xref: /openbmc/u-boot/drivers/net/dc2114x.c (revision 461fa68d)
1 /*
2  * See file CREDITS for list of people who contributed to this
3  * project.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20 
21 #include <common.h>
22 #include <malloc.h>
23 #include <net.h>
24 #include <pci.h>
25 
26 #undef DEBUG_SROM
27 #undef DEBUG_SROM2
28 
29 #undef UPDATE_SROM
30 
31 /* PCI Registers.
32  */
33 #define PCI_CFDA_PSM		0x43
34 
35 #define CFRV_RN		0x000000f0	/* Revision Number */
36 
37 #define WAKEUP		0x00		/* Power Saving Wakeup */
38 #define SLEEP		0x80		/* Power Saving Sleep Mode */
39 
40 #define DC2114x_BRK	0x0020		/* CFRV break between DC21142 & DC21143 */
41 
42 /* Ethernet chip registers.
43  */
44 #define DE4X5_BMR	0x000		/* Bus Mode Register */
45 #define DE4X5_TPD	0x008		/* Transmit Poll Demand Reg */
46 #define DE4X5_RRBA	0x018		/* RX Ring Base Address Reg */
47 #define DE4X5_TRBA	0x020		/* TX Ring Base Address Reg */
48 #define DE4X5_STS	0x028		/* Status Register */
49 #define DE4X5_OMR	0x030		/* Operation Mode Register */
50 #define DE4X5_SICR	0x068		/* SIA Connectivity Register */
51 #define DE4X5_APROM	0x048		/* Ethernet Address PROM */
52 
53 /* Register bits.
54  */
55 #define BMR_SWR		0x00000001	/* Software Reset */
56 #define STS_TS		0x00700000	/* Transmit Process State */
57 #define STS_RS		0x000e0000	/* Receive Process State */
58 #define OMR_ST		0x00002000	/* Start/Stop Transmission Command */
59 #define OMR_SR		0x00000002	/* Start/Stop Receive */
60 #define OMR_PS		0x00040000	/* Port Select */
61 #define OMR_SDP		0x02000000	/* SD Polarity - MUST BE ASSERTED */
62 #define OMR_PM		0x00000080	/* Pass All Multicast */
63 
64 /* Descriptor bits.
65  */
66 #define R_OWN		0x80000000	/* Own Bit */
67 #define RD_RER		0x02000000	/* Receive End Of Ring */
68 #define RD_LS		0x00000100	/* Last Descriptor */
69 #define RD_ES		0x00008000	/* Error Summary */
70 #define TD_TER		0x02000000	/* Transmit End Of Ring */
71 #define T_OWN		0x80000000	/* Own Bit */
72 #define TD_LS		0x40000000	/* Last Segment */
73 #define TD_FS		0x20000000	/* First Segment */
74 #define TD_ES		0x00008000	/* Error Summary */
75 #define TD_SET		0x08000000	/* Setup Packet */
76 
77 /* The EEPROM commands include the alway-set leading bit. */
78 #define SROM_WRITE_CMD	5
79 #define SROM_READ_CMD	6
80 #define SROM_ERASE_CMD	7
81 
82 #define SROM_HWADD	    0x0014	/* Hardware Address offset in SROM */
83 #define SROM_RD		0x00004000	/* Read from Boot ROM */
84 #define EE_DATA_WRITE	      0x04	/* EEPROM chip data in. */
85 #define EE_WRITE_0	    0x4801
86 #define EE_WRITE_1	    0x4805
87 #define EE_DATA_READ	      0x08	/* EEPROM chip data out. */
88 #define SROM_SR		0x00000800	/* Select Serial ROM when set */
89 
90 #define DT_IN		0x00000004	/* Serial Data In */
91 #define DT_CLK		0x00000002	/* Serial ROM Clock */
92 #define DT_CS		0x00000001	/* Serial ROM Chip Select */
93 
94 #define POLL_DEMAND	1
95 
96 #ifdef CONFIG_TULIP_FIX_DAVICOM
97 #define RESET_DM9102(dev) {\
98     unsigned long i;\
99     i=INL(dev, 0x0);\
100     udelay(1000);\
101     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
102     udelay(1000);\
103 }
104 #else
105 #define RESET_DE4X5(dev) {\
106     int i;\
107     i=INL(dev, DE4X5_BMR);\
108     udelay(1000);\
109     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
110     udelay(1000);\
111     OUTL(dev, i, DE4X5_BMR);\
112     udelay(1000);\
113     for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
114     udelay(1000);\
115 }
116 #endif
117 
118 #define START_DE4X5(dev) {\
119     s32 omr; \
120     omr = INL(dev, DE4X5_OMR);\
121     omr |= OMR_ST | OMR_SR;\
122     OUTL(dev, omr, DE4X5_OMR);		/* Enable the TX and/or RX */\
123 }
124 
125 #define STOP_DE4X5(dev) {\
126     s32 omr; \
127     omr = INL(dev, DE4X5_OMR);\
