xref: /openbmc/u-boot/drivers/net/dc2114x.c (revision 4e3349b6)
1 /*
2  * See file CREDITS for list of people who contributed to this
3  * project.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20 
21 #include <common.h>
22 #include <malloc.h>
23 #include <net.h>
24 #include <netdev.h>
25 #include <pci.h>
26 
27 #undef DEBUG_SROM
28 #undef DEBUG_SROM2
29 
30 #undef UPDATE_SROM
31 
32 /* PCI Registers.
33  */
34 #define PCI_CFDA_PSM		0x43
35 
36 #define CFRV_RN		0x000000f0	/* Revision Number */
37 
38 #define WAKEUP		0x00		/* Power Saving Wakeup */
39 #define SLEEP		0x80		/* Power Saving Sleep Mode */
40 
41 #define DC2114x_BRK	0x0020		/* CFRV break between DC21142 & DC21143 */
42 
43 /* Ethernet chip registers.
44  */
45 #define DE4X5_BMR	0x000		/* Bus Mode Register */
46 #define DE4X5_TPD	0x008		/* Transmit Poll Demand Reg */
47 #define DE4X5_RRBA	0x018		/* RX Ring Base Address Reg */
48 #define DE4X5_TRBA	0x020		/* TX Ring Base Address Reg */
49 #define DE4X5_STS	0x028		/* Status Register */
50 #define DE4X5_OMR	0x030		/* Operation Mode Register */
51 #define DE4X5_SICR	0x068		/* SIA Connectivity Register */
52 #define DE4X5_APROM	0x048		/* Ethernet Address PROM */
53 
54 /* Register bits.
55  */
56 #define BMR_SWR		0x00000001	/* Software Reset */
57 #define STS_TS		0x00700000	/* Transmit Process State */
58 #define STS_RS		0x000e0000	/* Receive Process State */
59 #define OMR_ST		0x00002000	/* Start/Stop Transmission Command */
60 #define OMR_SR		0x00000002	/* Start/Stop Receive */
61 #define OMR_PS		0x00040000	/* Port Select */
62 #define OMR_SDP		0x02000000	/* SD Polarity - MUST BE ASSERTED */
63 #define OMR_PM		0x00000080	/* Pass All Multicast */
64 
65 /* Descriptor bits.
66  */
67 #define R_OWN		0x80000000	/* Own Bit */
68 #define RD_RER		0x02000000	/* Receive End Of Ring */
69 #define RD_LS		0x00000100	/* Last Descriptor */
70 #define RD_ES		0x00008000	/* Error Summary */
71 #define TD_TER		0x02000000	/* Transmit End Of Ring */
72 #define T_OWN		0x80000000	/* Own Bit */
73 #define TD_LS		0x40000000	/* Last Segment */
74 #define TD_FS		0x20000000	/* First Segment */
75 #define TD_ES		0x00008000	/* Error Summary */
76 #define TD_SET		0x08000000	/* Setup Packet */
77 
78 /* The EEPROM commands include the alway-set leading bit. */
79 #define SROM_WRITE_CMD	5
80 #define SROM_READ_CMD	6
81 #define SROM_ERASE_CMD	7
82 
83 #define SROM_HWADD	    0x0014	/* Hardware Address offset in SROM */
84 #define SROM_RD		0x00004000	/* Read from Boot ROM */
85 #define EE_DATA_WRITE	      0x04	/* EEPROM chip data in. */
86 #define EE_WRITE_0	    0x4801
87 #define EE_WRITE_1	    0x4805
88 #define EE_DATA_READ	      0x08	/* EEPROM chip data out. */
89 #define SROM_SR		0x00000800	/* Select Serial ROM when set */
90 
91 #define DT_IN		0x00000004	/* Serial Data In */
92 #define DT_CLK		0x00000002	/* Serial ROM Clock */
93 #define DT_CS		0x00000001	/* Serial ROM Chip Select */
94 
95 #define POLL_DEMAND	1
96 
97 #ifdef CONFIG_TULIP_FIX_DAVICOM
98 #define RESET_DM9102(dev) {\
99     unsigned long i;\
100     i=INL(dev, 0x0);\
101     udelay(1000);\
102     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
103     udelay(1000);\
104 }
105 #else
106 #define RESET_DE4X5(dev) {\
107     int i;\
108     i=INL(dev, DE4X5_BMR);\
109     udelay(1000);\
110     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
111     udelay(1000);\
112     OUTL(dev, i, DE4X5_BMR);\
113     udelay(1000);\
