xref: /openbmc/u-boot/drivers/net/e1000.c (revision 17aa548c)
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8 
9 
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11 
12  * SPDX-License-Identifier:	GPL-2.0+
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include <common.h>
33 #include <dm.h>
34 #include <errno.h>
35 #include <pci.h>
36 #include "e1000.h"
37 
38 #define TOUT_LOOP   100000
39 
40 #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
41 #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
42 
43 #define E1000_DEFAULT_PCI_PBA	0x00000030
44 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
45 
46 /* NIC specific static variables go here */
47 
48 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
49 #define E1000_BUFFER_ALIGN	128
50 
51 /*
52  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
53  * Concurrent receiving on multiple active Ethernet devices will not work.
54  * Normally U-Boot does not support this anyway. To fix it in this driver,
55  * move these buffers and the tx/rx pointers to struct e1000_hw.
56  */
57 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
58 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
59 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
60 
61 static int tx_tail;
62 static int rx_tail, rx_last;
63 #ifdef CONFIG_DM_ETH
64 static int num_cards;	/* Number of E1000 devices seen so far */
65 #endif
66 
67 static struct pci_device_id e1000_supported[] = {
68 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
69 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
70 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
71 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
72 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
73 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
74 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
75 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
76 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
77 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
78 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
79 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
80 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
81 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
82 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
83 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
84 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
85 	/* E1000 PCIe card */
86 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
87 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
88 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
89 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
90 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
91 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
92 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
93 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
94 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
95 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
96 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
97 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
98 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
99 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
100 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
101 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
102 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
103 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
104 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
105 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
106 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
107 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
108 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
109 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
110 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
111 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
112 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
113 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
114 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
115 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
116 
117 	{}
118 };
119 
120 /* Function forward declarations */
121 static int e1000_setup_link(struct e1000_hw *hw);
122 static int e1000_setup_fiber_link(struct e1000_hw *hw);
123 static int e1000_setup_copper_link(struct e1000_hw *hw);
124 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
125 static void e1000_config_collision_dist(struct e1000_hw *hw);
126 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
127 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
128 static int e1000_check_for_link(struct e1000_hw *hw);
129 static int e1000_wait_autoneg(struct e1000_hw *hw);
130 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
131 				       uint16_t * duplex);
132 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
133 			      uint16_t * phy_data);
134 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
135 			       uint16_t phy_data);
136 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
137 static int e1000_phy_reset(struct e1000_hw *hw);
138 static int e1000_detect_gig_phy(struct e1000_hw *hw);
139 static void e1000_set_media_type(struct e1000_hw *hw);
140 
141 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
142 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
143 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
144 
145 #ifndef CONFIG_E1000_NO_NVM
146 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
147 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
148 		uint16_t words,
149 		uint16_t *data);
150 /******************************************************************************
151  * Raises the EEPROM's clock input.
152  *
153  * hw - Struct containing variables accessed by shared code
154  * eecd - EECD's current value
155  *****************************************************************************/
156 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
157 {
158 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
159 	 * wait 50 microseconds.
160 	 */
161 	*eecd = *eecd | E1000_EECD_SK;
162 	E1000_WRITE_REG(hw, EECD, *eecd);
163 	E1000_WRITE_FLUSH(hw);
164 	udelay(50);
165 }
166 
167 /******************************************************************************
168  * Lowers the EEPROM's clock input.
169  *
170  * hw - Struct containing variables accessed by shared code
171  * eecd - EECD's current value
172  *****************************************************************************/
173 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
174 {
175 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
176 	 * wait 50 microseconds.
177 	 */
178 	*eecd = *eecd & ~E1000_EECD_SK;
179 	E1000_WRITE_REG(hw, EECD, *eecd);
180 	E1000_WRITE_FLUSH(hw);
181 	udelay(50);
182 }
183 
184 /******************************************************************************
185  * Shift data bits out to the EEPROM.
186  *
187  * hw - Struct containing variables accessed by shared code
188  * data - data to send to the EEPROM
189  * count - number of bits to shift out
190  *****************************************************************************/
191 static void
192 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
193 {
194 	uint32_t eecd;
195 	uint32_t mask;
196 
197 	/* We need to shift "count" bits out to the EEPROM. So, value in the
198 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
199 	 * In order to do this, "data" must be broken down into bits.
200 	 */
201 	mask = 0x01 << (count - 1);
202 	eecd = E1000_READ_REG(hw, EECD);
203 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
204 	do {
205 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
206 		 * and then raising and then lowering the clock (the SK bit controls
207 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
208 		 * by setting "DI" to "0" and then raising and then lowering the clock.
209 		 */
210 		eecd &= ~E1000_EECD_DI;
211 
212 		if (data & mask)
213 			eecd |= E1000_EECD_DI;
214 
215 		E1000_WRITE_REG(hw, EECD, eecd);
216 		E1000_WRITE_FLUSH(hw);
217 
218 		udelay(50);
219 
220 		e1000_raise_ee_clk(hw, &eecd);
221 		e1000_lower_ee_clk(hw, &eecd);
222 
223 		mask = mask >> 1;
224 
225 	} while (mask);
226 
227 	/* We leave the "DI" bit set to "0" when we leave this routine. */
228 	eecd &= ~E1000_EECD_DI;
229 	E1000_WRITE_REG(hw, EECD, eecd);
230 }
231 
232 /******************************************************************************
233  * Shift data bits in from the EEPROM
234  *
235  * hw - Struct containing variables accessed by shared code
236  *****************************************************************************/
237 static uint16_t
238 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
239 {
240 	uint32_t eecd;
241 	uint32_t i;
242 	uint16_t data;
243 
244 	/* In order to read a register from the EEPROM, we need to shift 'count'
245 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
246 	 * input to the EEPROM (setting the SK bit), and then reading the
247 	 * value of the "DO" bit.  During this "shifting in" process the
248 	 * "DI" bit should always be clear.
249 	 */
250 
251 	eecd = E1000_READ_REG(hw, EECD);
252 
253 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
254 	data = 0;
255 
256 	for (i = 0; i < count; i++) {
257 		data = data << 1;
258 		e1000_raise_ee_clk(hw, &eecd);
259 
260 		eecd = E1000_READ_REG(hw, EECD);
261 
262 		eecd &= ~(E1000_EECD_DI);
263 		if (eecd & E1000_EECD_DO)
264 			data |= 1;
265 
266 		e1000_lower_ee_clk(hw, &eecd);
267 	}
268 
269 	return data;
270 }
271 
272 /******************************************************************************
273  * Returns EEPROM to a "standby" state
274  *
275  * hw - Struct containing variables accessed by shared code
276  *****************************************************************************/
277 void e1000_standby_eeprom(struct e1000_hw *hw)
278 {
279 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
280 	uint32_t eecd;
281 
282 	eecd = E1000_READ_REG(hw, EECD);
283 
284 	if (eeprom->type == e1000_eeprom_microwire) {
285 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
286 		E1000_WRITE_REG(hw, EECD, eecd);
287 		E1000_WRITE_FLUSH(hw);
288 		udelay(eeprom->delay_usec);
289 
290 		/* Clock high */
291 		eecd |= E1000_EECD_SK;
292 		E1000_WRITE_REG(hw, EECD, eecd);
293 		E1000_WRITE_FLUSH(hw);
294 		udelay(eeprom->delay_usec);
295 
296 		/* Select EEPROM */
297 		eecd |= E1000_EECD_CS;
298 		E1000_WRITE_REG(hw, EECD, eecd);
299 		E1000_WRITE_FLUSH(hw);
300 		udelay(eeprom->delay_usec);
301 
302 		/* Clock low */
303 		eecd &= ~E1000_EECD_SK;
304 		E1000_WRITE_REG(hw, EECD, eecd);
305 		E1000_WRITE_FLUSH(hw);
306 		udelay(eeprom->delay_usec);
307 	} else if (eeprom->type == e1000_eeprom_spi) {
308 		/* Toggle CS to flush commands */
309 		eecd |= E1000_EECD_CS;
310 		E1000_WRITE_REG(hw, EECD, eecd);
311 		E1000_WRITE_FLUSH(hw);
312 		udelay(eeprom->delay_usec);
313 		eecd &= ~E1000_EECD_CS;
314 		E1000_WRITE_REG(hw, EECD, eecd);
315 		E1000_WRITE_FLUSH(hw);
316 		udelay(eeprom->delay_usec);
317 	}
318 }
319 
320 /***************************************************************************
321 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
322 *
323 * hw - Struct containing variables accessed by shared code
324 ****************************************************************************/
325 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
326 {
327 	uint32_t eecd = 0;
328 
329 	DEBUGFUNC();
330 
331 	if (hw->mac_type == e1000_ich8lan)
332 		return false;
333 
334 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
335 		eecd = E1000_READ_REG(hw, EECD);
336 
337 		/* Isolate bits 15 & 16 */
338 		eecd = ((eecd >> 15) & 0x03);
339 
340 		/* If both bits are set, device is Flash type */
341 		if (eecd == 0x03)
342 			return false;
343 	}
344 	return true;
345 }
346 
347 /******************************************************************************
348  * Prepares EEPROM for access
349  *
350  * hw - Struct containing variables accessed by shared code
351  *
352  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
353  * function should be called before issuing a command to the EEPROM.
354  *****************************************************************************/
355 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
356 {
357 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
358 	uint32_t eecd, i = 0;
359 
360 	DEBUGFUNC();
361 
362 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
363 		return -E1000_ERR_SWFW_SYNC;
364 	eecd = E1000_READ_REG(hw, EECD);
365 
366 	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
367 		/* Request EEPROM Access */
368 		if (hw->mac_type > e1000_82544) {
369 			eecd |= E1000_EECD_REQ;
370 			E1000_WRITE_REG(hw, EECD, eecd);
371 			eecd = E1000_READ_REG(hw, EECD);
372 			while ((!(eecd & E1000_EECD_GNT)) &&
373 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
374 				i++;
375 				udelay(5);
376 				eecd = E1000_READ_REG(hw, EECD);
377 			}
378 			if (!(eecd & E1000_EECD_GNT)) {
379 				eecd &= ~E1000_EECD_REQ;
380 				E1000_WRITE_REG(hw, EECD, eecd);
381 				DEBUGOUT("Could not acquire EEPROM grant\n");
382 				return -E1000_ERR_EEPROM;
383 			}
384 		}
385 	}
386 
387 	/* Setup EEPROM for Read/Write */
388 
389 	if (eeprom->type == e1000_eeprom_microwire) {
390 		/* Clear SK and DI */
391 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
392 		E1000_WRITE_REG(hw, EECD, eecd);
393 
394 		/* Set CS */
395 		eecd |= E1000_EECD_CS;
396 		E1000_WRITE_REG(hw, EECD, eecd);
397 	} else if (eeprom->type == e1000_eeprom_spi) {
398 		/* Clear SK and CS */
399 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
400 		E1000_WRITE_REG(hw, EECD, eecd);
401 		udelay(1);
402 	}
403 
404 	return E1000_SUCCESS;
405 }
406 
407 /******************************************************************************
408  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
409  * is configured.  Additionally, if this is ICH8, the flash controller GbE
410  * registers must be mapped, or this will crash.
411  *
412  * hw - Struct containing variables accessed by shared code
413  *****************************************************************************/
414 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
415 {
416 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
417 	uint32_t eecd;
418 	int32_t ret_val = E1000_SUCCESS;
419 	uint16_t eeprom_size;
420 
421 	if (hw->mac_type == e1000_igb)
422 		eecd = E1000_READ_REG(hw, I210_EECD);
423 	else
424 		eecd = E1000_READ_REG(hw, EECD);
425 
426 	DEBUGFUNC();
427 
428 	switch (hw->mac_type) {
429 	case e1000_82542_rev2_0:
430 	case e1000_82542_rev2_1:
431 	case e1000_82543:
432 	case e1000_82544:
433 		eeprom->type = e1000_eeprom_microwire;
434 		eeprom->word_size = 64;
435 		eeprom->opcode_bits = 3;
436 		eeprom->address_bits = 6;
437 		eeprom->delay_usec = 50;
438 		eeprom->use_eerd = false;
439 		eeprom->use_eewr = false;
440 	break;
441 	case e1000_82540:
442 	case e1000_82545:
443 	case e1000_82545_rev_3:
444 	case e1000_82546:
445 	case e1000_82546_rev_3:
446 		eeprom->type = e1000_eeprom_microwire;
447 		eeprom->opcode_bits = 3;
448 		eeprom->delay_usec = 50;
449 		if (eecd & E1000_EECD_SIZE) {
450 			eeprom->word_size = 256;
451 			eeprom->address_bits = 8;
452 		} else {
453 			eeprom->word_size = 64;
454 			eeprom->address_bits = 6;
455 		}
456 		eeprom->use_eerd = false;
457 		eeprom->use_eewr = false;
458 		break;
459 	case e1000_82541:
460 	case e1000_82541_rev_2:
461 	case e1000_82547:
462 	case e1000_82547_rev_2:
463 		if (eecd & E1000_EECD_TYPE) {
464 			eeprom->type = e1000_eeprom_spi;
465 			eeprom->opcode_bits = 8;
466 			eeprom->delay_usec = 1;
467 			if (eecd & E1000_EECD_ADDR_BITS) {
468 				eeprom->page_size = 32;
469 				eeprom->address_bits = 16;
470 			} else {
471 				eeprom->page_size = 8;
472 				eeprom->address_bits = 8;
473 			}
474 		} else {
475 			eeprom->type = e1000_eeprom_microwire;
476 			eeprom->opcode_bits = 3;
477 			eeprom->delay_usec = 50;
478 			if (eecd & E1000_EECD_ADDR_BITS) {
479 				eeprom->word_size = 256;
480 				eeprom->address_bits = 8;
481 			} else {
482 				eeprom->word_size = 64;
483 				eeprom->address_bits = 6;
484 			}
485 		}
486 		eeprom->use_eerd = false;
487 		eeprom->use_eewr = false;
488 		break;
489 	case e1000_82571:
490 	case e1000_82572:
491 		eeprom->type = e1000_eeprom_spi;
492 		eeprom->opcode_bits = 8;
493 		eeprom->delay_usec = 1;
494 		if (eecd & E1000_EECD_ADDR_BITS) {
495 			eeprom->page_size = 32;
496 			eeprom->address_bits = 16;
497 		} else {
498 			eeprom->page_size = 8;
499 			eeprom->address_bits = 8;
500 		}
501 		eeprom->use_eerd = false;
502 		eeprom->use_eewr = false;
503 		break;
504 	case e1000_82573:
505 	case e1000_82574:
506 		eeprom->type = e1000_eeprom_spi;
507 		eeprom->opcode_bits = 8;
508 		eeprom->delay_usec = 1;
509 		if (eecd & E1000_EECD_ADDR_BITS) {
510 			eeprom->page_size = 32;
511 			eeprom->address_bits = 16;
512 		} else {
513 			eeprom->page_size = 8;
514 			eeprom->address_bits = 8;
515 		}
516 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
517 			eeprom->use_eerd = true;
518 			eeprom->use_eewr = true;
519 
520 			eeprom->type = e1000_eeprom_flash;
521 			eeprom->word_size = 2048;
522 
523 		/* Ensure that the Autonomous FLASH update bit is cleared due to
524 		 * Flash update issue on parts which use a FLASH for NVM. */
525 			eecd &= ~E1000_EECD_AUPDEN;
526 			E1000_WRITE_REG(hw, EECD, eecd);
527 		}
528 		break;
529 	case e1000_80003es2lan:
530 		eeprom->type = e1000_eeprom_spi;
531 		eeprom->opcode_bits = 8;
532 		eeprom->delay_usec = 1;
533 		if (eecd & E1000_EECD_ADDR_BITS) {
534 			eeprom->page_size = 32;
535 			eeprom->address_bits = 16;
536 		} else {
537 			eeprom->page_size = 8;
538 			eeprom->address_bits = 8;
539 		}
540 		eeprom->use_eerd = true;
541 		eeprom->use_eewr = false;
542 		break;
543 	case e1000_igb:
544 		/* i210 has 4k of iNVM mapped as EEPROM */
545 		eeprom->type = e1000_eeprom_invm;
546 		eeprom->opcode_bits = 8;
547 		eeprom->delay_usec = 1;
548 		eeprom->page_size = 32;
549 		eeprom->address_bits = 16;
550 		eeprom->use_eerd = true;
551 		eeprom->use_eewr = false;
552 		break;
553 
554 	/* ich8lan does not support currently. if needed, please
555 	 * add corresponding code and functions.
556 	 */
557 #if 0
558 	case e1000_ich8lan:
559 		{
560 		int32_t  i = 0;
561 
562 		eeprom->type = e1000_eeprom_ich8;
563 		eeprom->use_eerd = false;
564 		eeprom->use_eewr = false;
565 		eeprom->word_size = E1000_SHADOW_RAM_WORDS;
566 		uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
567 				ICH_FLASH_GFPREG);
568 		/* Zero the shadow RAM structure. But don't load it from NVM
569 		 * so as to save time for driver init */
570 		if (hw->eeprom_shadow_ram != NULL) {
571 			for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
572 				hw->eeprom_shadow_ram[i].modified = false;
573 				hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
574 			}
575 		}
576 
577 		hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
578 				ICH_FLASH_SECTOR_SIZE;
579 
580 		hw->flash_bank_size = ((flash_size >> 16)
581 				& ICH_GFPREG_BASE_MASK) + 1;
582 		hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
583 
584 		hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
585 
586 		hw->flash_bank_size /= 2 * sizeof(uint16_t);
587 		break;
588 		}
589 #endif
590 	default:
591 		break;
592 	}
593 
594 	if (eeprom->type == e1000_eeprom_spi ||
595 	    eeprom->type == e1000_eeprom_invm) {
596 		/* eeprom_size will be an enum [0..8] that maps
597 		 * to eeprom sizes 128B to
598 		 * 32KB (incremented by powers of 2).
599 		 */
600 		if (hw->mac_type <= e1000_82547_rev_2) {
601 			/* Set to default value for initial eeprom read. */
602 			eeprom->word_size = 64;
603 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
604 					&eeprom_size);
605 			if (ret_val)
606 				return ret_val;
607 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
608 				>> EEPROM_SIZE_SHIFT;
609 			/* 256B eeprom size was not supported in earlier
610 			 * hardware, so we bump eeprom_size up one to
611 			 * ensure that "1" (which maps to 256B) is never
612 			 * the result used in the shifting logic below. */
613 			if (eeprom_size)
614 				eeprom_size++;
615 		} else {
616 			eeprom_size = (uint16_t)((eecd &
617 				E1000_EECD_SIZE_EX_MASK) >>
618 				E1000_EECD_SIZE_EX_SHIFT);
619 		}
620 
621 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
622 	}
623 	return ret_val;
624 }
625 
626 /******************************************************************************
627  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
628  *
629  * hw - Struct containing variables accessed by shared code
630  *****************************************************************************/
631 static int32_t
632 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
633 {
634 	uint32_t attempts = 100000;
635 	uint32_t i, reg = 0;
636 	int32_t done = E1000_ERR_EEPROM;
637 
638 	for (i = 0; i < attempts; i++) {
639 		if (eerd == E1000_EEPROM_POLL_READ) {
640 			if (hw->mac_type == e1000_igb)
641 				reg = E1000_READ_REG(hw, I210_EERD);
642 			else
643 				reg = E1000_READ_REG(hw, EERD);
644 		} else {
645 			if (hw->mac_type == e1000_igb)
646 				reg = E1000_READ_REG(hw, I210_EEWR);
647 			else
648 				reg = E1000_READ_REG(hw, EEWR);
649 		}
650 
651 		if (reg & E1000_EEPROM_RW_REG_DONE) {
652 			done = E1000_SUCCESS;
653 			break;
654 		}
655 		udelay(5);
656 	}
657 
658 	return done;
659 }
660 
661 /******************************************************************************
662  * Reads a 16 bit word from the EEPROM using the EERD register.
663  *
664  * hw - Struct containing variables accessed by shared code
665  * offset - offset of  word in the EEPROM to read
666  * data - word read from the EEPROM
667  * words - number of words to read
668  *****************************************************************************/
669 static int32_t
670 e1000_read_eeprom_eerd(struct e1000_hw *hw,
671 			uint16_t offset,
672 			uint16_t words,
673 			uint16_t *data)
674 {
675 	uint32_t i, eerd = 0;
676 	int32_t error = 0;
677 
678 	for (i = 0; i < words; i++) {
679 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
680 			E1000_EEPROM_RW_REG_START;
681 
682 		if (hw->mac_type == e1000_igb)
683 			E1000_WRITE_REG(hw, I210_EERD, eerd);
684 		else
685 			E1000_WRITE_REG(hw, EERD, eerd);
686 
687 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
688 
689 		if (error)
690 			break;
691 
692 		if (hw->mac_type == e1000_igb) {
693 			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
694 				E1000_EEPROM_RW_REG_DATA);
695 		} else {
696 			data[i] = (E1000_READ_REG(hw, EERD) >>
697 				E1000_EEPROM_RW_REG_DATA);
698 		}
699 
700 	}
701 
702 	return error;
703 }
704 
705 void e1000_release_eeprom(struct e1000_hw *hw)
706 {
707 	uint32_t eecd;
708 
709 	DEBUGFUNC();
710 
711 	eecd = E1000_READ_REG(hw, EECD);
712 
713 	if (hw->eeprom.type == e1000_eeprom_spi) {
714 		eecd |= E1000_EECD_CS;  /* Pull CS high */
715 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
716 
717 		E1000_WRITE_REG(hw, EECD, eecd);
718 
719 		udelay(hw->eeprom.delay_usec);
720 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
721 		/* cleanup eeprom */
722 
723 		/* CS on Microwire is active-high */
724 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
725 
726 		E1000_WRITE_REG(hw, EECD, eecd);
727 
728 		/* Rising edge of clock */
729 		eecd |= E1000_EECD_SK;
730 		E1000_WRITE_REG(hw, EECD, eecd);
731 		E1000_WRITE_FLUSH(hw);
732 		udelay(hw->eeprom.delay_usec);
733 
734 		/* Falling edge of clock */
735 		eecd &= ~E1000_EECD_SK;
736 		E1000_WRITE_REG(hw, EECD, eecd);
737 		E1000_WRITE_FLUSH(hw);
738 		udelay(hw->eeprom.delay_usec);
739 	}
740 
741 	/* Stop requesting EEPROM access */
742 	if (hw->mac_type > e1000_82544) {
743 		eecd &= ~E1000_EECD_REQ;
744 		E1000_WRITE_REG(hw, EECD, eecd);
745 	}
746 
747 	e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
748 }
749 
750 /******************************************************************************
751  * Reads a 16 bit word from the EEPROM.