128     omr &= ~(OMR_ST|OMR_SR);\
129     OUTL(dev, omr, DE4X5_OMR);		/* Disable the TX and/or RX */ \
130 }
131 
132 #define NUM_RX_DESC PKTBUFSRX
133 #ifndef CONFIG_TULIP_FIX_DAVICOM
134 	#define NUM_TX_DESC 1			/* Number of TX descriptors   */
135 #else
136 	#define NUM_TX_DESC 4
137 #endif
138 #define RX_BUFF_SZ  PKTSIZE_ALIGN
139 
140 #define TOUT_LOOP   1000000
141 
142 #define SETUP_FRAME_LEN 192
143 #define ETH_ALEN	6
144 
145 struct de4x5_desc {
146 	volatile s32 status;
147 	u32 des1;
148 	u32 buf;
149 	u32 next;
150 };
151 
152 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring         */
153 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring         */
154 static int rx_new;                             /* RX descriptor ring pointer */
155 static int tx_new;                             /* TX descriptor ring pointer */
156 
157 static char rxRingSize;
158 static char txRingSize;
159 
160 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
161 static void  sendto_srom(struct eth_device* dev, u_int command, u_long addr);
162 static int   getfrom_srom(struct eth_device* dev, u_long addr);
163 static int   do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
164 static int   do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
165 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
166 #ifdef UPDATE_SROM
167 static int   write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
168 static void  update_srom(struct eth_device *dev, bd_t *bis);
169 #endif
170 #ifndef CONFIG_TULIP_FIX_DAVICOM
171 static int   read_srom(struct eth_device *dev, u_long ioaddr, int index);
172 static void  read_hw_addr(struct eth_device* dev, bd_t * bis);
173 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
174 static void  send_setup_frame(struct eth_device* dev, bd_t * bis);
175 
176 static int   dc21x4x_init(struct eth_device* dev, bd_t* bis);
177 static int   dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
178 static int   dc21x4x_recv(struct eth_device* dev);
179 static void  dc21x4x_halt(struct eth_device* dev);
180 #ifdef CONFIG_TULIP_SELECT_MEDIA
181 extern void  dc21x4x_select_media(struct eth_device* dev);
182 #endif
183 
184 #if defined(CONFIG_E500)
185 #define phys_to_bus(a) (a)
186 #else
187 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
188 #endif
189 
190 static int INL(struct eth_device* dev, u_long addr)
191 {
192 	return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
193 }
194 
195 static void OUTL(struct eth_device* dev, int command, u_long addr)
196 {
197 	*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
198 }
199 
200 static struct pci_device_id supported[] = {
201 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
202 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
203 #ifdef CONFIG_TULIP_FIX_DAVICOM
204 	{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
205 #endif
206 	{ }
207 };
208 
209 int dc21x4x_initialize(bd_t *bis)
210 {
211 	int			idx=0;
212 	int			card_number = 0;
213 	unsigned int		cfrv;
214 	unsigned char		timer;
215 	pci_dev_t		devbusfn;
216 	unsigned int		iobase;
217 	unsigned short		status;
218 	struct eth_device*	dev;
219 
220 	while(1) {
221 		devbusfn =  pci_find_devices(supported, idx++);
222 		if (devbusfn == -1) {
223 			break;
224 		}
225 
226 		/* Get the chip configuration revision register. */
227 		pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
228 
229 #ifndef CONFIG_TULIP_FIX_DAVICOM
230 		if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
231 			printf("Error: The chip is not DC21143.\n");
232 			continue;
233 		}
234 #endif
235 
236 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
237 		status |=
238 #ifdef CONFIG_TULIP_USE_IO
239 		  PCI_COMMAND_IO |
240 #else
241 		  PCI_COMMAND_MEMORY |
242 #endif
243 		  PCI_COMMAND_MASTER;