114     for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
115     udelay(1000);\
116 }
117 #endif
118 
119 #define START_DE4X5(dev) {\
120     s32 omr; \
121     omr = INL(dev, DE4X5_OMR);\
122     omr |= OMR_ST | OMR_SR;\
123     OUTL(dev, omr, DE4X5_OMR);		/* Enable the TX and/or RX */\
124 }
125 
126 #define STOP_DE4X5(dev) {\
127     s32 omr; \
128     omr = INL(dev, DE4X5_OMR);\
129     omr &= ~(OMR_ST|OMR_SR);\
130     OUTL(dev, omr, DE4X5_OMR);		/* Disable the TX and/or RX */ \
131 }
132 
133 #define NUM_RX_DESC PKTBUFSRX
134 #ifndef CONFIG_TULIP_FIX_DAVICOM
135 	#define NUM_TX_DESC 1			/* Number of TX descriptors   */
136 #else
137 	#define NUM_TX_DESC 4
138 #endif
139 #define RX_BUFF_SZ  PKTSIZE_ALIGN
140 
141 #define TOUT_LOOP   1000000
142 
143 #define SETUP_FRAME_LEN 192
144 #define ETH_ALEN	6
145 
146 struct de4x5_desc {
147 	volatile s32 status;
148 	u32 des1;
149 	u32 buf;
150 	u32 next;
151 };
152 
153 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring         */
154 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring         */
155 static int rx_new;                             /* RX descriptor ring pointer */
156 static int tx_new;                             /* TX descriptor ring pointer */
157 
158 static char rxRingSize;
159 static char txRingSize;
160 
161 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
162 static void  sendto_srom(struct eth_device* dev, u_int command, u_long addr);
163 static int   getfrom_srom(struct eth_device* dev, u_long addr);
164 static int   do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
165 static int   do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
166 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
167 #ifdef UPDATE_SROM
168 static int   write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
169 static void  update_srom(struct eth_device *dev, bd_t *bis);
170 #endif
171 #ifndef CONFIG_TULIP_FIX_DAVICOM
172 static int   read_srom(struct eth_device *dev, u_long ioaddr, int index);
173 static void  read_hw_addr(struct eth_device* dev, bd_t * bis);
174 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
175 static void  send_setup_frame(struct eth_device* dev, bd_t * bis);
176 
177 static int   dc21x4x_init(struct eth_device* dev, bd_t* bis);
178 static int   dc21x4x_send(struct eth_device *dev, void *packet, int length);
179 static int   dc21x4x_recv(struct eth_device* dev);
180 static void  dc21x4x_halt(struct eth_device* dev);
181 #ifdef CONFIG_TULIP_SELECT_MEDIA
182 extern void  dc21x4x_select_media(struct eth_device* dev);
183 #endif
184 
185 #if defined(CONFIG_E500)
186 #define phys_to_bus(a) (a)
187 #else
188 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
189 #endif
190 
191 static int INL(struct eth_device* dev, u_long addr)
192 {
193 	return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
194 }
195 
196 static void OUTL(struct eth_device* dev, int command, u_long addr)
197 {
198 	*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
199 }
200 
201 static struct pci_device_id supported[] = {
202 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
203 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
204 #ifdef CONFIG_TULIP_FIX_DAVICOM
205 	{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
206 #endif
207 	{ }
208 };
209 
210 int dc21x4x_initialize(bd_t *bis)
211 {
212 	int			idx=0;
213 	int			card_number = 0;
214 	unsigned int		cfrv;
215 	unsigned char		timer;
216 	pci_dev_t		devbusfn;
217 	unsigned int		iobase;
