196 * hw - Struct containing variables accessed by shared code
3197 * mii_reg - data to write to the MII control register
3198 *
3199 * The contents of the PHY register containing the needed information need to
3200 * be passed in.
3201 ******************************************************************************/
3202 static int
3203 e1000_config_mac_to_phy(struct e1000_hw *hw)
3204 {
3205 	uint32_t ctrl;
3206 	uint16_t phy_data;
3207 
3208 	DEBUGFUNC();
3209 
3210 	/* Read the Device Control Register and set the bits to Force Speed
3211 	 * and Duplex.
3212 	 */
3213 	ctrl = E1000_READ_REG(hw, CTRL);
3214 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3215 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3216 
3217 	/* Set up duplex in the Device Control and Transmit Control
3218 	 * registers depending on negotiated values.
3219 	 */
3220 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3221 		DEBUGOUT("PHY Read Error\n");
3222 		return -E1000_ERR_PHY;
3223 	}
3224 	if (phy_data & M88E1000_PSSR_DPLX)
3225 		ctrl |= E1000_CTRL_FD;
3226 	else
3227 		ctrl &= ~E1000_CTRL_FD;
3228 
3229 	e1000_config_collision_dist(hw);
3230 
3231 	/* Set up speed in the Device Control register depending on
3232 	 * negotiated values.
3233 	 */
3234 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3235 		ctrl |= E1000_CTRL_SPD_1000;
3236 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3237 		ctrl |= E1000_CTRL_SPD_100;
3238 	/* Write the configured values back to the Device Control Reg. */
3239 	E1000_WRITE_REG(hw, CTRL, ctrl);
3240 	return 0;
3241 }
3242 
3243 /******************************************************************************
3244  * Forces the MAC's flow control settings.
3245  *
3246  * hw - Struct containing variables accessed by shared code
3247  *
3248  * Sets the TFCE and RFCE bits in the device control register to reflect
3249  * the adapter settings. TFCE and RFCE need to be explicitly set by
3250  * software when a Copper PHY is used because autonegotiation is managed
3251  * by the PHY rather than the MAC. Software must also configure these
3252  * bits when link is forced on a fiber connection.
3253  *****************************************************************************/
3254 static int
3255 e1000_force_mac_fc(struct e1000_hw *hw)
3256 {
3257 	uint32_t ctrl;
3258 
3259 	DEBUGFUNC();
3260 
3261 	/* Get the current configuration of the Device Control Register */
3262 	ctrl = E1000_READ_REG(hw, CTRL);
3263 
3264 	/* Because we didn't get link via the internal auto-negotiation
3265 	 * mechanism (we either forced link or we got link via PHY
3266 	 * auto-neg), we have to manually enable/disable transmit an
3267 	 * receive flow control.
3268 	 *
3269 	 * The "Case" statement below enables/disable flow control
3270 	 * according to the "hw->fc" parameter.
3271 	 *
3272 	 * The possible values of the "fc" parameter are:
3273 	 *	0:  Flow control is completely disabled
3274 	 *	1:  Rx flow control is enabled (we can receive pause
3275 	 *	    frames but not send pause frames).
3276 	 *	2:  Tx flow control is enabled (we can send pause frames
3277 	 *	    frames but we do not receive pause frames).
3278 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3279 	 *  other:  No other values should be possible at this point.
3280 	 */
3281 
3282 	switch (hw->fc) {
3283 	case e1000_fc_none:
3284 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3285 		break;
3286 	case e1000_fc_rx_pause:
3287 		ctrl &= (~E1000_CTRL_TFCE);
3288 		ctrl |= E1000_CTRL_RFCE;
3289 		break;
3290 	case e1000_fc_tx_pause:
3291 		ctrl &= (~E1000_CTRL_RFCE);
3292 		ctrl |= E1000_CTRL_TFCE;
3293 		break;
3294 	case e1000_fc_full:
3295 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3296 		break;
3297 	default:
3298 		DEBUGOUT("Flow control param set incorrectly\n");
3299 		return -E1000_ERR_CONFIG;
3300 	}
3301 
3302 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3303 	if (hw->mac_type == e1000_82542_rev2_0)
3304 		ctrl &= (~E1000_CTRL_TFCE);
3305 
3306 	E1000_WRITE_REG(hw, CTRL, ctrl);
3307 	return 0;
3308 }
3309 
3310 /******************************************************************************
3311  * Configures flow control settings after link is established
3312  *
3313  * hw - Struct containing variables accessed by shared code
3314  *
3315  * Should be called immediately after a valid link has been established.
3316  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3317  * and autonegotiation is enabled, the MAC flow control settings will be set
3318  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3319  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3320  *****************************************************************************/
3321 static int32_t
3322 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3323 {
3324 	int32_t ret_val;
3325 	uint16_t mii_status_reg;
3326 	uint16_t mii_nway_adv_reg;
3327 	uint16_t mii_nway_lp_ability_reg;
3328 	uint16_t speed;
3329 	uint16_t duplex;
3330 
3331 	DEBUGFUNC();
3332 
3333 	/* Check for the case where we have fiber media and auto-neg failed
3334 	 * so we had to force link.  In this case, we need to force the
3335 	 * configuration of the MAC to match the "fc" parameter.
3336 	 */
3337 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3338 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3339 		&& (hw->autoneg_failed))
3340 		|| ((hw->media_type == e1000_media_type_copper)
3341 		&& (!hw->autoneg))) {
3342 		ret_val = e1000_force_mac_fc(hw);
3343 		if (ret_val < 0) {
3344 			DEBUGOUT("Error forcing flow control settings\n");
3345 			return ret_val;
3346 		}
3347 	}
3348 
3349 	/* Check for the case where we have copper media and auto-neg is
3350 	 * enabled.  In this case, we need to check and see if Auto-Neg
3351 	 * has completed, and if so, how the PHY and link partner has
3352 	 * flow control configured.
3353 	 */
3354 	if (hw->media_type == e1000_media_type_copper) {
3355 		/* Read the MII Status Register and check to see if AutoNeg
3356 		 * has completed.  We read this twice because this reg has
3357 		 * some "sticky" (latched) bits.
3358 		 */
3359 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3360 			DEBUGOUT("PHY Read Error \n");
3361 			return -E1000_ERR_PHY;
3362 		}
3363 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3364 			DEBUGOUT("PHY Read Error \n");
3365 			return -E1000_ERR_PHY;
3366 		}
3367 
3368 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3369 			/* The AutoNeg process has completed, so we now need to
3370 			 * read both the Auto Negotiation Advertisement Register
3371 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3372 			 * Register (Address 5) to determine how flow control was
3373 			 * negotiated.
3374 			 */
3375 			if (e1000_read_phy_reg
3376 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3377 				DEBUGOUT("PHY Read Error\n");
3378 				return -E1000_ERR_PHY;
3379 			}
3380 			if (e1000_read_phy_reg
3381 			    (hw, PHY_LP_ABILITY,
3382 			     &mii_nway_lp_ability_reg) < 0) {
3383 				DEBUGOUT("PHY Read Error\n");
3384 				return -E1000_ERR_PHY;
3385 			}
3386 
3387 			/* Two bits in the Auto Negotiation Advertisement Register
3388 			 * (Address 4) and two bits in the Auto Negotiation Base
3389 			 * Page Ability Register (Address 5) determine flow control
3390 			 * for both the PHY and the link partner.  The following
3391 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3392 			 * 1999, describes these PAUSE resolution bits and how flow
3393 			 * control is determined based upon these settings.
3394 			 * NOTE:  DC = Don't Care
3395 			 *
3396 			 *   LOCAL DEVICE  |   LINK PARTNER
3397 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3398 			 *-------|---------|-------|---------|--------------------
3399 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3400 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3401 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3402 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3403 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3404 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3405 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3406 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3407 			 *
3408 			 */
3409 			/* Are both PAUSE bits set to 1?  If so, this implies
3410 			 * Symmetric Flow Control is enabled at both ends.  The
3411 			 * ASM_DIR bits are irrelevant per the spec.
3412 			 *
3413 			 * For Symmetric Flow Control:
3414 			 *
3415 			 *   LOCAL DEVICE  |   LINK PARTNER
3416 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3417 			 *-------|---------|-------|---------|--------------------
3418 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3419 			 *
3420 			 */
3421 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3422 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3423 				/* Now we need to check if the user selected RX ONLY
3424 				 * of pause frames.  In this case, we had to advertise
3425 				 * FULL flow control because we could not advertise RX
3426 				 * ONLY. Hence, we must now check to see if we need to
3427 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3428 				 */
3429 				if (hw->original_fc == e1000_fc_full) {
3430 					hw->fc = e1000_fc_full;
3431 					DEBUGOUT("Flow Control = FULL.\r\n");
3432 				} else {
3433 					hw->fc = e1000_fc_rx_pause;
3434 					DEBUGOUT
3435 					    ("Flow Control = RX PAUSE frames only.\r\n");
3436 				}
3437 			}
3438 			/* For receiving PAUSE frames ONLY.