752  *
753  * hw - Struct containing variables accessed by shared code
754  *****************************************************************************/
755 static int32_t
756 e1000_spi_eeprom_ready(struct e1000_hw *hw)
757 {
758 	uint16_t retry_count = 0;
759 	uint8_t spi_stat_reg;
760 
761 	DEBUGFUNC();
762 
763 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
764 	 * EEPROM will signal that the command has been completed by clearing
765 	 * bit 0 of the internal status register.  If it's not cleared within
766 	 * 5 milliseconds, then error out.
767 	 */
768 	retry_count = 0;
769 	do {
770 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
771 			hw->eeprom.opcode_bits);
772 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
773 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
774 			break;
775 
776 		udelay(5);
777 		retry_count += 5;
778 
779 		e1000_standby_eeprom(hw);
780 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
781 
782 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
783 	 * only 0-5mSec on 5V devices)
784 	 */
785 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
786 		DEBUGOUT("SPI EEPROM Status error\n");
787 		return -E1000_ERR_EEPROM;
788 	}
789 
790 	return E1000_SUCCESS;
791 }
792 
793 /******************************************************************************
794  * Reads a 16 bit word from the EEPROM.
795  *
796  * hw - Struct containing variables accessed by shared code
797  * offset - offset of  word in the EEPROM to read
798  * data - word read from the EEPROM
799  *****************************************************************************/
800 static int32_t
801 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
802 		uint16_t words, uint16_t *data)
803 {
804 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
805 	uint32_t i = 0;
806 
807 	DEBUGFUNC();
808 
809 	/* If eeprom is not yet detected, do so now */
810 	if (eeprom->word_size == 0)
811 		e1000_init_eeprom_params(hw);
812 
813 	/* A check for invalid values:  offset too large, too many words,
814 	 * and not enough words.
815 	 */
816 	if ((offset >= eeprom->word_size) ||
817 		(words > eeprom->word_size - offset) ||
818 		(words == 0)) {
819 		DEBUGOUT("\"words\" parameter out of bounds."
820 			"Words = %d, size = %d\n", offset, eeprom->word_size);
821 		return -E1000_ERR_EEPROM;
822 	}
823 
824 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
825 	 * directly. In this case, we need to acquire the EEPROM so that
826 	 * FW or other port software does not interrupt.
827 	 */
828 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
829 		hw->eeprom.use_eerd == false) {
830 
831 		/* Prepare the EEPROM for bit-bang reading */
832 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
833 			return -E1000_ERR_EEPROM;
834 	}
835 
836 	/* Eerd register EEPROM access requires no eeprom aquire/release */
837 	if (eeprom->use_eerd == true)
838 		return e1000_read_eeprom_eerd(hw, offset, words, data);
839 
840 	/* ich8lan does not support currently. if needed, please
841 	 * add corresponding code and functions.
842 	 */
843 #if 0
844 	/* ICH EEPROM access is done via the ICH flash controller */
845 	if (eeprom->type == e1000_eeprom_ich8)
846 		return e1000_read_eeprom_ich8(hw, offset, words, data);
847 #endif
848 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
849 	 * acquired the EEPROM at this point, so any returns should relase it */
850 	if (eeprom->type == e1000_eeprom_spi) {
851 		uint16_t word_in;
852 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
853 
854 		if (e1000_spi_eeprom_ready(hw)) {
855 			e1000_release_eeprom(hw);
856 			return -E1000_ERR_EEPROM;
857 		}
858 
859 		e1000_standby_eeprom(hw);
860 
861 		/* Some SPI eeproms use the 8th address bit embedded in
862 		 * the opcode */
863 		if ((eeprom->address_bits == 8) && (offset >= 128))
864 			read_opcode |= EEPROM_A8_OPCODE_SPI;
865 
866 		/* Send the READ command (opcode + addr)  */
867 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
868 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
869 				eeprom->address_bits);
870 
871 		/* Read the data.  The address of the eeprom internally
872 		 * increments with each byte (spi) being read, saving on the
873 		 * overhead of eeprom setup and tear-down.  The address
874 		 * counter will roll over if reading beyond the size of
875 		 * the eeprom, thus allowing the entire memory to be read
876 		 * starting from any offset. */
877 		for (i = 0; i < words; i++) {
878 			word_in = e1000_shift_in_ee_bits(hw, 16);
879 			data[i] = (word_in >> 8) | (word_in << 8);
880 		}
881 	} else if (eeprom->type == e1000_eeprom_microwire) {
882 		for (i = 0; i < words; i++) {
883 			/* Send the READ command (opcode + addr)  */
884 			e1000_shift_out_ee_bits(hw,
885 				EEPROM_READ_OPCODE_MICROWIRE,
886 				eeprom->opcode_bits);
887 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
888 				eeprom->address_bits);
889 
890 			/* Read the data.  For microwire, each word requires
891 			 * the overhead of eeprom setup and tear-down. */
892 			data[i] = e1000_shift_in_ee_bits(hw, 16);
893 			e1000_standby_eeprom(hw);
894 		}
895 	}
896 
897 	/* End this read operation */
898 	e1000_release_eeprom(hw);
899 
900 	return E1000_SUCCESS;
901 }
902 
903 /******************************************************************************
904  * Verifies that the EEPROM has a valid checksum
905  *
906  * hw - Struct containing variables accessed by shared code
907  *
908  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
909  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
910  * valid.
911  *****************************************************************************/
912 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
913 {
914 	uint16_t i, checksum, checksum_reg, *buf;
915 
916 	DEBUGFUNC();
917 
918 	/* Allocate a temporary buffer */
919 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
920 	if (!buf) {
921 		E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
922 		return -E1000_ERR_EEPROM;
923 	}
924 
925 	/* Read the EEPROM */
926 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
927 		E1000_ERR(hw, "Unable to read EEPROM!\n");
928 		return -E1000_ERR_EEPROM;
929 	}
930 
931 	/* Compute the checksum */
932 	checksum = 0;
933 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
934 		checksum += buf[i];
935 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
936 	checksum_reg = buf[i];
937 
938 	/* Verify it! */
939 	if (checksum == checksum_reg)
940 		return 0;
941 
942 	/* Hrm, verification failed, print an error */
943 	E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
944 	E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
945 		  checksum_reg, checksum);
946 
947 	return -E1000_ERR_EEPROM;
948 }
949 #endif /* CONFIG_E1000_NO_NVM */
950 
951 /*****************************************************************************
952  * Set PHY to class A mode
953  * Assumes the following operations will follow to enable the new class mode.
954  *  1. Do a PHY soft reset
955  *  2. Restart auto-negotiation or force link.
956  *
957  * hw - Struct containing variables accessed by shared code
958  ****************************************************************************/
959 static int32_t
960 e1000_set_phy_mode(struct e1000_hw *hw)
961 {
962 #ifndef CONFIG_E1000_NO_NVM
963 	int32_t ret_val;
964 	uint16_t eeprom_data;
965 
966 	DEBUGFUNC();
967 
968 	if ((hw->mac_type == e1000_82545_rev_3) &&
969 		(hw->media_type == e1000_media_type_copper)) {
970 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
971 				1, &eeprom_data);
972 		if (ret_val)
973 			return ret_val;
974 
975 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
976 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
977 			ret_val = e1000_write_phy_reg(hw,
978 					M88E1000_PHY_PAGE_SELECT, 0x000B);
979 			if (ret_val)
980 				return ret_val;
981 			ret_val = e1000_write_phy_reg(hw,
982 					M88E1000_PHY_GEN_CONTROL, 0x8104);
983 			if (ret_val)
984 				return ret_val;
985 
986 			hw->phy_reset_disable = false;
987 		}
988 	}
989 #endif
990 	return E1000_SUCCESS;
991 }
992 
993 #ifndef CONFIG_E1000_NO_NVM
994 /***************************************************************************
995  *
996  * Obtaining software semaphore bit (SMBI) before resetting PHY.
997  *
998  * hw: Struct containing variables accessed by shared code
999  *
1000  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1001  *            E1000_SUCCESS at any other case.
1002  *
1003  ***************************************************************************/
1004 static int32_t
1005 e1000_get_software_semaphore(struct e1000_hw *hw)
1006 {
1007 	 int32_t timeout = hw->eeprom.word_size + 1;
1008 	 uint32_t swsm;
1009 
1010 	DEBUGFUNC();
1011 
1012 	if (hw->mac_type != e1000_80003es2lan)
1013 		return E1000_SUCCESS;
1014 
1015 	while (timeout) {
1016 		swsm = E1000_READ_REG(hw, SWSM);
1017 		/* If SMBI bit cleared, it is now set and we hold
1018 		 * the semaphore */
1019 		if (!(swsm & E1000_SWSM_SMBI))
1020 			break;
1021 		mdelay(1);
1022 		timeout--;
1023 	}
1024 
1025 	if (!timeout) {
1026 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1027 		return -E1000_ERR_RESET;
1028 	}
1029 
1030 	return E1000_SUCCESS;
1031 }
1032 #endif
1033 
1034 /***************************************************************************
1035  * This function clears HW semaphore bits.
1036  *
1037  * hw: Struct containing variables accessed by shared code
1038  *
1039  * returns: - None.
1040  *
1041  ***************************************************************************/
1042 static void
1043 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1044 {
1045 #ifndef CONFIG_E1000_NO_NVM
1046 	 uint32_t swsm;
1047 
1048 	DEBUGFUNC();
1049 
1050 	if (!hw->eeprom_semaphore_present)
1051 		return;
1052 
1053 	swsm = E1000_READ_REG(hw, SWSM);
1054 	if (hw->mac_type == e1000_80003es2lan) {
1055 		/* Release both semaphores. */
1056 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1057 	} else
1058 		swsm &= ~(E1000_SWSM_SWESMBI);
1059 	E1000_WRITE_REG(hw, SWSM, swsm);
1060 #endif
1061 }
1062 
1063 /***************************************************************************
1064  *
1065  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1066  * adapter or Eeprom access.
1067  *
1068  * hw: Struct containing variables accessed by shared code
1069  *
1070  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1071  *            E1000_SUCCESS at any other case.
1072  *
1073  ***************************************************************************/
1074 static int32_t
1075 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1076 {
1077 #ifndef CONFIG_E1000_NO_NVM
1078 	int32_t timeout;
1079 	uint32_t swsm;
1080 
1081 	DEBUGFUNC();
1082 
1083 	if (!hw->eeprom_semaphore_present)
1084 		return E1000_SUCCESS;
1085 
1086 	if (hw->mac_type == e1000_80003es2lan) {
1087 		/* Get the SW semaphore. */
1088 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1089 			return -E1000_ERR_EEPROM;
1090 	}
1091 
1092 	/* Get the FW semaphore. */
1093 	timeout = hw->eeprom.word_size + 1;
1094 	while (timeout) {
1095 		swsm = E1000_READ_REG(hw, SWSM);
1096 		swsm |= E1000_SWSM_SWESMBI;
1097 		E1000_WRITE_REG(hw, SWSM, swsm);
1098 		/* if we managed to set the bit we got the semaphore. */
1099 		swsm = E1000_READ_REG(hw, SWSM);
1100 		if (swsm & E1000_SWSM_SWESMBI)
1101 			break;
1102 
1103 		udelay(50);
1104 		timeout--;
1105 	}
1106 
1107 	if (!timeout) {
1108 		/* Release semaphores */
1109 		e1000_put_hw_eeprom_semaphore(hw);
1110 		DEBUGOUT("Driver can't access the Eeprom - "
1111 				"SWESMBI bit is set.\n");
1112 		return -E1000_ERR_EEPROM;
1113 	}
1114 #endif
1115 	return E1000_SUCCESS;
1116 }
1117 
1118 /* Take ownership of the PHY */
1119 static int32_t
1120 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1121 {
1122 	uint32_t swfw_sync = 0;
1123 	uint32_t swmask = mask;
1124 	uint32_t fwmask = mask << 16;
1125 	int32_t timeout = 200;
1126 
1127 	DEBUGFUNC();
1128 	while (timeout) {
1129 		if (e1000_get_hw_eeprom_semaphore(hw))
1130 			return -E1000_ERR_SWFW_SYNC;
1131 
1132 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1133 		if (!(swfw_sync & (fwmask | swmask)))
1134 			break;
1135 
1136 		/* firmware currently using resource (fwmask) */
1137 		/* or other software thread currently using resource (swmask) */
1138 		e1000_put_hw_eeprom_semaphore(hw);
1139 		mdelay(5);
1140 		timeout--;
1141 	}
1142 
1143 	if (!timeout) {
1144 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1145 		return -E1000_ERR_SWFW_SYNC;
1146 	}
1147 
1148 	swfw_sync |= swmask;
1149 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1150 
1151 	e1000_put_hw_eeprom_semaphore(hw);
1152 	return E1000_SUCCESS;
1153 }
1154 
1155 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1156 {
1157 	uint32_t swfw_sync = 0;
1158 
1159 	DEBUGFUNC();
1160 	while (e1000_get_hw_eeprom_semaphore(hw))
1161 		; /* Empty */
1162 
1163 	swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1164 	swfw_sync &= ~mask;
1165 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1166 
1167 	e1000_put_hw_eeprom_semaphore(hw);
1168 }
1169 
1170 static bool e1000_is_second_port(struct e1000_hw *hw)
1171 {
1172 	switch (hw->mac_type) {
1173 	case e1000_80003es2lan:
1174 	case e1000_82546:
1175 	case e1000_82571:
1176 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1177 			return true;
1178 		/* Fallthrough */
1179 	default:
1180 		return false;
1181 	}
1182 }
1183 
1184 #ifndef CONFIG_E1000_NO_NVM
1185 /******************************************************************************
1186  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1187  * second function of dual function devices
1188  *
1189  * nic - Struct containing variables accessed by shared code
1190  *****************************************************************************/
1191 static int
1192 e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1193 {
1194 	uint16_t offset;
1195 	uint16_t eeprom_data;
1196 	uint32_t reg_data = 0;
1197 	int i;
1198 
1199 	DEBUGFUNC();
1200 
1201 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1202 		offset = i >> 1;
1203 		if (hw->mac_type == e1000_igb) {
1204 			/* i210 preloads MAC address into RAL/RAH registers */
1205 			if (offset == 0)
1206 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1207 			else if (offset == 1)
1208 				reg_data >>= 16;
1209 			else if (offset == 2)
1210 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1211 			eeprom_data = reg_data & 0xffff;
1212 		} else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1213 			DEBUGOUT("EEPROM Read Error\n");
1214 			return -E1000_ERR_EEPROM;
1215 		}
1216 		enetaddr[i] = eeprom_data & 0xff;
1217 		enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1218 	}
1219 
1220 	/* Invert the last bit if this is the second device */
1221 	if (e1000_is_second_port(hw))
1222 		enetaddr[5] ^= 1;
1223 
1224 	return 0;
1225 }
1226 #endif
1227 
1228 /******************************************************************************
1229  * Initializes receive address filters.
1230  *
1231  * hw - Struct containing variables accessed by shared code
1232  *
1233  * Places the MAC address in receive address register 0 and clears the rest
1234  * of the receive addresss registers. Clears the multicast table. Assumes
1235  * the receiver is in reset when the routine is called.
1236  *****************************************************************************/
1237 static void
1238 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1239 {
1240 	uint32_t i;
1241 	uint32_t addr_low;
1242 	uint32_t addr_high;
1243 
1244 	DEBUGFUNC();
1245 
1246 	/* Setup the receive address. */
1247 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1248 	addr_low = (enetaddr[0] |
1249 		    (enetaddr[1] << 8) |
1250 		    (enetaddr[2] << 16) | (enetaddr[3] << 24));
1251 
1252 	addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1253 
1254 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1255 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1256 
1257 	/* Zero out the other 15 receive addresses. */
1258 	DEBUGOUT("Clearing RAR[1-15]\n");
1259 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1260 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1261 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1262 	}
1263 }
1264 
1265 /******************************************************************************
1266  * Clears the VLAN filer table
1267  *
1268  * hw - Struct containing variables accessed by shared code
1269  *****************************************************************************/
1270 static void
1271 e1000_clear_vfta(struct e1000_hw *hw)
1272 {
1273 	uint32_t offset;
1274 
1275 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1276 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1277 }
1278 
1279 /******************************************************************************
1280  * Set the mac type member in the hw struct.
1281  *
1282  * hw - Struct containing variables accessed by shared code
1283  *****************************************************************************/
1284 int32_t
1285 e1000_set_mac_type(struct e1000_hw *hw)
1286 {
1287 	DEBUGFUNC();
1288 
1289 	switch (hw->device_id) {
1290 	case E1000_DEV_ID_82542:
1291 		switch (hw->revision_id) {
1292 		case E1000_82542_2_0_REV_ID:
1293 			hw->mac_type = e1000_82542_rev2_0;
1294 			break;
1295 		case E1000_82542_2_1_REV_ID:
1296 			hw->mac_type = e1000_82542_rev2_1;
1297 			break;
1298 		default:
1299 			/* Invalid 82542 revision ID */
1300 			return -E1000_ERR_MAC_TYPE;
1301 		}
1302 		break;
1303 	case E1000_DEV_ID_82543GC_FIBER:
1304 	case E1000_DEV_ID_82543GC_COPPER:
1305 		hw->mac_type = e1000_82543;
1306 		break;
1307 	case E1000_DEV_ID_82544EI_COPPER:
1308 	case E1000_DEV_ID_82544EI_FIBER:
1309 	case E1000_DEV_ID_82544GC_COPPER:
1310 	case E1000_DEV_ID_82544GC_LOM:
1311 		hw->mac_type = e1000_82544;
1312 		break;
1313 	case E1000_DEV_ID_82540EM:
1314 	case E1000_DEV_ID_82540EM_LOM:
1315 	case E1000_DEV_ID_82540EP:
1316 	case E1000_DEV_ID_82540EP_LOM:
1317 	case E1000_DEV_ID_82540EP_LP:
1318 		hw->mac_type = e1000_82540;
1319 		break;
1320 	case E1000_DEV_ID_82545EM_COPPER:
1321 	case E1000_DEV_ID_82545EM_FIBER:
1322 		hw->mac_type = e1000_82545;
1323 		break;
1324 	case E1000_DEV_ID_82545GM_COPPER:
1325 	case E1000_DEV_ID_82545GM_FIBER:
1326 	case E1000_DEV_ID_82545GM_SERDES:
1327 		hw->mac_type = e1000_82545_rev_3;
1328 		break;
1329 	case E1000_DEV_ID_82546EB_COPPER:
1330 	case E1000_DEV_ID_82546EB_FIBER:
1331 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1332 		hw->mac_type = e1000_82546;
1333 		break;
1334 	case E1000_DEV_ID_82546GB_COPPER:
1335 	case E1000_DEV_ID_82546GB_FIBER:
1336 	case E1000_DEV_ID_82546GB_SERDES:
1337 	case E1000_DEV_ID_82546GB_PCIE:
1338 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1339 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1340 		hw->mac_type = e1000_82546_rev_3;
1341 		break;
1342 	case E1000_DEV_ID_82541EI:
1343 	case E1000_DEV_ID_82541EI_MOBILE:
1344 	case E1000_DEV_ID_82541ER_LOM:
1345 		hw->mac_type = e1000_82541;
1346 		break;
1347 	case E1000_DEV_ID_82541ER:
1348 	case E1000_DEV_ID_82541GI:
1349 	case E1000_DEV_ID_82541GI_LF:
1350 	case E1000_DEV_ID_82541GI_MOBILE:
1351 		hw->mac_type = e1000_82541_rev_2;
1352 		break;
1353 	case E1000_DEV_ID_82547EI:
1354 	case E1000_DEV_ID_82547EI_MOBILE:
1355 		hw->mac_type = e1000_82547;
1356 		break;
1357 	case E1000_DEV_ID_82547GI:
1358 		hw->mac_type = e1000_82547_rev_2;
1359 		break;
1360 	case E1000_DEV_ID_82571EB_COPPER:
1361 	case E1000_DEV_ID_82571EB_FIBER:
1362 	case E1000_DEV_ID_82571EB_SERDES:
1363 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1364 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1365 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1366 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1367 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1368 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1369 		hw->mac_type = e1000_82571;
1370 		break;
1371 	case E1000_DEV_ID_82572EI_COPPER:
1372 	case E1000_DEV_ID_82572EI_FIBER:
1373 	case E1000_DEV_ID_82572EI_SERDES:
1374 	case E1000_DEV_ID_82572EI:
1375 		hw->mac_type = e1000_82572;
1376 		break;
1377 	case E1000_DEV_ID_82573E:
1378 	case E1000_DEV_ID_82573E_IAMT:
1379 	case E1000_DEV_ID_82573L:
1380 		hw->mac_type = e1000_82573;
1381 		break;
1382 	case E1000_DEV_ID_82574L:
1383 		hw->mac_type = e1000_82574;
1384 		break;
1385 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1386 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1387 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1388 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1389 		hw->mac_type = e1000_80003es2lan;
1390 		break;
1391 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1392 	case E1000_DEV_ID_ICH8_IGP_AMT:
1393 	case E1000_DEV_ID_ICH8_IGP_C:
1394 	case E1000_DEV_ID_ICH8_IFE:
1395 	case E1000_DEV_ID_ICH8_IFE_GT:
1396 	case E1000_DEV_ID_ICH8_IFE_G:
1397 	case E1000_DEV_ID_ICH8_IGP_M:
1398 		hw->mac_type = e1000_ich8lan;
1399 		break;
1400 	case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1401 	case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1402 	case PCI_DEVICE_ID_INTEL_I210_COPPER:
1403 	case PCI_DEVICE_ID_INTEL_I211_COPPER:
1404 	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1405 	case PCI_DEVICE_ID_INTEL_I210_SERDES:
1406 	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1407 	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1408 		hw->mac_type = e1000_igb;
1409 		break;
1410 	default:
1411 		/* Should never have loaded on this device */
1412 		return -E1000_ERR_MAC_TYPE;
1413 	}
1414 	return E1000_SUCCESS;
1415 }
1416 
1417 /******************************************************************************
1418  * Reset the transmit and receive units; mask and clear all interrupts.
1419  *
1420  * hw - Struct containing variables accessed by shared code
1421  *****************************************************************************/
1422 void
1423 e1000_reset_hw(struct e1000_hw *hw)
1424 {
1425 	uint32_t ctrl;
1426 	uint32_t ctrl_ext;
1427 	uint32_t manc;
1428 	uint32_t pba = 0;
1429 	uint32_t reg;
1430 
1431 	DEBUGFUNC();
1432 
1433 	/* get the correct pba value for both PCI and PCIe*/
1434 	if (hw->mac_type <  e1000_82571)
1435 		pba = E1000_DEFAULT_PCI_PBA;
1436 	else
1437 		pba = E1000_DEFAULT_PCIE_PBA;
1438 
1439 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1440 	if (hw->mac_type == e1000_82542_rev2_0) {
1441 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1442 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1443 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1444 	}
1445 
1446 	/* Clear interrupt mask to stop board from generating interrupts */
1447 	DEBUGOUT("Masking off all interrupts\n");
1448 	if (hw->mac_type == e1000_igb)
1449 		E1000_WRITE_REG(hw, I210_IAM, 0);
1450 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1451 
1452 	/* Disable the Transmit and Receive units.  Then delay to allow
1453 	 * any pending transactions to complete before we hit the MAC with
1454 	 * the global reset.
