xref: /openbmc/u-boot/drivers/net/dc2114x.c (revision 415a613b)
1 /*
2  * See file CREDITS for list of people who contributed to this
3  * project.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20 
21 #include <common.h>
22 
23 #if defined(CONFIG_CMD_NET) \
24 	&& defined(CONFIG_NET_MULTI) && defined(CONFIG_TULIP)
25 
26 #include <malloc.h>
27 #include <net.h>
28 #include <pci.h>
29 
30 #undef DEBUG_SROM
31 #undef DEBUG_SROM2
32 
33 #undef UPDATE_SROM
34 
35 /* PCI Registers.
36  */
37 #define PCI_CFDA_PSM		0x43
38 
39 #define CFRV_RN		0x000000f0	/* Revision Number */
40 
41 #define WAKEUP		0x00		/* Power Saving Wakeup */
42 #define SLEEP		0x80		/* Power Saving Sleep Mode */
43 
44 #define DC2114x_BRK	0x0020		/* CFRV break between DC21142 & DC21143 */
45 
46 /* Ethernet chip registers.
47  */
48 #define DE4X5_BMR	0x000		/* Bus Mode Register */
49 #define DE4X5_TPD	0x008		/* Transmit Poll Demand Reg */
50 #define DE4X5_RRBA	0x018		/* RX Ring Base Address Reg */
51 #define DE4X5_TRBA	0x020		/* TX Ring Base Address Reg */
52 #define DE4X5_STS	0x028		/* Status Register */
53 #define DE4X5_OMR	0x030		/* Operation Mode Register */
54 #define DE4X5_SICR	0x068		/* SIA Connectivity Register */
55 #define DE4X5_APROM	0x048		/* Ethernet Address PROM */
56 
57 /* Register bits.
58  */
59 #define BMR_SWR		0x00000001	/* Software Reset */
60 #define STS_TS		0x00700000	/* Transmit Process State */
61 #define STS_RS		0x000e0000	/* Receive Process State */
62 #define OMR_ST		0x00002000	/* Start/Stop Transmission Command */
63 #define OMR_SR		0x00000002	/* Start/Stop Receive */
64 #define OMR_PS		0x00040000	/* Port Select */
65 #define OMR_SDP		0x02000000	/* SD Polarity - MUST BE ASSERTED */
66 #define OMR_PM		0x00000080	/* Pass All Multicast */
67 
68 /* Descriptor bits.
69  */
70 #define R_OWN		0x80000000	/* Own Bit */
71 #define RD_RER		0x02000000	/* Receive End Of Ring */
72 #define RD_LS		0x00000100	/* Last Descriptor */
73 #define RD_ES		0x00008000	/* Error Summary */
74 #define TD_TER		0x02000000	/* Transmit End Of Ring */
75 #define T_OWN		0x80000000	/* Own Bit */
76 #define TD_LS		0x40000000	/* Last Segment */
77 #define TD_FS		0x20000000	/* First Segment */
78 #define TD_ES		0x00008000	/* Error Summary */
79 #define TD_SET		0x08000000	/* Setup Packet */
80 
81 /* The EEPROM commands include the alway-set leading bit. */
82 #define SROM_WRITE_CMD	5
83 #define SROM_READ_CMD	6
84 #define SROM_ERASE_CMD	7
85 
86 #define SROM_HWADD	    0x0014	/* Hardware Address offset in SROM */
87 #define SROM_RD		0x00004000	/* Read from Boot ROM */
88 #define EE_DATA_WRITE	      0x04	/* EEPROM chip data in. */
89 #define EE_WRITE_0	    0x4801
90 #define EE_WRITE_1	    0x4805
91 #define EE_DATA_READ	      0x08	/* EEPROM chip data out. */
92 #define SROM_SR		0x00000800	/* Select Serial ROM when set */
93 
94 #define DT_IN		0x00000004	/* Serial Data In */
95 #define DT_CLK		0x00000002	/* Serial ROM Clock */
96 #define DT_CS		0x00000001	/* Serial ROM Chip Select */
97 
98 #define POLL_DEMAND	1
99 
100 #ifdef CONFIG_TULIP_FIX_DAVICOM
101 #define RESET_DM9102(dev) {\
102     unsigned long i;\
103     i=INL(dev, 0x0);\
104     udelay(1000);\
105     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
106     udelay(1000);\
107 }
108 #else
109 #define RESET_DE4X5(dev) {\
110     int i;\
111     i=INL(dev, DE4X5_BMR);\
112     udelay(1000);\
113     OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
114     udelay(1000);\
115     OUTL(dev, i, DE4X5_BMR);\
116     udelay(1000);\
117     for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
118     udelay(1000);\
119 }
120 #endif
121 
122 #define START_DE4X5(dev) {\
123     s32 omr; \
124     omr = INL(dev, DE4X5_OMR);\
125     omr |= OMR_ST | OMR_SR;\
126     OUTL(dev, omr, DE4X5_OMR);		/* Enable the TX and/or RX */\
127 }
128 
