xref: /openbmc/u-boot/drivers/net/dc2114x.c (revision fea25720)
1 /*
2  * See file CREDITS for list of people who contributed to this
3  * project.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20 
21 #include <common.h>
22 #include <malloc.h>
23 #include <net.h>
24 #include <netdev.h>
25 #include <pci.h>
26 
27 #undef DEBUG_SROM
28 #undef DEBUG_SROM2
29 
30 #undef UPDATE_SROM
31 
32 /* PCI Registers.
33  */
34 #define PCI_CFDA_PSM		0x43
35 
36 #define CFRV_RN		0x000000f0	/* Revision Number */
37 
38 #define WAKEUP		0x00		/* Power Saving Wakeup */
39 #define SLEEP		0x80		/* Power Saving Sleep Mode */
40 
41 #define DC2114x_BRK	0x0020		/* CFRV break between DC21142 & DC21143 */
42 
43 /* Ethernet chip registers.
44  */
45 #define DE4X5_BMR	0x000		/* Bus Mode Register */
46 #define DE4X5_TPD	0x008		/* Transmit Poll Demand Reg */
47 #define DE4X5_RRBA	0x018		/* RX Ring Base Address Reg */
48 #define DE4X5_TRBA	0x020		/* TX Ring Base Address Reg */
49 #define DE4X5_STS	0x028		/* Status Register */
50 #define DE4X5_OMR	0x030		/* Operation Mode Register */
51 #define DE4X5_SICR	0x068		/* SIA Connectivity Register */
52 #define DE4X5_APROM	0x048		/* Ethernet Address PROM */
53 
54 /* Register bits.
55  */
56 #define BMR_SWR		0x00000001	/* Software Reset */
57 #define STS_TS		0x00700000	/* Transmit Process State */
58 #define STS_RS		0x000e0000	/* Receive Process State */
59 #define OMR_ST		0x00002000	/* Start/Stop Transmission Command */
60 #define OMR_SR		0x00000002	/* Start/Stop Receive */
61 #define OMR_PS		0x00040000	/* Port Select */
62 #define OMR_SDP		0x02000000	/* SD Polarity - MUST BE ASSERTED */
63 #define OMR_PM		0x00000080	/* Pass All Multicast */
64 
65 /* Descriptor bits.
66  */
67 #define R_OWN		0x80000000	/* Own Bit */
68 #define RD_RER		0x02000000	/* Receive End Of Ring */
69 #define RD_LS		0x00000100	/* Last Descriptor */
70 #define RD_ES		0x00008000	/* Error Summary */
71 #define TD_TER		0x02000000	/* Transmit End Of Ring */
72 #define T_OWN		0x80000000	/* Own Bit */
73 #define TD_LS		0x40000000	/* Last Segment */
74 #define TD_FS		0x20000000	/* First Segment */
75 #define TD_ES		0x00008000	/* Error Summary */
76 #define TD_SET		0x08000000	/* Setup Packet */
77 
78 /* The EEPROM commands include the alway-set leading bit. */
79 #define SROM_WRITE_CMD	5
80 #define SROM_READ_CMD	6
81 #define SROM_ERASE_CMD	7
82 
83 #define SROM_HWADD	    0x0014	/* Hardware Address offset in SROM */
84 #define SROM_RD		0x00004000	/* Read from Boot ROM */
85 #define EE_DATA_WRITE	      0x04	/* EEPROM chip data in. */
86 #define EE_WRITE_0	    0x4801
87 #define EE_WRITE_1	    0x4805
88 #define EE_DATA_READ	      0x08	/* EEPROM chip data out. */
89 #define SROM_SR		0x00000800	/* Select Serial ROM when set */
90 
91 #define DT_IN		0x00000004	/* Serial Data In */
92 #define DT_CLK		0x00000002	/* Serial ROM Clock */
93 #define DT_CS		0x00000001	/* Serial ROM Chip Select */
94 
95 #define POLL_DEMAND	1
96 
97 #ifdef CONFIG_TULIP_FIX_DAVICOM
98 #define RESET_DM9102(dev) {\
99     unsigned long i;\
100     i=INL(dev, 0x0);\
101     udelay(1000);\
102     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
103     udelay(1000);\
104 }
105 #else
106 #define RESET_DE4X5(dev) {\
107     int i;\
108     i=INL(dev, DE4X5_BMR);\
109     udelay(1000);\
110     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
111     udelay(1000);\
112     OUTL(dev, i, DE4X5_BMR);\
113     udelay(1000);\