1455 	 */
1456 	E1000_WRITE_REG(hw, RCTL, 0);
1457 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1458 	E1000_WRITE_FLUSH(hw);
1459 
1460 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1461 	hw->tbi_compatibility_on = false;
1462 
1463 	/* Delay to allow any outstanding PCI transactions to complete before
1464 	 * resetting the device
1465 	 */
1466 	mdelay(10);
1467 
1468 	/* Issue a global reset to the MAC.  This will reset the chip's
1469 	 * transmit, receive, DMA, and link units.  It will not effect
1470 	 * the current PCI configuration.  The global reset bit is self-
1471 	 * clearing, and should clear within a microsecond.
1472 	 */
1473 	DEBUGOUT("Issuing a global reset to MAC\n");
1474 	ctrl = E1000_READ_REG(hw, CTRL);
1475 
1476 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1477 
1478 	/* Force a reload from the EEPROM if necessary */
1479 	if (hw->mac_type == e1000_igb) {
1480 		mdelay(20);
1481 		reg = E1000_READ_REG(hw, STATUS);
1482 		if (reg & E1000_STATUS_PF_RST_DONE)
1483 			DEBUGOUT("PF OK\n");
1484 		reg = E1000_READ_REG(hw, I210_EECD);
1485 		if (reg & E1000_EECD_AUTO_RD)
1486 			DEBUGOUT("EEC OK\n");
1487 	} else if (hw->mac_type < e1000_82540) {
1488 		/* Wait for reset to complete */
1489 		udelay(10);
1490 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1491 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1492 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1493 		E1000_WRITE_FLUSH(hw);
1494 		/* Wait for EEPROM reload */
1495 		mdelay(2);
1496 	} else {
1497 		/* Wait for EEPROM reload (it happens automatically) */
1498 		mdelay(4);
1499 		/* Dissable HW ARPs on ASF enabled adapters */
1500 		manc = E1000_READ_REG(hw, MANC);
1501 		manc &= ~(E1000_MANC_ARP_EN);
1502 		E1000_WRITE_REG(hw, MANC, manc);
1503 	}
1504 
1505 	/* Clear interrupt mask to stop board from generating interrupts */
1506 	DEBUGOUT("Masking off all interrupts\n");
1507 	if (hw->mac_type == e1000_igb)
1508 		E1000_WRITE_REG(hw, I210_IAM, 0);
1509 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1510 
1511 	/* Clear any pending interrupt events. */
1512 	E1000_READ_REG(hw, ICR);
1513 
1514 	/* If MWI was previously enabled, reenable it. */
1515 	if (hw->mac_type == e1000_82542_rev2_0) {
1516 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1517 	}
1518 	if (hw->mac_type != e1000_igb)
1519 		E1000_WRITE_REG(hw, PBA, pba);
1520 }
1521 
1522 /******************************************************************************
1523  *
1524  * Initialize a number of hardware-dependent bits
1525  *
1526  * hw: Struct containing variables accessed by shared code
1527  *
1528  * This function contains hardware limitation workarounds for PCI-E adapters
1529  *
1530  *****************************************************************************/
1531 static void
1532 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1533 {
1534 	if ((hw->mac_type >= e1000_82571) &&
1535 			(!hw->initialize_hw_bits_disable)) {
1536 		/* Settings common to all PCI-express silicon */
1537 		uint32_t reg_ctrl, reg_ctrl_ext;
1538 		uint32_t reg_tarc0, reg_tarc1;
1539 		uint32_t reg_tctl;
1540 		uint32_t reg_txdctl, reg_txdctl1;
1541 
1542 		/* link autonegotiation/sync workarounds */
1543 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1544 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1545 
1546 		/* Enable not-done TX descriptor counting */
1547 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1548 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1549 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1550 
1551 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1552 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1553 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1554 
1555 	/* IGB is cool */
1556 	if (hw->mac_type == e1000_igb)
1557 		return;
1558 
1559 		switch (hw->mac_type) {
1560 		case e1000_82571:
1561 		case e1000_82572:
1562 			/* Clear PHY TX compatible mode bits */
1563 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1564 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1565 
1566 			/* link autonegotiation/sync workarounds */
1567 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1568 
1569 			/* TX ring control fixes */
1570 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1571 
1572 			/* Multiple read bit is reversed polarity */
1573 			reg_tctl = E1000_READ_REG(hw, TCTL);
1574 			if (reg_tctl & E1000_TCTL_MULR)
1575 				reg_tarc1 &= ~(1 << 28);
1576 			else
1577 				reg_tarc1 |= (1 << 28);
1578 
1579 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1580 			break;
1581 		case e1000_82573:
1582 		case e1000_82574:
1583 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1584 			reg_ctrl_ext &= ~(1 << 23);
1585 			reg_ctrl_ext |= (1 << 22);
1586 
1587 			/* TX byte count fix */
1588 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1589 			reg_ctrl &= ~(1 << 29);
1590 
1591 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1592 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1593 			break;
1594 		case e1000_80003es2lan:
1595 	/* improve small packet performace for fiber/serdes */
1596 			if ((hw->media_type == e1000_media_type_fiber)
1597 			|| (hw->media_type ==
1598 				e1000_media_type_internal_serdes)) {
1599 				reg_tarc0 &= ~(1 << 20);
1600 			}
1601 
1602 		/* Multiple read bit is reversed polarity */
1603 			reg_tctl = E1000_READ_REG(hw, TCTL);
1604 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1605 			if (reg_tctl & E1000_TCTL_MULR)
1606 				reg_tarc1 &= ~(1 << 28);
1607 			else
1608 				reg_tarc1 |= (1 << 28);
1609 
1610 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1611 			break;
1612 		case e1000_ich8lan:
1613 			/* Reduce concurrent DMA requests to 3 from 4 */
1614 			if ((hw->revision_id < 3) ||
1615 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1616 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1617 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1618 
1619 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1620 			reg_ctrl_ext |= (1 << 22);
1621 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1622 
1623 			/* workaround TX hang with TSO=on */
1624 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1625 
1626 			/* Multiple read bit is reversed polarity */
1627 			reg_tctl = E1000_READ_REG(hw, TCTL);
1628 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1629 			if (reg_tctl & E1000_TCTL_MULR)
1630 				reg_tarc1 &= ~(1 << 28);
1631 			else
1632 				reg_tarc1 |= (1 << 28);
1633 
1634 			/* workaround TX hang with TSO=on */
1635 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1636 
1637 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1638 			break;
1639 		default:
1640 			break;
1641 		}
1642 
1643 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1644 	}
1645 }
1646 
1647 /******************************************************************************
1648  * Performs basic configuration of the adapter.
1649  *
1650  * hw - Struct containing variables accessed by shared code
1651  *
1652  * Assumes that the controller has previously been reset and is in a
1653  * post-reset uninitialized state. Initializes the receive address registers,
1654  * multicast table, and VLAN filter table. Calls routines to setup link
1655  * configuration and flow control settings. Clears all on-chip counters. Leaves
1656  * the transmit and receive units disabled and uninitialized.
1657  *****************************************************************************/
1658 static int
1659 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1660 {
1661 	uint32_t ctrl;
1662 	uint32_t i;
1663 	int32_t ret_val;
1664 	uint16_t pcix_cmd_word;
1665 	uint16_t pcix_stat_hi_word;
1666 	uint16_t cmd_mmrbc;
1667 	uint16_t stat_mmrbc;
1668 	uint32_t mta_size;
1669 	uint32_t reg_data;
1670 	uint32_t ctrl_ext;
1671 	DEBUGFUNC();
1672 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1673 	if ((hw->mac_type == e1000_ich8lan) &&
1674 		((hw->revision_id < 3) ||
1675 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1676 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1677 			reg_data = E1000_READ_REG(hw, STATUS);
1678 			reg_data &= ~0x80000000;
1679 			E1000_WRITE_REG(hw, STATUS, reg_data);
1680 	}
1681 	/* Do not need initialize Identification LED */
1682 
1683 	/* Set the media type and TBI compatibility */
1684 	e1000_set_media_type(hw);
1685 
1686 	/* Must be called after e1000_set_media_type
1687 	 * because media_type is used */
1688 	e1000_initialize_hardware_bits(hw);
1689 
1690 	/* Disabling VLAN filtering. */
1691 	DEBUGOUT("Initializing the IEEE VLAN\n");
1692 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1693 	if (hw->mac_type != e1000_ich8lan) {
1694 		if (hw->mac_type < e1000_82545_rev_3)
1695 			E1000_WRITE_REG(hw, VET, 0);
1696 		e1000_clear_vfta(hw);
1697 	}
1698 
1699 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1700 	if (hw->mac_type == e1000_82542_rev2_0) {
1701 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1702 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1703 				      hw->
1704 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1705 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1706 		E1000_WRITE_FLUSH(hw);
1707 		mdelay(5);
1708 	}
1709 
1710 	/* Setup the receive address. This involves initializing all of the Receive
1711 	 * Address Registers (RARs 0 - 15).
1712 	 */
1713 	e1000_init_rx_addrs(hw, enetaddr);
1714 
1715 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1716 	if (hw->mac_type == e1000_82542_rev2_0) {
1717 		E1000_WRITE_REG(hw, RCTL, 0);
1718 		E1000_WRITE_FLUSH(hw);
1719 		mdelay(1);
1720 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1721 	}
1722 
1723 	/* Zero out the Multicast HASH table */
1724 	DEBUGOUT("Zeroing the MTA\n");
1725 	mta_size = E1000_MC_TBL_SIZE;
1726 	if (hw->mac_type == e1000_ich8lan)
1727 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1728 	for (i = 0; i < mta_size; i++) {
1729 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1730 		/* use write flush to prevent Memory Write Block (MWB) from
1731 		 * occuring when accessing our register space */
1732 		E1000_WRITE_FLUSH(hw);
1733 	}
1734 #if 0
1735 	/* Set the PCI priority bit correctly in the CTRL register.  This
1736 	 * determines if the adapter gives priority to receives, or if it
1737 	 * gives equal priority to transmits and receives.  Valid only on
1738 	 * 82542 and 82543 silicon.
1739 	 */
1740 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1741 		ctrl = E1000_READ_REG(hw, CTRL);
1742 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1743 	}
1744 #endif
1745 	switch (hw->mac_type) {
1746 	case e1000_82545_rev_3:
1747 	case e1000_82546_rev_3:
1748 	case e1000_igb:
1749 		break;
1750 	default:
1751 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1752 	if (hw->bus_type == e1000_bus_type_pcix) {
1753 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1754 				     &pcix_cmd_word);
1755 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1756 				     &pcix_stat_hi_word);
1757 		cmd_mmrbc =
1758 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1759 		    PCIX_COMMAND_MMRBC_SHIFT;
1760 		stat_mmrbc =
1761 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1762 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1763 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1764 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1765 		if (cmd_mmrbc > stat_mmrbc) {
1766 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1767 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1768 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1769 					      pcix_cmd_word);
1770 		}
1771 	}
1772 		break;
1773 	}
1774 
1775 	/* More time needed for PHY to initialize */
1776 	if (hw->mac_type == e1000_ich8lan)
1777 		mdelay(15);
1778 	if (hw->mac_type == e1000_igb)
1779 		mdelay(15);
1780 
1781 	/* Call a subroutine to configure the link and setup flow control. */
1782 	ret_val = e1000_setup_link(hw);
1783 
1784 	/* Set the transmit descriptor write-back policy */
1785 	if (hw->mac_type > e1000_82544) {
1786 		ctrl = E1000_READ_REG(hw, TXDCTL);
1787 		ctrl =
1788 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1789 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1790 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1791 	}
1792 
1793 	/* Set the receive descriptor write back policy */
1794 	if (hw->mac_type >= e1000_82571) {
1795 		ctrl = E1000_READ_REG(hw, RXDCTL);
1796 		ctrl =
1797 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1798 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1799 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1800 	}
1801 
1802 	switch (hw->mac_type) {
1803 	default:
1804 		break;
1805 	case e1000_80003es2lan:
1806 		/* Enable retransmit on late collisions */
1807 		reg_data = E1000_READ_REG(hw, TCTL);
1808 		reg_data |= E1000_TCTL_RTLC;
1809 		E1000_WRITE_REG(hw, TCTL, reg_data);
1810 
1811 		/* Configure Gigabit Carry Extend Padding */
1812 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
1813 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1814 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1815 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1816 
1817 		/* Configure Transmit Inter-Packet Gap */
1818 		reg_data = E1000_READ_REG(hw, TIPG);
1819 		reg_data &= ~E1000_TIPG_IPGT_MASK;
1820 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1821 		E1000_WRITE_REG(hw, TIPG, reg_data);
1822 
1823 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1824 		reg_data &= ~0x00100000;
1825 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1826 		/* Fall through */
1827 	case e1000_82571:
1828 	case e1000_82572:
1829 	case e1000_ich8lan:
1830 		ctrl = E1000_READ_REG(hw, TXDCTL1);
1831 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1832 			| E1000_TXDCTL_FULL_TX_DESC_WB;
1833 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1834 		break;
1835 	case e1000_82573:
1836 	case e1000_82574:
1837 		reg_data = E1000_READ_REG(hw, GCR);
1838 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1839 		E1000_WRITE_REG(hw, GCR, reg_data);
1840 	case e1000_igb:
1841 		break;
1842 	}
1843 
1844 #if 0
1845 	/* Clear all of the statistics registers (clear on read).  It is
1846 	 * important that we do this after we have tried to establish link
1847 	 * because the symbol error count will increment wildly if there
1848 	 * is no link.
1849 	 */
1850 	e1000_clear_hw_cntrs(hw);
1851 
1852 	/* ICH8 No-snoop bits are opposite polarity.
1853 	 * Set to snoop by default after reset. */
1854 	if (hw->mac_type == e1000_ich8lan)
1855 		e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1856 #endif
1857 
1858 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1859 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1860 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1861 		/* Relaxed ordering must be disabled to avoid a parity
1862 		 * error crash in a PCI slot. */
1863 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1864 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1865 	}
1866 
1867 	return ret_val;
1868 }
1869 
1870 /******************************************************************************
1871  * Configures flow control and link settings.
1872  *
1873  * hw - Struct containing variables accessed by shared code
1874  *
1875  * Determines which flow control settings to use. Calls the apropriate media-
1876  * specific link configuration function. Configures the flow control settings.
1877  * Assuming the adapter has a valid link partner, a valid link should be
1878  * established. Assumes the hardware has previously been reset and the
1879  * transmitter and receiver are not enabled.
1880  *****************************************************************************/
1881 static int
1882 e1000_setup_link(struct e1000_hw *hw)
1883 {
1884 	int32_t ret_val;
1885 #ifndef CONFIG_E1000_NO_NVM
1886 	uint32_t ctrl_ext;
1887 	uint16_t eeprom_data;
1888 #endif
1889 
1890 	DEBUGFUNC();
1891 
1892 	/* In the case of the phy reset being blocked, we already have a link.
1893 	 * We do not have to set it up again. */
1894 	if (e1000_check_phy_reset_block(hw))
1895 		return E1000_SUCCESS;
1896 
1897 #ifndef CONFIG_E1000_NO_NVM
1898 	/* Read and store word 0x0F of the EEPROM. This word contains bits
1899 	 * that determine the hardware's default PAUSE (flow control) mode,
1900 	 * a bit that determines whether the HW defaults to enabling or
1901 	 * disabling auto-negotiation, and the direction of the
1902 	 * SW defined pins. If there is no SW over-ride of the flow
1903 	 * control setting, then the variable hw->fc will
1904 	 * be initialized based on a value in the EEPROM.
1905 	 */
1906 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1907 				&eeprom_data) < 0) {
1908 		DEBUGOUT("EEPROM Read Error\n");
1909 		return -E1000_ERR_EEPROM;
1910 	}
1911 #endif
1912 	if (hw->fc == e1000_fc_default) {
1913 		switch (hw->mac_type) {
1914 		case e1000_ich8lan:
1915 		case e1000_82573:
1916 		case e1000_82574:
1917 		case e1000_igb:
1918 			hw->fc = e1000_fc_full;
1919 			break;
1920 		default:
1921 #ifndef CONFIG_E1000_NO_NVM
1922 			ret_val = e1000_read_eeprom(hw,
1923 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1924 			if (ret_val) {
1925 				DEBUGOUT("EEPROM Read Error\n");
1926 				return -E1000_ERR_EEPROM;
1927 			}
1928 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1929 				hw->fc = e1000_fc_none;
1930 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1931 				    EEPROM_WORD0F_ASM_DIR)
1932 				hw->fc = e1000_fc_tx_pause;
1933 			else
1934 #endif
1935 				hw->fc = e1000_fc_full;
1936 			break;
1937 		}
1938 	}
1939 
1940 	/* We want to save off the original Flow Control configuration just
1941 	 * in case we get disconnected and then reconnected into a different
1942 	 * hub or switch with different Flow Control capabilities.
1943 	 */
1944 	if (hw->mac_type == e1000_82542_rev2_0)
1945 		hw->fc &= (~e1000_fc_tx_pause);
1946 
1947 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1948 		hw->fc &= (~e1000_fc_rx_pause);
1949 
1950 	hw->original_fc = hw->fc;
1951 
1952 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1953 
1954 #ifndef CONFIG_E1000_NO_NVM
1955 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
1956 	 * polarity value for the SW controlled pins, and setup the
1957 	 * Extended Device Control reg with that info.
1958 	 * This is needed because one of the SW controlled pins is used for
1959 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
1960 	 * or e1000_phy_setup() is called.
1961 	 */
1962 	if (hw->mac_type == e1000_82543) {
1963 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1964 			    SWDPIO__EXT_SHIFT);
1965 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1966 	}
1967 #endif
1968 
1969 	/* Call the necessary subroutine to configure the link. */
1970 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
1971 	    e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
1972 	if (ret_val < 0) {
1973 		return ret_val;
1974 	}
1975 
1976 	/* Initialize the flow control address, type, and PAUSE timer
1977 	 * registers to their default values.  This is done even if flow
1978 	 * control is disabled, because it does not hurt anything to
1979 	 * initialize these registers.
1980 	 */
1981 	DEBUGOUT("Initializing the Flow Control address, type"
1982 			"and timer regs\n");
1983 
1984 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1985 	if (hw->mac_type != e1000_ich8lan) {
1986 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1987 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1988 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1989 	}
1990 
1991 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1992 
1993 	/* Set the flow control receive threshold registers.  Normally,
1994 	 * these registers will be set to a default threshold that may be
1995 	 * adjusted later by the driver's runtime code.  However, if the
1996 	 * ability to transmit pause frames in not enabled, then these
1997 	 * registers will be set to 0.
1998 	 */
1999 	if (!(hw->fc & e1000_fc_tx_pause)) {
2000 		E1000_WRITE_REG(hw, FCRTL, 0);
2001 		E1000_WRITE_REG(hw, FCRTH, 0);
2002 	} else {
2003 		/* We need to set up the Receive Threshold high and low water marks
2004 		 * as well as (optionally) enabling the transmission of XON frames.
2005 		 */
2006 		if (hw->fc_send_xon) {
2007 			E1000_WRITE_REG(hw, FCRTL,
2008 					(hw->fc_low_water | E1000_FCRTL_XONE));
2009 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2010 		} else {
2011 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2012 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2013 		}
2014 	}
2015 	return ret_val;
2016 }
2017 
2018 /******************************************************************************
2019  * Sets up link for a fiber based adapter
2020  *
2021  * hw - Struct containing variables accessed by shared code
2022  *
2023  * Manipulates Physical Coding Sublayer functions in order to configure
2024  * link. Assumes the hardware has been previously reset and the transmitter
2025  * and receiver are not enabled.
2026  *****************************************************************************/
2027 static int
2028 e1000_setup_fiber_link(struct e1000_hw *hw)
2029 {
2030 	uint32_t ctrl;
2031 	uint32_t status;
2032 	uint32_t txcw = 0;
2033 	uint32_t i;
2034 	uint32_t signal;
2035 	int32_t ret_val;
2036 
2037 	DEBUGFUNC();
2038 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2039 	 * set when the optics detect a signal. On older adapters, it will be
2040 	 * cleared when there is a signal
2041 	 */
2042 	ctrl = E1000_READ_REG(hw, CTRL);
2043 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2044 		signal = E1000_CTRL_SWDPIN1;
2045 	else
2046 		signal = 0;
2047 
2048 	printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2049 	       ctrl);
2050 	/* Take the link out of reset */
2051 	ctrl &= ~(E1000_CTRL_LRST);
2052 
2053 	e1000_config_collision_dist(hw);
2054 
2055 	/* Check for a software override of the flow control settings, and setup
2056 	 * the device accordingly.  If auto-negotiation is enabled, then software
2057 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2058 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2059 	 * auto-negotiation is disabled, then software will have to manually
2060 	 * configure the two flow control enable bits in the CTRL register.
2061 	 *
2062 	 * The possible values of the "fc" parameter are:
2063 	 *	0:  Flow control is completely disabled
2064 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
2065 	 *	    not send pause frames).
2066 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
2067 	 *	    not support receiving pause frames).
2068 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
2069 	 */
2070 	switch (hw->fc) {
2071 	case e1000_fc_none:
2072 		/* Flow control is completely disabled by a software over-ride. */
2073 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2074 		break;
2075 	case e1000_fc_rx_pause:
2076 		/* RX Flow control is enabled and TX Flow control is disabled by a
2077 		 * software over-ride. Since there really isn't a way to advertise
2078 		 * that we are capable of RX Pause ONLY, we will advertise that we
2079 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
2080 		 *  disable the adapter's ability to send PAUSE frames.
2081 		 */
2082 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2083 		break;
2084 	case e1000_fc_tx_pause:
2085 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
2086 		 * software over-ride.
2087 		 */
2088 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2089 		break;
2090 	case e1000_fc_full:
2091 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
2092 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2093 		break;
2094 	default:
2095 		DEBUGOUT("Flow control param set incorrectly\n");
2096 		return -E1000_ERR_CONFIG;
2097 		break;
2098 	}
2099 
2100 	/* Since auto-negotiation is enabled, take the link out of reset (the link
2101 	 * will be in reset, because we previously reset the chip). This will
2102 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2103 	 * link-up status bit will be set and the flow control enable bits (RFCE
2104 	 * and TFCE) will be set according to their negotiated value.
2105 	 */
2106 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2107 
2108 	E1000_WRITE_REG(hw, TXCW, txcw);
2109 	E1000_WRITE_REG(hw, CTRL, ctrl);
2110 	E1000_WRITE_FLUSH(hw);
2111 
2112 	hw->txcw = txcw;
2113 	mdelay(1);
2114 
2115 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2116 	 * indication in the Device Status Register.  Time-out if a link isn't
2117 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2118 	 * less than 500 milliseconds even if the other end is doing it in SW).