129 #define STOP_DE4X5(dev) {\
130     s32 omr; \
131     omr = INL(dev, DE4X5_OMR);\
132     omr &= ~(OMR_ST|OMR_SR);\
133     OUTL(dev, omr, DE4X5_OMR);		/* Disable the TX and/or RX */ \
134 }
135 
136 #define NUM_RX_DESC PKTBUFSRX
137 #ifndef CONFIG_TULIP_FIX_DAVICOM
138 	#define NUM_TX_DESC 1			/* Number of TX descriptors   */
139 #else
140 	#define NUM_TX_DESC 4
141 #endif
142 #define RX_BUFF_SZ  PKTSIZE_ALIGN
143 
144 #define TOUT_LOOP   1000000
145 
146 #define SETUP_FRAME_LEN 192
147 #define ETH_ALEN	6
148 
149 struct de4x5_desc {
150 	volatile s32 status;
151 	u32 des1;
152 	u32 buf;
153 	u32 next;
154 };
155 
156 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring         */
157 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring         */
158 static int rx_new;                             /* RX descriptor ring pointer */
159 static int tx_new;                             /* TX descriptor ring pointer */
160 
161 static char rxRingSize;
162 static char txRingSize;
163 
164 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
165 static void  sendto_srom(struct eth_device* dev, u_int command, u_long addr);
166 static int   getfrom_srom(struct eth_device* dev, u_long addr);
167 static int   do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
168 static int   do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
169 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
170 #ifdef UPDATE_SROM
171 static int   write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
172 static void  update_srom(struct eth_device *dev, bd_t *bis);
173 #endif
174 #ifndef CONFIG_TULIP_FIX_DAVICOM
175 static int   read_srom(struct eth_device *dev, u_long ioaddr, int index);
176 static void  read_hw_addr(struct eth_device* dev, bd_t * bis);
177 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
178 static void  send_setup_frame(struct eth_device* dev, bd_t * bis);
179 
180 static int   dc21x4x_init(struct eth_device* dev, bd_t* bis);
181 static int   dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
182 static int   dc21x4x_recv(struct eth_device* dev);
183 static void  dc21x4x_halt(struct eth_device* dev);
184 #ifdef CONFIG_TULIP_SELECT_MEDIA
185 extern void  dc21x4x_select_media(struct eth_device* dev);
186 #endif
187 
188 #if defined(CONFIG_E500)
189 #define phys_to_bus(a) (a)
190 #else
191 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
192 #endif
193 
194 static int INL(struct eth_device* dev, u_long addr)
195 {
196 	return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
197 }
198 
199 static void OUTL(struct eth_device* dev, int command, u_long addr)
200 {
201 	*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
202 }
203 
204 static struct pci_device_id supported[] = {
205 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
206 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
207 #ifdef CONFIG_TULIP_FIX_DAVICOM
208 	{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
209 #endif
210 	{ }
211 };
212 
213 int dc21x4x_initialize(bd_t *bis)
214 {
215 	int             	idx=0;
216 	int             	card_number = 0;
217 	unsigned int           	cfrv;
218 	unsigned char   	timer;
219 	pci_dev_t		devbusfn;
220 	unsigned int		iobase;
221 	unsigned short		status;
222 	struct eth_device* 	dev;
223 
224 	while(1) {
225 		devbusfn =  pci_find_devices(supported, idx++);
226 		if (devbusfn == -1) {
227 			break;
228 		}
229 
230 		/* Get the chip configuration revision register. */
231 		pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
232 
233 #ifndef CONFIG_TULIP_FIX_DAVICOM
234 		if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
235 			printf("Error: The chip is not DC21143.\n");
236 			continue;
237 		}
238 #endif
239 
240 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
241 		status |=
242 #ifdef CONFIG_TULIP_USE_IO
243 		  PCI_COMMAND_IO |