114     for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
115     udelay(1000);\
116 }
117 #endif
118 
119 #define START_DE4X5(dev) {\
120     s32 omr; \
121     omr = INL(dev, DE4X5_OMR);\
122     omr |= OMR_ST | OMR_SR;\
123     OUTL(dev, omr, DE4X5_OMR);		/* Enable the TX and/or RX */\
124 }
125 
126 #define STOP_DE4X5(dev) {\
127     s32 omr; \
128     omr = INL(dev, DE4X5_OMR);\
129     omr &= ~(OMR_ST|OMR_SR);\
130     OUTL(dev, omr, DE4X5_OMR);		/* Disable the TX and/or RX */ \
131 }
132 
133 #define NUM_RX_DESC PKTBUFSRX
134 #ifndef CONFIG_TULIP_FIX_DAVICOM
135 	#define NUM_TX_DESC 1			/* Number of TX descriptors   */
136 #else
137 	#define NUM_TX_DESC 4
138 #endif
139 #define RX_BUFF_SZ  PKTSIZE_ALIGN
140 
141 #define TOUT_LOOP   1000000
142 
143 #define SETUP_FRAME_LEN 192
144 #define ETH_ALEN	6
145 
146 struct de4x5_desc {
147 	volatile s32 status;
148 	u32 des1;
149 	u32 buf;
150 	u32 next;
151 };
152 
153 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring         */
154 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring         */
155 static int rx_new;                             /* RX descriptor ring pointer */
156 static int tx_new;                             /* TX descriptor ring pointer */
157 
158 static char rxRingSize;
159 static char txRingSize;
160 
161 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
162 static void  sendto_srom(struct eth_device* dev, u_int command, u_long addr);
163 static int   getfrom_srom(struct eth_device* dev, u_long addr);
164 static int   do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
165 static int   do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
166 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
167 #ifdef UPDATE_SROM
168 static int   write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
169 static void  update_srom(struct eth_device *dev, bd_t *bis);
170 #endif
171 #ifndef CONFIG_TULIP_FIX_DAVICOM
172 static int   read_srom(struct eth_device *dev, u_long ioaddr, int index);
173 static void  read_hw_addr(struct eth_device* dev, bd_t * bis);
174 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
175 static void  send_setup_frame(struct eth_device* dev, bd_t * bis);
176 
177 static int   dc21x4x_init(struct eth_device* dev, bd_t* bis);
178 static int   dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
179 static int   dc21x4x_recv(struct eth_device* dev);
180 static void  dc21x4x_halt(struct eth_device* dev);
181 #ifdef CONFIG_TULIP_SELECT_MEDIA
182 extern void  dc21x4x_select_media(struct eth_device* dev);
183 #endif
184 
185 #if defined(CONFIG_E500)
186 #define phys_to_bus(a) (a)
187 #else
188 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
189 #endif
190 
191 static int INL(struct eth_device* dev, u_long addr)
192 {
193 	return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
194 }
195 
196 static void OUTL(struct eth_device* dev, int command, u_long addr)
197 {
198 	*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
199 }
200 
201 static struct pci_device_id supported[] = {
202 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
203 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
204 #ifdef CONFIG_TULIP_FIX_DAVICOM
205 	{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
206 #endif
207 	{ }
208 };
209 
210 int dc21x4x_initialize(bd_t *bis)
211 {
212 	int			idx=0;
213 	int			card_number = 0;
214 	unsigned int		cfrv;
215 	unsigned char		timer;
216 	pci_dev_t		devbusfn;