244 		pci_write_config_word(devbusfn, PCI_COMMAND, status);
245 
246 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
247 		if (!(status & PCI_COMMAND_IO)) {
248 			printf("Error: Can not enable I/O access.\n");
249 			continue;
250 		}
251 
252 		if (!(status & PCI_COMMAND_IO)) {
253 			printf("Error: Can not enable I/O access.\n");
254 			continue;
255 		}
256 
257 		if (!(status & PCI_COMMAND_MASTER)) {
258 			printf("Error: Can not enable Bus Mastering.\n");
259 			continue;
260 		}
261 
262 		/* Check the latency timer for values >= 0x60. */
263 		pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
264 
265 		if (timer < 0x60) {
266 			pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
267 		}
268 
269 #ifdef CONFIG_TULIP_USE_IO
270 		/* read BAR for memory space access */
271 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
272 		iobase &= PCI_BASE_ADDRESS_IO_MASK;
273 #else
274 		/* read BAR for memory space access */
275 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
276 		iobase &= PCI_BASE_ADDRESS_MEM_MASK;
277 #endif
278 		debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
279 
280 		dev = (struct eth_device*) malloc(sizeof *dev);
281 
282 #ifdef CONFIG_TULIP_FIX_DAVICOM
283 		sprintf(dev->name, "Davicom#%d", card_number);
284 #else
285 		sprintf(dev->name, "dc21x4x#%d", card_number);
286 #endif
287 
288 #ifdef CONFIG_TULIP_USE_IO
289 		dev->iobase = pci_io_to_phys(devbusfn, iobase);
290 #else
291 		dev->iobase = pci_mem_to_phys(devbusfn, iobase);
292 #endif
293 		dev->priv   = (void*) devbusfn;
294 		dev->init   = dc21x4x_init;
295 		dev->halt   = dc21x4x_halt;
296 		dev->send   = dc21x4x_send;
297 		dev->recv   = dc21x4x_recv;
298 
299 		/* Ensure we're not sleeping. */
300 		pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
301 
302 		udelay(10 * 1000);
303 
304 #ifndef CONFIG_TULIP_FIX_DAVICOM
305 		read_hw_addr(dev, bis);
306 #endif
307 		eth_register(dev);
308 
309 		card_number++;
310 	}
311 
312 	return card_number;
313 }
314 
315 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
316 {
317 	int		i;
318 	int		devbusfn = (int) dev->priv;
319 
320 	/* Ensure we're not sleeping. */
321 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
322 
323 #ifdef CONFIG_TULIP_FIX_DAVICOM
324 	RESET_DM9102(dev);
325 #else
326 	RESET_DE4X5(dev);
327 #endif
328 
329 	if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
330 		printf("Error: Cannot reset ethernet controller.\n");
331 		return -1;
332 	}
333 
334 #ifdef CONFIG_TULIP_SELECT_MEDIA
335 	dc21x4x_select_media(dev);
336 #else
337 	OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
338 #endif
339 
340 	for (i = 0; i < NUM_RX_DESC; i++) {
341 		rx_ring[i].status = cpu_to_le32(R_OWN);
342 		rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
343 		rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
344 #ifdef CONFIG_TULIP_FIX_DAVICOM
345 		rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
346 #else
347 		rx_ring[i].next = 0;
348 #endif
349 	}
350 
351 	for (i=0; i < NUM_TX_DESC; i++) {
352 		tx_ring[i].status = 0;
353 		tx_ring[i].des1 = 0;
354 		tx_ring[i].buf = 0;
355 
356 #ifdef CONFIG_TULIP_FIX_DAVICOM
357 	tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
358 #else
359 		tx_ring[i].next = 0;
360 #endif
361 	}
362 
363 	rxRingSize = NUM_RX_DESC;
364 	txRingSize = NUM_TX_DESC;
365 
366 	/* Write the end of list marker to the descriptor lists. */
367 	rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
368 	tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
369 
370 	/* Tell the adapter where the TX/RX rings are located. */
371 	OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
372 	OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
373 
374 	START_DE4X5(dev);
375 
376 	tx_new = 0;