3439 			 *
3440 			 *   LOCAL DEVICE  |   LINK PARTNER
3441 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3442 			 *-------|---------|-------|---------|--------------------
3443 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3444 			 *
3445 			 */
3446 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3447 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3448 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3449 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3450 			{
3451 				hw->fc = e1000_fc_tx_pause;
3452 				DEBUGOUT
3453 				    ("Flow Control = TX PAUSE frames only.\r\n");
3454 			}
3455 			/* For transmitting PAUSE frames ONLY.
3456 			 *
3457 			 *   LOCAL DEVICE  |   LINK PARTNER
3458 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3459 			 *-------|---------|-------|---------|--------------------
3460 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3461 			 *
3462 			 */
3463 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3464 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3465 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3466 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3467 			{
3468 				hw->fc = e1000_fc_rx_pause;
3469 				DEBUGOUT
3470 				    ("Flow Control = RX PAUSE frames only.\r\n");
3471 			}
3472 			/* Per the IEEE spec, at this point flow control should be
3473 			 * disabled.  However, we want to consider that we could
3474 			 * be connected to a legacy switch that doesn't advertise
3475 			 * desired flow control, but can be forced on the link
3476 			 * partner.  So if we advertised no flow control, that is
3477 			 * what we will resolve to.  If we advertised some kind of
3478 			 * receive capability (Rx Pause Only or Full Flow Control)
3479 			 * and the link partner advertised none, we will configure
3480 			 * ourselves to enable Rx Flow Control only.  We can do
3481 			 * this safely for two reasons:  If the link partner really
3482 			 * didn't want flow control enabled, and we enable Rx, no
3483 			 * harm done since we won't be receiving any PAUSE frames
3484 			 * anyway.  If the intent on the link partner was to have
3485 			 * flow control enabled, then by us enabling RX only, we
3486 			 * can at least receive pause frames and process them.
3487 			 * This is a good idea because in most cases, since we are
3488 			 * predominantly a server NIC, more times than not we will
3489 			 * be asked to delay transmission of packets than asking
3490 			 * our link partner to pause transmission of frames.
3491 			 */
3492 			else if (hw->original_fc == e1000_fc_none ||
3493 				 hw->original_fc == e1000_fc_tx_pause) {
3494 				hw->fc = e1000_fc_none;
3495 				DEBUGOUT("Flow Control = NONE.\r\n");
3496 			} else {
3497 				hw->fc = e1000_fc_rx_pause;
3498 				DEBUGOUT
3499 				    ("Flow Control = RX PAUSE frames only.\r\n");
3500 			}
3501 
3502 			/* Now we need to do one last check...	If we auto-
3503 			 * negotiated to HALF DUPLEX, flow control should not be
3504 			 * enabled per IEEE 802.3 spec.
3505 			 */
3506 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3507 
3508 			if (duplex == HALF_DUPLEX)
3509 				hw->fc = e1000_fc_none;
3510 
3511 			/* Now we call a subroutine to actually force the MAC
3512 			 * controller to use the correct flow control settings.
3513 			 */
3514 			ret_val = e1000_force_mac_fc(hw);
3515 			if (ret_val < 0) {
3516 				DEBUGOUT
3517 				    ("Error forcing flow control settings\n");
3518 				return ret_val;
3519 			}
3520 		} else {
3521 			DEBUGOUT
3522 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3523 		}
3524 	}
3525 	return E1000_SUCCESS;
3526 }
3527 
3528 /******************************************************************************
3529  * Checks to see if the link status of the hardware has changed.
3530  *
3531  * hw - Struct containing variables accessed by shared code
3532  *
3533  * Called by any function that needs to check the link status of the adapter.
3534  *****************************************************************************/
3535 static int
3536 e1000_check_for_link(struct eth_device *nic)
3537 {
3538 	struct e1000_hw *hw = nic->priv;
3539 	uint32_t rxcw;
3540 	uint32_t ctrl;
3541 	uint32_t status;
3542 	uint32_t rctl;
3543 	uint32_t signal;
3544 	int32_t ret_val;
3545 	uint16_t phy_data;
3546 	uint16_t lp_capability;
3547 
3548 	DEBUGFUNC();
3549 
3550 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3551 	 * set when the optics detect a signal. On older adapters, it will be
3552 	 * cleared when there is a signal
3553 	 */
3554 	ctrl = E1000_READ_REG(hw, CTRL);
3555 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3556 		signal = E1000_CTRL_SWDPIN1;
3557 	else
3558 		signal = 0;
3559 
3560 	status = E1000_READ_REG(hw, STATUS);
3561 	rxcw = E1000_READ_REG(hw, RXCW);
3562 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3563 
3564 	/* If we have a copper PHY then we only want to go out to the PHY
3565 	 * registers to see if Auto-Neg has completed and/or if our link
3566 	 * status has changed.	The get_link_status flag will be set if we
3567 	 * receive a Link Status Change interrupt or we have Rx Sequence
3568 	 * Errors.
3569 	 */
3570 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3571 		/* First we want to see if the MII Status Register reports
3572 		 * link.  If so, then we want to get the current speed/duplex
3573 		 * of the PHY.
3574 		 * Read the register twice since the link bit is sticky.
3575 		 */
3576 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3577 			DEBUGOUT("PHY Read Error\n");
3578 			return -E1000_ERR_PHY;
3579 		}
3580 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3581 			DEBUGOUT("PHY Read Error\n");
3582 			return -E1000_ERR_PHY;
3583 		}
3584 
3585 		if (phy_data & MII_SR_LINK_STATUS) {
3586 			hw->get_link_status = false;
3587 		} else {
3588 			/* No link detected */
3589 			return -E1000_ERR_NOLINK;
3590 		}
3591 
3592 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3593 		 * have Si on board that is 82544 or newer, Auto
3594 		 * Speed Detection takes care of MAC speed/duplex
3595 		 * configuration.  So we only need to configure Collision
3596 		 * Distance in the MAC.  Otherwise, we need to force
3597 		 * speed/duplex on the MAC to the current PHY speed/duplex
3598 		 * settings.
3599 		 */
3600 		if (hw->mac_type >= e1000_82544)
3601 			e1000_config_collision_dist(hw);
3602 		else {
3603 			ret_val = e1000_config_mac_to_phy(hw);
3604 			if (ret_val < 0) {
3605 				DEBUGOUT
3606 				    ("Error configuring MAC to PHY settings\n");
3607 				return ret_val;
3608 			}
3609 		}
3610 
3611 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3612 		 * need to restore the desired flow control settings because we may
3613 		 * have had to re-autoneg with a different link partner.
3614 		 */
3615 		ret_val = e1000_config_fc_after_link_up(hw);
3616 		if (ret_val < 0) {
3617 			DEBUGOUT("Error configuring flow control\n");
3618 			return ret_val;
3619 		}
3620 
3621 		/* At this point we know that we are on copper and we have
3622 		 * auto-negotiated link.  These are conditions for checking the link
3623 		 * parter capability register.	We use the link partner capability to
3624 		 * determine if TBI Compatibility needs to be turned on or off.  If
3625 		 * the link partner advertises any speed in addition to Gigabit, then
3626 		 * we assume that they are GMII-based, and TBI compatibility is not
3627 		 * needed. If no other speeds are advertised, we assume the link
3628 		 * partner is TBI-based, and we turn on TBI Compatibility.
3629 		 */
3630 		if (hw->tbi_compatibility_en) {
3631 			if (e1000_read_phy_reg
3632 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3633 				DEBUGOUT("PHY Read Error\n");
3634 				return -E1000_ERR_PHY;
3635 			}
3636 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3637 					     NWAY_LPAR_10T_FD_CAPS |
3638 					     NWAY_LPAR_100TX_HD_CAPS |
3639 					     NWAY_LPAR_100TX_FD_CAPS |
3640 					     NWAY_LPAR_100T4_CAPS)) {
3641 				/* If our link partner advertises anything in addition to
3642 				 * gigabit, we do not need to enable TBI compatibility.
3643 				 */
3644 				if (hw->tbi_compatibility_on) {
3645 					/* If we previously were in the mode, turn it off. */
3646 					rctl = E1000_READ_REG(hw, RCTL);
3647 					rctl &= ~E1000_RCTL_SBP;
3648 					E1000_WRITE_REG(hw, RCTL, rctl);
3649 					hw->tbi_compatibility_on = false;
3650 				}
3651 			} else {
3652 				/* If TBI compatibility is was previously off, turn it on. For
3653 				 * compatibility with a TBI link partner, we will store bad
3654 				 * packets. Some frames have an additional byte on the end and
3655 				 * will look like CRC errors to to the hardware.