218 	unsigned short		status;
219 	struct eth_device*	dev;
220 
221 	while(1) {
222 		devbusfn =  pci_find_devices(supported, idx++);
223 		if (devbusfn == -1) {
224 			break;
225 		}
226 
227 		/* Get the chip configuration revision register. */
228 		pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
229 
230 #ifndef CONFIG_TULIP_FIX_DAVICOM
231 		if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
232 			printf("Error: The chip is not DC21143.\n");
233 			continue;
234 		}
235 #endif
236 
237 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
238 		status |=
239 #ifdef CONFIG_TULIP_USE_IO
240 		  PCI_COMMAND_IO |
241 #else
242 		  PCI_COMMAND_MEMORY |
243 #endif
244 		  PCI_COMMAND_MASTER;
245 		pci_write_config_word(devbusfn, PCI_COMMAND, status);
246 
247 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
248 #ifdef CONFIG_TULIP_USE_IO
249 		if (!(status & PCI_COMMAND_IO)) {
250 			printf("Error: Can not enable I/O access.\n");
251 			continue;
252 		}
253 #else
254 		if (!(status & PCI_COMMAND_MEMORY)) {
255 			printf("Error: Can not enable MEMORY access.\n");
256 			continue;
257 		}
258 #endif
259 
260 		if (!(status & PCI_COMMAND_MASTER)) {
261 			printf("Error: Can not enable Bus Mastering.\n");
262 			continue;
263 		}
264 
265 		/* Check the latency timer for values >= 0x60. */
266 		pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
267 
268 		if (timer < 0x60) {
269 			pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
270 		}
271 
272 #ifdef CONFIG_TULIP_USE_IO
273 		/* read BAR for memory space access */
274 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
275 		iobase &= PCI_BASE_ADDRESS_IO_MASK;
276 #else
277 		/* read BAR for memory space access */
278 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
279 		iobase &= PCI_BASE_ADDRESS_MEM_MASK;
280 #endif
281 		debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
282 
283 		dev = (struct eth_device*) malloc(sizeof *dev);
284 
285 		if (!dev) {
286 			printf("Can not allocalte memory of dc21x4x\n");
287 			break;
288 		}
289 		memset(dev, 0, sizeof(*dev));
290 
291 #ifdef CONFIG_TULIP_FIX_DAVICOM
292 		sprintf(dev->name, "Davicom#%d", card_number);
293 #else
294 		sprintf(dev->name, "dc21x4x#%d", card_number);
295 #endif
296 
297 #ifdef CONFIG_TULIP_USE_IO
298 		dev->iobase = pci_io_to_phys(devbusfn, iobase);
299 #else
300 		dev->iobase = pci_mem_to_phys(devbusfn, iobase);
301 #endif
302 		dev->priv   = (void*) devbusfn;
303 		dev->init   = dc21x4x_init;
304 		dev->halt   = dc21x4x_halt;
305 		dev->send   = dc21x4x_send;
306 		dev->recv   = dc21x4x_recv;
307 
308 		/* Ensure we're not sleeping. */
309 		pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
310 
311 		udelay(10 * 1000);
312 
313 #ifndef CONFIG_TULIP_FIX_DAVICOM
314 		read_hw_addr(dev, bis);
315 #endif
316 		eth_register(dev);
317 
318 		card_number++;
319 	}
320 
321 	return card_number;
322 }
323 
324 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
325 {
326 	int		i;
327 	int		devbusfn = (int) dev->priv;
328 
329 	/* Ensure we're not sleeping. */
330 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
331 
332 #ifdef CONFIG_TULIP_FIX_DAVICOM
333 	RESET_DM9102(dev);
334 #else
335 	RESET_DE4X5(dev);
336 #endif
337 
338 	if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
339 		printf("Error: Cannot reset ethernet controller.\n");
340 		return -1;
341 	}
342 
343 #ifdef CONFIG_TULIP_SELECT_MEDIA
344 	dc21x4x_select_media(dev);