377 	rx_new = 0;
378 
379 	send_setup_frame(dev, bis);
380 
381 	return 0;
382 }
383 
384 static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
385 {
386 	int		status = -1;
387 	int		i;
388 
389 	if (length <= 0) {
390 		printf("%s: bad packet size: %d\n", dev->name, length);
391 		goto Done;
392 	}
393 
394 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
395 		if (i >= TOUT_LOOP) {
396 			printf("%s: tx error buffer not ready\n", dev->name);
397 			goto Done;
398 		}
399 	}
400 
401 	tx_ring[tx_new].buf    = cpu_to_le32(phys_to_bus((u32) packet));
402 	tx_ring[tx_new].des1   = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
403 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
404 
405 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
406 
407 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
408 		if (i >= TOUT_LOOP) {
409 			printf(".%s: tx buffer not ready\n", dev->name);
410 			goto Done;
411 		}
412 	}
413 
414 	if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
415 #if 0 /* test-only */
416 		printf("TX error status = 0x%08X\n",
417 			le32_to_cpu(tx_ring[tx_new].status));
418 #endif
419 		tx_ring[tx_new].status = 0x0;
420 		goto Done;
421 	}
422 
423 	status = length;
424 
425  Done:
426     tx_new = (tx_new+1) % NUM_TX_DESC;
427 	return status;
428 }
429 
430 static int dc21x4x_recv(struct eth_device* dev)
431 {
432 	s32		status;
433 	int		length    = 0;
434 
435 	for ( ; ; ) {
436 		status = (s32)le32_to_cpu(rx_ring[rx_new].status);
437 
438 		if (status & R_OWN) {
439 			break;
440 		}
441 
442 		if (status & RD_LS) {
443 			/* Valid frame status.
444 			 */
445 			if (status & RD_ES) {
446 
447 				/* There was an error.
448 				 */
449 				printf("RX error status = 0x%08X\n", status);
450 			} else {
451 				/* A valid frame received.
452 				 */
453 				length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
454 
455 				/* Pass the packet up to the protocol
456 				 * layers.
457 				 */
458 				NetReceive(NetRxPackets[rx_new], length - 4);
459 			}
460 
461 			/* Change buffer ownership for this frame, back
462 			 * to the adapter.
463 			 */
464 			rx_ring[rx_new].status = cpu_to_le32(R_OWN);
465 		}
466 
467 		/* Update entry information.
468 		 */
469 		rx_new = (rx_new + 1) % rxRingSize;
470 	}
471 
472 	return length;
473 }
474 
475 static void dc21x4x_halt(struct eth_device* dev)
476 {
477 	int		devbusfn = (int) dev->priv;
478 
479 	STOP_DE4X5(dev);
480 	OUTL(dev, 0, DE4X5_SICR);
481 
482 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
483 }
484 
485 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
486 {
487 	int		i;
488 	char	setup_frame[SETUP_FRAME_LEN];
489 	char	*pa = &setup_frame[0];
490 
491 	memset(pa, 0xff, SETUP_FRAME_LEN);
492 
493 	for (i = 0; i < ETH_ALEN; i++) {
494 		*(pa + (i & 1)) = dev->enetaddr[i];
495 		if (i & 0x01) {
496 			pa += 4;
497 		}
498 	}
499 
500 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
501 		if (i >= TOUT_LOOP) {
502 			printf("%s: tx error buffer not ready\n", dev->name);
503 			goto Done;
504 		}
505 	}
506 
507 	tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
508 	tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
509 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
510 
511 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
512 
513 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
514 		if (i >= TOUT_LOOP) {
515 			printf("%s: tx buffer not ready\n", dev->name);
516 			goto Done;
517 		}
518 	}
519 
520 	if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
521 		printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
522 	}
523 	tx_new = (tx_new+1) % NUM_TX_DESC;
524 
525 Done:
526 	return;
527 }
528 
529 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
530 /* SROM Read and write routines.