2119 	 */
2120 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2121 		DEBUGOUT("Looking for Link\n");
2122 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2123 			mdelay(10);
2124 			status = E1000_READ_REG(hw, STATUS);
2125 			if (status & E1000_STATUS_LU)
2126 				break;
2127 		}
2128 		if (i == (LINK_UP_TIMEOUT / 10)) {
2129 			/* AutoNeg failed to achieve a link, so we'll call
2130 			 * e1000_check_for_link. This routine will force the link up if we
2131 			 * detect a signal. This will allow us to communicate with
2132 			 * non-autonegotiating link partners.
2133 			 */
2134 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2135 			hw->autoneg_failed = 1;
2136 			ret_val = e1000_check_for_link(hw);
2137 			if (ret_val < 0) {
2138 				DEBUGOUT("Error while checking for link\n");
2139 				return ret_val;
2140 			}
2141 			hw->autoneg_failed = 0;
2142 		} else {
2143 			hw->autoneg_failed = 0;
2144 			DEBUGOUT("Valid Link Found\n");
2145 		}
2146 	} else {
2147 		DEBUGOUT("No Signal Detected\n");
2148 		return -E1000_ERR_NOLINK;
2149 	}
2150 	return 0;
2151 }
2152 
2153 /******************************************************************************
2154 * Make sure we have a valid PHY and change PHY mode before link setup.
2155 *
2156 * hw - Struct containing variables accessed by shared code
2157 ******************************************************************************/
2158 static int32_t
2159 e1000_copper_link_preconfig(struct e1000_hw *hw)
2160 {
2161 	uint32_t ctrl;
2162 	int32_t ret_val;
2163 	uint16_t phy_data;
2164 
2165 	DEBUGFUNC();
2166 
2167 	ctrl = E1000_READ_REG(hw, CTRL);
2168 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2169 	 * the PHY speed and duplex configuration is. In addition, we need to
2170 	 * perform a hardware reset on the PHY to take it out of reset.
2171 	 */
2172 	if (hw->mac_type > e1000_82543) {
2173 		ctrl |= E1000_CTRL_SLU;
2174 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2175 		E1000_WRITE_REG(hw, CTRL, ctrl);
2176 	} else {
2177 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2178 				| E1000_CTRL_SLU);
2179 		E1000_WRITE_REG(hw, CTRL, ctrl);
2180 		ret_val = e1000_phy_hw_reset(hw);
2181 		if (ret_val)
2182 			return ret_val;
2183 	}
2184 
2185 	/* Make sure we have a valid PHY */
2186 	ret_val = e1000_detect_gig_phy(hw);
2187 	if (ret_val) {
2188 		DEBUGOUT("Error, did not detect valid phy.\n");
2189 		return ret_val;
2190 	}
2191 	DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2192 
2193 	/* Set PHY to class A mode (if necessary) */
2194 	ret_val = e1000_set_phy_mode(hw);
2195 	if (ret_val)
2196 		return ret_val;
2197 	if ((hw->mac_type == e1000_82545_rev_3) ||
2198 		(hw->mac_type == e1000_82546_rev_3)) {
2199 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2200 				&phy_data);
2201 		phy_data |= 0x00000008;
2202 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2203 				phy_data);
2204 	}
2205 
2206 	if (hw->mac_type <= e1000_82543 ||
2207 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2208 		hw->mac_type == e1000_82541_rev_2
2209 		|| hw->mac_type == e1000_82547_rev_2)
2210 			hw->phy_reset_disable = false;
2211 
2212 	return E1000_SUCCESS;
2213 }
2214 
2215 /*****************************************************************************
2216  *
2217  * This function sets the lplu state according to the active flag.  When
2218  * activating lplu this function also disables smart speed and vise versa.
2219  * lplu will not be activated unless the device autonegotiation advertisment
2220  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2221  * hw: Struct containing variables accessed by shared code
2222  * active - true to enable lplu false to disable lplu.
2223  *
2224  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2225  *            E1000_SUCCESS at any other case.
2226  *
2227  ****************************************************************************/
2228 
2229 static int32_t
2230 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2231 {
2232 	uint32_t phy_ctrl = 0;
2233 	int32_t ret_val;
2234 	uint16_t phy_data;
2235 	DEBUGFUNC();
2236 
2237 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2238 	    && hw->phy_type != e1000_phy_igp_3)
2239 		return E1000_SUCCESS;
2240 
2241 	/* During driver activity LPLU should not be used or it will attain link
2242 	 * from the lowest speeds starting from 10Mbps. The capability is used
2243 	 * for Dx transitions and states */
2244 	if (hw->mac_type == e1000_82541_rev_2
2245 			|| hw->mac_type == e1000_82547_rev_2) {
2246 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2247 				&phy_data);
2248 		if (ret_val)
2249 			return ret_val;
2250 	} else if (hw->mac_type == e1000_ich8lan) {
2251 		/* MAC writes into PHY register based on the state transition
2252 		 * and start auto-negotiation. SW driver can overwrite the
2253 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2254 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2255 	} else {
2256 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2257 				&phy_data);
2258 		if (ret_val)
2259 			return ret_val;
2260 	}
2261 
2262 	if (!active) {
2263 		if (hw->mac_type == e1000_82541_rev_2 ||
2264 			hw->mac_type == e1000_82547_rev_2) {
2265 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2266 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2267 					phy_data);
2268 			if (ret_val)
2269 				return ret_val;
2270 		} else {
2271 			if (hw->mac_type == e1000_ich8lan) {
2272 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2273 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2274 			} else {
2275 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2276 				ret_val = e1000_write_phy_reg(hw,
2277 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2278 				if (ret_val)
2279 					return ret_val;
2280 			}
2281 		}
2282 
2283 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2284 	 * Dx states where the power conservation is most important.  During
2285 	 * driver activity we should enable SmartSpeed, so performance is
2286 	 * maintained. */
2287 		if (hw->smart_speed == e1000_smart_speed_on) {
2288 			ret_val = e1000_read_phy_reg(hw,
2289 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2290 			if (ret_val)
2291 				return ret_val;
2292 
2293 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2294 			ret_val = e1000_write_phy_reg(hw,
2295 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2296 			if (ret_val)
2297 				return ret_val;
2298 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2299 			ret_val = e1000_read_phy_reg(hw,
2300 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2301 			if (ret_val)
2302 				return ret_val;
2303 
2304 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2305 			ret_val = e1000_write_phy_reg(hw,
2306 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2307 			if (ret_val)
2308 				return ret_val;
2309 		}
2310 
2311 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2312 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2313 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2314 
2315 		if (hw->mac_type == e1000_82541_rev_2 ||
2316 		    hw->mac_type == e1000_82547_rev_2) {
2317 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2318 			ret_val = e1000_write_phy_reg(hw,
2319 					IGP01E1000_GMII_FIFO, phy_data);
2320 			if (ret_val)
2321 				return ret_val;
2322 		} else {
2323 			if (hw->mac_type == e1000_ich8lan) {
2324 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2325 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2326 			} else {
2327 				phy_data |= IGP02E1000_PM_D3_LPLU;
2328 				ret_val = e1000_write_phy_reg(hw,
2329 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2330 				if (ret_val)
2331 					return ret_val;
2332 			}
2333 		}
2334 
2335 		/* When LPLU is enabled we should disable SmartSpeed */
2336 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2337 				&phy_data);
2338 		if (ret_val)
2339 			return ret_val;
2340 
2341 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2342 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2343 				phy_data);
2344 		if (ret_val)
2345 			return ret_val;
2346 	}
2347 	return E1000_SUCCESS;
2348 }
2349 
2350 /*****************************************************************************
2351  *
2352  * This function sets the lplu d0 state according to the active flag.  When
2353  * activating lplu this function also disables smart speed and vise versa.
2354  * lplu will not be activated unless the device autonegotiation advertisment
2355  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2356  * hw: Struct containing variables accessed by shared code
2357  * active - true to enable lplu false to disable lplu.
2358  *
2359  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2360  *            E1000_SUCCESS at any other case.
2361  *
2362  ****************************************************************************/
2363 
2364 static int32_t
2365 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2366 {
2367 	uint32_t phy_ctrl = 0;
2368 	int32_t ret_val;
2369 	uint16_t phy_data;
2370 	DEBUGFUNC();
2371 
2372 	if (hw->mac_type <= e1000_82547_rev_2)
2373 		return E1000_SUCCESS;
2374 
2375 	if (hw->mac_type == e1000_ich8lan) {
2376 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2377 	} else if (hw->mac_type == e1000_igb) {
2378 		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2379 	} else {
2380 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2381 				&phy_data);
2382 		if (ret_val)
2383 			return ret_val;
2384 	}
2385 
2386 	if (!active) {
2387 		if (hw->mac_type == e1000_ich8lan) {
2388 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2389 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2390 		} else if (hw->mac_type == e1000_igb) {
2391 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2392 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2393 		} else {
2394 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2395 			ret_val = e1000_write_phy_reg(hw,
2396 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2397 			if (ret_val)
2398 				return ret_val;
2399 		}
2400 
2401 		if (hw->mac_type == e1000_igb)
2402 			return E1000_SUCCESS;
2403 
2404 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2405 	 * Dx states where the power conservation is most important.  During
2406 	 * driver activity we should enable SmartSpeed, so performance is
2407 	 * maintained. */
2408 		if (hw->smart_speed == e1000_smart_speed_on) {
2409 			ret_val = e1000_read_phy_reg(hw,
2410 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2411 			if (ret_val)
2412 				return ret_val;
2413 
2414 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2415 			ret_val = e1000_write_phy_reg(hw,
2416 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2417 			if (ret_val)
2418 				return ret_val;
2419 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2420 			ret_val = e1000_read_phy_reg(hw,
2421 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2422 			if (ret_val)
2423 				return ret_val;
2424 
2425 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2426 			ret_val = e1000_write_phy_reg(hw,
2427 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2428 			if (ret_val)
2429 				return ret_val;
2430 		}
2431 
2432 
2433 	} else {
2434 
2435 		if (hw->mac_type == e1000_ich8lan) {
2436 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2437 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2438 		} else if (hw->mac_type == e1000_igb) {
2439 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2440 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2441 		} else {
2442 			phy_data |= IGP02E1000_PM_D0_LPLU;
2443 			ret_val = e1000_write_phy_reg(hw,
2444 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2445 			if (ret_val)
2446 				return ret_val;
2447 		}
2448 
2449 		if (hw->mac_type == e1000_igb)
2450 			return E1000_SUCCESS;
2451 
2452 		/* When LPLU is enabled we should disable SmartSpeed */
2453 		ret_val = e1000_read_phy_reg(hw,
2454 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2455 		if (ret_val)
2456 			return ret_val;
2457 
2458 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2459 		ret_val = e1000_write_phy_reg(hw,
2460 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2461 		if (ret_val)
2462 			return ret_val;
2463 
2464 	}
2465 	return E1000_SUCCESS;
2466 }
2467 
2468 /********************************************************************
2469 * Copper link setup for e1000_phy_igp series.
2470 *
2471 * hw - Struct containing variables accessed by shared code
2472 *********************************************************************/
2473 static int32_t
2474 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2475 {
2476 	uint32_t led_ctrl;
2477 	int32_t ret_val;
2478 	uint16_t phy_data;
2479 
2480 	DEBUGFUNC();
2481 
2482 	if (hw->phy_reset_disable)
2483 		return E1000_SUCCESS;
2484 
2485 	ret_val = e1000_phy_reset(hw);
2486 	if (ret_val) {
2487 		DEBUGOUT("Error Resetting the PHY\n");
2488 		return ret_val;
2489 	}
2490 
2491 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2492 	mdelay(15);
2493 	if (hw->mac_type != e1000_ich8lan) {
2494 		/* Configure activity LED after PHY reset */
2495 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2496 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2497 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2498 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2499 	}
2500 
2501 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2502 	if (hw->phy_type == e1000_phy_igp) {
2503 		/* disable lplu d3 during driver init */
2504 		ret_val = e1000_set_d3_lplu_state(hw, false);
2505 		if (ret_val) {
2506 			DEBUGOUT("Error Disabling LPLU D3\n");
2507 			return ret_val;
2508 		}
2509 	}
2510 
2511 	/* disable lplu d0 during driver init */
2512 	ret_val = e1000_set_d0_lplu_state(hw, false);
2513 	if (ret_val) {
2514 		DEBUGOUT("Error Disabling LPLU D0\n");
2515 		return ret_val;
2516 	}
2517 	/* Configure mdi-mdix settings */
2518 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2519 	if (ret_val)
2520 		return ret_val;
2521 
2522 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2523 		hw->dsp_config_state = e1000_dsp_config_disabled;
2524 		/* Force MDI for earlier revs of the IGP PHY */
2525 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2526 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2527 		hw->mdix = 1;
2528 
2529 	} else {
2530 		hw->dsp_config_state = e1000_dsp_config_enabled;
2531 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2532 
2533 		switch (hw->mdix) {
2534 		case 1:
2535 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2536 			break;
2537 		case 2:
2538 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2539 			break;
2540 		case 0:
2541 		default:
2542 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2543 			break;
2544 		}
2545 	}
2546 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2547 	if (ret_val)
2548 		return ret_val;
2549 
2550 	/* set auto-master slave resolution settings */
2551 	if (hw->autoneg) {
2552 		e1000_ms_type phy_ms_setting = hw->master_slave;
2553 
2554 		if (hw->ffe_config_state == e1000_ffe_config_active)
2555 			hw->ffe_config_state = e1000_ffe_config_enabled;
2556 
2557 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2558 			hw->dsp_config_state = e1000_dsp_config_enabled;
2559 
2560 		/* when autonegotiation advertisment is only 1000Mbps then we
2561 		  * should disable SmartSpeed and enable Auto MasterSlave
2562 		  * resolution as hardware default. */
2563 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2564 			/* Disable SmartSpeed */
2565 			ret_val = e1000_read_phy_reg(hw,
2566 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2567 			if (ret_val)
2568 				return ret_val;
2569 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2570 			ret_val = e1000_write_phy_reg(hw,
2571 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2572 			if (ret_val)
2573 				return ret_val;
2574 			/* Set auto Master/Slave resolution process */
2575 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2576 					&phy_data);
2577 			if (ret_val)
2578 				return ret_val;
2579 			phy_data &= ~CR_1000T_MS_ENABLE;
2580 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2581 					phy_data);
2582 			if (ret_val)
2583 				return ret_val;
2584 		}
2585 
2586 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2587 		if (ret_val)
2588 			return ret_val;
2589 
2590 		/* load defaults for future use */
2591 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2592 				((phy_data & CR_1000T_MS_VALUE) ?
2593 				e1000_ms_force_master :
2594 				e1000_ms_force_slave) :
2595 				e1000_ms_auto;
2596 
2597 		switch (phy_ms_setting) {
2598 		case e1000_ms_force_master:
2599 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2600 			break;
2601 		case e1000_ms_force_slave:
2602 			phy_data |= CR_1000T_MS_ENABLE;
2603 			phy_data &= ~(CR_1000T_MS_VALUE);
2604 			break;
2605 		case e1000_ms_auto:
2606 			phy_data &= ~CR_1000T_MS_ENABLE;
2607 		default:
2608 			break;
2609 		}
2610 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2611 		if (ret_val)
2612 			return ret_val;
2613 	}
2614 
2615 	return E1000_SUCCESS;
2616 }
2617 
2618 /*****************************************************************************
2619  * This function checks the mode of the firmware.
2620  *
2621  * returns  - true when the mode is IAMT or false.
2622  ****************************************************************************/
2623 bool
2624 e1000_check_mng_mode(struct e1000_hw *hw)
2625 {
2626 	uint32_t fwsm;
2627 	DEBUGFUNC();
2628 
2629 	fwsm = E1000_READ_REG(hw, FWSM);
2630 
2631 	if (hw->mac_type == e1000_ich8lan) {
2632 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2633 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2634 			return true;
2635 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2636 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2637 			return true;
2638 
2639 	return false;
2640 }
2641 
2642 static int32_t
2643 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2644 {
2645 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2646 	uint32_t reg_val;
2647 	DEBUGFUNC();
2648 
2649 	if (e1000_is_second_port(hw))
2650 		swfw = E1000_SWFW_PHY1_SM;
2651 
2652 	if (e1000_swfw_sync_acquire(hw, swfw))
2653 		return -E1000_ERR_SWFW_SYNC;
2654 
2655 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2656 			& E1000_KUMCTRLSTA_OFFSET) | data;
2657 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2658 	udelay(2);
2659 
2660 	return E1000_SUCCESS;
2661 }
2662 
2663 static int32_t
2664 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2665 {
2666 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2667 	uint32_t reg_val;
2668 	DEBUGFUNC();
2669 
2670 	if (e1000_is_second_port(hw))
2671 		swfw = E1000_SWFW_PHY1_SM;
2672 
2673 	if (e1000_swfw_sync_acquire(hw, swfw)) {
2674 		debug("%s[%i]\n", __func__, __LINE__);
2675 		return -E1000_ERR_SWFW_SYNC;
2676 	}
2677 
2678 	/* Write register address */
2679 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2680 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2681 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2682 	udelay(2);
2683 
2684 	/* Read the data returned */
2685 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2686 	*data = (uint16_t)reg_val;
2687 
2688 	return E1000_SUCCESS;
2689 }
2690 
2691 /********************************************************************
2692 * Copper link setup for e1000_phy_gg82563 series.
2693 *
2694 * hw - Struct containing variables accessed by shared code
2695 *********************************************************************/
2696 static int32_t
2697 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2698 {
2699 	int32_t ret_val;
2700 	uint16_t phy_data;
2701 	uint32_t reg_data;
2702 
2703 	DEBUGFUNC();
2704 
2705 	if (!hw->phy_reset_disable) {
2706 		/* Enable CRS on TX for half-duplex operation. */
2707 		ret_val = e1000_read_phy_reg(hw,
2708 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2709 		if (ret_val)
2710 			return ret_val;
2711 
2712 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2713 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2714 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2715 
2716 		ret_val = e1000_write_phy_reg(hw,
2717 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2718 		if (ret_val)
2719 			return ret_val;
2720 
2721 		/* Options:
2722 		 *   MDI/MDI-X = 0 (default)
2723 		 *   0 - Auto for all speeds
2724 		 *   1 - MDI mode
2725 		 *   2 - MDI-X mode
2726 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2727 		 */
2728 		ret_val = e1000_read_phy_reg(hw,
2729 				GG82563_PHY_SPEC_CTRL, &phy_data);
2730 		if (ret_val)
2731 			return ret_val;
2732 
2733 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2734 
2735 		switch (hw->mdix) {
2736 		case 1:
2737 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2738 			break;
2739 		case 2:
2740 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2741 			break;
2742 		case 0:
2743 		default:
2744 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2745 			break;
2746 		}
2747 
2748 		/* Options:
2749 		 *   disable_polarity_correction = 0 (default)
2750 		 *       Automatic Correction for Reversed Cable Polarity
2751 		 *   0 - Disabled
2752 		 *   1 - Enabled
2753 		 */
2754 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2755 		ret_val = e1000_write_phy_reg(hw,
2756 				GG82563_PHY_SPEC_CTRL, phy_data);
2757 
2758 		if (ret_val)
2759 			return ret_val;
2760 
2761 		/* SW Reset the PHY so all changes take effect */
2762 		ret_val = e1000_phy_reset(hw);
2763 		if (ret_val) {
2764 			DEBUGOUT("Error Resetting the PHY\n");
2765 			return ret_val;
2766 		}
2767 	} /* phy_reset_disable */
2768 
2769 	if (hw->mac_type == e1000_80003es2lan) {
2770 		/* Bypass RX and TX FIFO's */
2771 		ret_val = e1000_write_kmrn_reg(hw,
2772 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2773 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2774 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2775 		if (ret_val)
2776 			return ret_val;
2777 
2778 		ret_val = e1000_read_phy_reg(hw,
2779 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2780 		if (ret_val)
2781 			return ret_val;
2782 
2783 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2784 		ret_val = e1000_write_phy_reg(hw,
2785 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2786 
2787 		if (ret_val)
2788 			return ret_val;
2789 
2790 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2791 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2792 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2793 
2794 		ret_val = e1000_read_phy_reg(hw,
2795 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2796 		if (ret_val)
2797 			return ret_val;
2798 
2799 	/* Do not init these registers when the HW is in IAMT mode, since the
2800 	 * firmware will have already initialized them.  We only initialize
2801 	 * them if the HW is not in IAMT mode.
2802 	 */
2803 		if (e1000_check_mng_mode(hw) == false) {
2804 			/* Enable Electrical Idle on the PHY */
2805 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2806 			ret_val = e1000_write_phy_reg(hw,
2807 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2808 			if (ret_val)
2809 				return ret_val;
2810 
2811 			ret_val = e1000_read_phy_reg(hw,
2812 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2813 			if (ret_val)
2814 				return ret_val;
2815 
2816 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2817 			ret_val = e1000_write_phy_reg(hw,
2818 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2819 
2820 			if (ret_val)
2821 				return ret_val;
2822 		}
2823 
2824 		/* Workaround: Disable padding in Kumeran interface in the MAC
2825 		 * and in the PHY to avoid CRC errors.
2826 		 */
2827 		ret_val = e1000_read_phy_reg(hw,
2828 				GG82563_PHY_INBAND_CTRL, &phy_data);
2829 		if (ret_val)
2830 			return ret_val;
2831 		phy_data |= GG82563_ICR_DIS_PADDING;
2832 		ret_val = e1000_write_phy_reg(hw,
2833 				GG82563_PHY_INBAND_CTRL, phy_data);
2834 		if (ret_val)
2835 			return ret_val;
2836 	}
2837 	return E1000_SUCCESS;
2838 }
2839 
2840 /********************************************************************
2841 * Copper link setup for e1000_phy_m88 series.
2842 *
2843 * hw - Struct containing variables accessed by shared code
2844 *********************************************************************/
2845 static int32_t
2846 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2847 {
2848 	int32_t ret_val;
2849 	uint16_t phy_data;
2850 
2851 	DEBUGFUNC();
2852 
2853 	if (hw->phy_reset_disable)
2854 		return E1000_SUCCESS;
2855 
2856 	/* Enable CRS on TX. This must be set for half-duplex operation. */
2857 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2858 	if (ret_val)
2859 		return ret_val;
2860 
2861 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2862 
2863 	/* Options:
2864 	 *   MDI/MDI-X = 0 (default)
2865 	 *   0 - Auto for all speeds
2866 	 *   1 - MDI mode
2867 	 *   2 - MDI-X mode
2868 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2869 	 */
2870 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2871 
2872 	switch (hw->mdix) {
2873 	case 1:
2874 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2875 		break;
2876 	case 2:
2877 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2878 		break;
2879 	case 3:
2880 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2881 		break;
2882 	case 0:
2883 	default:
2884 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2885 		break;
2886 	}
2887 
2888 	/* Options:
2889 	 *   disable_polarity_correction = 0 (default)
2890 	 *       Automatic Correction for Reversed Cable Polarity
2891 	 *   0 - Disabled
2892 	 *   1 - Enabled
2893 	 */
2894 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2895 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2896 	if (ret_val)
2897 		return ret_val;
2898 
2899 	if (hw->phy_revision < M88E1011_I_REV_4) {
2900 		/* Force TX_CLK in the Extended PHY Specific Control Register
2901 		 * to 25MHz clock.