345 #else
346 	OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
347 #endif
348 
349 	for (i = 0; i < NUM_RX_DESC; i++) {
350 		rx_ring[i].status = cpu_to_le32(R_OWN);
351 		rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
352 		rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
353 #ifdef CONFIG_TULIP_FIX_DAVICOM
354 		rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
355 #else
356 		rx_ring[i].next = 0;
357 #endif
358 	}
359 
360 	for (i=0; i < NUM_TX_DESC; i++) {
361 		tx_ring[i].status = 0;
362 		tx_ring[i].des1 = 0;
363 		tx_ring[i].buf = 0;
364 
365 #ifdef CONFIG_TULIP_FIX_DAVICOM
366 	tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
367 #else
368 		tx_ring[i].next = 0;
369 #endif
370 	}
371 
372 	rxRingSize = NUM_RX_DESC;
373 	txRingSize = NUM_TX_DESC;
374 
375 	/* Write the end of list marker to the descriptor lists. */
376 	rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
377 	tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
378 
379 	/* Tell the adapter where the TX/RX rings are located. */
380 	OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
381 	OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
382 
383 	START_DE4X5(dev);
384 
385 	tx_new = 0;
386 	rx_new = 0;
387 
388 	send_setup_frame(dev, bis);
389 
390 	return 0;
391 }
392 
393 static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
394 {
395 	int		status = -1;
396 	int		i;
397 
398 	if (length <= 0) {
399 		printf("%s: bad packet size: %d\n", dev->name, length);
400 		goto Done;
401 	}
402 
403 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
404 		if (i >= TOUT_LOOP) {
405 			printf("%s: tx error buffer not ready\n", dev->name);
406 			goto Done;
407 		}
408 	}
409 
410 	tx_ring[tx_new].buf    = cpu_to_le32(phys_to_bus((u32) packet));
411 	tx_ring[tx_new].des1   = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
412 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
413 
414 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
415 
416 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
417 		if (i >= TOUT_LOOP) {
418 			printf(".%s: tx buffer not ready\n", dev->name);
419 			goto Done;
420 		}
421 	}
422 
423 	if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
424 #if 0 /* test-only */
425 		printf("TX error status = 0x%08X\n",
426 			le32_to_cpu(tx_ring[tx_new].status));
427 #endif
428 		tx_ring[tx_new].status = 0x0;
429 		goto Done;
430 	}
431 
432 	status = length;
433 
434  Done:
435     tx_new = (tx_new+1) % NUM_TX_DESC;
436 	return status;
437 }
438 
439 static int dc21x4x_recv(struct eth_device* dev)
440 {
441 	s32		status;
442 	int		length    = 0;
443 
444 	for ( ; ; ) {
445 		status = (s32)le32_to_cpu(rx_ring[rx_new].status);
446 
447 		if (status & R_OWN) {
448 			break;
449 		}
450 
451 		if (status & RD_LS) {
452 			/* Valid frame status.
453 			 */
454 			if (status & RD_ES) {
455 
456 				/* There was an error.
457 				 */
458 				printf("RX error status = 0x%08X\n", status);
459 			} else {
460 				/* A valid frame received.
461 				 */
462 				length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
463 
464 				/* Pass the packet up to the protocol
465 				 * layers.
466 				 */
467 				NetReceive(NetRxPackets[rx_new], length - 4);
468 			}
469 
470 			/* Change buffer ownership for this frame, back
471 			 * to the adapter.
472 			 */
473 			rx_ring[rx_new].status = cpu_to_le32(R_OWN);
474 		}
475 
476 		/* Update entry information.