531  */
532 static void
533 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
534 {
535 	OUTL(dev, command, addr);
536 	udelay(1);
537 }
538 
539 static int
540 getfrom_srom(struct eth_device* dev, u_long addr)
541 {
542 	s32 tmp;
543 
544 	tmp = INL(dev, addr);
545 	udelay(1);
546 
547 	return tmp;
548 }
549 
550 /* Note: this routine returns extra data bits for size detection. */
551 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
552 {
553 	int i;
554 	unsigned retval = 0;
555 	int read_cmd = location | (SROM_READ_CMD << addr_len);
556 
557 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
558 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
559 
560 #ifdef DEBUG_SROM
561 	printf(" EEPROM read at %d ", location);
562 #endif
563 
564 	/* Shift the read command bits out. */
565 	for (i = 4 + addr_len; i >= 0; i--) {
566 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
567 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
568 		udelay(10);
569 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
570 		udelay(10);
571 #ifdef DEBUG_SROM2
572 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
573 #endif
574 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
575 	}
576 
577 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
578 
579 #ifdef DEBUG_SROM2
580 	printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
581 #endif
582 
583 	for (i = 16; i > 0; i--) {
584 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
585 		udelay(10);
586 #ifdef DEBUG_SROM2
587 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
588 #endif
589 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
590 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
591 		udelay(10);
592 	}
593 
594 	/* Terminate the EEPROM access. */
595 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
596 
597 #ifdef DEBUG_SROM2
598 	printf(" EEPROM value at %d is %5.5x.\n", location, retval);
599 #endif
600 
601 	return retval;
602 }
603 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
604 
605 /* This executes a generic EEPROM command, typically a write or write
606  * enable. It returns the data output from the EEPROM, and thus may
607  * also be used for reads.
608  */
609 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
610 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
611 {
612 	unsigned retval = 0;
613 
614 #ifdef DEBUG_SROM
615 	printf(" EEPROM op 0x%x: ", cmd);
616 #endif
617 
618 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
619 
620 	/* Shift the command bits out. */
621 	do {
622 		short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
623 		sendto_srom(dev,dataval, ioaddr);
624 		udelay(10);
625 
626 #ifdef DEBUG_SROM2
627 		printf("%X", getfrom_srom(dev,ioaddr) & 15);
628 #endif
629 
630 		sendto_srom(dev,dataval | DT_CLK, ioaddr);
631 		udelay(10);
632 		retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
633 	} while (--cmd_len >= 0);
634 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
635 
636 	/* Terminate the EEPROM access. */
637 	sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
638 
639 #ifdef DEBUG_SROM
640 	printf(" EEPROM result is 0x%5.5x.\n", retval);
641 #endif
642 
643 	return retval;
644 }
645 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
646 
647 #ifndef CONFIG_TULIP_FIX_DAVICOM
648 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
649 {
650 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
651 
652 	return do_eeprom_cmd(dev, ioaddr,
653 			     (((SROM_READ_CMD << ee_addr_size) | index) << 16)