217 	unsigned int		iobase;
218 	unsigned short		status;
219 	struct eth_device*	dev;
220 
221 	while(1) {
222 		devbusfn =  pci_find_devices(supported, idx++);
223 		if (devbusfn == -1) {
224 			break;
225 		}
226 
227 		/* Get the chip configuration revision register. */
228 		pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
229 
230 #ifndef CONFIG_TULIP_FIX_DAVICOM
231 		if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
232 			printf("Error: The chip is not DC21143.\n");
233 			continue;
234 		}
235 #endif
236 
237 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
238 		status |=
239 #ifdef CONFIG_TULIP_USE_IO
240 		  PCI_COMMAND_IO |
241 #else
242 		  PCI_COMMAND_MEMORY |
243 #endif
244 		  PCI_COMMAND_MASTER;
245 		pci_write_config_word(devbusfn, PCI_COMMAND, status);
246 
247 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
248 		if (!(status & PCI_COMMAND_IO)) {
249 			printf("Error: Can not enable I/O access.\n");
250 			continue;
251 		}
252 
253 		if (!(status & PCI_COMMAND_IO)) {
254 			printf("Error: Can not enable I/O access.\n");
255 			continue;
256 		}
257 
258 		if (!(status & PCI_COMMAND_MASTER)) {
259 			printf("Error: Can not enable Bus Mastering.\n");
260 			continue;
261 		}
262 
263 		/* Check the latency timer for values >= 0x60. */
264 		pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
265 
266 		if (timer < 0x60) {
267 			pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
268 		}
269 
270 #ifdef CONFIG_TULIP_USE_IO
271 		/* read BAR for memory space access */
272 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
273 		iobase &= PCI_BASE_ADDRESS_IO_MASK;
274 #else
275 		/* read BAR for memory space access */
276 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
277 		iobase &= PCI_BASE_ADDRESS_MEM_MASK;
278 #endif
279 		debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
280 
281 		dev = (struct eth_device*) malloc(sizeof *dev);
282 
283 		if (!dev) {
284 			printf("Can not allocalte memory of dc21x4x\n");
285 			break;
286 		}
287 		memset(dev, 0, sizeof(*dev));
288 
289 #ifdef CONFIG_TULIP_FIX_DAVICOM
290 		sprintf(dev->name, "Davicom#%d", card_number);
291 #else
292 		sprintf(dev->name, "dc21x4x#%d", card_number);
293 #endif
294 
295 #ifdef CONFIG_TULIP_USE_IO
296 		dev->iobase = pci_io_to_phys(devbusfn, iobase);
297 #else
298 		dev->iobase = pci_mem_to_phys(devbusfn, iobase);
299 #endif
300 		dev->priv   = (void*) devbusfn;
301 		dev->init   = dc21x4x_init;
302 		dev->halt   = dc21x4x_halt;
303 		dev->send   = dc21x4x_send;
304 		dev->recv   = dc21x4x_recv;
305 
306 		/* Ensure we're not sleeping. */
307 		pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
308 
309 		udelay(10 * 1000);
310 
311 #ifndef CONFIG_TULIP_FIX_DAVICOM
312 		read_hw_addr(dev, bis);
313 #endif
314 		eth_register(dev);
315 
316 		card_number++;
317 	}
318 
319 	return card_number;
320 }
321 
322 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
323 {
324 	int		i;
325 	int		devbusfn = (int) dev->priv;
326 
327 	/* Ensure we're not sleeping. */
328 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
329 
330 #ifdef CONFIG_TULIP_FIX_DAVICOM
331 	RESET_DM9102(dev);
332 #else
333 	RESET_DE4X5(dev);
334 #endif
335 
336 	if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
337 		printf("Error: Cannot reset ethernet controller.\n");
338 		return -1;
339 	}
340 
341 #ifdef CONFIG_TULIP_SELECT_MEDIA
342 	dc21x4x_select_media(dev);
343 #else