244 #else
245 		  PCI_COMMAND_MEMORY |
246 #endif
247 		  PCI_COMMAND_MASTER;
248 		pci_write_config_word(devbusfn, PCI_COMMAND, status);
249 
250 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
251 		if (!(status & PCI_COMMAND_IO)) {
252 			printf("Error: Can not enable I/O access.\n");
253 			continue;
254 		}
255 
256 		if (!(status & PCI_COMMAND_IO)) {
257 			printf("Error: Can not enable I/O access.\n");
258 			continue;
259 		}
260 
261 		if (!(status & PCI_COMMAND_MASTER)) {
262 			printf("Error: Can not enable Bus Mastering.\n");
263 			continue;
264 		}
265 
266 		/* Check the latency timer for values >= 0x60. */
267 		pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
268 
269 		if (timer < 0x60) {
270 			pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
271 		}
272 
273 #ifdef CONFIG_TULIP_USE_IO
274 		/* read BAR for memory space access */
275 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
276 		iobase &= PCI_BASE_ADDRESS_IO_MASK;
277 #else
278 		/* read BAR for memory space access */
279 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
280 		iobase &= PCI_BASE_ADDRESS_MEM_MASK;
281 #endif
282 		debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
283 
284 		dev = (struct eth_device*) malloc(sizeof *dev);
285 
286 #ifdef CONFIG_TULIP_FIX_DAVICOM
287 		sprintf(dev->name, "Davicom#%d", card_number);
288 #else
289 		sprintf(dev->name, "dc21x4x#%d", card_number);
290 #endif
291 
292 #ifdef CONFIG_TULIP_USE_IO
293 		dev->iobase = pci_io_to_phys(devbusfn, iobase);
294 #else
295 		dev->iobase = pci_mem_to_phys(devbusfn, iobase);
296 #endif
297 		dev->priv   = (void*) devbusfn;
298 		dev->init   = dc21x4x_init;
299 		dev->halt   = dc21x4x_halt;
300 		dev->send   = dc21x4x_send;
301 		dev->recv   = dc21x4x_recv;
302 
303 		/* Ensure we're not sleeping. */
304 		pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
305 
306 		udelay(10 * 1000);
307 
308 #ifndef CONFIG_TULIP_FIX_DAVICOM
309 		read_hw_addr(dev, bis);
310 #endif
311 		eth_register(dev);
312 
313 		card_number++;
314 	}
315 
316 	return card_number;
317 }
318 
319 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
320 {
321 	int		i;
322 	int		devbusfn = (int) dev->priv;
323 
324 	/* Ensure we're not sleeping. */
325 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
326 
327 #ifdef CONFIG_TULIP_FIX_DAVICOM
328 	RESET_DM9102(dev);
329 #else
330 	RESET_DE4X5(dev);
331 #endif
332 
333 	if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
334 		printf("Error: Cannot reset ethernet controller.\n");
335 		return 0;
336 	}
337 
338 #ifdef CONFIG_TULIP_SELECT_MEDIA
339 	dc21x4x_select_media(dev);
340 #else
341 	OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
342 #endif
343 
344 	for (i = 0; i < NUM_RX_DESC; i++) {
345 		rx_ring[i].status = cpu_to_le32(R_OWN);
346 		rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
347 		rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
348 #ifdef CONFIG_TULIP_FIX_DAVICOM
349 		rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
350 #else
351 		rx_ring[i].next = 0;
352 #endif
353 	}
354 
355 	for (i=0; i < NUM_TX_DESC; i++) {
356 		tx_ring[i].status = 0;
357 		tx_ring[i].des1 = 0;
358 		tx_ring[i].buf = 0;
359 
360 #ifdef CONFIG_TULIP_FIX_DAVICOM
361 	tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
362 #else
363 		tx_ring[i].next = 0;
364 #endif
365 	}
366 
367 	rxRingSize = NUM_RX_DESC;
368 	txRingSize = NUM_TX_DESC;
369 
370 	/* Write the end of list marker to the descriptor lists. */
371 	rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
372 	tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
373 
374 	/* Tell the adapter where the TX/RX rings are located. */
375 	OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
376 	OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
377 