3656 				 */
3657 				if (!hw->tbi_compatibility_on) {
3658 					hw->tbi_compatibility_on = true;
3659 					rctl = E1000_READ_REG(hw, RCTL);
3660 					rctl |= E1000_RCTL_SBP;
3661 					E1000_WRITE_REG(hw, RCTL, rctl);
3662 				}
3663 			}
3664 		}
3665 	}
3666 	/* If we don't have link (auto-negotiation failed or link partner cannot
3667 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3668 	 * link partner is not trying to auto-negotiate with us (we are receiving
3669 	 * idles or data), we need to force link up. We also need to give
3670 	 * auto-negotiation time to complete, in case the cable was just plugged
3671 	 * in. The autoneg_failed flag does this.
3672 	 */
3673 	else if ((hw->media_type == e1000_media_type_fiber) &&
3674 		 (!(status & E1000_STATUS_LU)) &&
3675 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3676 		 (!(rxcw & E1000_RXCW_C))) {
3677 		if (hw->autoneg_failed == 0) {
3678 			hw->autoneg_failed = 1;
3679 			return 0;
3680 		}
3681 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3682 
3683 		/* Disable auto-negotiation in the TXCW register */
3684 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3685 
3686 		/* Force link-up and also force full-duplex. */
3687 		ctrl = E1000_READ_REG(hw, CTRL);
3688 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3689 		E1000_WRITE_REG(hw, CTRL, ctrl);
3690 
3691 		/* Configure Flow Control after forcing link up. */
3692 		ret_val = e1000_config_fc_after_link_up(hw);
3693 		if (ret_val < 0) {
3694 			DEBUGOUT("Error configuring flow control\n");
3695 			return ret_val;
3696 		}
3697 	}
3698 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3699 	 * auto-negotiation in the TXCW register and disable forced link in the
3700 	 * Device Control register in an attempt to auto-negotiate with our link
3701 	 * partner.
3702 	 */
3703 	else if ((hw->media_type == e1000_media_type_fiber) &&
3704 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3705 		DEBUGOUT
3706 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3707 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3708 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3709 	}
3710 	return 0;
3711 }
3712 
3713 /******************************************************************************
3714 * Configure the MAC-to-PHY interface for 10/100Mbps
3715 *
3716 * hw - Struct containing variables accessed by shared code
3717 ******************************************************************************/
3718 static int32_t
3719 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3720 {
3721 	int32_t ret_val = E1000_SUCCESS;
3722 	uint32_t tipg;
3723 	uint16_t reg_data;
3724 
3725 	DEBUGFUNC();
3726 
3727 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3728 	ret_val = e1000_write_kmrn_reg(hw,
3729 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3730 	if (ret_val)
3731 		return ret_val;
3732 
3733 	/* Configure Transmit Inter-Packet Gap */
3734 	tipg = E1000_READ_REG(hw, TIPG);
3735 	tipg &= ~E1000_TIPG_IPGT_MASK;
3736 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3737 	E1000_WRITE_REG(hw, TIPG, tipg);
3738 
3739 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3740 
3741 	if (ret_val)
3742 		return ret_val;
3743 
3744 	if (duplex == HALF_DUPLEX)
3745 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3746 	else
3747 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3748 
3749 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3750 
3751 	return ret_val;
3752 }
3753 
3754 static int32_t
3755 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3756 {
3757 	int32_t ret_val = E1000_SUCCESS;
3758 	uint16_t reg_data;
3759 	uint32_t tipg;
3760 
3761 	DEBUGFUNC();
3762 
3763 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3764 	ret_val = e1000_write_kmrn_reg(hw,
3765 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3766 	if (ret_val)
3767 		return ret_val;
3768 
3769 	/* Configure Transmit Inter-Packet Gap */
3770 	tipg = E1000_READ_REG(hw, TIPG);
3771 	tipg &= ~E1000_TIPG_IPGT_MASK;
3772 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3773 	E1000_WRITE_REG(hw, TIPG, tipg);
3774 
3775 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3776 
3777 	if (ret_val)
3778 		return ret_val;
3779 
3780 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3781 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3782 
3783 	return ret_val;
3784 }
3785 
3786 /******************************************************************************
3787  * Detects the current speed and duplex settings of the hardware.
3788  *
3789  * hw - Struct containing variables accessed by shared code
3790  * speed - Speed of the connection
3791  * duplex - Duplex setting of the connection
3792  *****************************************************************************/
3793 static int
3794 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3795 		uint16_t *duplex)
3796 {
3797 	uint32_t status;
3798 	int32_t ret_val;
3799 	uint16_t phy_data;
3800 
3801 	DEBUGFUNC();
3802 
3803 	if (hw->mac_type >= e1000_82543) {
3804 		status = E1000_READ_REG(hw, STATUS);
3805 		if (status & E1000_STATUS_SPEED_1000) {
3806 			*speed = SPEED_1000;
3807 			DEBUGOUT("1000 Mbs, ");
3808 		} else if (status & E1000_STATUS_SPEED_100) {
3809 			*speed = SPEED_100;
3810 			DEBUGOUT("100 Mbs, ");
3811 		} else {
3812 			*speed = SPEED_10;
3813 			DEBUGOUT("10 Mbs, ");
3814 		}
3815 
3816 		if (status & E1000_STATUS_FD) {
3817 			*duplex = FULL_DUPLEX;
3818 			DEBUGOUT("Full Duplex\r\n");
3819 		} else {
3820 			*duplex = HALF_DUPLEX;
3821 			DEBUGOUT(" Half Duplex\r\n");
3822 		}
3823 	} else {
3824 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3825 		*speed = SPEED_1000;
3826 		*duplex = FULL_DUPLEX;
3827 	}
3828 
3829 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3830 	 * even if it is operating at half duplex.  Here we set the duplex
3831 	 * settings to match the duplex in the link partner's capabilities.
3832 	 */
3833 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3834 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3835 		if (ret_val)
3836 			return ret_val;
3837 
3838 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3839 			*duplex = HALF_DUPLEX;
3840 		else {
3841 			ret_val = e1000_read_phy_reg(hw,
3842 					PHY_LP_ABILITY, &phy_data);
3843 			if (ret_val)
3844 				return ret_val;
3845 			if ((*speed == SPEED_100 &&
3846 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3847 				|| (*speed == SPEED_10
3848 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3849 				*duplex = HALF_DUPLEX;
3850 		}
3851 	}
3852 
3853 	if ((hw->mac_type == e1000_80003es2lan) &&
3854 		(hw->media_type == e1000_media_type_copper)) {
3855 		if (*speed == SPEED_1000)
3856 			ret_val = e1000_configure_kmrn_for_1000(hw);
3857 		else
3858 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3859 		if (ret_val)
3860 			return ret_val;
3861 	}
3862 	return E1000_SUCCESS;
3863 }
3864 
3865 /******************************************************************************
3866 * Blocks until autoneg completes or times out (~4.5 seconds)
3867 *
3868 * hw - Struct containing variables accessed by shared code
3869 ******************************************************************************/
3870 static int
3871 e1000_wait_autoneg(struct e1000_hw *hw)
3872 {
3873 	uint16_t i;
3874 	uint16_t phy_data;
3875 
3876 	DEBUGFUNC();
3877 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3878 
3879 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
3880 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3881 		/* Read the MII Status Register and wait for Auto-Neg
3882 		 * Complete bit to be set.
3883 		 */
3884 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3885 			DEBUGOUT("PHY Read Error\n");
3886 			return -E1000_ERR_PHY;
3887 		}
3888 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3889 			DEBUGOUT("PHY Read Error\n");
3890 			return -E1000_ERR_PHY;
3891 		}
3892 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3893 			DEBUGOUT("Auto-Neg complete.\n");
3894 			return 0;
3895 		}
3896 		mdelay(100);
3897 	}
3898 	DEBUGOUT("Auto-Neg timedout.\n");
3899 	return -E1000_ERR_TIMEOUT;
3900 }
3901 
3902 /******************************************************************************
3903 * Raises the Management Data Clock
3904 *
3905 * hw - Struct containing variables accessed by shared code
3906 * ctrl - Device control register's current value
3907 ******************************************************************************/
3908 static void
3909 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3910 {
3911 	/* Raise the clock input to the Management Data Clock (by setting the MDC
3912 	 * bit), and then delay 2 microseconds.
3913 	 */
3914 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3915 	E1000_WRITE_FLUSH(hw);
3916 	udelay(2);
3917 }
3918 
3919 /******************************************************************************
3920 * Lowers the Management Data Clock
3921 *
3922 * hw - Struct containing variables accessed by shared code
3923 * ctrl - Device control register's current value
3924 ******************************************************************************/
3925 static void
3926 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3927 {
3928 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
3929 	 * bit), and then delay 2 microseconds.