344 	OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
345 #endif
346 
347 	for (i = 0; i < NUM_RX_DESC; i++) {
348 		rx_ring[i].status = cpu_to_le32(R_OWN);
349 		rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
350 		rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
351 #ifdef CONFIG_TULIP_FIX_DAVICOM
352 		rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
353 #else
354 		rx_ring[i].next = 0;
355 #endif
356 	}
357 
358 	for (i=0; i < NUM_TX_DESC; i++) {
359 		tx_ring[i].status = 0;
360 		tx_ring[i].des1 = 0;
361 		tx_ring[i].buf = 0;
362 
363 #ifdef CONFIG_TULIP_FIX_DAVICOM
364 	tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
365 #else
366 		tx_ring[i].next = 0;
367 #endif
368 	}
369 
370 	rxRingSize = NUM_RX_DESC;
371 	txRingSize = NUM_TX_DESC;
372 
373 	/* Write the end of list marker to the descriptor lists. */
374 	rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
375 	tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
376 
377 	/* Tell the adapter where the TX/RX rings are located. */
378 	OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
379 	OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
380 
381 	START_DE4X5(dev);
382 
383 	tx_new = 0;
384 	rx_new = 0;
385 
386 	send_setup_frame(dev, bis);
387 
388 	return 0;
389 }
390 
391 static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
392 {
393 	int		status = -1;
394 	int		i;
395 
396 	if (length <= 0) {
397 		printf("%s: bad packet size: %d\n", dev->name, length);
398 		goto Done;
399 	}
400 
401 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
402 		if (i >= TOUT_LOOP) {
403 			printf("%s: tx error buffer not ready\n", dev->name);
404 			goto Done;
405 		}
406 	}
407 
408 	tx_ring[tx_new].buf    = cpu_to_le32(phys_to_bus((u32) packet));
409 	tx_ring[tx_new].des1   = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
410 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
411 
412 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
413 
414 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
415 		if (i >= TOUT_LOOP) {
416 			printf(".%s: tx buffer not ready\n", dev->name);
417 			goto Done;
418 		}
419 	}
420 
421 	if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
422 #if 0 /* test-only */
423 		printf("TX error status = 0x%08X\n",
424 			le32_to_cpu(tx_ring[tx_new].status));
425 #endif
426 		tx_ring[tx_new].status = 0x0;
427 		goto Done;
428 	}
429 
430 	status = length;
431 
432  Done:
433     tx_new = (tx_new+1) % NUM_TX_DESC;
434 	return status;
435 }
436 
437 static int dc21x4x_recv(struct eth_device* dev)
438 {
439 	s32		status;
440 	int		length    = 0;
441 
442 	for ( ; ; ) {
443 		status = (s32)le32_to_cpu(rx_ring[rx_new].status);
444 
445 		if (status & R_OWN) {
446 			break;
447 		}
448 
449 		if (status & RD_LS) {
450 			/* Valid frame status.
451 			 */
452 			if (status & RD_ES) {
453 
454 				/* There was an error.
455 				 */
456 				printf("RX error status = 0x%08X\n", status);
457 			} else {
458 				/* A valid frame received.
459 				 */
460 				length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
461 
462 				/* Pass the packet up to the protocol
463 				 * layers.
464 				 */
465 				NetReceive(NetRxPackets[rx_new], length - 4);
466 			}
467 
468 			/* Change buffer ownership for this frame, back
469 			 * to the adapter.
470 			 */
471 			rx_ring[rx_new].status = cpu_to_le32(R_OWN);
472 		}
473 
474 		/* Update entry information.