378 	START_DE4X5(dev);
379 
380 	tx_new = 0;
381 	rx_new = 0;
382 
383 	send_setup_frame(dev, bis);
384 
385 	return 1;
386 }
387 
388 static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
389 {
390 	int		status = -1;
391 	int		i;
392 
393 	if (length <= 0) {
394 		printf("%s: bad packet size: %d\n", dev->name, length);
395 		goto Done;
396 	}
397 
398 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
399 		if (i >= TOUT_LOOP) {
400 			printf("%s: tx error buffer not ready\n", dev->name);
401 			goto Done;
402 		}
403 	}
404 
405 	tx_ring[tx_new].buf    = cpu_to_le32(phys_to_bus((u32) packet));
406 	tx_ring[tx_new].des1   = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
407 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
408 
409 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
410 
411 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
412 		if (i >= TOUT_LOOP) {
413 			printf(".%s: tx buffer not ready\n", dev->name);
414 			goto Done;
415 		}
416 	}
417 
418 	if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
419 #if 0 /* test-only */
420 		printf("TX error status = 0x%08X\n",
421 			le32_to_cpu(tx_ring[tx_new].status));
422 #endif
423 		tx_ring[tx_new].status = 0x0;
424 		goto Done;
425 	}
426 
427 	status = length;
428 
429  Done:
430     tx_new = (tx_new+1) % NUM_TX_DESC;
431 	return status;
432 }
433 
434 static int dc21x4x_recv(struct eth_device* dev)
435 {
436 	s32		status;
437 	int		length    = 0;
438 
439 	for ( ; ; ) {
440 		status = (s32)le32_to_cpu(rx_ring[rx_new].status);
441 
442 		if (status & R_OWN) {
443 			break;
444 		}
445 
446 		if (status & RD_LS) {
447 			/* Valid frame status.
448 			 */
449 			if (status & RD_ES) {
450 
451 				/* There was an error.
452 				 */
453 				printf("RX error status = 0x%08X\n", status);
454 			} else {
455 				/* A valid frame received.
456 				 */
457 				length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
458 
459 				/* Pass the packet up to the protocol
460 				 * layers.
461 				 */
462 				NetReceive(NetRxPackets[rx_new], length - 4);
463 			}
464 
465 			/* Change buffer ownership for this frame, back
466 			 * to the adapter.
467 			 */
468 			rx_ring[rx_new].status = cpu_to_le32(R_OWN);
469 		}
470 
471 		/* Update entry information.
472 		 */
473 		rx_new = (rx_new + 1) % rxRingSize;
474 	}
475 
476 	return length;
477 }
478 
479 static void dc21x4x_halt(struct eth_device* dev)
480 {
481 	int		devbusfn = (int) dev->priv;
482 
483 	STOP_DE4X5(dev);
484 	OUTL(dev, 0, DE4X5_SICR);
485 
486 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
487 }
488 
489 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
490 {
491 	int		i;
492 	char	setup_frame[SETUP_FRAME_LEN];
493 	char 	*pa = &setup_frame[0];
494 
495 	memset(pa, 0xff, SETUP_FRAME_LEN);
496 
497 	for (i = 0; i < ETH_ALEN; i++) {
498 		*(pa + (i & 1)) = dev->enetaddr[i];
499 		if (i & 0x01) {
500 			pa += 4;
501 		}
502 	}
503 
504 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
505 		if (i >= TOUT_LOOP) {
506 			printf("%s: tx error buffer not ready\n", dev->name);
507 			goto Done;
508 		}
509 	}
510 
511 	tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
512 	tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
513 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
514 
515 	OUTL(dev, POLL_DEMAND, DE4X5_TPD);
516 
517 	for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
518 		if (i >= TOUT_LOOP) {
519 			printf("%s: tx buffer not ready\n", dev->name);
520 			goto Done;
521 		}
522 	}
523 
524 	if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
525 		printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
526 	}
527 	tx_new = (tx_new+1) % NUM_TX_DESC;
528 
529 Done:
530 	return;
531 }
532 
533 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
534 /* SROM Read and write routines.