3930 	 */
3931 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3932 	E1000_WRITE_FLUSH(hw);
3933 	udelay(2);
3934 }
3935 
3936 /******************************************************************************
3937 * Shifts data bits out to the PHY
3938 *
3939 * hw - Struct containing variables accessed by shared code
3940 * data - Data to send out to the PHY
3941 * count - Number of bits to shift out
3942 *
3943 * Bits are shifted out in MSB to LSB order.
3944 ******************************************************************************/
3945 static void
3946 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3947 {
3948 	uint32_t ctrl;
3949 	uint32_t mask;
3950 
3951 	/* We need to shift "count" number of bits out to the PHY. So, the value
3952 	 * in the "data" parameter will be shifted out to the PHY one bit at a
3953 	 * time. In order to do this, "data" must be broken down into bits.
3954 	 */
3955 	mask = 0x01;
3956 	mask <<= (count - 1);
3957 
3958 	ctrl = E1000_READ_REG(hw, CTRL);
3959 
3960 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3961 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3962 
3963 	while (mask) {
3964 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3965 		 * then raising and lowering the Management Data Clock. A "0" is
3966 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
3967 		 * raising and lowering the clock.
3968 		 */
3969 		if (data & mask)
3970 			ctrl |= E1000_CTRL_MDIO;
3971 		else
3972 			ctrl &= ~E1000_CTRL_MDIO;
3973 
3974 		E1000_WRITE_REG(hw, CTRL, ctrl);
3975 		E1000_WRITE_FLUSH(hw);
3976 
3977 		udelay(2);
3978 
3979 		e1000_raise_mdi_clk(hw, &ctrl);
3980 		e1000_lower_mdi_clk(hw, &ctrl);
3981 
3982 		mask = mask >> 1;
3983 	}
3984 }
3985 
3986 /******************************************************************************
3987 * Shifts data bits in from the PHY
3988 *
3989 * hw - Struct containing variables accessed by shared code
3990 *
3991 * Bits are shifted in in MSB to LSB order.
3992 ******************************************************************************/
3993 static uint16_t
3994 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3995 {
3996 	uint32_t ctrl;
3997 	uint16_t data = 0;
3998 	uint8_t i;
3999 
4000 	/* In order to read a register from the PHY, we need to shift in a total
4001 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4002 	 * to avoid contention on the MDIO pin when a read operation is performed.
4003 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4004 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4005 	 * and then reading the value of the MDIO bit.
4006 	 */
4007 	ctrl = E1000_READ_REG(hw, CTRL);
4008 
4009 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4010 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4011 	ctrl &= ~E1000_CTRL_MDIO;
4012 
4013 	E1000_WRITE_REG(hw, CTRL, ctrl);
4014 	E1000_WRITE_FLUSH(hw);
4015 
4016 	/* Raise and Lower the clock before reading in the data. This accounts for
4017 	 * the turnaround bits. The first clock occurred when we clocked out the
4018 	 * last bit of the Register Address.
4019 	 */
4020 	e1000_raise_mdi_clk(hw, &ctrl);
4021 	e1000_lower_mdi_clk(hw, &ctrl);
4022 
4023 	for (data = 0, i = 0; i < 16; i++) {
4024 		data = data << 1;
4025 		e1000_raise_mdi_clk(hw, &ctrl);
4026 		ctrl = E1000_READ_REG(hw, CTRL);
4027 		/* Check to see if we shifted in a "1". */
4028 		if (ctrl & E1000_CTRL_MDIO)
4029 			data |= 1;
4030 		e1000_lower_mdi_clk(hw, &ctrl);
4031 	}
4032 
4033 	e1000_raise_mdi_clk(hw, &ctrl);
4034 	e1000_lower_mdi_clk(hw, &ctrl);
4035 
4036 	return data;
4037 }
4038 
4039 /*****************************************************************************
4040 * Reads the value from a PHY register
4041 *
4042 * hw - Struct containing variables accessed by shared code
4043 * reg_addr - address of the PHY register to read
4044 ******************************************************************************/
4045 static int
4046 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4047 {
4048 	uint32_t i;
4049 	uint32_t mdic = 0;
4050 	const uint32_t phy_addr = 1;
4051 
4052 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4053 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4054 		return -E1000_ERR_PARAM;
4055 	}
4056 
4057 	if (hw->mac_type > e1000_82543) {
4058 		/* Set up Op-code, Phy Address, and register address in the MDI
4059 		 * Control register.  The MAC will take care of interfacing with the
4060 		 * PHY to retrieve the desired data.
4061 		 */
4062 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4063 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4064 			(E1000_MDIC_OP_READ));
4065 
4066 		E1000_WRITE_REG(hw, MDIC, mdic);
4067 
4068 		/* Poll the ready bit to see if the MDI read completed */
4069 		for (i = 0; i < 64; i++) {
4070 			udelay(10);
4071 			mdic = E1000_READ_REG(hw, MDIC);
4072 			if (mdic & E1000_MDIC_READY)
4073 				break;
4074 		}
4075 		if (!(mdic & E1000_MDIC_READY)) {
4076 			DEBUGOUT("MDI Read did not complete\n");
4077 			return -E1000_ERR_PHY;
4078 		}
4079 		if (mdic & E1000_MDIC_ERROR) {
4080 			DEBUGOUT("MDI Error\n");
4081 			return -E1000_ERR_PHY;
4082 		}
4083 		*phy_data = (uint16_t) mdic;
4084 	} else {
4085 		/* We must first send a preamble through the MDIO pin to signal the
4086 		 * beginning of an MII instruction.  This is done by sending 32
4087 		 * consecutive "1" bits.
4088 		 */
4089 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4090 
4091 		/* Now combine the next few fields that are required for a read
4092 		 * operation.  We use this method instead of calling the
4093 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4094 		 * a MII read instruction consists of a shift out of 14 bits and is
4095 		 * defined as follows:
4096 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4097 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4098 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4099 		 * READ operation is performed.  These two bits are thrown away
4100 		 * followed by a shift in of 16 bits which contains the desired data.
4101 		 */
4102 		mdic = ((reg_addr) | (phy_addr << 5) |
4103 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4104 
4105 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4106 
4107 		/* Now that we've shifted out the read command to the MII, we need to
4108 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4109 		 * register address.
4110 		 */
4111 		*phy_data = e1000_shift_in_mdi_bits(hw);
4112 	}
4113 	return 0;
4114 }
4115 
4116 /******************************************************************************
4117 * Writes a value to a PHY register
4118 *
4119 * hw - Struct containing variables accessed by shared code
4120 * reg_addr - address of the PHY register to write
4121 * data - data to write to the PHY
4122 ******************************************************************************/
4123 static int
4124 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4125 {
4126 	uint32_t i;
4127 	uint32_t mdic = 0;
4128 	const uint32_t phy_addr = 1;
4129 
4130 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4131 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4132 		return -E1000_ERR_PARAM;
4133 	}
4134 
4135 	if (hw->mac_type > e1000_82543) {
4136 		/* Set up Op-code, Phy Address, register address, and data intended
4137 		 * for the PHY register in the MDI Control register.  The MAC will take
4138 		 * care of interfacing with the PHY to send the desired data.
4139 		 */
4140 		mdic = (((uint32_t) phy_data) |
4141 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4142 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4143 			(E1000_MDIC_OP_WRITE));
4144 
4145 		E1000_WRITE_REG(hw, MDIC, mdic);
4146 
4147 		/* Poll the ready bit to see if the MDI read completed */
4148 		for (i = 0; i < 64; i++) {
4149 			udelay(10);
4150 			mdic = E1000_READ_REG(hw, MDIC);
4151 			if (mdic & E1000_MDIC_READY)
4152 				break;
4153 		}
4154 		if (!(mdic & E1000_MDIC_READY)) {
4155 			DEBUGOUT("MDI Write did not complete\n");
4156 			return -E1000_ERR_PHY;
4157 		}
4158 	} else {
4159 		/* We'll need to use the SW defined pins to shift the write command
4160 		 * out to the PHY. We first send a preamble to the PHY to signal the
4161 		 * beginning of the MII instruction.  This is done by sending 32
4162 		 * consecutive "1" bits.
4163 		 */
4164 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4165 
4166 		/* Now combine the remaining required fields that will indicate a
4167 		 * write operation. We use this method instead of calling the
4168 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4169 		 * format of a MII write instruction is as follows:
4170 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4171 		 */
4172 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4173 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4174 		mdic <<= 16;
4175 		mdic |= (uint32_t) phy_data;
4176 
4177 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4178 	}
4179 	return 0;
4180 }
4181 
4182 /******************************************************************************
4183  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4184  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4185  * the caller to figure out how to deal with it.