2902 		 */
2903 		ret_val = e1000_read_phy_reg(hw,
2904 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2905 		if (ret_val)
2906 			return ret_val;
2907 
2908 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
2909 
2910 		if ((hw->phy_revision == E1000_REVISION_2) &&
2911 			(hw->phy_id == M88E1111_I_PHY_ID)) {
2912 			/* Vidalia Phy, set the downshift counter to 5x */
2913 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2914 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2915 			ret_val = e1000_write_phy_reg(hw,
2916 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2917 			if (ret_val)
2918 				return ret_val;
2919 		} else {
2920 			/* Configure Master and Slave downshift values */
2921 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2922 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2923 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2924 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2925 			ret_val = e1000_write_phy_reg(hw,
2926 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2927 			if (ret_val)
2928 				return ret_val;
2929 		}
2930 	}
2931 
2932 	/* SW Reset the PHY so all changes take effect */
2933 	ret_val = e1000_phy_reset(hw);
2934 	if (ret_val) {
2935 		DEBUGOUT("Error Resetting the PHY\n");
2936 		return ret_val;
2937 	}
2938 
2939 	return E1000_SUCCESS;
2940 }
2941 
2942 /********************************************************************
2943 * Setup auto-negotiation and flow control advertisements,
2944 * and then perform auto-negotiation.
2945 *
2946 * hw - Struct containing variables accessed by shared code
2947 *********************************************************************/
2948 static int32_t
2949 e1000_copper_link_autoneg(struct e1000_hw *hw)
2950 {
2951 	int32_t ret_val;
2952 	uint16_t phy_data;
2953 
2954 	DEBUGFUNC();
2955 
2956 	/* Perform some bounds checking on the hw->autoneg_advertised
2957 	 * parameter.  If this variable is zero, then set it to the default.
2958 	 */
2959 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2960 
2961 	/* If autoneg_advertised is zero, we assume it was not defaulted
2962 	 * by the calling code so we set to advertise full capability.
2963 	 */
2964 	if (hw->autoneg_advertised == 0)
2965 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2966 
2967 	/* IFE phy only supports 10/100 */
2968 	if (hw->phy_type == e1000_phy_ife)
2969 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2970 
2971 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2972 	ret_val = e1000_phy_setup_autoneg(hw);
2973 	if (ret_val) {
2974 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
2975 		return ret_val;
2976 	}
2977 	DEBUGOUT("Restarting Auto-Neg\n");
2978 
2979 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
2980 	 * the Auto Neg Restart bit in the PHY control register.
2981 	 */
2982 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2983 	if (ret_val)
2984 		return ret_val;
2985 
2986 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2987 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2988 	if (ret_val)
2989 		return ret_val;
2990 
2991 	/* Does the user want to wait for Auto-Neg to complete here, or
2992 	 * check at a later time (for example, callback routine).
2993 	 */
2994 	/* If we do not wait for autonegtation to complete I
2995 	 * do not see a valid link status.
2996 	 * wait_autoneg_complete = 1 .
2997 	 */
2998 	if (hw->wait_autoneg_complete) {
2999 		ret_val = e1000_wait_autoneg(hw);
3000 		if (ret_val) {
3001 			DEBUGOUT("Error while waiting for autoneg"
3002 					"to complete\n");
3003 			return ret_val;
3004 		}
3005 	}
3006 
3007 	hw->get_link_status = true;
3008 
3009 	return E1000_SUCCESS;
3010 }
3011 
3012 /******************************************************************************
3013 * Config the MAC and the PHY after link is up.
3014 *   1) Set up the MAC to the current PHY speed/duplex
3015 *      if we are on 82543.  If we
3016 *      are on newer silicon, we only need to configure
3017 *      collision distance in the Transmit Control Register.
3018 *   2) Set up flow control on the MAC to that established with
3019 *      the link partner.
3020 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3021 *
3022 * hw - Struct containing variables accessed by shared code
3023 ******************************************************************************/
3024 static int32_t
3025 e1000_copper_link_postconfig(struct e1000_hw *hw)
3026 {
3027 	int32_t ret_val;
3028 	DEBUGFUNC();
3029 
3030 	if (hw->mac_type >= e1000_82544) {
3031 		e1000_config_collision_dist(hw);
3032 	} else {
3033 		ret_val = e1000_config_mac_to_phy(hw);
3034 		if (ret_val) {
3035 			DEBUGOUT("Error configuring MAC to PHY settings\n");
3036 			return ret_val;
3037 		}
3038 	}
3039 	ret_val = e1000_config_fc_after_link_up(hw);
3040 	if (ret_val) {
3041 		DEBUGOUT("Error Configuring Flow Control\n");
3042 		return ret_val;
3043 	}
3044 	return E1000_SUCCESS;
3045 }
3046 
3047 /******************************************************************************
3048 * Detects which PHY is present and setup the speed and duplex
3049 *
3050 * hw - Struct containing variables accessed by shared code
3051 ******************************************************************************/
3052 static int
3053 e1000_setup_copper_link(struct e1000_hw *hw)
3054 {
3055 	int32_t ret_val;
3056 	uint16_t i;
3057 	uint16_t phy_data;
3058 	uint16_t reg_data;
3059 
3060 	DEBUGFUNC();
3061 
3062 	switch (hw->mac_type) {
3063 	case e1000_80003es2lan:
3064 	case e1000_ich8lan:
3065 		/* Set the mac to wait the maximum time between each
3066 		 * iteration and increase the max iterations when
3067 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3068 		ret_val = e1000_write_kmrn_reg(hw,
3069 				GG82563_REG(0x34, 4), 0xFFFF);
3070 		if (ret_val)
3071 			return ret_val;
3072 		ret_val = e1000_read_kmrn_reg(hw,
3073 				GG82563_REG(0x34, 9), &reg_data);
3074 		if (ret_val)
3075 			return ret_val;
3076 		reg_data |= 0x3F;
3077 		ret_val = e1000_write_kmrn_reg(hw,
3078 				GG82563_REG(0x34, 9), reg_data);
3079 		if (ret_val)
3080 			return ret_val;
3081 	default:
3082 		break;
3083 	}
3084 
3085 	/* Check if it is a valid PHY and set PHY mode if necessary. */
3086 	ret_val = e1000_copper_link_preconfig(hw);
3087 	if (ret_val)
3088 		return ret_val;
3089 	switch (hw->mac_type) {
3090 	case e1000_80003es2lan:
3091 		/* Kumeran registers are written-only */
3092 		reg_data =
3093 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3094 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3095 		ret_val = e1000_write_kmrn_reg(hw,
3096 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3097 		if (ret_val)
3098 			return ret_val;
3099 		break;
3100 	default:
3101 		break;
3102 	}
3103 
3104 	if (hw->phy_type == e1000_phy_igp ||
3105 		hw->phy_type == e1000_phy_igp_3 ||
3106 		hw->phy_type == e1000_phy_igp_2) {
3107 		ret_val = e1000_copper_link_igp_setup(hw);
3108 		if (ret_val)
3109 			return ret_val;
3110 	} else if (hw->phy_type == e1000_phy_m88 ||
3111 		hw->phy_type == e1000_phy_igb) {
3112 		ret_val = e1000_copper_link_mgp_setup(hw);
3113 		if (ret_val)
3114 			return ret_val;
3115 	} else if (hw->phy_type == e1000_phy_gg82563) {
3116 		ret_val = e1000_copper_link_ggp_setup(hw);
3117 		if (ret_val)
3118 			return ret_val;
3119 	}
3120 
3121 	/* always auto */
3122 	/* Setup autoneg and flow control advertisement
3123 	  * and perform autonegotiation */
3124 	ret_val = e1000_copper_link_autoneg(hw);
3125 	if (ret_val)
3126 		return ret_val;
3127 
3128 	/* Check link status. Wait up to 100 microseconds for link to become
3129 	 * valid.
3130 	 */
3131 	for (i = 0; i < 10; i++) {
3132 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3133 		if (ret_val)
3134 			return ret_val;
3135 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3136 		if (ret_val)
3137 			return ret_val;
3138 
3139 		if (phy_data & MII_SR_LINK_STATUS) {
3140 			/* Config the MAC and PHY after link is up */
3141 			ret_val = e1000_copper_link_postconfig(hw);
3142 			if (ret_val)
3143 				return ret_val;
3144 
3145 			DEBUGOUT("Valid link established!!!\n");
3146 			return E1000_SUCCESS;
3147 		}
3148 		udelay(10);
3149 	}
3150 
3151 	DEBUGOUT("Unable to establish link!!!\n");
3152 	return E1000_SUCCESS;
3153 }
3154 
3155 /******************************************************************************
3156 * Configures PHY autoneg and flow control advertisement settings
3157 *
3158 * hw - Struct containing variables accessed by shared code
3159 ******************************************************************************/
3160 int32_t
3161 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3162 {
3163 	int32_t ret_val;
3164 	uint16_t mii_autoneg_adv_reg;
3165 	uint16_t mii_1000t_ctrl_reg;
3166 
3167 	DEBUGFUNC();
3168 
3169 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3170 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3171 	if (ret_val)
3172 		return ret_val;
3173 
3174 	if (hw->phy_type != e1000_phy_ife) {
3175 		/* Read the MII 1000Base-T Control Register (Address 9). */
3176 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3177 				&mii_1000t_ctrl_reg);
3178 		if (ret_val)
3179 			return ret_val;
3180 	} else
3181 		mii_1000t_ctrl_reg = 0;
3182 
3183 	/* Need to parse both autoneg_advertised and fc and set up
3184 	 * the appropriate PHY registers.  First we will parse for
3185 	 * autoneg_advertised software override.  Since we can advertise
3186 	 * a plethora of combinations, we need to check each bit
3187 	 * individually.
3188 	 */
3189 
3190 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3191 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3192 	 * the  1000Base-T Control Register (Address 9).
3193 	 */
3194 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3195 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3196 
3197 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3198 
3199 	/* Do we want to advertise 10 Mb Half Duplex? */
3200 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3201 		DEBUGOUT("Advertise 10mb Half duplex\n");
3202 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3203 	}
3204 
3205 	/* Do we want to advertise 10 Mb Full Duplex? */
3206 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3207 		DEBUGOUT("Advertise 10mb Full duplex\n");
3208 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3209 	}
3210 
3211 	/* Do we want to advertise 100 Mb Half Duplex? */
3212 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3213 		DEBUGOUT("Advertise 100mb Half duplex\n");
3214 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3215 	}
3216 
3217 	/* Do we want to advertise 100 Mb Full Duplex? */
3218 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3219 		DEBUGOUT("Advertise 100mb Full duplex\n");
3220 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3221 	}
3222 
3223 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3224 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3225 		DEBUGOUT
3226 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3227 	}
3228 
3229 	/* Do we want to advertise 1000 Mb Full Duplex? */
3230 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3231 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3232 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3233 	}
3234 
3235 	/* Check for a software override of the flow control settings, and
3236 	 * setup the PHY advertisement registers accordingly.  If
3237 	 * auto-negotiation is enabled, then software will have to set the
3238 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3239 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3240 	 *
3241 	 * The possible values of the "fc" parameter are:
3242 	 *	0:  Flow control is completely disabled
3243 	 *	1:  Rx flow control is enabled (we can receive pause frames
3244 	 *	    but not send pause frames).
3245 	 *	2:  Tx flow control is enabled (we can send pause frames
3246 	 *	    but we do not support receiving pause frames).
3247 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3248 	 *  other:  No software override.  The flow control configuration
3249 	 *	    in the EEPROM is used.
3250 	 */
3251 	switch (hw->fc) {
3252 	case e1000_fc_none:	/* 0 */
3253 		/* Flow control (RX & TX) is completely disabled by a
3254 		 * software over-ride.
3255 		 */
3256 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3257 		break;
3258 	case e1000_fc_rx_pause:	/* 1 */
3259 		/* RX Flow control is enabled, and TX Flow control is
3260 		 * disabled, by a software over-ride.
3261 		 */
3262 		/* Since there really isn't a way to advertise that we are
3263 		 * capable of RX Pause ONLY, we will advertise that we
3264 		 * support both symmetric and asymmetric RX PAUSE.  Later
3265 		 * (in e1000_config_fc_after_link_up) we will disable the
3266 		 *hw's ability to send PAUSE frames.
3267 		 */
3268 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3269 		break;
3270 	case e1000_fc_tx_pause:	/* 2 */
3271 		/* TX Flow control is enabled, and RX Flow control is
3272 		 * disabled, by a software over-ride.
3273 		 */
3274 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3275 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3276 		break;
3277 	case e1000_fc_full:	/* 3 */
3278 		/* Flow control (both RX and TX) is enabled by a software
3279 		 * over-ride.
3280 		 */
3281 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3282 		break;
3283 	default:
3284 		DEBUGOUT("Flow control param set incorrectly\n");
3285 		return -E1000_ERR_CONFIG;
3286 	}
3287 
3288 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3289 	if (ret_val)
3290 		return ret_val;
3291 
3292 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3293 
3294 	if (hw->phy_type != e1000_phy_ife) {
3295 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3296 				mii_1000t_ctrl_reg);
3297 		if (ret_val)
3298 			return ret_val;
3299 	}
3300 
3301 	return E1000_SUCCESS;
3302 }
3303 
3304 /******************************************************************************
3305 * Sets the collision distance in the Transmit Control register
3306 *
3307 * hw - Struct containing variables accessed by shared code
3308 *
3309 * Link should have been established previously. Reads the speed and duplex
3310 * information from the Device Status register.
3311 ******************************************************************************/
3312 static void
3313 e1000_config_collision_dist(struct e1000_hw *hw)
3314 {
3315 	uint32_t tctl, coll_dist;
3316 
3317 	DEBUGFUNC();
3318 
3319 	if (hw->mac_type < e1000_82543)
3320 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3321 	else
3322 		coll_dist = E1000_COLLISION_DISTANCE;
3323 
3324 	tctl = E1000_READ_REG(hw, TCTL);
3325 
3326 	tctl &= ~E1000_TCTL_COLD;
3327 	tctl |= coll_dist << E1000_COLD_SHIFT;
3328 
3329 	E1000_WRITE_REG(hw, TCTL, tctl);
3330 	E1000_WRITE_FLUSH(hw);
3331 }
3332 
3333 /******************************************************************************
3334 * Sets MAC speed and duplex settings to reflect the those in the PHY
3335 *
3336 * hw - Struct containing variables accessed by shared code
3337 * mii_reg - data to write to the MII control register
3338 *
3339 * The contents of the PHY register containing the needed information need to
3340 * be passed in.
3341 ******************************************************************************/
3342 static int
3343 e1000_config_mac_to_phy(struct e1000_hw *hw)
3344 {
3345 	uint32_t ctrl;
3346 	uint16_t phy_data;
3347 
3348 	DEBUGFUNC();
3349 
3350 	/* Read the Device Control Register and set the bits to Force Speed
3351 	 * and Duplex.
3352 	 */
3353 	ctrl = E1000_READ_REG(hw, CTRL);
3354 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3355 	ctrl &= ~(E1000_CTRL_ILOS);
3356 	ctrl |= (E1000_CTRL_SPD_SEL);
3357 
3358 	/* Set up duplex in the Device Control and Transmit Control
3359 	 * registers depending on negotiated values.
3360 	 */
3361 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3362 		DEBUGOUT("PHY Read Error\n");
3363 		return -E1000_ERR_PHY;
3364 	}
3365 	if (phy_data & M88E1000_PSSR_DPLX)
3366 		ctrl |= E1000_CTRL_FD;
3367 	else
3368 		ctrl &= ~E1000_CTRL_FD;
3369 
3370 	e1000_config_collision_dist(hw);
3371 
3372 	/* Set up speed in the Device Control register depending on
3373 	 * negotiated values.
3374 	 */
3375 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3376 		ctrl |= E1000_CTRL_SPD_1000;
3377 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3378 		ctrl |= E1000_CTRL_SPD_100;
3379 	/* Write the configured values back to the Device Control Reg. */
3380 	E1000_WRITE_REG(hw, CTRL, ctrl);
3381 	return 0;
3382 }
3383 
3384 /******************************************************************************
3385  * Forces the MAC's flow control settings.
3386  *
3387  * hw - Struct containing variables accessed by shared code
3388  *
3389  * Sets the TFCE and RFCE bits in the device control register to reflect
3390  * the adapter settings. TFCE and RFCE need to be explicitly set by
3391  * software when a Copper PHY is used because autonegotiation is managed
3392  * by the PHY rather than the MAC. Software must also configure these
3393  * bits when link is forced on a fiber connection.
3394  *****************************************************************************/
3395 static int
3396 e1000_force_mac_fc(struct e1000_hw *hw)
3397 {
3398 	uint32_t ctrl;
3399 
3400 	DEBUGFUNC();
3401 
3402 	/* Get the current configuration of the Device Control Register */
3403 	ctrl = E1000_READ_REG(hw, CTRL);
3404 
3405 	/* Because we didn't get link via the internal auto-negotiation
3406 	 * mechanism (we either forced link or we got link via PHY
3407 	 * auto-neg), we have to manually enable/disable transmit an
3408 	 * receive flow control.
3409 	 *
3410 	 * The "Case" statement below enables/disable flow control
3411 	 * according to the "hw->fc" parameter.
3412 	 *
3413 	 * The possible values of the "fc" parameter are:
3414 	 *	0:  Flow control is completely disabled
3415 	 *	1:  Rx flow control is enabled (we can receive pause
3416 	 *	    frames but not send pause frames).
3417 	 *	2:  Tx flow control is enabled (we can send pause frames
3418 	 *	    frames but we do not receive pause frames).
3419 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3420 	 *  other:  No other values should be possible at this point.
3421 	 */
3422 
3423 	switch (hw->fc) {
3424 	case e1000_fc_none:
3425 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3426 		break;
3427 	case e1000_fc_rx_pause:
3428 		ctrl &= (~E1000_CTRL_TFCE);
3429 		ctrl |= E1000_CTRL_RFCE;
3430 		break;
3431 	case e1000_fc_tx_pause:
3432 		ctrl &= (~E1000_CTRL_RFCE);
3433 		ctrl |= E1000_CTRL_TFCE;
3434 		break;
3435 	case e1000_fc_full:
3436 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3437 		break;
3438 	default:
3439 		DEBUGOUT("Flow control param set incorrectly\n");
3440 		return -E1000_ERR_CONFIG;
3441 	}
3442 
3443 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3444 	if (hw->mac_type == e1000_82542_rev2_0)
3445 		ctrl &= (~E1000_CTRL_TFCE);
3446 
3447 	E1000_WRITE_REG(hw, CTRL, ctrl);
3448 	return 0;
3449 }
3450 
3451 /******************************************************************************
3452  * Configures flow control settings after link is established
3453  *
3454  * hw - Struct containing variables accessed by shared code
3455  *
3456  * Should be called immediately after a valid link has been established.
3457  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3458  * and autonegotiation is enabled, the MAC flow control settings will be set
3459  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3460  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3461  *****************************************************************************/
3462 static int32_t
3463 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3464 {
3465 	int32_t ret_val;
3466 	uint16_t mii_status_reg;
3467 	uint16_t mii_nway_adv_reg;
3468 	uint16_t mii_nway_lp_ability_reg;
3469 	uint16_t speed;
3470 	uint16_t duplex;
3471 
3472 	DEBUGFUNC();
3473 
3474 	/* Check for the case where we have fiber media and auto-neg failed
3475 	 * so we had to force link.  In this case, we need to force the
3476 	 * configuration of the MAC to match the "fc" parameter.
3477 	 */
3478 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3479 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3480 		&& (hw->autoneg_failed))
3481 		|| ((hw->media_type == e1000_media_type_copper)
3482 		&& (!hw->autoneg))) {
3483 		ret_val = e1000_force_mac_fc(hw);
3484 		if (ret_val < 0) {
3485 			DEBUGOUT("Error forcing flow control settings\n");
3486 			return ret_val;
3487 		}
3488 	}
3489 
3490 	/* Check for the case where we have copper media and auto-neg is
3491 	 * enabled.  In this case, we need to check and see if Auto-Neg
3492 	 * has completed, and if so, how the PHY and link partner has
3493 	 * flow control configured.
3494 	 */
3495 	if (hw->media_type == e1000_media_type_copper) {
3496 		/* Read the MII Status Register and check to see if AutoNeg
3497 		 * has completed.  We read this twice because this reg has
3498 		 * some "sticky" (latched) bits.
3499 		 */
3500 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3501 			DEBUGOUT("PHY Read Error\n");
3502 			return -E1000_ERR_PHY;
3503 		}
3504 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3505 			DEBUGOUT("PHY Read Error\n");
3506 			return -E1000_ERR_PHY;
3507 		}
3508 
3509 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3510 			/* The AutoNeg process has completed, so we now need to
3511 			 * read both the Auto Negotiation Advertisement Register
3512 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3513 			 * Register (Address 5) to determine how flow control was
3514 			 * negotiated.
3515 			 */
3516 			if (e1000_read_phy_reg
3517 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3518 				DEBUGOUT("PHY Read Error\n");
3519 				return -E1000_ERR_PHY;
3520 			}
3521 			if (e1000_read_phy_reg
3522 			    (hw, PHY_LP_ABILITY,
3523 			     &mii_nway_lp_ability_reg) < 0) {
3524 				DEBUGOUT("PHY Read Error\n");
3525 				return -E1000_ERR_PHY;
3526 			}
3527 
3528 			/* Two bits in the Auto Negotiation Advertisement Register
3529 			 * (Address 4) and two bits in the Auto Negotiation Base
3530 			 * Page Ability Register (Address 5) determine flow control
3531 			 * for both the PHY and the link partner.  The following
3532 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3533 			 * 1999, describes these PAUSE resolution bits and how flow
3534 			 * control is determined based upon these settings.
3535 			 * NOTE:  DC = Don't Care
3536 			 *
3537 			 *   LOCAL DEVICE  |   LINK PARTNER
3538 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3539 			 *-------|---------|-------|---------|--------------------
3540 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3541 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3542 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3543 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3544 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3545 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3546 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3547 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3548 			 *
3549 			 */
3550 			/* Are both PAUSE bits set to 1?  If so, this implies
3551 			 * Symmetric Flow Control is enabled at both ends.  The
3552 			 * ASM_DIR bits are irrelevant per the spec.