535  */
536 static void
537 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
538 {
539 	OUTL(dev, command, addr);
540 	udelay(1);
541 }
542 
543 static int
544 getfrom_srom(struct eth_device* dev, u_long addr)
545 {
546 	s32 tmp;
547 
548 	tmp = INL(dev, addr);
549 	udelay(1);
550 
551 	return tmp;
552 }
553 
554 /* Note: this routine returns extra data bits for size detection. */
555 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
556 {
557 	int i;
558 	unsigned retval = 0;
559 	int read_cmd = location | (SROM_READ_CMD << addr_len);
560 
561 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
562 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
563 
564 #ifdef DEBUG_SROM
565 	printf(" EEPROM read at %d ", location);
566 #endif
567 
568 	/* Shift the read command bits out. */
569 	for (i = 4 + addr_len; i >= 0; i--) {
570 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
571 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
572 		udelay(10);
573 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
574 		udelay(10);
575 #ifdef DEBUG_SROM2
576 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
577 #endif
578 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
579 	}
580 
581 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
582 
583 #ifdef DEBUG_SROM2
584 	printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
585 #endif
586 
587 	for (i = 16; i > 0; i--) {
588 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
589 		udelay(10);
590 #ifdef DEBUG_SROM2
591 		printf("%X", getfrom_srom(dev, ioaddr) & 15);
592 #endif
593 		retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
594 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
595 		udelay(10);
596 	}
597 
598 	/* Terminate the EEPROM access. */
599 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
600 
601 #ifdef DEBUG_SROM2
602 	printf(" EEPROM value at %d is %5.5x.\n", location, retval);
603 #endif
604 
605 	return retval;
606 }
607 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
608 
609 /* This executes a generic EEPROM command, typically a write or write
610  * enable. It returns the data output from the EEPROM, and thus may
611  * also be used for reads.
612  */
613 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
614 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
615 {
616 	unsigned retval = 0;
617 
618 #ifdef DEBUG_SROM
619 	printf(" EEPROM op 0x%x: ", cmd);
620 #endif
621 
622 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
623 
624 	/* Shift the command bits out. */
625 	do {
626 		short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
627 		sendto_srom(dev,dataval, ioaddr);
628 		udelay(10);
629 
630 #ifdef DEBUG_SROM2
631 		printf("%X", getfrom_srom(dev,ioaddr) & 15);
632 #endif
633 
634 		sendto_srom(dev,dataval | DT_CLK, ioaddr);
635 		udelay(10);
636 		retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
637 	} while (--cmd_len >= 0);
638 	sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
639 
640 	/* Terminate the EEPROM access. */
641 	sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
642 
643 #ifdef DEBUG_SROM
644 	printf(" EEPROM result is 0x%5.5x.\n", retval);
645 #endif
646 
647 	return retval;
648 }
649 #endif	/* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
650 
651 #ifndef CONFIG_TULIP_FIX_DAVICOM
652 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
653 {
654 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
655 
656 	return do_eeprom_cmd(dev, ioaddr,
657 			     (((SROM_READ_CMD << ee_addr_size) | index) << 16)