4186  *
4187  * hw - Struct containing variables accessed by shared code
4188  *
4189  * returns: - E1000_BLK_PHY_RESET
4190  *            E1000_SUCCESS
4191  *
4192  *****************************************************************************/
4193 int32_t
4194 e1000_check_phy_reset_block(struct e1000_hw *hw)
4195 {
4196 	uint32_t manc = 0;
4197 	uint32_t fwsm = 0;
4198 
4199 	if (hw->mac_type == e1000_ich8lan) {
4200 		fwsm = E1000_READ_REG(hw, FWSM);
4201 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4202 						: E1000_BLK_PHY_RESET;
4203 	}
4204 
4205 	if (hw->mac_type > e1000_82547_rev_2)
4206 		manc = E1000_READ_REG(hw, MANC);
4207 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4208 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4209 }
4210 
4211 /***************************************************************************
4212  * Checks if the PHY configuration is done
4213  *
4214  * hw: Struct containing variables accessed by shared code
4215  *
4216  * returns: - E1000_ERR_RESET if fail to reset MAC
4217  *            E1000_SUCCESS at any other case.
4218  *
4219  ***************************************************************************/
4220 static int32_t
4221 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4222 {
4223 	int32_t timeout = PHY_CFG_TIMEOUT;
4224 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4225 
4226 	DEBUGFUNC();
4227 
4228 	switch (hw->mac_type) {
4229 	default:
4230 		mdelay(10);
4231 		break;
4232 
4233 	case e1000_80003es2lan:
4234 		/* Separate *_CFG_DONE_* bit for each port */
4235 		if (e1000_is_second_port(hw))
4236 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4237 		/* Fall Through */
4238 
4239 	case e1000_82571:
4240 	case e1000_82572:
4241 		while (timeout) {
4242 			if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4243 				break;
4244 			else
4245 				mdelay(1);
4246 			timeout--;
4247 		}
4248 		if (!timeout) {
4249 			DEBUGOUT("MNG configuration cycle has not "
4250 					"completed.\n");
4251 			return -E1000_ERR_RESET;
4252 		}
4253 		break;
4254 	}
4255 
4256 	return E1000_SUCCESS;
4257 }
4258 
4259 /******************************************************************************
4260 * Returns the PHY to the power-on reset state
4261 *
4262 * hw - Struct containing variables accessed by shared code
4263 ******************************************************************************/
4264 int32_t
4265 e1000_phy_hw_reset(struct e1000_hw *hw)
4266 {
4267 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4268 	uint32_t ctrl, ctrl_ext;
4269 	uint32_t led_ctrl;
4270 	int32_t ret_val;
4271 
4272 	DEBUGFUNC();
4273 
4274 	/* In the case of the phy reset being blocked, it's not an error, we
4275 	 * simply return success without performing the reset. */
4276 	ret_val = e1000_check_phy_reset_block(hw);
4277 	if (ret_val)
4278 		return E1000_SUCCESS;
4279 
4280 	DEBUGOUT("Resetting Phy...\n");
4281 
4282 	if (hw->mac_type > e1000_82543) {
4283 		if (e1000_is_second_port(hw))
4284 			swfw = E1000_SWFW_PHY1_SM;
4285 
4286 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4287 			DEBUGOUT("Unable to acquire swfw sync\n");
4288 			return -E1000_ERR_SWFW_SYNC;
4289 		}
4290 
4291 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4292 		 * bit. Then, take it out of reset.
4293 		 */
4294 		ctrl = E1000_READ_REG(hw, CTRL);
4295 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4296 		E1000_WRITE_FLUSH(hw);
4297 
4298 		if (hw->mac_type < e1000_82571)
4299 			udelay(10);
4300 		else
4301 			udelay(100);
4302 
4303 		E1000_WRITE_REG(hw, CTRL, ctrl);
4304 		E1000_WRITE_FLUSH(hw);
4305 
4306 		if (hw->mac_type >= e1000_82571)
4307 			mdelay(10);
4308 
4309 	} else {
4310 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4311 		 * bit to put the PHY into reset. Then, take it out of reset.
4312 		 */
4313 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4314 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4315 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4316 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4317 		E1000_WRITE_FLUSH(hw);
4318 		mdelay(10);
4319 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4320 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4321 		E1000_WRITE_FLUSH(hw);
4322 	}
4323 	udelay(150);
4324 
4325 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4326 		/* Configure activity LED after PHY reset */
4327 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4328 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4329 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4330 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4331 	}
4332 
4333 	/* Wait for FW to finish PHY configuration. */
4334 	ret_val = e1000_get_phy_cfg_done(hw);
4335 	if (ret_val != E1000_SUCCESS)
4336 		return ret_val;
4337 
4338 	return ret_val;
4339 }
4340 
4341 /******************************************************************************
4342  * IGP phy init script - initializes the GbE PHY
4343  *
4344  * hw - Struct containing variables accessed by shared code
4345  *****************************************************************************/
4346 static void
4347 e1000_phy_init_script(struct e1000_hw *hw)
4348 {
4349 	uint32_t ret_val;
4350 	uint16_t phy_saved_data;
4351 	DEBUGFUNC();
4352 
4353 	if (hw->phy_init_script) {
4354 		mdelay(20);
4355 
4356 		/* Save off the current value of register 0x2F5B to be
4357 		 * restored at the end of this routine. */
4358 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4359 
4360 		/* Disabled the PHY transmitter */
4361 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4362 
4363 		mdelay(20);
4364 
4365 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4366 
4367 		mdelay(5);
4368 
4369 		switch (hw->mac_type) {
4370 		case e1000_82541:
4371 		case e1000_82547:
4372 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4373 
4374 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4375 
4376 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4377 
4378 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4379 
4380 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4381 
4382 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4383 
4384 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4385 
4386 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4387 
4388 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4389 			break;
4390 
4391 		case e1000_82541_rev_2:
4392 		case e1000_82547_rev_2:
4393 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4394 			break;
4395 		default:
4396 			break;
4397 		}
4398 
4399 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4400 
4401 		mdelay(20);
4402 
4403 		/* Now enable the transmitter */
4404 		if (!ret_val)
4405 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4406 
4407 		if (hw->mac_type == e1000_82547) {
4408 			uint16_t fused, fine, coarse;
4409 
4410 			/* Move to analog registers page */
4411 			e1000_read_phy_reg(hw,
4412 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4413 
4414 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4415 				e1000_read_phy_reg(hw,
4416 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4417 
4418 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4419 				coarse = fused
4420 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4421 
4422 				if (coarse >
4423 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4424 					coarse -=
4425 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4426 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4427 				} else if (coarse
4428 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4429 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4430 
4431 				fused = (fused
4432 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4433 					(fine
4434 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4435 					(coarse
4436 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4437 
4438 				e1000_write_phy_reg(hw,
4439 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4440 				e1000_write_phy_reg(hw,
4441 					IGP01E1000_ANALOG_FUSE_BYPASS,
4442 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4443 			}
4444 		}
4445 	}
4446 }
4447 
4448 /******************************************************************************
4449 * Resets the PHY
4450 *
4451 * hw - Struct containing variables accessed by shared code
4452 *
4453 * Sets bit 15 of the MII Control register
4454 ******************************************************************************/
4455 int32_t
4456 e1000_phy_reset(struct e1000_hw *hw)
4457 {
4458 	int32_t ret_val;
4459 	uint16_t phy_data;
4460 
4461 	DEBUGFUNC();
4462 
4463 	/* In the case of the phy reset being blocked, it's not an error, we
4464 	 * simply return success without performing the reset. */
4465 	ret_val = e1000_check_phy_reset_block(hw);
4466 	if (ret_val)
4467 		return E1000_SUCCESS;
4468 
4469 	switch (hw->phy_type) {
4470 	case e1000_phy_igp:
4471 	case e1000_phy_igp_2:
4472 	case e1000_phy_igp_3:
4473 	case e1000_phy_ife:
4474 		ret_val = e1000_phy_hw_reset(hw);
4475 		if (ret_val)
4476 			return ret_val;
4477 		break;
4478 	default:
4479 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4480 		if (ret_val)
4481 			return ret_val;
4482 
4483 		phy_data |= MII_CR_RESET;
4484 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4485 		if (ret_val)
4486 			return ret_val;
4487 
4488 		udelay(1);
4489 		break;
4490 	}
4491 