477 		 */
478 		rx_new = (rx_new + 1) % rxRingSize;
479 	}
480 
481 	return length;
482 }
483 
484 static void dc21x4x_halt(struct eth_device* dev)
485 {
486 	int		devbusfn = (int) dev->priv;
487 
488 	STOP_DE4X5(dev);
489 	OUTL(dev, 0, DE4X5_SICR);
490 
491 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
492 }
493 
494 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
495 {
496 	int		i;
497 	char	setup_frame[SETUP_FRAME_LEN];
498 	char	*pa = &setup_frame[0];
499 
500 	memset(pa, 0xff, SETUP_FRAME_LEN);
501 
502 	for (i = 0; i < ETH_ALEN; i++) {
503 		*(pa + (i & 1)) = dev->enetaddr[i];
504 		if (i & 0x01) {
505 			pa += 4;
506 		}
507 	}
508 
509 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
510 		if (i >= TOUT_LOOP) {
511 			printf("%s: tx error buffer not ready\n", dev->name);
512 			goto Done;
513 		}
514 	}
515 
516 	tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
517 	tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
518 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
519 
520 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
521 
522 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
523 		if (i >= TOUT_LOOP) {
524 			printf("%s: tx buffer not ready\n", dev->name);
525 			goto Done;
526 		}
527 	}
528 
529 	if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
530 		printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
531 	}
532 	tx_new = (tx_new+1) % NUM_TX_DESC;
533 
534 Done:
535 	return;
536 }
537 
538 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
539 /* SROM Read and write routines.
540  */
541 static void
542 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
543 {
544 	OUTL(dev, command, addr);
545 	udelay(1);
546 }
547 
548 static int
549 getfrom_srom(struct eth_device* dev, u_long addr)
550 {
551 	s32 tmp;
552 
553 	tmp = INL(dev, addr);
554 	udelay(1);
555 
556 	return tmp;
557 }
558 
559 /* Note: this routine returns extra data bits for size detection. */
560 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
561 {
562 	int i;
563 	unsigned retval = 0;
564 	int read_cmd = location | (SROM_READ_CMD << addr_len);
565 
566 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
567 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
568 
569 #ifdef DEBUG_SROM
570 	printf(" EEPROM read at %d ", location);
571 #endif
572 
573 	/* Shift the read command bits out. */
574 	for (i = 4 + addr_len; i >= 0; i--) {
575 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
576 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
577 		udelay(10);
578 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
579 		udelay(10);
580 #ifdef DEBUG_SROM2
581 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
582 #endif
583 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
584 	}
585 
586 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
587 
588 #ifdef DEBUG_SROM2
589 	printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
590 #endif
591 
592 	for (i = 16; i > 0; i--) {
593 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
594 		udelay(10);
595 #ifdef DEBUG_SROM2
596 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
597 #endif
598 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
599 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
600 		udelay(10);
601 	}
602 
603 	/* Terminate the EEPROM access. */
604 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
605 
606 #ifdef DEBUG_SROM2
607 	printf(" EEPROM value at %d is %5.5x.\n", location, retval);
608 #endif
609 
610 	return retval;
611 }
612 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
613 
614 /* This executes a generic EEPROM command, typically a write or write
615  * enable. It returns the data output from the EEPROM, and thus may
616  * also be used for reads.
617  */
618 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
619 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
620 {
621 	unsigned retval = 0;
622 
623 #ifdef DEBUG_SROM
624 	printf(" EEPROM op 0x%x: ", cmd);
625 #endif
626 
627 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
628 
629 	/* Shift the command bits out. */
630 	do {
631 		short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
632 		sendto_srom(dev,dataval, ioaddr);
633 		udelay(10);
634 
635 #ifdef DEBUG_SROM2
636 		printf("%X", getfrom_srom(dev,ioaddr) & 15);
637 #endif