3553 			 *
3554 			 * For Symmetric Flow Control:
3555 			 *
3556 			 *   LOCAL DEVICE  |   LINK PARTNER
3557 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3558 			 *-------|---------|-------|---------|--------------------
3559 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3560 			 *
3561 			 */
3562 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3563 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3564 				/* Now we need to check if the user selected RX ONLY
3565 				 * of pause frames.  In this case, we had to advertise
3566 				 * FULL flow control because we could not advertise RX
3567 				 * ONLY. Hence, we must now check to see if we need to
3568 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3569 				 */
3570 				if (hw->original_fc == e1000_fc_full) {
3571 					hw->fc = e1000_fc_full;
3572 					DEBUGOUT("Flow Control = FULL.\r\n");
3573 				} else {
3574 					hw->fc = e1000_fc_rx_pause;
3575 					DEBUGOUT
3576 					    ("Flow Control = RX PAUSE frames only.\r\n");
3577 				}
3578 			}
3579 			/* For receiving PAUSE frames ONLY.
3580 			 *
3581 			 *   LOCAL DEVICE  |   LINK PARTNER
3582 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3583 			 *-------|---------|-------|---------|--------------------
3584 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3585 			 *
3586 			 */
3587 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3588 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3589 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3590 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3591 			{
3592 				hw->fc = e1000_fc_tx_pause;
3593 				DEBUGOUT
3594 				    ("Flow Control = TX PAUSE frames only.\r\n");
3595 			}
3596 			/* For transmitting PAUSE frames ONLY.
3597 			 *
3598 			 *   LOCAL DEVICE  |   LINK PARTNER
3599 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3600 			 *-------|---------|-------|---------|--------------------
3601 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3602 			 *
3603 			 */
3604 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3605 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3606 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3607 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3608 			{
3609 				hw->fc = e1000_fc_rx_pause;
3610 				DEBUGOUT
3611 				    ("Flow Control = RX PAUSE frames only.\r\n");
3612 			}
3613 			/* Per the IEEE spec, at this point flow control should be
3614 			 * disabled.  However, we want to consider that we could
3615 			 * be connected to a legacy switch that doesn't advertise
3616 			 * desired flow control, but can be forced on the link
3617 			 * partner.  So if we advertised no flow control, that is
3618 			 * what we will resolve to.  If we advertised some kind of
3619 			 * receive capability (Rx Pause Only or Full Flow Control)
3620 			 * and the link partner advertised none, we will configure
3621 			 * ourselves to enable Rx Flow Control only.  We can do
3622 			 * this safely for two reasons:  If the link partner really
3623 			 * didn't want flow control enabled, and we enable Rx, no
3624 			 * harm done since we won't be receiving any PAUSE frames
3625 			 * anyway.  If the intent on the link partner was to have
3626 			 * flow control enabled, then by us enabling RX only, we
3627 			 * can at least receive pause frames and process them.
3628 			 * This is a good idea because in most cases, since we are
3629 			 * predominantly a server NIC, more times than not we will
3630 			 * be asked to delay transmission of packets than asking
3631 			 * our link partner to pause transmission of frames.
3632 			 */
3633 			else if (hw->original_fc == e1000_fc_none ||
3634 				 hw->original_fc == e1000_fc_tx_pause) {
3635 				hw->fc = e1000_fc_none;
3636 				DEBUGOUT("Flow Control = NONE.\r\n");
3637 			} else {
3638 				hw->fc = e1000_fc_rx_pause;
3639 				DEBUGOUT
3640 				    ("Flow Control = RX PAUSE frames only.\r\n");
3641 			}
3642 
3643 			/* Now we need to do one last check...	If we auto-
3644 			 * negotiated to HALF DUPLEX, flow control should not be
3645 			 * enabled per IEEE 802.3 spec.
3646 			 */
3647 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3648 
3649 			if (duplex == HALF_DUPLEX)
3650 				hw->fc = e1000_fc_none;
3651 
3652 			/* Now we call a subroutine to actually force the MAC
3653 			 * controller to use the correct flow control settings.
3654 			 */
3655 			ret_val = e1000_force_mac_fc(hw);
3656 			if (ret_val < 0) {
3657 				DEBUGOUT
3658 				    ("Error forcing flow control settings\n");
3659 				return ret_val;
3660 			}
3661 		} else {
3662 			DEBUGOUT
3663 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3664 		}
3665 	}
3666 	return E1000_SUCCESS;
3667 }
3668 
3669 /******************************************************************************
3670  * Checks to see if the link status of the hardware has changed.
3671  *
3672  * hw - Struct containing variables accessed by shared code
3673  *
3674  * Called by any function that needs to check the link status of the adapter.
3675  *****************************************************************************/
3676 static int
3677 e1000_check_for_link(struct e1000_hw *hw)
3678 {
3679 	uint32_t rxcw;
3680 	uint32_t ctrl;
3681 	uint32_t status;
3682 	uint32_t rctl;
3683 	uint32_t signal;
3684 	int32_t ret_val;
3685 	uint16_t phy_data;
3686 	uint16_t lp_capability;
3687 
3688 	DEBUGFUNC();
3689 
3690 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3691 	 * set when the optics detect a signal. On older adapters, it will be
3692 	 * cleared when there is a signal
3693 	 */
3694 	ctrl = E1000_READ_REG(hw, CTRL);
3695 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3696 		signal = E1000_CTRL_SWDPIN1;
3697 	else
3698 		signal = 0;
3699 
3700 	status = E1000_READ_REG(hw, STATUS);
3701 	rxcw = E1000_READ_REG(hw, RXCW);
3702 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3703 
3704 	/* If we have a copper PHY then we only want to go out to the PHY
3705 	 * registers to see if Auto-Neg has completed and/or if our link
3706 	 * status has changed.	The get_link_status flag will be set if we
3707 	 * receive a Link Status Change interrupt or we have Rx Sequence
3708 	 * Errors.
3709 	 */
3710 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3711 		/* First we want to see if the MII Status Register reports
3712 		 * link.  If so, then we want to get the current speed/duplex
3713 		 * of the PHY.
3714 		 * Read the register twice since the link bit is sticky.
3715 		 */
3716 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3717 			DEBUGOUT("PHY Read Error\n");
3718 			return -E1000_ERR_PHY;
3719 		}
3720 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3721 			DEBUGOUT("PHY Read Error\n");
3722 			return -E1000_ERR_PHY;
3723 		}
3724 
3725 		if (phy_data & MII_SR_LINK_STATUS) {
3726 			hw->get_link_status = false;
3727 		} else {
3728 			/* No link detected */
3729 			return -E1000_ERR_NOLINK;
3730 		}
3731 
3732 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3733 		 * have Si on board that is 82544 or newer, Auto
3734 		 * Speed Detection takes care of MAC speed/duplex
3735 		 * configuration.  So we only need to configure Collision
3736 		 * Distance in the MAC.  Otherwise, we need to force
3737 		 * speed/duplex on the MAC to the current PHY speed/duplex
3738 		 * settings.
3739 		 */
3740 		if (hw->mac_type >= e1000_82544)
3741 			e1000_config_collision_dist(hw);
3742 		else {
3743 			ret_val = e1000_config_mac_to_phy(hw);
3744 			if (ret_val < 0) {
3745 				DEBUGOUT
3746 				    ("Error configuring MAC to PHY settings\n");
3747 				return ret_val;
3748 			}
3749 		}
3750 
3751 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3752 		 * need to restore the desired flow control settings because we may
3753 		 * have had to re-autoneg with a different link partner.
3754 		 */
3755 		ret_val = e1000_config_fc_after_link_up(hw);
3756 		if (ret_val < 0) {
3757 			DEBUGOUT("Error configuring flow control\n");
3758 			return ret_val;
3759 		}
3760 
3761 		/* At this point we know that we are on copper and we have
3762 		 * auto-negotiated link.  These are conditions for checking the link
3763 		 * parter capability register.	We use the link partner capability to
3764 		 * determine if TBI Compatibility needs to be turned on or off.  If
3765 		 * the link partner advertises any speed in addition to Gigabit, then
3766 		 * we assume that they are GMII-based, and TBI compatibility is not
3767 		 * needed. If no other speeds are advertised, we assume the link
3768 		 * partner is TBI-based, and we turn on TBI Compatibility.
3769 		 */
3770 		if (hw->tbi_compatibility_en) {
3771 			if (e1000_read_phy_reg
3772 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3773 				DEBUGOUT("PHY Read Error\n");
3774 				return -E1000_ERR_PHY;
3775 			}
3776 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3777 					     NWAY_LPAR_10T_FD_CAPS |
3778 					     NWAY_LPAR_100TX_HD_CAPS |
3779 					     NWAY_LPAR_100TX_FD_CAPS |
3780 					     NWAY_LPAR_100T4_CAPS)) {
3781 				/* If our link partner advertises anything in addition to
3782 				 * gigabit, we do not need to enable TBI compatibility.
3783 				 */
3784 				if (hw->tbi_compatibility_on) {
3785 					/* If we previously were in the mode, turn it off. */
3786 					rctl = E1000_READ_REG(hw, RCTL);
3787 					rctl &= ~E1000_RCTL_SBP;
3788 					E1000_WRITE_REG(hw, RCTL, rctl);
3789 					hw->tbi_compatibility_on = false;
3790 				}
3791 			} else {
3792 				/* If TBI compatibility is was previously off, turn it on. For
3793 				 * compatibility with a TBI link partner, we will store bad
3794 				 * packets. Some frames have an additional byte on the end and
3795 				 * will look like CRC errors to to the hardware.
3796 				 */
3797 				if (!hw->tbi_compatibility_on) {
3798 					hw->tbi_compatibility_on = true;
3799 					rctl = E1000_READ_REG(hw, RCTL);
3800 					rctl |= E1000_RCTL_SBP;
3801 					E1000_WRITE_REG(hw, RCTL, rctl);
3802 				}
3803 			}
3804 		}
3805 	}
3806 	/* If we don't have link (auto-negotiation failed or link partner cannot
3807 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3808 	 * link partner is not trying to auto-negotiate with us (we are receiving
3809 	 * idles or data), we need to force link up. We also need to give
3810 	 * auto-negotiation time to complete, in case the cable was just plugged
3811 	 * in. The autoneg_failed flag does this.
3812 	 */
3813 	else if ((hw->media_type == e1000_media_type_fiber) &&
3814 		 (!(status & E1000_STATUS_LU)) &&
3815 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3816 		 (!(rxcw & E1000_RXCW_C))) {
3817 		if (hw->autoneg_failed == 0) {
3818 			hw->autoneg_failed = 1;
3819 			return 0;
3820 		}
3821 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3822 
3823 		/* Disable auto-negotiation in the TXCW register */
3824 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3825 
3826 		/* Force link-up and also force full-duplex. */
3827 		ctrl = E1000_READ_REG(hw, CTRL);
3828 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3829 		E1000_WRITE_REG(hw, CTRL, ctrl);
3830 
3831 		/* Configure Flow Control after forcing link up. */
3832 		ret_val = e1000_config_fc_after_link_up(hw);
3833 		if (ret_val < 0) {
3834 			DEBUGOUT("Error configuring flow control\n");
3835 			return ret_val;
3836 		}
3837 	}
3838 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3839 	 * auto-negotiation in the TXCW register and disable forced link in the
3840 	 * Device Control register in an attempt to auto-negotiate with our link
3841 	 * partner.
3842 	 */
3843 	else if ((hw->media_type == e1000_media_type_fiber) &&
3844 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3845 		DEBUGOUT
3846 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3847 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
3848 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3849 	}
3850 	return 0;
3851 }
3852 
3853 /******************************************************************************
3854 * Configure the MAC-to-PHY interface for 10/100Mbps
3855 *
3856 * hw - Struct containing variables accessed by shared code
3857 ******************************************************************************/
3858 static int32_t
3859 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3860 {
3861 	int32_t ret_val = E1000_SUCCESS;
3862 	uint32_t tipg;
3863 	uint16_t reg_data;
3864 
3865 	DEBUGFUNC();
3866 
3867 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3868 	ret_val = e1000_write_kmrn_reg(hw,
3869 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3870 	if (ret_val)
3871 		return ret_val;
3872 
3873 	/* Configure Transmit Inter-Packet Gap */
3874 	tipg = E1000_READ_REG(hw, TIPG);
3875 	tipg &= ~E1000_TIPG_IPGT_MASK;
3876 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3877 	E1000_WRITE_REG(hw, TIPG, tipg);
3878 
3879 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3880 
3881 	if (ret_val)
3882 		return ret_val;
3883 
3884 	if (duplex == HALF_DUPLEX)
3885 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3886 	else
3887 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3888 
3889 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3890 
3891 	return ret_val;
3892 }
3893 
3894 static int32_t
3895 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3896 {
3897 	int32_t ret_val = E1000_SUCCESS;
3898 	uint16_t reg_data;
3899 	uint32_t tipg;
3900 
3901 	DEBUGFUNC();
3902 
3903 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3904 	ret_val = e1000_write_kmrn_reg(hw,
3905 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3906 	if (ret_val)
3907 		return ret_val;
3908 
3909 	/* Configure Transmit Inter-Packet Gap */
3910 	tipg = E1000_READ_REG(hw, TIPG);
3911 	tipg &= ~E1000_TIPG_IPGT_MASK;
3912 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3913 	E1000_WRITE_REG(hw, TIPG, tipg);
3914 
3915 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3916 
3917 	if (ret_val)
3918 		return ret_val;
3919 
3920 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3921 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3922 
3923 	return ret_val;
3924 }
3925 
3926 /******************************************************************************
3927  * Detects the current speed and duplex settings of the hardware.
3928  *
3929  * hw - Struct containing variables accessed by shared code
3930  * speed - Speed of the connection
3931  * duplex - Duplex setting of the connection
3932  *****************************************************************************/
3933 static int
3934 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3935 		uint16_t *duplex)
3936 {
3937 	uint32_t status;
3938 	int32_t ret_val;
3939 	uint16_t phy_data;
3940 
3941 	DEBUGFUNC();
3942 
3943 	if (hw->mac_type >= e1000_82543) {
3944 		status = E1000_READ_REG(hw, STATUS);
3945 		if (status & E1000_STATUS_SPEED_1000) {
3946 			*speed = SPEED_1000;
3947 			DEBUGOUT("1000 Mbs, ");
3948 		} else if (status & E1000_STATUS_SPEED_100) {
3949 			*speed = SPEED_100;
3950 			DEBUGOUT("100 Mbs, ");
3951 		} else {
3952 			*speed = SPEED_10;
3953 			DEBUGOUT("10 Mbs, ");
3954 		}
3955 
3956 		if (status & E1000_STATUS_FD) {
3957 			*duplex = FULL_DUPLEX;
3958 			DEBUGOUT("Full Duplex\r\n");
3959 		} else {
3960 			*duplex = HALF_DUPLEX;
3961 			DEBUGOUT(" Half Duplex\r\n");
3962 		}
3963 	} else {
3964 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3965 		*speed = SPEED_1000;
3966 		*duplex = FULL_DUPLEX;
3967 	}
3968 
3969 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
3970 	 * even if it is operating at half duplex.  Here we set the duplex
3971 	 * settings to match the duplex in the link partner's capabilities.
3972 	 */
3973 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3974 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3975 		if (ret_val)
3976 			return ret_val;
3977 
3978 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3979 			*duplex = HALF_DUPLEX;
3980 		else {
3981 			ret_val = e1000_read_phy_reg(hw,
3982 					PHY_LP_ABILITY, &phy_data);
3983 			if (ret_val)
3984 				return ret_val;
3985 			if ((*speed == SPEED_100 &&
3986 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3987 				|| (*speed == SPEED_10
3988 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3989 				*duplex = HALF_DUPLEX;
3990 		}
3991 	}
3992 
3993 	if ((hw->mac_type == e1000_80003es2lan) &&
3994 		(hw->media_type == e1000_media_type_copper)) {
3995 		if (*speed == SPEED_1000)
3996 			ret_val = e1000_configure_kmrn_for_1000(hw);
3997 		else
3998 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3999 		if (ret_val)
4000 			return ret_val;
4001 	}
4002 	return E1000_SUCCESS;
4003 }
4004 
4005 /******************************************************************************
4006 * Blocks until autoneg completes or times out (~4.5 seconds)
4007 *
4008 * hw - Struct containing variables accessed by shared code
4009 ******************************************************************************/
4010 static int
4011 e1000_wait_autoneg(struct e1000_hw *hw)
4012 {
4013 	uint16_t i;
4014 	uint16_t phy_data;
4015 
4016 	DEBUGFUNC();
4017 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4018 
4019 	/* We will wait for autoneg to complete or timeout to expire. */
4020 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4021 		/* Read the MII Status Register and wait for Auto-Neg
4022 		 * Complete bit to be set.
4023 		 */
4024 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4025 			DEBUGOUT("PHY Read Error\n");
4026 			return -E1000_ERR_PHY;
4027 		}
4028 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4029 			DEBUGOUT("PHY Read Error\n");
4030 			return -E1000_ERR_PHY;
4031 		}
4032 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4033 			DEBUGOUT("Auto-Neg complete.\n");
4034 			return 0;
4035 		}
4036 		mdelay(100);
4037 	}
4038 	DEBUGOUT("Auto-Neg timedout.\n");
4039 	return -E1000_ERR_TIMEOUT;
4040 }
4041 
4042 /******************************************************************************
4043 * Raises the Management Data Clock
4044 *
4045 * hw - Struct containing variables accessed by shared code
4046 * ctrl - Device control register's current value
4047 ******************************************************************************/
4048 static void
4049 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4050 {
4051 	/* Raise the clock input to the Management Data Clock (by setting the MDC
4052 	 * bit), and then delay 2 microseconds.
4053 	 */
4054 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4055 	E1000_WRITE_FLUSH(hw);
4056 	udelay(2);
4057 }
4058 
4059 /******************************************************************************
4060 * Lowers the Management Data Clock
4061 *
4062 * hw - Struct containing variables accessed by shared code
4063 * ctrl - Device control register's current value
4064 ******************************************************************************/
4065 static void
4066 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4067 {
4068 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
4069 	 * bit), and then delay 2 microseconds.
4070 	 */
4071 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4072 	E1000_WRITE_FLUSH(hw);
4073 	udelay(2);
4074 }
4075 
4076 /******************************************************************************
4077 * Shifts data bits out to the PHY
4078 *
4079 * hw - Struct containing variables accessed by shared code
4080 * data - Data to send out to the PHY
4081 * count - Number of bits to shift out
4082 *
4083 * Bits are shifted out in MSB to LSB order.
4084 ******************************************************************************/
4085 static void
4086 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4087 {
4088 	uint32_t ctrl;
4089 	uint32_t mask;
4090 
4091 	/* We need to shift "count" number of bits out to the PHY. So, the value
4092 	 * in the "data" parameter will be shifted out to the PHY one bit at a
4093 	 * time. In order to do this, "data" must be broken down into bits.
4094 	 */
4095 	mask = 0x01;
4096 	mask <<= (count - 1);
4097 
4098 	ctrl = E1000_READ_REG(hw, CTRL);
4099 
4100 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4101 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4102 
4103 	while (mask) {
4104 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4105 		 * then raising and lowering the Management Data Clock. A "0" is
4106 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
4107 		 * raising and lowering the clock.
4108 		 */
4109 		if (data & mask)
4110 			ctrl |= E1000_CTRL_MDIO;
4111 		else
4112 			ctrl &= ~E1000_CTRL_MDIO;
4113 
4114 		E1000_WRITE_REG(hw, CTRL, ctrl);
4115 		E1000_WRITE_FLUSH(hw);
4116 
4117 		udelay(2);
4118 
4119 		e1000_raise_mdi_clk(hw, &ctrl);
4120 		e1000_lower_mdi_clk(hw, &ctrl);
4121 
4122 		mask = mask >> 1;
4123 	}
4124 }
4125 
4126 /******************************************************************************
4127 * Shifts data bits in from the PHY
4128 *
4129 * hw - Struct containing variables accessed by shared code
4130 *
4131 * Bits are shifted in in MSB to LSB order.
4132 ******************************************************************************/
4133 static uint16_t
4134 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4135 {
4136 	uint32_t ctrl;
4137 	uint16_t data = 0;
4138 	uint8_t i;
4139 
4140 	/* In order to read a register from the PHY, we need to shift in a total
4141 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4142 	 * to avoid contention on the MDIO pin when a read operation is performed.
4143 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4144 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4145 	 * and then reading the value of the MDIO bit.
4146 	 */
4147 	ctrl = E1000_READ_REG(hw, CTRL);
4148 
4149 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4150 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4151 	ctrl &= ~E1000_CTRL_MDIO;
4152 
4153 	E1000_WRITE_REG(hw, CTRL, ctrl);
4154 	E1000_WRITE_FLUSH(hw);
4155 
4156 	/* Raise and Lower the clock before reading in the data. This accounts for
4157 	 * the turnaround bits. The first clock occurred when we clocked out the
4158 	 * last bit of the Register Address.
4159 	 */
4160 	e1000_raise_mdi_clk(hw, &ctrl);
4161 	e1000_lower_mdi_clk(hw, &ctrl);
4162 
4163 	for (data = 0, i = 0; i < 16; i++) {
4164 		data = data << 1;
4165 		e1000_raise_mdi_clk(hw, &ctrl);
4166 		ctrl = E1000_READ_REG(hw, CTRL);
4167 		/* Check to see if we shifted in a "1". */
4168 		if (ctrl & E1000_CTRL_MDIO)
4169 			data |= 1;
4170 		e1000_lower_mdi_clk(hw, &ctrl);
4171 	}
4172 
4173 	e1000_raise_mdi_clk(hw, &ctrl);
4174 	e1000_lower_mdi_clk(hw, &ctrl);
4175 
4176 	return data;
4177 }
4178 
4179 /*****************************************************************************
4180 * Reads the value from a PHY register
4181 *
4182 * hw - Struct containing variables accessed by shared code
4183 * reg_addr - address of the PHY register to read
4184 ******************************************************************************/
4185 static int
4186 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4187 {
4188 	uint32_t i;
4189 	uint32_t mdic = 0;
4190 	const uint32_t phy_addr = 1;
4191 
4192 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4193 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4194 		return -E1000_ERR_PARAM;
4195 	}
4196 
4197 	if (hw->mac_type > e1000_82543) {
4198 		/* Set up Op-code, Phy Address, and register address in the MDI
4199 		 * Control register.  The MAC will take care of interfacing with the
4200 		 * PHY to retrieve the desired data.
4201 		 */
4202 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4203 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4204 			(E1000_MDIC_OP_READ));
4205 
4206 		E1000_WRITE_REG(hw, MDIC, mdic);
4207 
4208 		/* Poll the ready bit to see if the MDI read completed */
4209 		for (i = 0; i < 64; i++) {
4210 			udelay(10);
4211 			mdic = E1000_READ_REG(hw, MDIC);
4212 			if (mdic & E1000_MDIC_READY)
4213 				break;
4214 		}
4215 		if (!(mdic & E1000_MDIC_READY)) {
4216 			DEBUGOUT("MDI Read did not complete\n");
4217 			return -E1000_ERR_PHY;
4218 		}
4219 		if (mdic & E1000_MDIC_ERROR) {
4220 			DEBUGOUT("MDI Error\n");
4221 			return -E1000_ERR_PHY;
4222 		}
4223 		*phy_data = (uint16_t) mdic;
4224 	} else {
4225 		/* We must first send a preamble through the MDIO pin to signal the
4226 		 * beginning of an MII instruction.  This is done by sending 32
4227 		 * consecutive "1" bits.