4492 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4493 		e1000_phy_init_script(hw);
4494 
4495 	return E1000_SUCCESS;
4496 }
4497 
4498 static int e1000_set_phy_type (struct e1000_hw *hw)
4499 {
4500 	DEBUGFUNC ();
4501 
4502 	if (hw->mac_type == e1000_undefined)
4503 		return -E1000_ERR_PHY_TYPE;
4504 
4505 	switch (hw->phy_id) {
4506 	case M88E1000_E_PHY_ID:
4507 	case M88E1000_I_PHY_ID:
4508 	case M88E1011_I_PHY_ID:
4509 	case M88E1111_I_PHY_ID:
4510 		hw->phy_type = e1000_phy_m88;
4511 		break;
4512 	case IGP01E1000_I_PHY_ID:
4513 		if (hw->mac_type == e1000_82541 ||
4514 			hw->mac_type == e1000_82541_rev_2 ||
4515 			hw->mac_type == e1000_82547 ||
4516 			hw->mac_type == e1000_82547_rev_2) {
4517 			hw->phy_type = e1000_phy_igp;
4518 			hw->phy_type = e1000_phy_igp;
4519 			break;
4520 		}
4521 	case IGP03E1000_E_PHY_ID:
4522 		hw->phy_type = e1000_phy_igp_3;
4523 		break;
4524 	case IFE_E_PHY_ID:
4525 	case IFE_PLUS_E_PHY_ID:
4526 	case IFE_C_E_PHY_ID:
4527 		hw->phy_type = e1000_phy_ife;
4528 		break;
4529 	case GG82563_E_PHY_ID:
4530 		if (hw->mac_type == e1000_80003es2lan) {
4531 			hw->phy_type = e1000_phy_gg82563;
4532 			break;
4533 		}
4534 	case BME1000_E_PHY_ID:
4535 		hw->phy_type = e1000_phy_bm;
4536 		break;
4537 		/* Fall Through */
4538 	default:
4539 		/* Should never have loaded on this device */
4540 		hw->phy_type = e1000_phy_undefined;
4541 		return -E1000_ERR_PHY_TYPE;
4542 	}
4543 
4544 	return E1000_SUCCESS;
4545 }
4546 
4547 /******************************************************************************
4548 * Probes the expected PHY address for known PHY IDs
4549 *
4550 * hw - Struct containing variables accessed by shared code
4551 ******************************************************************************/
4552 static int32_t
4553 e1000_detect_gig_phy(struct e1000_hw *hw)
4554 {
4555 	int32_t phy_init_status, ret_val;
4556 	uint16_t phy_id_high, phy_id_low;
4557 	bool match = false;
4558 
4559 	DEBUGFUNC();
4560 
4561 	/* The 82571 firmware may still be configuring the PHY.  In this
4562 	 * case, we cannot access the PHY until the configuration is done.  So
4563 	 * we explicitly set the PHY values. */
4564 	if (hw->mac_type == e1000_82571 ||
4565 		hw->mac_type == e1000_82572) {
4566 		hw->phy_id = IGP01E1000_I_PHY_ID;
4567 		hw->phy_type = e1000_phy_igp_2;
4568 		return E1000_SUCCESS;
4569 	}
4570 
4571 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4572 	 * work- around that forces PHY page 0 to be set or the reads fail.
4573 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4574 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4575 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4576 	 * the routines below will figure this out as well. */
4577 	if (hw->mac_type == e1000_80003es2lan)
4578 		hw->phy_type = e1000_phy_gg82563;
4579 
4580 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4581 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4582 	if (ret_val)
4583 		return ret_val;
4584 
4585 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4586 	udelay(20);
4587 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4588 	if (ret_val)
4589 		return ret_val;
4590 
4591 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4592 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4593 
4594 	switch (hw->mac_type) {
4595 	case e1000_82543:
4596 		if (hw->phy_id == M88E1000_E_PHY_ID)
4597 			match = true;
4598 		break;
4599 	case e1000_82544:
4600 		if (hw->phy_id == M88E1000_I_PHY_ID)
4601 			match = true;
4602 		break;
4603 	case e1000_82540:
4604 	case e1000_82545:
4605 	case e1000_82545_rev_3:
4606 	case e1000_82546:
4607 	case e1000_82546_rev_3:
4608 		if (hw->phy_id == M88E1011_I_PHY_ID)
4609 			match = true;
4610 		break;
4611 	case e1000_82541:
4612 	case e1000_82541_rev_2:
4613 	case e1000_82547:
4614 	case e1000_82547_rev_2:
4615 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4616 			match = true;
4617 
4618 		break;
4619 	case e1000_82573:
4620 		if (hw->phy_id == M88E1111_I_PHY_ID)
4621 			match = true;
4622 		break;
4623 	case e1000_82574:
4624 		if (hw->phy_id == BME1000_E_PHY_ID)
4625 			match = true;
4626 		break;
4627 	case e1000_80003es2lan:
4628 		if (hw->phy_id == GG82563_E_PHY_ID)
4629 			match = true;
4630 		break;
4631 	case e1000_ich8lan:
4632 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4633 			match = true;
4634 		if (hw->phy_id == IFE_E_PHY_ID)
4635 			match = true;
4636 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4637 			match = true;
4638 		if (hw->phy_id == IFE_C_E_PHY_ID)
4639 			match = true;
4640 		break;
4641 	default:
4642 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4643 		return -E1000_ERR_CONFIG;
4644 	}
4645 
4646 	phy_init_status = e1000_set_phy_type(hw);
4647 
4648 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4649 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4650 		return 0;
4651 	}
4652 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4653 	return -E1000_ERR_PHY;
4654 }
4655 
4656 /*****************************************************************************
4657  * Set media type and TBI compatibility.
4658  *
4659  * hw - Struct containing variables accessed by shared code
4660  * **************************************************************************/
4661 void
4662 e1000_set_media_type(struct e1000_hw *hw)
4663 {
4664 	uint32_t status;
4665 
4666 	DEBUGFUNC();
4667 
4668 	if (hw->mac_type != e1000_82543) {
4669 		/* tbi_compatibility is only valid on 82543 */
4670 		hw->tbi_compatibility_en = false;
4671 	}
4672 
4673 	switch (hw->device_id) {
4674 	case E1000_DEV_ID_82545GM_SERDES:
4675 	case E1000_DEV_ID_82546GB_SERDES:
4676 	case E1000_DEV_ID_82571EB_SERDES:
4677 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4678 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4679 	case E1000_DEV_ID_82572EI_SERDES:
4680 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4681 		hw->media_type = e1000_media_type_internal_serdes;
4682 		break;
4683 	default:
4684 		switch (hw->mac_type) {
4685 		case e1000_82542_rev2_0:
4686 		case e1000_82542_rev2_1:
4687 			hw->media_type = e1000_media_type_fiber;
4688 			break;
4689 		case e1000_ich8lan:
4690 		case e1000_82573:
4691 		case e1000_82574:
4692 			/* The STATUS_TBIMODE bit is reserved or reused
4693 			 * for the this device.
4694 			 */
4695 			hw->media_type = e1000_media_type_copper;
4696 			break;
4697 		default:
4698 			status = E1000_READ_REG(hw, STATUS);
4699 			if (status & E1000_STATUS_TBIMODE) {
4700 				hw->media_type = e1000_media_type_fiber;
4701 				/* tbi_compatibility not valid on fiber */
4702 				hw->tbi_compatibility_en = false;
4703 			} else {
4704 				hw->media_type = e1000_media_type_copper;
4705 			}
4706 			break;
4707 		}
4708 	}
4709 }
4710 
4711 /**
4712  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4713  *
4714  * e1000_sw_init initializes the Adapter private data structure.
4715  * Fields are initialized based on PCI device information and
4716  * OS network device settings (MTU size).
4717  **/
4718 
4719 static int
4720 e1000_sw_init(struct eth_device *nic)
4721 {
4722 	struct e1000_hw *hw = (typeof(hw)) nic->priv;
4723 	int result;
4724 
4725 	/* PCI config space info */
4726 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4727 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4728 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4729 			     &hw->subsystem_vendor_id);
4730 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4731 
4732 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4733 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4734 
4735 	/* identify the MAC */
4736 	result = e1000_set_mac_type(hw);
4737 	if (result) {
4738 		E1000_ERR(hw->nic, "Unknown MAC Type\n");
4739 		return result;
4740 	}
4741 
4742 	switch (hw->mac_type) {
4743 	default:
4744 		break;
4745 	case e1000_82541:
4746 	case e1000_82547:
4747 	case e1000_82541_rev_2:
4748 	case e1000_82547_rev_2:
4749 		hw->phy_init_script = 1;
4750 		break;
4751 	}
4752 
4753 	/* flow control settings */
4754 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4755 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4756 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4757 	hw->fc_send_xon = 1;
4758 
4759 	/* Media type - copper or fiber */
4760 	e1000_set_media_type(hw);
4761 
4762 	if (hw->mac_type >= e1000_82543) {
4763 		uint32_t status = E1000_READ_REG(hw, STATUS);
4764 
4765 		if (status & E1000_STATUS_TBIMODE) {
4766 			DEBUGOUT("fiber interface\n");
4767 			hw->media_type = e1000_media_type_fiber;
4768 		} else {
4769 			DEBUGOUT("copper interface\n");
4770 			hw->media_type = e1000_media_type_copper;
4771 		}
4772 	} else {
4773 		hw->media_type = e1000_media_type_fiber;
4774 	}
4775 
4776 	hw->tbi_compatibility_en = true;
4777 	hw->wait_autoneg_complete = true;
4778 	if (hw->mac_type < e1000_82543)
4779 		hw->report_tx_early = 0;
4780 	else
4781 		hw->report_tx_early = 1;
4782 
4783 	return E1000_SUCCESS;
4784 }
4785 
4786 void
4787 fill_rx(struct e1000_hw *hw)
4788 {
4789 	struct e1000_rx_desc *rd;
4790 
4791 	rx_last = rx_tail;
4792 	rd = rx_base + rx_tail;
4793 	rx_tail = (rx_tail + 1) % 8;
4794 	memset(rd, 0, 16);
4795 	rd->buffer_addr = cpu_to_le64((u32) & packet);
4796 	E1000_WRITE_REG(hw, RDT, rx_tail);
4797 }
4798 
4799 /**
4800  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4801  * @adapter: board private structure
4802  *
4803  * Configure the Tx unit of the MAC after a reset.