638 
639 		sendto_srom(dev,dataval | DT_CLK, ioaddr);
640 		udelay(10);
641 		retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
642 	} while (--cmd_len >= 0);
643 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
644 
645 	/* Terminate the EEPROM access. */
646 	sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
647 
648 #ifdef DEBUG_SROM
649 	printf(" EEPROM result is 0x%5.5x.\n", retval);
650 #endif
651 
652 	return retval;
653 }
654 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
655 
656 #ifndef CONFIG_TULIP_FIX_DAVICOM
657 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
658 {
659 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
660 
661 	return do_eeprom_cmd(dev, ioaddr,
662 			     (((SROM_READ_CMD << ee_addr_size) | index) << 16)
663 			     | 0xffff, 3 + ee_addr_size + 16);
664 }
665 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
666 
667 #ifdef UPDATE_SROM
668 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
669 {
670 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
671 	int i;
672 	unsigned short newval;
673 
674 	udelay(10*1000); /* test-only */
675 
676 #ifdef DEBUG_SROM
677 	printf("ee_addr_size=%d.\n", ee_addr_size);
678 	printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
679 #endif
680 
681 	/* Enable programming modes. */
682 	do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
683 
684 	/* Do the actual write. */
685 	do_eeprom_cmd(dev, ioaddr,
686 		      (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
687 		      3 + ee_addr_size + 16);
688 
689 	/* Poll for write finished. */
690 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
691 	for (i = 0; i < 10000; i++)			/* Typical 2000 ticks */
692 		if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
693 			break;
694 
695 #ifdef DEBUG_SROM
696 	printf(" Write finished after %d ticks.\n", i);
697 #endif
698 
699 	/* Disable programming. */
700 	do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
701 
702 	/* And read the result. */
703 	newval = do_eeprom_cmd(dev, ioaddr,
704 			       (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
705 			       | 0xffff, 3 + ee_addr_size + 16);
706 #ifdef DEBUG_SROM
707 	printf("  New value at offset %d is %4.4x.\n", index, newval);
708 #endif
709 	return 1;
710 }
711 #endif
712 
713 #ifndef CONFIG_TULIP_FIX_DAVICOM
714 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
715 {
716 	u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
717 	int i, j = 0;
718 
719 	for (i = 0; i < (ETH_ALEN >> 1); i++) {
720 		tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
721 		*p = le16_to_cpu(tmp);
722 		j += *p++;
723 	}
724 
725 	if ((j == 0) || (j == 0x2fffd)) {
726 		memset (dev->enetaddr, 0, ETH_ALEN);
727 		debug ("Warning: can't read HW address from SROM.\n");
728 		goto Done;
729 	}
730 
731 	return;
732 
733 Done:
734 #ifdef UPDATE_SROM
735 	update_srom(dev, bis);
736 #endif
737 	return;
738 }
739 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
740 
741 #ifdef UPDATE_SROM
742 static void update_srom(struct eth_device *dev, bd_t *bis)
743 {
744 	int i;
745 	static unsigned short eeprom[0x40] = {
746 		0x140b, 0x6610, 0x0000, 0x0000,	/* 00 */
747 		0x0000, 0x0000, 0x0000, 0x0000,	/* 04 */
748 		0x00a3, 0x0103, 0x0000, 0x0000,	/* 08 */
749 		0x0000, 0x1f00, 0x0000, 0x0000,	/* 0c */
750 		0x0108, 0x038d, 0x0000, 0x0000,	/* 10 */
751 		0xe078, 0x0001, 0x0040, 0x0018,	/* 14 */
752 		0x0000, 0x0000, 0x0000, 0x0000,	/* 18 */
753 		0x0000, 0x0000, 0x0000, 0x0000,	/* 1c */
754 		0x0000, 0x0000, 0x0000, 0x0000,	/* 20 */
755 		0x0000, 0x0000, 0x0000, 0x0000,	/* 24 */
756 		0x0000, 0x0000, 0x0000, 0x0000,	/* 28 */
757 		0x0000, 0x0000, 0x0000, 0x0000,	/* 2c */
758 		0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
759 		0x0000, 0x0000, 0x0000, 0x0000,	/* 34 */
760 		0x0000, 0x0000, 0x0000, 0x0000,	/* 38 */
761 		0x0000, 0x0000, 0x0000, 0x4e07,	/* 3c */
762 	};
763 	uchar enetaddr[6];
764 
765 	/* Ethernet Addr... */
766 	if (!eth_getenv_enetaddr("ethaddr", enetaddr))
767 		return;
768 	eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
769 	eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
770 	eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
771 
772 	for (i=0; i<0x40; i++) {
773 		write_srom(dev, DE4X5_APROM, i, eeprom[i]);
774 	}
775 }
776 #endif	/* UPDATE_SROM */
777