654 			     | 0xffff, 3 + ee_addr_size + 16);
655 }
656 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
657 
658 #ifdef UPDATE_SROM
659 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
660 {
661 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
662 	int i;
663 	unsigned short newval;
664 
665 	udelay(10*1000); /* test-only */
666 
667 #ifdef DEBUG_SROM
668 	printf("ee_addr_size=%d.\n", ee_addr_size);
669 	printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
670 #endif
671 
672 	/* Enable programming modes. */
673 	do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
674 
675 	/* Do the actual write. */
676 	do_eeprom_cmd(dev, ioaddr,
677 		      (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
678 		      3 + ee_addr_size + 16);
679 
680 	/* Poll for write finished. */
681 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
682 	for (i = 0; i < 10000; i++)			/* Typical 2000 ticks */
683 		if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
684 			break;
685 
686 #ifdef DEBUG_SROM
687 	printf(" Write finished after %d ticks.\n", i);
688 #endif
689 
690 	/* Disable programming. */
691 	do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
692 
693 	/* And read the result. */
694 	newval = do_eeprom_cmd(dev, ioaddr,
695 			       (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
696 			       | 0xffff, 3 + ee_addr_size + 16);
697 #ifdef DEBUG_SROM
698 	printf("  New value at offset %d is %4.4x.\n", index, newval);
699 #endif
700 	return 1;
701 }
702 #endif
703 
704 #ifndef CONFIG_TULIP_FIX_DAVICOM
705 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
706 {
707 	u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
708 	int i, j = 0;
709 
710 	for (i = 0; i < (ETH_ALEN >> 1); i++) {
711 		tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
712 		*p = le16_to_cpu(tmp);
713 		j += *p++;
714 	}
715 
716 	if ((j == 0) || (j == 0x2fffd)) {
717 		memset (dev->enetaddr, 0, ETH_ALEN);
718 		debug ("Warning: can't read HW address from SROM.\n");
719 		goto Done;
720 	}
721 
722 	return;
723 
724 Done:
725 #ifdef UPDATE_SROM
726 	update_srom(dev, bis);
727 #endif
728 	return;
729 }
730 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
731 
732 #ifdef UPDATE_SROM
733 static void update_srom(struct eth_device *dev, bd_t *bis)
734 {
735 	int i;
736 	static unsigned short eeprom[0x40] = {
737 		0x140b, 0x6610, 0x0000, 0x0000,	/* 00 */
738 		0x0000, 0x0000, 0x0000, 0x0000,	/* 04 */
739 		0x00a3, 0x0103, 0x0000, 0x0000,	/* 08 */
740 		0x0000, 0x1f00, 0x0000, 0x0000,	/* 0c */
741 		0x0108, 0x038d, 0x0000, 0x0000,	/* 10 */
742 		0xe078, 0x0001, 0x0040, 0x0018,	/* 14 */
743 		0x0000, 0x0000, 0x0000, 0x0000,	/* 18 */
744 		0x0000, 0x0000, 0x0000, 0x0000,	/* 1c */
745 		0x0000, 0x0000, 0x0000, 0x0000,	/* 20 */
746 		0x0000, 0x0000, 0x0000, 0x0000,	/* 24 */
747 		0x0000, 0x0000, 0x0000, 0x0000,	/* 28 */
748 		0x0000, 0x0000, 0x0000, 0x0000,	/* 2c */
749 		0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
750 		0x0000, 0x0000, 0x0000, 0x0000,	/* 34 */
751 		0x0000, 0x0000, 0x0000, 0x0000,	/* 38 */
752 		0x0000, 0x0000, 0x0000, 0x4e07,	/* 3c */
753 	};
754 
755 	/* Ethernet Addr... */
756 	eeprom[0x0a] = ((bis->bi_enetaddr[1] & 0xff) << 8) | (bis->bi_enetaddr[0] & 0xff);
757 	eeprom[0x0b] = ((bis->bi_enetaddr[3] & 0xff) << 8) | (bis->bi_enetaddr[2] & 0xff);
758 	eeprom[0x0c] = ((bis->bi_enetaddr[5] & 0xff) << 8) | (bis->bi_enetaddr[4] & 0xff);
759 
760 	for (i=0; i<0x40; i++) {
761 		write_srom(dev, DE4X5_APROM, i, eeprom[i]);
762 	}
763 }
764 #endif	/* UPDATE_SROM */
765