4804  **/
4805 
4806 static void
4807 e1000_configure_tx(struct e1000_hw *hw)
4808 {
4809 	unsigned long ptr;
4810 	unsigned long tctl;
4811 	unsigned long tipg, tarc;
4812 	uint32_t ipgr1, ipgr2;
4813 
4814 	ptr = (u32) tx_pool;
4815 	if (ptr & 0xf)
4816 		ptr = (ptr + 0x10) & (~0xf);
4817 
4818 	tx_base = (typeof(tx_base)) ptr;
4819 
4820 	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4821 	E1000_WRITE_REG(hw, TDBAH, 0);
4822 
4823 	E1000_WRITE_REG(hw, TDLEN, 128);
4824 
4825 	/* Setup the HW Tx Head and Tail descriptor pointers */
4826 	E1000_WRITE_REG(hw, TDH, 0);
4827 	E1000_WRITE_REG(hw, TDT, 0);
4828 	tx_tail = 0;
4829 
4830 	/* Set the default values for the Tx Inter Packet Gap timer */
4831 	if (hw->mac_type <= e1000_82547_rev_2 &&
4832 	    (hw->media_type == e1000_media_type_fiber ||
4833 	     hw->media_type == e1000_media_type_internal_serdes))
4834 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4835 	else
4836 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4837 
4838 	/* Set the default values for the Tx Inter Packet Gap timer */
4839 	switch (hw->mac_type) {
4840 	case e1000_82542_rev2_0:
4841 	case e1000_82542_rev2_1:
4842 		tipg = DEFAULT_82542_TIPG_IPGT;
4843 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4844 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4845 		break;
4846 	case e1000_80003es2lan:
4847 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4848 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4849 		break;
4850 	default:
4851 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4852 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4853 		break;
4854 	}
4855 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4856 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4857 	E1000_WRITE_REG(hw, TIPG, tipg);
4858 	/* Program the Transmit Control Register */
4859 	tctl = E1000_READ_REG(hw, TCTL);
4860 	tctl &= ~E1000_TCTL_CT;
4861 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4862 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4863 
4864 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4865 		tarc = E1000_READ_REG(hw, TARC0);
4866 		/* set the speed mode bit, we'll clear it if we're not at
4867 		 * gigabit link later */
4868 		/* git bit can be set to 1*/
4869 	} else if (hw->mac_type == e1000_80003es2lan) {
4870 		tarc = E1000_READ_REG(hw, TARC0);
4871 		tarc |= 1;
4872 		E1000_WRITE_REG(hw, TARC0, tarc);
4873 		tarc = E1000_READ_REG(hw, TARC1);
4874 		tarc |= 1;
4875 		E1000_WRITE_REG(hw, TARC1, tarc);
4876 	}
4877 
4878 
4879 	e1000_config_collision_dist(hw);
4880 	/* Setup Transmit Descriptor Settings for eop descriptor */
4881 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4882 
4883 	/* Need to set up RS bit */
4884 	if (hw->mac_type < e1000_82543)
4885 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
4886 	else
4887 		hw->txd_cmd |= E1000_TXD_CMD_RS;
4888 	E1000_WRITE_REG(hw, TCTL, tctl);
4889 }
4890 
4891 /**
4892  * e1000_setup_rctl - configure the receive control register
4893  * @adapter: Board private structure
4894  **/
4895 static void
4896 e1000_setup_rctl(struct e1000_hw *hw)
4897 {
4898 	uint32_t rctl;
4899 
4900 	rctl = E1000_READ_REG(hw, RCTL);
4901 
4902 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4903 
4904 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4905 		| E1000_RCTL_RDMTS_HALF;	/* |
4906 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4907 
4908 	if (hw->tbi_compatibility_on == 1)
4909 		rctl |= E1000_RCTL_SBP;
4910 	else
4911 		rctl &= ~E1000_RCTL_SBP;
4912 
4913 	rctl &= ~(E1000_RCTL_SZ_4096);
4914 		rctl |= E1000_RCTL_SZ_2048;
4915 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4916 	E1000_WRITE_REG(hw, RCTL, rctl);
4917 }
4918 
4919 /**
4920  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4921  * @adapter: board private structure
4922  *
4923  * Configure the Rx unit of the MAC after a reset.
4924  **/
4925 static void
4926 e1000_configure_rx(struct e1000_hw *hw)
4927 {
4928 	unsigned long ptr;
4929 	unsigned long rctl, ctrl_ext;
4930 	rx_tail = 0;
4931 	/* make sure receives are disabled while setting up the descriptors */
4932 	rctl = E1000_READ_REG(hw, RCTL);
4933 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4934 	if (hw->mac_type >= e1000_82540) {
4935 		/* Set the interrupt throttling rate.  Value is calculated
4936 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4937 #define MAX_INTS_PER_SEC	8000
4938 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
4939 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4940 	}
4941 
4942 	if (hw->mac_type >= e1000_82571) {
4943 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4944 		/* Reset delay timers after every interrupt */
4945 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4946 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4947 		E1000_WRITE_FLUSH(hw);
4948 	}
4949 	/* Setup the Base and Length of the Rx Descriptor Ring */
4950 	ptr = (u32) rx_pool;
4951 	if (ptr & 0xf)
4952 		ptr = (ptr + 0x10) & (~0xf);
4953 	rx_base = (typeof(rx_base)) ptr;
4954 	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4955 	E1000_WRITE_REG(hw, RDBAH, 0);
4956 
4957 	E1000_WRITE_REG(hw, RDLEN, 128);
4958 
4959 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
4960 	E1000_WRITE_REG(hw, RDH, 0);
4961 	E1000_WRITE_REG(hw, RDT, 0);
4962 	/* Enable Receives */
4963 
4964 	E1000_WRITE_REG(hw, RCTL, rctl);
4965 	fill_rx(hw);
4966 }
4967 
4968 /**************************************************************************
4969 POLL - Wait for a frame
4970 ***************************************************************************/
4971 static int
4972 e1000_poll(struct eth_device *nic)
4973 {
4974 	struct e1000_hw *hw = nic->priv;
4975 	struct e1000_rx_desc *rd;
4976 	/* return true if there's an ethernet packet ready to read */
4977 	rd = rx_base + rx_last;
4978 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4979 		return 0;
4980 	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
4981 	NetReceive((uchar *)packet, le32_to_cpu(rd->length));
4982 	fill_rx(hw);
4983 	return 1;
4984 }
4985 
4986 /**************************************************************************
4987 TRANSMIT - Transmit a frame
4988 ***************************************************************************/
4989 static int e1000_transmit(struct eth_device *nic, void *packet, int length)
4990 {
4991 	void *nv_packet = (void *)packet;
4992 	struct e1000_hw *hw = nic->priv;
4993 	struct e1000_tx_desc *txp;
4994 	int i = 0;
4995 
4996 	txp = tx_base + tx_tail;
4997 	tx_tail = (tx_tail + 1) % 8;
4998 
4999 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5000 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5001 	txp->upper.data = 0;
5002 	E1000_WRITE_REG(hw, TDT, tx_tail);
5003 
5004 	E1000_WRITE_FLUSH(hw);
5005 	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5006 		if (i++ > TOUT_LOOP) {
5007 			DEBUGOUT("e1000: tx timeout\n");
5008 			return 0;
5009 		}
5010 		udelay(10);	/* give the nic a chance to write to the register */
5011 	}
5012 	return 1;
5013 }
5014 
5015 /*reset function*/
5016 static inline int
5017 e1000_reset(struct eth_device *nic)
5018 {
5019 	struct e1000_hw *hw = nic->priv;
5020 
5021 	e1000_reset_hw(hw);
5022 	if (hw->mac_type >= e1000_82544) {
5023 		E1000_WRITE_REG(hw, WUC, 0);
5024 	}
5025 	return e1000_init_hw(nic);
5026 }
5027 
5028 /**************************************************************************
5029 DISABLE - Turn off ethernet interface
5030 ***************************************************************************/
5031 static void
5032 e1000_disable(struct eth_device *nic)
5033 {
5034 	struct e1000_hw *hw = nic->priv;
5035 