4228 		 */
4229 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4230 
4231 		/* Now combine the next few fields that are required for a read
4232 		 * operation.  We use this method instead of calling the
4233 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4234 		 * a MII read instruction consists of a shift out of 14 bits and is
4235 		 * defined as follows:
4236 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4237 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4238 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4239 		 * READ operation is performed.  These two bits are thrown away
4240 		 * followed by a shift in of 16 bits which contains the desired data.
4241 		 */
4242 		mdic = ((reg_addr) | (phy_addr << 5) |
4243 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4244 
4245 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4246 
4247 		/* Now that we've shifted out the read command to the MII, we need to
4248 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4249 		 * register address.
4250 		 */
4251 		*phy_data = e1000_shift_in_mdi_bits(hw);
4252 	}
4253 	return 0;
4254 }
4255 
4256 /******************************************************************************
4257 * Writes a value to a PHY register
4258 *
4259 * hw - Struct containing variables accessed by shared code
4260 * reg_addr - address of the PHY register to write
4261 * data - data to write to the PHY
4262 ******************************************************************************/
4263 static int
4264 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4265 {
4266 	uint32_t i;
4267 	uint32_t mdic = 0;
4268 	const uint32_t phy_addr = 1;
4269 
4270 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4271 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4272 		return -E1000_ERR_PARAM;
4273 	}
4274 
4275 	if (hw->mac_type > e1000_82543) {
4276 		/* Set up Op-code, Phy Address, register address, and data intended
4277 		 * for the PHY register in the MDI Control register.  The MAC will take
4278 		 * care of interfacing with the PHY to send the desired data.
4279 		 */
4280 		mdic = (((uint32_t) phy_data) |
4281 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4282 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4283 			(E1000_MDIC_OP_WRITE));
4284 
4285 		E1000_WRITE_REG(hw, MDIC, mdic);
4286 
4287 		/* Poll the ready bit to see if the MDI read completed */
4288 		for (i = 0; i < 64; i++) {
4289 			udelay(10);
4290 			mdic = E1000_READ_REG(hw, MDIC);
4291 			if (mdic & E1000_MDIC_READY)
4292 				break;
4293 		}
4294 		if (!(mdic & E1000_MDIC_READY)) {
4295 			DEBUGOUT("MDI Write did not complete\n");
4296 			return -E1000_ERR_PHY;
4297 		}
4298 	} else {
4299 		/* We'll need to use the SW defined pins to shift the write command
4300 		 * out to the PHY. We first send a preamble to the PHY to signal the
4301 		 * beginning of the MII instruction.  This is done by sending 32
4302 		 * consecutive "1" bits.
4303 		 */
4304 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4305 
4306 		/* Now combine the remaining required fields that will indicate a
4307 		 * write operation. We use this method instead of calling the
4308 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4309 		 * format of a MII write instruction is as follows:
4310 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4311 		 */
4312 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4313 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4314 		mdic <<= 16;
4315 		mdic |= (uint32_t) phy_data;
4316 
4317 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4318 	}
4319 	return 0;
4320 }
4321 
4322 /******************************************************************************
4323  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4324  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4325  * the caller to figure out how to deal with it.
4326  *
4327  * hw - Struct containing variables accessed by shared code
4328  *
4329  * returns: - E1000_BLK_PHY_RESET
4330  *            E1000_SUCCESS
4331  *
4332  *****************************************************************************/
4333 int32_t
4334 e1000_check_phy_reset_block(struct e1000_hw *hw)
4335 {
4336 	uint32_t manc = 0;
4337 	uint32_t fwsm = 0;
4338 
4339 	if (hw->mac_type == e1000_ich8lan) {
4340 		fwsm = E1000_READ_REG(hw, FWSM);
4341 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4342 						: E1000_BLK_PHY_RESET;
4343 	}
4344 
4345 	if (hw->mac_type > e1000_82547_rev_2)
4346 		manc = E1000_READ_REG(hw, MANC);
4347 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4348 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4349 }
4350 
4351 /***************************************************************************
4352  * Checks if the PHY configuration is done
4353  *
4354  * hw: Struct containing variables accessed by shared code
4355  *
4356  * returns: - E1000_ERR_RESET if fail to reset MAC
4357  *            E1000_SUCCESS at any other case.
4358  *
4359  ***************************************************************************/
4360 static int32_t
4361 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4362 {
4363 	int32_t timeout = PHY_CFG_TIMEOUT;
4364 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4365 
4366 	DEBUGFUNC();
4367 
4368 	switch (hw->mac_type) {
4369 	default:
4370 		mdelay(10);
4371 		break;
4372 
4373 	case e1000_80003es2lan:
4374 		/* Separate *_CFG_DONE_* bit for each port */
4375 		if (e1000_is_second_port(hw))
4376 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4377 		/* Fall Through */
4378 
4379 	case e1000_82571:
4380 	case e1000_82572:
4381 	case e1000_igb:
4382 		while (timeout) {
4383 			if (hw->mac_type == e1000_igb) {
4384 				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4385 					break;
4386 			} else {
4387 				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4388 					break;
4389 			}
4390 			mdelay(1);
4391 			timeout--;
4392 		}
4393 		if (!timeout) {
4394 			DEBUGOUT("MNG configuration cycle has not "
4395 					"completed.\n");
4396 			return -E1000_ERR_RESET;
4397 		}
4398 		break;
4399 	}
4400 
4401 	return E1000_SUCCESS;
4402 }
4403 
4404 /******************************************************************************
4405 * Returns the PHY to the power-on reset state
4406 *
4407 * hw - Struct containing variables accessed by shared code
4408 ******************************************************************************/
4409 int32_t
4410 e1000_phy_hw_reset(struct e1000_hw *hw)
4411 {
4412 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4413 	uint32_t ctrl, ctrl_ext;
4414 	uint32_t led_ctrl;
4415 	int32_t ret_val;
4416 
4417 	DEBUGFUNC();
4418 
4419 	/* In the case of the phy reset being blocked, it's not an error, we
4420 	 * simply return success without performing the reset. */
4421 	ret_val = e1000_check_phy_reset_block(hw);
4422 	if (ret_val)
4423 		return E1000_SUCCESS;
4424 
4425 	DEBUGOUT("Resetting Phy...\n");
4426 
4427 	if (hw->mac_type > e1000_82543) {
4428 		if (e1000_is_second_port(hw))
4429 			swfw = E1000_SWFW_PHY1_SM;
4430 
4431 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4432 			DEBUGOUT("Unable to acquire swfw sync\n");
4433 			return -E1000_ERR_SWFW_SYNC;
4434 		}
4435 
4436 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4437 		 * bit. Then, take it out of reset.
4438 		 */
4439 		ctrl = E1000_READ_REG(hw, CTRL);
4440 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4441 		E1000_WRITE_FLUSH(hw);
4442 
4443 		if (hw->mac_type < e1000_82571)
4444 			udelay(10);
4445 		else
4446 			udelay(100);
4447 
4448 		E1000_WRITE_REG(hw, CTRL, ctrl);
4449 		E1000_WRITE_FLUSH(hw);
4450 
4451 		if (hw->mac_type >= e1000_82571)
4452 			mdelay(10);
4453 
4454 	} else {
4455 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4456 		 * bit to put the PHY into reset. Then, take it out of reset.
4457 		 */
4458 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4459 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4460 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4461 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4462 		E1000_WRITE_FLUSH(hw);
4463 		mdelay(10);
4464 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4465 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4466 		E1000_WRITE_FLUSH(hw);
4467 	}
4468 	udelay(150);
4469 
4470 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4471 		/* Configure activity LED after PHY reset */
4472 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4473 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4474 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4475 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4476 	}
4477 
4478 	e1000_swfw_sync_release(hw, swfw);
4479 
4480 	/* Wait for FW to finish PHY configuration. */
4481 	ret_val = e1000_get_phy_cfg_done(hw);
4482 	if (ret_val != E1000_SUCCESS)
4483 		return ret_val;
4484 
4485 	return ret_val;
4486 }
4487 
4488 /******************************************************************************
4489  * IGP phy init script - initializes the GbE PHY
4490  *
4491  * hw - Struct containing variables accessed by shared code
4492  *****************************************************************************/
4493 static void
4494 e1000_phy_init_script(struct e1000_hw *hw)
4495 {
4496 	uint32_t ret_val;
4497 	uint16_t phy_saved_data;
4498 	DEBUGFUNC();
4499 
4500 	if (hw->phy_init_script) {
4501 		mdelay(20);
4502 
4503 		/* Save off the current value of register 0x2F5B to be
4504 		 * restored at the end of this routine. */
4505 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4506 
4507 		/* Disabled the PHY transmitter */
4508 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4509 
4510 		mdelay(20);
4511 
4512 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4513 
4514 		mdelay(5);
4515 
4516 		switch (hw->mac_type) {
4517 		case e1000_82541:
4518 		case e1000_82547:
4519 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4520 
4521 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4522 
4523 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4524 
4525 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4526 
4527 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4528 
4529 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4530 
4531 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4532 
4533 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4534 
4535 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4536 			break;
4537 
4538 		case e1000_82541_rev_2:
4539 		case e1000_82547_rev_2:
4540 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4541 			break;
4542 		default:
4543 			break;
4544 		}
4545 
4546 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4547 
4548 		mdelay(20);
4549 
4550 		/* Now enable the transmitter */
4551 		if (!ret_val)
4552 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4553 
4554 		if (hw->mac_type == e1000_82547) {
4555 			uint16_t fused, fine, coarse;
4556 
4557 			/* Move to analog registers page */
4558 			e1000_read_phy_reg(hw,
4559 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4560 
4561 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4562 				e1000_read_phy_reg(hw,
4563 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4564 
4565 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4566 				coarse = fused
4567 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4568 
4569 				if (coarse >
4570 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4571 					coarse -=
4572 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4573 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4574 				} else if (coarse
4575 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4576 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4577 
4578 				fused = (fused
4579 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4580 					(fine
4581 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4582 					(coarse
4583 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4584 
4585 				e1000_write_phy_reg(hw,
4586 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4587 				e1000_write_phy_reg(hw,
4588 					IGP01E1000_ANALOG_FUSE_BYPASS,
4589 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4590 			}
4591 		}
4592 	}
4593 }
4594 
4595 /******************************************************************************
4596 * Resets the PHY
4597 *
4598 * hw - Struct containing variables accessed by shared code
4599 *
4600 * Sets bit 15 of the MII Control register
4601 ******************************************************************************/
4602 int32_t
4603 e1000_phy_reset(struct e1000_hw *hw)
4604 {
4605 	int32_t ret_val;
4606 	uint16_t phy_data;
4607 
4608 	DEBUGFUNC();
4609 
4610 	/* In the case of the phy reset being blocked, it's not an error, we
4611 	 * simply return success without performing the reset. */
4612 	ret_val = e1000_check_phy_reset_block(hw);
4613 	if (ret_val)
4614 		return E1000_SUCCESS;
4615 
4616 	switch (hw->phy_type) {
4617 	case e1000_phy_igp:
4618 	case e1000_phy_igp_2:
4619 	case e1000_phy_igp_3:
4620 	case e1000_phy_ife:
4621 	case e1000_phy_igb:
4622 		ret_val = e1000_phy_hw_reset(hw);
4623 		if (ret_val)
4624 			return ret_val;
4625 		break;
4626 	default:
4627 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4628 		if (ret_val)
4629 			return ret_val;
4630 
4631 		phy_data |= MII_CR_RESET;
4632 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4633 		if (ret_val)
4634 			return ret_val;
4635 
4636 		udelay(1);
4637 		break;
4638 	}
4639 
4640 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4641 		e1000_phy_init_script(hw);
4642 
4643 	return E1000_SUCCESS;
4644 }
4645 
4646 static int e1000_set_phy_type (struct e1000_hw *hw)
4647 {
4648 	DEBUGFUNC ();
4649 
4650 	if (hw->mac_type == e1000_undefined)
4651 		return -E1000_ERR_PHY_TYPE;
4652 
4653 	switch (hw->phy_id) {
4654 	case M88E1000_E_PHY_ID:
4655 	case M88E1000_I_PHY_ID:
4656 	case M88E1011_I_PHY_ID:
4657 	case M88E1111_I_PHY_ID:
4658 		hw->phy_type = e1000_phy_m88;
4659 		break;
4660 	case IGP01E1000_I_PHY_ID:
4661 		if (hw->mac_type == e1000_82541 ||
4662 			hw->mac_type == e1000_82541_rev_2 ||
4663 			hw->mac_type == e1000_82547 ||
4664 			hw->mac_type == e1000_82547_rev_2) {
4665 			hw->phy_type = e1000_phy_igp;
4666 			break;
4667 		}
4668 	case IGP03E1000_E_PHY_ID:
4669 		hw->phy_type = e1000_phy_igp_3;
4670 		break;
4671 	case IFE_E_PHY_ID:
4672 	case IFE_PLUS_E_PHY_ID:
4673 	case IFE_C_E_PHY_ID:
4674 		hw->phy_type = e1000_phy_ife;
4675 		break;
4676 	case GG82563_E_PHY_ID:
4677 		if (hw->mac_type == e1000_80003es2lan) {
4678 			hw->phy_type = e1000_phy_gg82563;
4679 			break;
4680 		}
4681 	case BME1000_E_PHY_ID:
4682 		hw->phy_type = e1000_phy_bm;
4683 		break;
4684 	case I210_I_PHY_ID:
4685 		hw->phy_type = e1000_phy_igb;
4686 		break;
4687 		/* Fall Through */
4688 	default:
4689 		/* Should never have loaded on this device */
4690 		hw->phy_type = e1000_phy_undefined;
4691 		return -E1000_ERR_PHY_TYPE;
4692 	}
4693 
4694 	return E1000_SUCCESS;
4695 }
4696 
4697 /******************************************************************************
4698 * Probes the expected PHY address for known PHY IDs
4699 *
4700 * hw - Struct containing variables accessed by shared code
4701 ******************************************************************************/
4702 static int32_t
4703 e1000_detect_gig_phy(struct e1000_hw *hw)
4704 {
4705 	int32_t phy_init_status, ret_val;
4706 	uint16_t phy_id_high, phy_id_low;
4707 	bool match = false;
4708 
4709 	DEBUGFUNC();
4710 
4711 	/* The 82571 firmware may still be configuring the PHY.  In this
4712 	 * case, we cannot access the PHY until the configuration is done.  So
4713 	 * we explicitly set the PHY values. */
4714 	if (hw->mac_type == e1000_82571 ||
4715 		hw->mac_type == e1000_82572) {
4716 		hw->phy_id = IGP01E1000_I_PHY_ID;
4717 		hw->phy_type = e1000_phy_igp_2;
4718 		return E1000_SUCCESS;
4719 	}
4720 
4721 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4722 	 * work- around that forces PHY page 0 to be set or the reads fail.
4723 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4724 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4725 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4726 	 * the routines below will figure this out as well. */
4727 	if (hw->mac_type == e1000_80003es2lan)
4728 		hw->phy_type = e1000_phy_gg82563;
4729 
4730 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4731 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4732 	if (ret_val)
4733 		return ret_val;
4734 
4735 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4736 	udelay(20);
4737 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4738 	if (ret_val)
4739 		return ret_val;
4740 
4741 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4742 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4743 
4744 	switch (hw->mac_type) {
4745 	case e1000_82543:
4746 		if (hw->phy_id == M88E1000_E_PHY_ID)
4747 			match = true;
4748 		break;
4749 	case e1000_82544:
4750 		if (hw->phy_id == M88E1000_I_PHY_ID)
4751 			match = true;
4752 		break;
4753 	case e1000_82540:
4754 	case e1000_82545:
4755 	case e1000_82545_rev_3:
4756 	case e1000_82546:
4757 	case e1000_82546_rev_3:
4758 		if (hw->phy_id == M88E1011_I_PHY_ID)
4759 			match = true;
4760 		break;
4761 	case e1000_82541:
4762 	case e1000_82541_rev_2:
4763 	case e1000_82547:
4764 	case e1000_82547_rev_2:
4765 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4766 			match = true;
4767 
4768 		break;
4769 	case e1000_82573:
4770 		if (hw->phy_id == M88E1111_I_PHY_ID)
4771 			match = true;
4772 		break;
4773 	case e1000_82574:
4774 		if (hw->phy_id == BME1000_E_PHY_ID)
4775 			match = true;
4776 		break;
4777 	case e1000_80003es2lan:
4778 		if (hw->phy_id == GG82563_E_PHY_ID)
4779 			match = true;
4780 		break;
4781 	case e1000_ich8lan:
4782 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4783 			match = true;
4784 		if (hw->phy_id == IFE_E_PHY_ID)
4785 			match = true;
4786 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4787 			match = true;
4788 		if (hw->phy_id == IFE_C_E_PHY_ID)
4789 			match = true;
4790 		break;
4791 	case e1000_igb:
4792 		if (hw->phy_id == I210_I_PHY_ID)
4793 			match = true;
4794 		break;
4795 	default:
4796 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4797 		return -E1000_ERR_CONFIG;
4798 	}
4799 
4800 	phy_init_status = e1000_set_phy_type(hw);
4801 
4802 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4803 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4804 		return 0;
4805 	}
4806 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4807 	return -E1000_ERR_PHY;
4808 }
4809 
4810 /*****************************************************************************
4811  * Set media type and TBI compatibility.
4812  *
4813  * hw - Struct containing variables accessed by shared code
4814  * **************************************************************************/
4815 void
4816 e1000_set_media_type(struct e1000_hw *hw)
4817 {
4818 	uint32_t status;
4819 
4820 	DEBUGFUNC();
4821 
4822 	if (hw->mac_type != e1000_82543) {
4823 		/* tbi_compatibility is only valid on 82543 */
4824 		hw->tbi_compatibility_en = false;
4825 	}
4826 
4827 	switch (hw->device_id) {
4828 	case E1000_DEV_ID_82545GM_SERDES:
4829 	case E1000_DEV_ID_82546GB_SERDES:
4830 	case E1000_DEV_ID_82571EB_SERDES:
4831 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
4832 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
4833 	case E1000_DEV_ID_82572EI_SERDES:
4834 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4835 		hw->media_type = e1000_media_type_internal_serdes;
4836 		break;
4837 	default:
4838 		switch (hw->mac_type) {
4839 		case e1000_82542_rev2_0:
4840 		case e1000_82542_rev2_1:
4841 			hw->media_type = e1000_media_type_fiber;
4842 			break;
4843 		case e1000_ich8lan:
4844 		case e1000_82573:
4845 		case e1000_82574:
4846 		case e1000_igb:
4847 			/* The STATUS_TBIMODE bit is reserved or reused
4848 			 * for the this device.
4849 			 */
4850 			hw->media_type = e1000_media_type_copper;
4851 			break;
4852 		default:
4853 			status = E1000_READ_REG(hw, STATUS);
4854 			if (status & E1000_STATUS_TBIMODE) {
4855 				hw->media_type = e1000_media_type_fiber;
4856 				/* tbi_compatibility not valid on fiber */
4857 				hw->tbi_compatibility_en = false;
4858 			} else {
4859 				hw->media_type = e1000_media_type_copper;
4860 			}
4861 			break;
4862 		}
4863 	}
4864 }
4865 
4866 /**
4867  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4868  *
4869  * e1000_sw_init initializes the Adapter private data structure.
4870  * Fields are initialized based on PCI device information and
4871  * OS network device settings (MTU size).
4872  **/
4873 
4874 static int
4875 e1000_sw_init(struct e1000_hw *hw)
4876 {
4877 	int result;
4878 
4879 	/* PCI config space info */
4880 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4881 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4882 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4883 			     &hw->subsystem_vendor_id);
4884 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4885 
4886 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4887 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4888 
4889 	/* identify the MAC */
4890 	result = e1000_set_mac_type(hw);
4891 	if (result) {
4892 		E1000_ERR(hw, "Unknown MAC Type\n");
4893 		return result;
4894 	}
4895 
4896 	switch (hw->mac_type) {
4897 	default:
4898 		break;
4899 	case e1000_82541:
4900 	case e1000_82547:
4901 	case e1000_82541_rev_2:
4902 	case e1000_82547_rev_2:
4903 		hw->phy_init_script = 1;
4904 		break;
4905 	}
4906 
4907 	/* flow control settings */
4908 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
4909 	hw->fc_low_water = E1000_FC_LOW_THRESH;
4910 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4911 	hw->fc_send_xon = 1;
4912 
4913 	/* Media type - copper or fiber */
4914 	hw->tbi_compatibility_en = true;
4915 	e1000_set_media_type(hw);
4916 
4917 	if (hw->mac_type >= e1000_82543) {
4918 		uint32_t status = E1000_READ_REG(hw, STATUS);
4919 
4920 		if (status & E1000_STATUS_TBIMODE) {
4921 			DEBUGOUT("fiber interface\n");
4922 			hw->media_type = e1000_media_type_fiber;
4923 		} else {
4924 			DEBUGOUT("copper interface\n");
4925 			hw->media_type = e1000_media_type_copper;
4926 		}
4927 	} else {
4928 		hw->media_type = e1000_media_type_fiber;
4929 	}
4930 
4931 	hw->wait_autoneg_complete = true;
4932 	if (hw->mac_type < e1000_82543)
4933 		hw->report_tx_early = 0;
4934 	else
4935 		hw->report_tx_early = 1;
4936 
4937 	return E1000_SUCCESS;
4938 }
4939 
4940 void
4941 fill_rx(struct e1000_hw *hw)
4942 {
4943 	struct e1000_rx_desc *rd;
4944 	unsigned long flush_start, flush_end;
4945 
4946 	rx_last = rx_tail;
4947 	rd = rx_base + rx_tail;
4948 	rx_tail = (rx_tail + 1) % 8;
4949 	memset(rd, 0, 16);
4950 	rd->buffer_addr = cpu_to_le64((unsigned long)packet);
4951 
4952 	/*
4953 	 * Make sure there are no stale data in WB over this area, which
4954 	 * might get written into the memory while the e1000 also writes
4955 	 * into the same memory area.
4956 	 */
4957 	invalidate_dcache_range((unsigned long)packet,
4958 				(unsigned long)packet + 4096);
4959 	/* Dump the DMA descriptor into RAM. */
4960 	flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
4961 	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4962 	flush_dcache_range(flush_start, flush_end);
4963 
4964 	E1000_WRITE_REG(hw, RDT, rx_tail);
4965 }
4966 
4967 /**
4968  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4969  * @adapter: board private structure
4970  *
4971  * Configure the Tx unit of the MAC after a reset.