475 		 */
476 		rx_new = (rx_new + 1) % rxRingSize;
477 	}
478 
479 	return length;
480 }
481 
482 static void dc21x4x_halt(struct eth_device* dev)
483 {
484 	int		devbusfn = (int) dev->priv;
485 
486 	STOP_DE4X5(dev);
487 	OUTL(dev, 0, DE4X5_SICR);
488 
489 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
490 }
491 
492 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
493 {
494 	int		i;
495 	char	setup_frame[SETUP_FRAME_LEN];
496 	char	*pa = &setup_frame[0];
497 
498 	memset(pa, 0xff, SETUP_FRAME_LEN);
499 
500 	for (i = 0; i < ETH_ALEN; i++) {
501 		*(pa + (i & 1)) = dev->enetaddr[i];
502 		if (i & 0x01) {
503 			pa += 4;
504 		}
505 	}
506 
507 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
508 		if (i >= TOUT_LOOP) {
509 			printf("%s: tx error buffer not ready\n", dev->name);
510 			goto Done;
511 		}
512 	}
513 
514 	tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
515 	tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
516 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
517 
518 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
519 
520 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
521 		if (i >= TOUT_LOOP) {
522 			printf("%s: tx buffer not ready\n", dev->name);
523 			goto Done;
524 		}
525 	}
526 
527 	if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
528 		printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
529 	}
530 	tx_new = (tx_new+1) % NUM_TX_DESC;
531 
532 Done:
533 	return;
534 }
535 
536 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
537 /* SROM Read and write routines.
538  */
539 static void
540 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
541 {
542 	OUTL(dev, command, addr);
543 	udelay(1);
544 }
545 
546 static int
547 getfrom_srom(struct eth_device* dev, u_long addr)
548 {
549 	s32 tmp;
550 
551 	tmp = INL(dev, addr);
552 	udelay(1);
553 
554 	return tmp;
555 }
556 
557 /* Note: this routine returns extra data bits for size detection. */
558 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
559 {
560 	int i;
561 	unsigned retval = 0;
562 	int read_cmd = location | (SROM_READ_CMD << addr_len);
563 
564 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
565 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
566 
567 #ifdef DEBUG_SROM
568 	printf(" EEPROM read at %d ", location);
569 #endif
570 
571 	/* Shift the read command bits out. */
572 	for (i = 4 + addr_len; i >= 0; i--) {
573 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
574 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
575 		udelay(10);
576 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
577 		udelay(10);
578 #ifdef DEBUG_SROM2
579 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
580 #endif
581 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
582 	}
583 
584 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
585 
586 #ifdef DEBUG_SROM2
587 	printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
588 #endif
589 
590 	for (i = 16; i > 0; i--) {
591 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
592 		udelay(10);
593 #ifdef DEBUG_SROM2
594 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
595 #endif
596 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
597 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
598 		udelay(10);
599 	}
600 
601 	/* Terminate the EEPROM access. */
602 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
603 
604 #ifdef DEBUG_SROM2
605 	printf(" EEPROM value at %d is %5.5x.\n", location, retval);
606 #endif
607 
608 	return retval;
609 }
610 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
611 
612 /* This executes a generic EEPROM command, typically a write or write
613  * enable. It returns the data output from the EEPROM, and thus may
614  * also be used for reads.
615  */
616 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
617 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
618 {
619 	unsigned retval = 0;
620 
621 #ifdef DEBUG_SROM
622 	printf(" EEPROM op 0x%x: ", cmd);
623 #endif
624 
625 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
626 
627 	/* Shift the command bits out. */
628 	do {
629 		short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
630 		sendto_srom(dev,dataval, ioaddr);
631 		udelay(10);
632 
633 #ifdef DEBUG_SROM2
634 		printf("%X", getfrom_srom(dev,ioaddr) & 15);
635 #endif