5036 	/* Turn off the ethernet interface */
5037 	E1000_WRITE_REG(hw, RCTL, 0);
5038 	E1000_WRITE_REG(hw, TCTL, 0);
5039 
5040 	/* Clear the transmit ring */
5041 	E1000_WRITE_REG(hw, TDH, 0);
5042 	E1000_WRITE_REG(hw, TDT, 0);
5043 
5044 	/* Clear the receive ring */
5045 	E1000_WRITE_REG(hw, RDH, 0);
5046 	E1000_WRITE_REG(hw, RDT, 0);
5047 
5048 	/* put the card in its initial state */
5049 #if 0
5050 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5051 #endif
5052 	mdelay(10);
5053 
5054 }
5055 
5056 /**************************************************************************
5057 INIT - set up ethernet interface(s)
5058 ***************************************************************************/
5059 static int
5060 e1000_init(struct eth_device *nic, bd_t * bis)
5061 {
5062 	struct e1000_hw *hw = nic->priv;
5063 	int ret_val = 0;
5064 
5065 	ret_val = e1000_reset(nic);
5066 	if (ret_val < 0) {
5067 		if ((ret_val == -E1000_ERR_NOLINK) ||
5068 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5069 			E1000_ERR(hw->nic, "Valid Link not detected\n");
5070 		} else {
5071 			E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5072 		}
5073 		return 0;
5074 	}
5075 	e1000_configure_tx(hw);
5076 	e1000_setup_rctl(hw);
5077 	e1000_configure_rx(hw);
5078 	return 1;
5079 }
5080 
5081 /******************************************************************************
5082  * Gets the current PCI bus type of hardware
5083  *
5084  * hw - Struct containing variables accessed by shared code
5085  *****************************************************************************/
5086 void e1000_get_bus_type(struct e1000_hw *hw)
5087 {
5088 	uint32_t status;
5089 
5090 	switch (hw->mac_type) {
5091 	case e1000_82542_rev2_0:
5092 	case e1000_82542_rev2_1:
5093 		hw->bus_type = e1000_bus_type_pci;
5094 		break;
5095 	case e1000_82571:
5096 	case e1000_82572:
5097 	case e1000_82573:
5098 	case e1000_82574:
5099 	case e1000_80003es2lan:
5100 		hw->bus_type = e1000_bus_type_pci_express;
5101 		break;
5102 	case e1000_ich8lan:
5103 		hw->bus_type = e1000_bus_type_pci_express;
5104 		break;
5105 	default:
5106 		status = E1000_READ_REG(hw, STATUS);
5107 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5108 				e1000_bus_type_pcix : e1000_bus_type_pci;
5109 		break;
5110 	}
5111 }
5112 
5113 /* A list of all registered e1000 devices */
5114 static LIST_HEAD(e1000_hw_list);
5115 
5116 /**************************************************************************
5117 PROBE - Look for an adapter, this routine's visible to the outside
5118 You should omit the last argument struct pci_device * for a non-PCI NIC
5119 ***************************************************************************/
5120 int
5121 e1000_initialize(bd_t * bis)
5122 {
5123 	unsigned int i;
5124 	pci_dev_t devno;
5125 
5126 	DEBUGFUNC();
5127 
5128 	/* Find and probe all the matching PCI devices */
5129 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5130 		u32 val;
5131 
5132 		/*
5133 		 * These will never get freed due to errors, this allows us to
5134 		 * perform SPI EEPROM programming from U-boot, for example.
5135 		 */
5136 		struct eth_device *nic = malloc(sizeof(*nic));
5137 		struct e1000_hw *hw = malloc(sizeof(*hw));
5138 		if (!nic || !hw) {
5139 			printf("e1000#%u: Out of Memory!\n", i);
5140 			free(nic);
5141 			free(hw);
5142 			continue;
5143 		}
5144 
5145 		/* Make sure all of the fields are initially zeroed */
5146 		memset(nic, 0, sizeof(*nic));
5147 		memset(hw, 0, sizeof(*hw));
5148 
5149 		/* Assign the passed-in values */
5150 		hw->cardnum = i;
5151 		hw->pdev = devno;
5152 		hw->nic = nic;
5153 		nic->priv = hw;
5154 
5155 		/* Generate a card name */
5156 		sprintf(nic->name, "e1000#%u", hw->cardnum);
5157 
5158 		/* Print a debug message with the IO base address */
5159 		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5160 		E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5161 
5162 		/* Try to enable I/O accesses and bus-mastering */
5163 		val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5164 		pci_write_config_dword(devno, PCI_COMMAND, val);
5165 
5166 		/* Make sure it worked */
5167 		pci_read_config_dword(devno, PCI_COMMAND, &val);
5168 		if (!(val & PCI_COMMAND_MEMORY)) {
5169 			E1000_ERR(nic, "Can't enable I/O memory\n");
5170 			continue;
5171 		}
5172 		if (!(val & PCI_COMMAND_MASTER)) {
5173 			E1000_ERR(nic, "Can't enable bus-mastering\n");
5174 			continue;
5175 		}
5176 
5177 		/* Are these variables needed? */
5178 		hw->fc = e1000_fc_default;
5179 		hw->original_fc = e1000_fc_default;
5180 		hw->autoneg_failed = 0;
5181 		hw->autoneg = 1;
5182 		hw->get_link_status = true;
5183 		hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5184 							PCI_REGION_MEM);
5185 		hw->mac_type = e1000_undefined;
5186 
5187 		/* MAC and Phy settings */
5188 		if (e1000_sw_init(nic) < 0) {
5189 			E1000_ERR(nic, "Software init failed\n");
5190 			continue;
5191 		}
5192 		if (e1000_check_phy_reset_block(hw))
5193 			E1000_ERR(nic, "PHY Reset is blocked!\n");
5194 
5195 		/* Basic init was OK, reset the hardware and allow SPI access */
5196 		e1000_reset_hw(hw);
5197 		list_add_tail(&hw->list_node, &e1000_hw_list);
5198 
5199 		/* Validate the EEPROM and get chipset information */
5200 #if !defined(CONFIG_MVBC_1G)
5201 		if (e1000_init_eeprom_params(hw)) {
5202 			E1000_ERR(nic, "EEPROM is invalid!\n");
5203 			continue;
5204 		}
5205 		if (e1000_validate_eeprom_checksum(hw))
5206 			continue;
5207 #endif
5208 		e1000_read_mac_addr(nic);
5209 		e1000_get_bus_type(hw);
5210 
5211 		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5212 		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5213 		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5214 
5215 		/* Set up the function pointers and register the device */
5216 		nic->init = e1000_init;
5217 		nic->recv = e1000_poll;
5218 		nic->send = e1000_transmit;
5219 		nic->halt = e1000_disable;
5220 		eth_register(nic);
5221 	}
5222 
5223 	return i;
5224 }
5225 
5226 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5227 {
5228 	struct e1000_hw *hw;
5229 
5230 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5231 		if (hw->cardnum == cardnum)
5232 			return hw;
5233 
5234 	return NULL;
5235 }
5236 
5237 #ifdef CONFIG_CMD_E1000
5238 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5239 		int argc, char * const argv[])
5240 {
5241 	struct e1000_hw *hw;
5242 
5243 	if (argc < 3) {
5244 		cmd_usage(cmdtp);
5245 		return 1;
5246 	}
5247 
5248 	/* Make sure we can find the requested e1000 card */
5249 	hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5250 	if (!hw) {
5251 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5252 		return 1;
5253 	}
5254 
5255 	if (!strcmp(argv[2], "print-mac-address")) {
5256 		unsigned char *mac = hw->nic->enetaddr;
5257 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5258 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5259 		return 0;
5260 	}
5261 
5262 #ifdef CONFIG_E1000_SPI
5263 	/* Handle the "SPI" subcommand */
5264 	if (!strcmp(argv[2], "spi"))
5265 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5266 #endif
5267 
5268 	cmd_usage(cmdtp);
5269 	return 1;
5270 }
5271 
5272 U_BOOT_CMD(
5273 	e1000, 7, 0, do_e1000,
5274 	"Intel e1000 controller management",
5275 	/*  */"<card#> print-mac-address\n"
5276 #ifdef CONFIG_E1000_SPI
5277 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5278 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5279 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5280 	"e1000 <card#> spi checksum [update]\n"
5281 #endif
5282 	"       - Manage the Intel E1000 PCI device"
5283 );
5284 #endif /* not CONFIG_CMD_E1000 */
5285