4972  **/
4973 
4974 static void
4975 e1000_configure_tx(struct e1000_hw *hw)
4976 {
4977 	unsigned long tctl;
4978 	unsigned long tipg, tarc;
4979 	uint32_t ipgr1, ipgr2;
4980 
4981 	E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
4982 	E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
4983 
4984 	E1000_WRITE_REG(hw, TDLEN, 128);
4985 
4986 	/* Setup the HW Tx Head and Tail descriptor pointers */
4987 	E1000_WRITE_REG(hw, TDH, 0);
4988 	E1000_WRITE_REG(hw, TDT, 0);
4989 	tx_tail = 0;
4990 
4991 	/* Set the default values for the Tx Inter Packet Gap timer */
4992 	if (hw->mac_type <= e1000_82547_rev_2 &&
4993 	    (hw->media_type == e1000_media_type_fiber ||
4994 	     hw->media_type == e1000_media_type_internal_serdes))
4995 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4996 	else
4997 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4998 
4999 	/* Set the default values for the Tx Inter Packet Gap timer */
5000 	switch (hw->mac_type) {
5001 	case e1000_82542_rev2_0:
5002 	case e1000_82542_rev2_1:
5003 		tipg = DEFAULT_82542_TIPG_IPGT;
5004 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5005 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5006 		break;
5007 	case e1000_80003es2lan:
5008 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5009 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5010 		break;
5011 	default:
5012 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5013 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5014 		break;
5015 	}
5016 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5017 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5018 	E1000_WRITE_REG(hw, TIPG, tipg);
5019 	/* Program the Transmit Control Register */
5020 	tctl = E1000_READ_REG(hw, TCTL);
5021 	tctl &= ~E1000_TCTL_CT;
5022 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5023 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5024 
5025 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5026 		tarc = E1000_READ_REG(hw, TARC0);
5027 		/* set the speed mode bit, we'll clear it if we're not at
5028 		 * gigabit link later */
5029 		/* git bit can be set to 1*/
5030 	} else if (hw->mac_type == e1000_80003es2lan) {
5031 		tarc = E1000_READ_REG(hw, TARC0);
5032 		tarc |= 1;
5033 		E1000_WRITE_REG(hw, TARC0, tarc);
5034 		tarc = E1000_READ_REG(hw, TARC1);
5035 		tarc |= 1;
5036 		E1000_WRITE_REG(hw, TARC1, tarc);
5037 	}
5038 
5039 
5040 	e1000_config_collision_dist(hw);
5041 	/* Setup Transmit Descriptor Settings for eop descriptor */
5042 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5043 
5044 	/* Need to set up RS bit */
5045 	if (hw->mac_type < e1000_82543)
5046 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
5047 	else
5048 		hw->txd_cmd |= E1000_TXD_CMD_RS;
5049 
5050 
5051 	if (hw->mac_type == e1000_igb) {
5052 		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5053 
5054 		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5055 		reg_txdctl |= 1 << 25;
5056 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5057 		mdelay(20);
5058 	}
5059 
5060 
5061 
5062 	E1000_WRITE_REG(hw, TCTL, tctl);
5063 
5064 
5065 }
5066 
5067 /**
5068  * e1000_setup_rctl - configure the receive control register
5069  * @adapter: Board private structure
5070  **/
5071 static void
5072 e1000_setup_rctl(struct e1000_hw *hw)
5073 {
5074 	uint32_t rctl;
5075 
5076 	rctl = E1000_READ_REG(hw, RCTL);
5077 
5078 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5079 
5080 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5081 		| E1000_RCTL_RDMTS_HALF;	/* |
5082 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5083 
5084 	if (hw->tbi_compatibility_on == 1)
5085 		rctl |= E1000_RCTL_SBP;
5086 	else
5087 		rctl &= ~E1000_RCTL_SBP;
5088 
5089 	rctl &= ~(E1000_RCTL_SZ_4096);
5090 		rctl |= E1000_RCTL_SZ_2048;
5091 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5092 	E1000_WRITE_REG(hw, RCTL, rctl);
5093 }
5094 
5095 /**
5096  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5097  * @adapter: board private structure
5098  *
5099  * Configure the Rx unit of the MAC after a reset.
5100  **/
5101 static void
5102 e1000_configure_rx(struct e1000_hw *hw)
5103 {
5104 	unsigned long rctl, ctrl_ext;
5105 	rx_tail = 0;
5106 
5107 	/* make sure receives are disabled while setting up the descriptors */
5108 	rctl = E1000_READ_REG(hw, RCTL);
5109 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5110 	if (hw->mac_type >= e1000_82540) {
5111 		/* Set the interrupt throttling rate.  Value is calculated
5112 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5113 #define MAX_INTS_PER_SEC	8000
5114 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
5115 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5116 	}
5117 
5118 	if (hw->mac_type >= e1000_82571) {
5119 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5120 		/* Reset delay timers after every interrupt */
5121 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5122 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5123 		E1000_WRITE_FLUSH(hw);
5124 	}
5125 	/* Setup the Base and Length of the Rx Descriptor Ring */
5126 	E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5127 	E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5128 
5129 	E1000_WRITE_REG(hw, RDLEN, 128);
5130 
5131 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
5132 	E1000_WRITE_REG(hw, RDH, 0);
5133 	E1000_WRITE_REG(hw, RDT, 0);
5134 	/* Enable Receives */
5135 
5136 	if (hw->mac_type == e1000_igb) {
5137 
5138 		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5139 		reg_rxdctl |= 1 << 25;
5140 		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5141 		mdelay(20);
5142 	}
5143 
5144 	E1000_WRITE_REG(hw, RCTL, rctl);
5145 
5146 	fill_rx(hw);
5147 }
5148 
5149 /**************************************************************************
5150 POLL - Wait for a frame
5151 ***************************************************************************/
5152 static int
5153 _e1000_poll(struct e1000_hw *hw)
5154 {
5155 	struct e1000_rx_desc *rd;
5156 	unsigned long inval_start, inval_end;
5157 	uint32_t len;
5158 
5159 	/* return true if there's an ethernet packet ready to read */
5160 	rd = rx_base + rx_last;
5161 
5162 	/* Re-load the descriptor from RAM. */
5163 	inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5164 	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5165 	invalidate_dcache_range(inval_start, inval_end);
5166 
5167 	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5168 		return 0;
5169 	/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5170 	/* Packet received, make sure the data are re-loaded from RAM. */
5171 	len = le32_to_cpu(rd->length);
5172 	invalidate_dcache_range((unsigned long)packet,
5173 				(unsigned long)packet +
5174 				roundup(len, ARCH_DMA_MINALIGN));
5175 	return len;
5176 }
5177 
5178 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5179 {
5180 	void *nv_packet = (void *)txpacket;
5181 	struct e1000_tx_desc *txp;
5182 	int i = 0;
5183 	unsigned long flush_start, flush_end;
5184 
5185 	txp = tx_base + tx_tail;
5186 	tx_tail = (tx_tail + 1) % 8;
5187 
5188 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5189 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5190 	txp->upper.data = 0;
5191 
5192 	/* Dump the packet into RAM so e1000 can pick them. */
5193 	flush_dcache_range((unsigned long)nv_packet,
5194 			   (unsigned long)nv_packet +
5195 			   roundup(length, ARCH_DMA_MINALIGN));
5196 	/* Dump the descriptor into RAM as well. */
5197 	flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5198 	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5199 	flush_dcache_range(flush_start, flush_end);
5200 
5201 	E1000_WRITE_REG(hw, TDT, tx_tail);
5202 
5203 	E1000_WRITE_FLUSH(hw);
5204 	while (1) {
5205 		invalidate_dcache_range(flush_start, flush_end);
5206 		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5207 			break;
5208 		if (i++ > TOUT_LOOP) {
5209 			DEBUGOUT("e1000: tx timeout\n");
5210 			return 0;
5211 		}
5212 		udelay(10);	/* give the nic a chance to write to the register */
5213 	}
5214 	return 1;
5215 }
5216 
5217 static void
5218 _e1000_disable(struct e1000_hw *hw)
5219 {
5220 	/* Turn off the ethernet interface */
5221 	E1000_WRITE_REG(hw, RCTL, 0);
5222 	E1000_WRITE_REG(hw, TCTL, 0);
5223 
5224 	/* Clear the transmit ring */
5225 	E1000_WRITE_REG(hw, TDH, 0);
5226 	E1000_WRITE_REG(hw, TDT, 0);
5227 
5228 	/* Clear the receive ring */
5229 	E1000_WRITE_REG(hw, RDH, 0);
5230 	E1000_WRITE_REG(hw, RDT, 0);
5231 
5232 	/* put the card in its initial state */
5233 #if 0
5234 	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5235 #endif
5236 	mdelay(10);
5237 }
5238 
5239 /*reset function*/
5240 static inline int
5241 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5242 {
5243 	e1000_reset_hw(hw);
5244 	if (hw->mac_type >= e1000_82544)
5245 		E1000_WRITE_REG(hw, WUC, 0);
5246 
5247 	return e1000_init_hw(hw, enetaddr);
5248 }
5249 
5250 static int
5251 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5252 {
5253 	int ret_val = 0;
5254 
5255 	ret_val = e1000_reset(hw, enetaddr);
5256 	if (ret_val < 0) {
5257 		if ((ret_val == -E1000_ERR_NOLINK) ||
5258 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5259 			E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5260 		} else {
5261 			E1000_ERR(hw, "Hardware Initialization Failed\n");
5262 		}
5263 		return ret_val;
5264 	}
5265 	e1000_configure_tx(hw);
5266 	e1000_setup_rctl(hw);
5267 	e1000_configure_rx(hw);
5268 	return 0;
5269 }
5270 
5271 /******************************************************************************
5272  * Gets the current PCI bus type of hardware
5273  *
5274  * hw - Struct containing variables accessed by shared code
5275  *****************************************************************************/
5276 void e1000_get_bus_type(struct e1000_hw *hw)
5277 {
5278 	uint32_t status;
5279 
5280 	switch (hw->mac_type) {
5281 	case e1000_82542_rev2_0:
5282 	case e1000_82542_rev2_1:
5283 		hw->bus_type = e1000_bus_type_pci;
5284 		break;
5285 	case e1000_82571:
5286 	case e1000_82572:
5287 	case e1000_82573:
5288 	case e1000_82574:
5289 	case e1000_80003es2lan:
5290 	case e1000_ich8lan:
5291 	case e1000_igb:
5292 		hw->bus_type = e1000_bus_type_pci_express;
5293 		break;
5294 	default:
5295 		status = E1000_READ_REG(hw, STATUS);
5296 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5297 				e1000_bus_type_pcix : e1000_bus_type_pci;
5298 		break;
5299 	}
5300 }
5301 
5302 #ifndef CONFIG_DM_ETH
5303 /* A list of all registered e1000 devices */
5304 static LIST_HEAD(e1000_hw_list);
5305 #endif
5306 
5307 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5308 			  unsigned char enetaddr[6])
5309 {
5310 	u32 val;
5311 
5312 	/* Assign the passed-in values */
5313 	hw->pdev = devno;
5314 	hw->cardnum = cardnum;
5315 
5316 	/* Print a debug message with the IO base address */
5317 	pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5318 	E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5319 
5320 	/* Try to enable I/O accesses and bus-mastering */
5321 	val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5322 	pci_write_config_dword(devno, PCI_COMMAND, val);
5323 
5324 	/* Make sure it worked */
5325 	pci_read_config_dword(devno, PCI_COMMAND, &val);
5326 	if (!(val & PCI_COMMAND_MEMORY)) {
5327 		E1000_ERR(hw, "Can't enable I/O memory\n");
5328 		return -ENOSPC;
5329 	}
5330 	if (!(val & PCI_COMMAND_MASTER)) {
5331 		E1000_ERR(hw, "Can't enable bus-mastering\n");
5332 		return -EPERM;
5333 	}
5334 
5335 	/* Are these variables needed? */
5336 	hw->fc = e1000_fc_default;
5337 	hw->original_fc = e1000_fc_default;
5338 	hw->autoneg_failed = 0;
5339 	hw->autoneg = 1;
5340 	hw->get_link_status = true;
5341 #ifndef CONFIG_E1000_NO_NVM
5342 	hw->eeprom_semaphore_present = true;
5343 #endif
5344 	hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5345 						PCI_REGION_MEM);
5346 	hw->mac_type = e1000_undefined;
5347 
5348 	/* MAC and Phy settings */
5349 	if (e1000_sw_init(hw) < 0) {
5350 		E1000_ERR(hw, "Software init failed\n");
5351 		return -EIO;
5352 	}
5353 	if (e1000_check_phy_reset_block(hw))
5354 		E1000_ERR(hw, "PHY Reset is blocked!\n");
5355 
5356 	/* Basic init was OK, reset the hardware and allow SPI access */
5357 	e1000_reset_hw(hw);
5358 
5359 #ifndef CONFIG_E1000_NO_NVM
5360 	/* Validate the EEPROM and get chipset information */
5361 #if !defined(CONFIG_MVBC_1G)
5362 	if (e1000_init_eeprom_params(hw)) {
5363 		E1000_ERR(hw, "EEPROM is invalid!\n");
5364 		return -EINVAL;
5365 	}
5366 	if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5367 	    e1000_validate_eeprom_checksum(hw))
5368 		return -ENXIO;
5369 #endif
5370 	e1000_read_mac_addr(hw, enetaddr);
5371 #endif
5372 	e1000_get_bus_type(hw);
5373 
5374 #ifndef CONFIG_E1000_NO_NVM
5375 	printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5376 	       enetaddr[0], enetaddr[1], enetaddr[2],
5377 	       enetaddr[3], enetaddr[4], enetaddr[5]);
5378 #else
5379 	memset(enetaddr, 0, 6);
5380 	printf("e1000: no NVM\n");
5381 #endif
5382 
5383 	return 0;
5384 }
5385 
5386 /* Put the name of a device in a string */
5387 static void e1000_name(char *str, int cardnum)
5388 {
5389 	sprintf(str, "e1000#%u", cardnum);
5390 }
5391 
5392 #ifndef CONFIG_DM_ETH
5393 /**************************************************************************
5394 TRANSMIT - Transmit a frame
5395 ***************************************************************************/
5396 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5397 {
5398 	struct e1000_hw *hw = nic->priv;
5399 
5400 	return _e1000_transmit(hw, txpacket, length);
5401 }
5402 
5403 /**************************************************************************
5404 DISABLE - Turn off ethernet interface
5405 ***************************************************************************/
5406 static void
5407 e1000_disable(struct eth_device *nic)
5408 {
5409 	struct e1000_hw *hw = nic->priv;
5410 
5411 	_e1000_disable(hw);
5412 }
5413 
5414 /**************************************************************************
5415 INIT - set up ethernet interface(s)
5416 ***************************************************************************/
5417 static int
5418 e1000_init(struct eth_device *nic, bd_t *bis)
5419 {
5420 	struct e1000_hw *hw = nic->priv;
5421 
5422 	return _e1000_init(hw, nic->enetaddr);
5423 }
5424 
5425 static int
5426 e1000_poll(struct eth_device *nic)
5427 {
5428 	struct e1000_hw *hw = nic->priv;
5429 	int len;
5430 
5431 	len = _e1000_poll(hw);
5432 	if (len) {
5433 		net_process_received_packet((uchar *)packet, len);
5434 		fill_rx(hw);
5435 	}
5436 
5437 	return len ? 1 : 0;
5438 }
5439 
5440 /**************************************************************************
5441 PROBE - Look for an adapter, this routine's visible to the outside
5442 You should omit the last argument struct pci_device * for a non-PCI NIC
5443 ***************************************************************************/
5444 int
5445 e1000_initialize(bd_t * bis)
5446 {
5447 	unsigned int i;
5448 	pci_dev_t devno;
5449 	int ret;
5450 
5451 	DEBUGFUNC();
5452 
5453 	/* Find and probe all the matching PCI devices */
5454 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5455 		/*
5456 		 * These will never get freed due to errors, this allows us to
5457 		 * perform SPI EEPROM programming from U-boot, for example.
5458 		 */
5459 		struct eth_device *nic = malloc(sizeof(*nic));
5460 		struct e1000_hw *hw = malloc(sizeof(*hw));
5461 		if (!nic || !hw) {
5462 			printf("e1000#%u: Out of Memory!\n", i);
5463 			free(nic);
5464 			free(hw);
5465 			continue;
5466 		}
5467 
5468 		/* Make sure all of the fields are initially zeroed */
5469 		memset(nic, 0, sizeof(*nic));
5470 		memset(hw, 0, sizeof(*hw));
5471 		nic->priv = hw;
5472 
5473 		/* Generate a card name */
5474 		e1000_name(nic->name, i);
5475 		hw->name = nic->name;
5476 
5477 		ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5478 		if (ret)
5479 			continue;
5480 		list_add_tail(&hw->list_node, &e1000_hw_list);
5481 
5482 		hw->nic = nic;
5483 
5484 		/* Set up the function pointers and register the device */
5485 		nic->init = e1000_init;
5486 		nic->recv = e1000_poll;
5487 		nic->send = e1000_transmit;
5488 		nic->halt = e1000_disable;
5489 		eth_register(nic);
5490 	}
5491 
5492 	return i;
5493 }
5494 
5495 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5496 {
5497 	struct e1000_hw *hw;
5498 
5499 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5500 		if (hw->cardnum == cardnum)
5501 			return hw;
5502 
5503 	return NULL;
5504 }
5505 #endif /* !CONFIG_DM_ETH */
5506 
5507 #ifdef CONFIG_CMD_E1000
5508 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5509 		int argc, char * const argv[])
5510 {
5511 	unsigned char *mac = NULL;
5512 #ifdef CONFIG_DM_ETH
5513 	struct eth_pdata *plat;
5514 	struct udevice *dev;
5515 	char name[30];
5516 	int ret;
5517 #else
5518 	struct e1000_hw *hw;
5519 #endif
5520 	int cardnum;
5521 
5522 	if (argc < 3) {
5523 		cmd_usage(cmdtp);
5524 		return 1;
5525 	}
5526 
5527 	/* Make sure we can find the requested e1000 card */
5528 	cardnum = simple_strtoul(argv[1], NULL, 10);
5529 #ifdef CONFIG_DM_ETH
5530 	e1000_name(name, cardnum);
5531 	ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5532 	if (!ret) {
5533 		plat = dev_get_platdata(dev);
5534 		mac = plat->enetaddr;
5535 	}
5536 #else
5537 	hw = e1000_find_card(cardnum);
5538 	if (hw)
5539 		mac = hw->nic->enetaddr;
5540 #endif
5541 	if (!mac) {
5542 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5543 		return 1;
5544 	}
5545 
5546 	if (!strcmp(argv[2], "print-mac-address")) {
5547 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5548 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5549 		return 0;
5550 	}
5551 
5552 #ifdef CONFIG_E1000_SPI
5553 	/* Handle the "SPI" subcommand */
5554 	if (!strcmp(argv[2], "spi"))
5555 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5556 #endif
5557 
5558 	cmd_usage(cmdtp);
5559 	return 1;
5560 }
5561 
5562 U_BOOT_CMD(
5563 	e1000, 7, 0, do_e1000,
5564 	"Intel e1000 controller management",
5565 	/*  */"<card#> print-mac-address\n"
5566 #ifdef CONFIG_E1000_SPI
5567 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5568 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5569 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5570 	"e1000 <card#> spi checksum [update]\n"
5571 #endif
5572 	"       - Manage the Intel E1000 PCI device"
5573 );
5574 #endif /* not CONFIG_CMD_E1000 */
5575 
5576 #ifdef CONFIG_DM_ETH
5577 static int e1000_eth_start(struct udevice *dev)
5578 {
5579 	struct eth_pdata *plat = dev_get_platdata(dev);
5580 	struct e1000_hw *hw = dev_get_priv(dev);
5581 
5582 	return _e1000_init(hw, plat->enetaddr);
5583 }
5584 
5585 static void e1000_eth_stop(struct udevice *dev)
5586 {
5587 	struct e1000_hw *hw = dev_get_priv(dev);
5588 
5589 	_e1000_disable(hw);
5590 }
5591 
5592 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5593 {
5594 	struct e1000_hw *hw = dev_get_priv(dev);
5595 	int ret;
5596 
5597 	ret = _e1000_transmit(hw, packet, length);
5598 
5599 	return ret ? 0 : -ETIMEDOUT;
5600 }
5601 
5602 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5603 {
5604 	struct e1000_hw *hw = dev_get_priv(dev);
5605 	int len;
5606 
5607 	len = _e1000_poll(hw);
5608 	if (len)
5609 		*packetp = packet;
5610 
5611 	return len ? len : -EAGAIN;
5612 }
5613 
5614 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5615 {
5616 	struct e1000_hw *hw = dev_get_priv(dev);
5617 
5618 	fill_rx(hw);
5619 
5620 	return 0;
5621 }
5622 
5623 static int e1000_eth_probe(struct udevice *dev)
5624 {
5625 	struct eth_pdata *plat = dev_get_platdata(dev);
5626 	struct e1000_hw *hw = dev_get_priv(dev);
5627 	int ret;
5628 
5629 	hw->name = dev->name;
5630 	ret = e1000_init_one(hw, trailing_strtol(dev->name), pci_get_bdf(dev),
5631 			     plat->enetaddr);
5632 	if (ret < 0) {
5633 		printf(pr_fmt("failed to initialize card: %d\n"), ret);
5634 		return ret;
5635 	}
5636 
5637 	return 0;
5638 }
5639 
5640 static int e1000_eth_bind(struct udevice *dev)
5641 {
5642 	char name[20];
5643 
5644 	/*
5645 	 * A simple way to number the devices. When device tree is used this
5646 	 * is unnecessary, but when the device is just discovered on the PCI
5647 	 * bus we need a name. We could instead have the uclass figure out
5648 	 * which devices are different and number them.
5649 	 */
5650 	e1000_name(name, num_cards++);
5651 
5652 	return device_set_name(dev, name);
5653 }
5654 
5655 static const struct eth_ops e1000_eth_ops = {
5656 	.start	= e1000_eth_start,
5657 	.send	= e1000_eth_send,
5658 	.recv	= e1000_eth_recv,
5659 	.stop	= e1000_eth_stop,
5660 	.free_pkt = e1000_free_pkt,
5661 };
5662 
5663 static const struct udevice_id e1000_eth_ids[] = {
5664 	{ .compatible = "intel,e1000" },
5665 	{ }
5666 };
5667 
5668 U_BOOT_DRIVER(eth_e1000) = {
5669 	.name	= "eth_e1000",
5670 	.id	= UCLASS_ETH,
5671 	.of_match = e1000_eth_ids,
5672 	.bind	= e1000_eth_bind,
5673 	.probe	= e1000_eth_probe,
5674 	.ops	= &e1000_eth_ops,
5675 	.priv_auto_alloc_size = sizeof(struct e1000_hw),
5676 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
5677 };
5678 
5679 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5680 #endif
5681