658 			     | 0xffff, 3 + ee_addr_size + 16);
659 }
660 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
661 
662 #ifdef UPDATE_SROM
663 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
664 {
665 	int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
666 	int i;
667 	unsigned short newval;
668 
669 	udelay(10*1000); /* test-only */
670 
671 #ifdef DEBUG_SROM
672 	printf("ee_addr_size=%d.\n", ee_addr_size);
673 	printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
674 #endif
675 
676 	/* Enable programming modes. */
677 	do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
678 
679 	/* Do the actual write. */
680 	do_eeprom_cmd(dev, ioaddr,
681 		      (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
682 		      3 + ee_addr_size + 16);
683 
684 	/* Poll for write finished. */
685 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
686 	for (i = 0; i < 10000; i++)			/* Typical 2000 ticks */
687 		if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
688 			break;
689 
690 #ifdef DEBUG_SROM
691 	printf(" Write finished after %d ticks.\n", i);
692 #endif
693 
694 	/* Disable programming. */
695 	do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
696 
697 	/* And read the result. */
698 	newval = do_eeprom_cmd(dev, ioaddr,
699 			       (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
700 			       | 0xffff, 3 + ee_addr_size + 16);
701 #ifdef DEBUG_SROM
702 	printf("  New value at offset %d is %4.4x.\n", index, newval);
703 #endif
704 	return 1;
705 }
706 #endif
707 
708 #ifndef CONFIG_TULIP_FIX_DAVICOM
709 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
710 {
711 	u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
712 	int i, j = 0;
713 
714 	for (i = 0; i < (ETH_ALEN >> 1); i++) {
715 		tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
716 		*p = le16_to_cpu(tmp);
717 		j += *p++;
718 	}
719 
720 	if ((j == 0) || (j == 0x2fffd)) {
721 		memset (dev->enetaddr, 0, ETH_ALEN);
722 		debug ("Warning: can't read HW address from SROM.\n");
723 		goto Done;
724 	}
725 
726 	return;
727 
728 Done:
729 #ifdef UPDATE_SROM
730 	update_srom(dev, bis);
731 #endif
732 	return;
733 }
734 #endif	/* CONFIG_TULIP_FIX_DAVICOM */
735 
736 #ifdef UPDATE_SROM
737 static void update_srom(struct eth_device *dev, bd_t *bis)
738 {
739 	int i;
740 	static unsigned short eeprom[0x40] = {
741 		0x140b, 0x6610, 0x0000, 0x0000, 	/* 00 */
742 		0x0000, 0x0000, 0x0000, 0x0000, 	/* 04 */
743 		0x00a3, 0x0103, 0x0000, 0x0000,  	/* 08 */
744 		0x0000, 0x1f00, 0x0000, 0x0000, 	/* 0c */
745 		0x0108, 0x038d, 0x0000, 0x0000,  	/* 10 */
746 		0xe078, 0x0001, 0x0040, 0x0018, 	/* 14 */
747 		0x0000, 0x0000, 0x0000, 0x0000,  	/* 18 */
748 		0x0000, 0x0000, 0x0000, 0x0000, 	/* 1c */
749 		0x0000, 0x0000, 0x0000, 0x0000,  	/* 20 */
750 		0x0000, 0x0000, 0x0000, 0x0000, 	/* 24 */
751 		0x0000, 0x0000, 0x0000, 0x0000,  	/* 28 */
752 		0x0000, 0x0000, 0x0000, 0x0000, 	/* 2c */
753 		0x0000, 0x0000, 0x0000, 0x0000,  	/* 30 */
754 		0x0000, 0x0000, 0x0000, 0x0000, 	/* 34 */
755 		0x0000, 0x0000, 0x0000, 0x0000,  	/* 38 */
756 		0x0000, 0x0000, 0x0000, 0x4e07,		/* 3c */
757 	};
758 
759 	/* Ethernet Addr... */
760 	eeprom[0x0a] = ((bis->bi_enetaddr[1] & 0xff) << 8) | (bis->bi_enetaddr[0] & 0xff);
761 	eeprom[0x0b] = ((bis->bi_enetaddr[3] & 0xff) << 8) | (bis->bi_enetaddr[2] & 0xff);
762 	eeprom[0x0c] = ((bis->bi_enetaddr[5] & 0xff) << 8) | (bis->bi_enetaddr[4] & 0xff);
763 
764 	for (i=0; i<0x40; i++)
765 	{
766 		write_srom(dev, DE4X5_APROM, i, eeprom[i]);
767 	}
768 }
769 #endif	/* UPDATE_SROM */
770 
771 #endif
772