636 
637 		sendto_srom(dev,dataval | DT_CLK, ioaddr);
638 		udelay(10);
639 		retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
640 	} while (--cmd_len >= 0);
641 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
642 
643 	/* Terminate the EEPROM access. */
644 	sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
645 
646 #ifdef DEBUG_SROM
647 	printf(" EEPROM result is 0x%5.5x.\n", retval);
648 #endif
649 
650 	return retval;
651 }
652 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
653 
654 #ifndef CONFIG_TULIP_FIX_DAVICOM
655 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
656 {
657 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
658 
659 	return do_eeprom_cmd(dev, ioaddr,
660 			     (((SROM_READ_CMD << ee_addr_size) | index) << 16)
661 			     | 0xffff, 3 + ee_addr_size + 16);
662 }
663 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
664 
665 #ifdef UPDATE_SROM
666 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
667 {
668 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
669 	int i;
670 	unsigned short newval;
671 
672 	udelay(10*1000); /* test-only */
673 
674 #ifdef DEBUG_SROM
675 	printf("ee_addr_size=%d.\n", ee_addr_size);
676 	printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
677 #endif
678 
679 	/* Enable programming modes. */
680 	do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
681 
682 	/* Do the actual write. */
683 	do_eeprom_cmd(dev, ioaddr,
684 		      (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
685 		      3 + ee_addr_size + 16);
686 
687 	/* Poll for write finished. */
688 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
689 	for (i = 0; i < 10000; i++)			/* Typical 2000 ticks */
690 		if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
691 			break;
692 
693 #ifdef DEBUG_SROM
694 	printf(" Write finished after %d ticks.\n", i);
695 #endif
696 
697 	/* Disable programming. */
698 	do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
699 
700 	/* And read the result. */
701 	newval = do_eeprom_cmd(dev, ioaddr,
702 			       (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
703 			       | 0xffff, 3 + ee_addr_size + 16);
704 #ifdef DEBUG_SROM
705 	printf("  New value at offset %d is %4.4x.\n", index, newval);
706 #endif
707 	return 1;
708 }
709 #endif
710 
711 #ifndef CONFIG_TULIP_FIX_DAVICOM
712 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
713 {
714 	u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
715 	int i, j = 0;
716 
717 	for (i = 0; i < (ETH_ALEN >> 1); i++) {
718 		tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
719 		*p = le16_to_cpu(tmp);
720 		j += *p++;
721 	}
722 
723 	if ((j == 0) || (j == 0x2fffd)) {
724 		memset (dev->enetaddr, 0, ETH_ALEN);
725 		debug ("Warning: can't read HW address from SROM.\n");
726 		goto Done;
727 	}
728 
729 	return;
730 
731 Done:
732 #ifdef UPDATE_SROM
733 	update_srom(dev, bis);
734 #endif
735 	return;
736 }
737 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
738 
739 #ifdef UPDATE_SROM
740 static void update_srom(struct eth_device *dev, bd_t *bis)
741 {
742 	int i;
743 	static unsigned short eeprom[0x40] = {
744 		0x140b, 0x6610, 0x0000, 0x0000,	/* 00 */
745 		0x0000, 0x0000, 0x0000, 0x0000,	/* 04 */
746 		0x00a3, 0x0103, 0x0000, 0x0000,	/* 08 */
747 		0x0000, 0x1f00, 0x0000, 0x0000,	/* 0c */
748 		0x0108, 0x038d, 0x0000, 0x0000,	/* 10 */
749 		0xe078, 0x0001, 0x0040, 0x0018,	/* 14 */
750 		0x0000, 0x0000, 0x0000, 0x0000,	/* 18 */
751 		0x0000, 0x0000, 0x0000, 0x0000,	/* 1c */
752 		0x0000, 0x0000, 0x0000, 0x0000,	/* 20 */
753 		0x0000, 0x0000, 0x0000, 0x0000,	/* 24 */
754 		0x0000, 0x0000, 0x0000, 0x0000,	/* 28 */
755 		0x0000, 0x0000, 0x0000, 0x0000,	/* 2c */
756 		0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
757 		0x0000, 0x0000, 0x0000, 0x0000,	/* 34 */
758 		0x0000, 0x0000, 0x0000, 0x0000,	/* 38 */
759 		0x0000, 0x0000, 0x0000, 0x4e07,	/* 3c */
760 	};
761 	uchar enetaddr[6];
762 
763 	/* Ethernet Addr... */
764 	if (!eth_getenv_enetaddr("ethaddr", enetaddr))
765 		return;
766 	eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
767 	eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
768 	eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
769 
770 	for (i=0; i<0x40; i++) {
771 		write_srom(dev, DE4X5_APROM, i, eeprom[i]);
772 	}
773 }
774 #endif	/* UPDATE_SROM */
775