1 /* 2 * SPDX-License-Identifier: GPL-2.0+ 3 */ 4 5 #include <common.h> 6 #include <malloc.h> 7 #include <net.h> 8 #include <netdev.h> 9 #include <pci.h> 10 11 #undef DEBUG_SROM 12 #undef DEBUG_SROM2 13 14 #undef UPDATE_SROM 15 16 /* PCI Registers. 17 */ 18 #define PCI_CFDA_PSM 0x43 19 20 #define CFRV_RN 0x000000f0 /* Revision Number */ 21 22 #define WAKEUP 0x00 /* Power Saving Wakeup */ 23 #define SLEEP 0x80 /* Power Saving Sleep Mode */ 24 25 #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */ 26 27 /* Ethernet chip registers. 28 */ 29 #define DE4X5_BMR 0x000 /* Bus Mode Register */ 30 #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */ 31 #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */ 32 #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */ 33 #define DE4X5_STS 0x028 /* Status Register */ 34 #define DE4X5_OMR 0x030 /* Operation Mode Register */ 35 #define DE4X5_SICR 0x068 /* SIA Connectivity Register */ 36 #define DE4X5_APROM 0x048 /* Ethernet Address PROM */ 37 38 /* Register bits. 39 */ 40 #define BMR_SWR 0x00000001 /* Software Reset */ 41 #define STS_TS 0x00700000 /* Transmit Process State */ 42 #define STS_RS 0x000e0000 /* Receive Process State */ 43 #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */ 44 #define OMR_SR 0x00000002 /* Start/Stop Receive */ 45 #define OMR_PS 0x00040000 /* Port Select */ 46 #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */ 47 #define OMR_PM 0x00000080 /* Pass All Multicast */ 48 49 /* Descriptor bits. 50 */ 51 #define R_OWN 0x80000000 /* Own Bit */ 52 #define RD_RER 0x02000000 /* Receive End Of Ring */ 53 #define RD_LS 0x00000100 /* Last Descriptor */ 54 #define RD_ES 0x00008000 /* Error Summary */ 55 #define TD_TER 0x02000000 /* Transmit End Of Ring */ 56 #define T_OWN 0x80000000 /* Own Bit */ 57 #define TD_LS 0x40000000 /* Last Segment */ 58 #define TD_FS 0x20000000 /* First Segment */ 59 #define TD_ES 0x00008000 /* Error Summary */ 60 #define TD_SET 0x08000000 /* Setup Packet */ 61 62 /* The EEPROM commands include the alway-set leading bit. */ 63 #define SROM_WRITE_CMD 5 64 #define SROM_READ_CMD 6 65 #define SROM_ERASE_CMD 7 66 67 #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */ 68 #define SROM_RD 0x00004000 /* Read from Boot ROM */ 69 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ 70 #define EE_WRITE_0 0x4801 71 #define EE_WRITE_1 0x4805 72 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ 73 #define SROM_SR 0x00000800 /* Select Serial ROM when set */ 74 75 #define DT_IN 0x00000004 /* Serial Data In */ 76 #define DT_CLK 0x00000002 /* Serial ROM Clock */ 77 #define DT_CS 0x00000001 /* Serial ROM Chip Select */ 78 79 #define POLL_DEMAND 1 80 81 #ifdef CONFIG_TULIP_FIX_DAVICOM 82 #define RESET_DM9102(dev) {\ 83 unsigned long i;\ 84 i=INL(dev, 0x0);\ 85 udelay(1000);\ 86 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\ 87 udelay(1000);\ 88 } 89 #else 90 #define RESET_DE4X5(dev) {\ 91 int i;\ 92 i=INL(dev, DE4X5_BMR);\ 93 udelay(1000);\ 94 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\ 95 udelay(1000);\ 96 OUTL(dev, i, DE4X5_BMR);\ 97 udelay(1000);\ 98 for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\ 99 udelay(1000);\ 100 } 101 #endif 102 103 #define START_DE4X5(dev) {\ 104 s32 omr; \ 105 omr = INL(dev, DE4X5_OMR);\ 106 omr |= OMR_ST | OMR_SR;\ 107 OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\ 108 } 109 110 #define STOP_DE4X5(dev) {\ 111 s32 omr; \ 112 omr = INL(dev, DE4X5_OMR);\ 113 omr &= ~(OMR_ST|OMR_SR);\ 114 OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \ 115 } 116 117 #define NUM_RX_DESC PKTBUFSRX 118 #ifndef CONFIG_TULIP_FIX_DAVICOM 119 #define NUM_TX_DESC 1 /* Number of TX descriptors */ 120 #else 121 #define NUM_TX_DESC 4 122 #endif 123 #define RX_BUFF_SZ PKTSIZE_ALIGN 124 125 #define TOUT_LOOP 1000000 126 127 #define SETUP_FRAME_LEN 192 128 #define ETH_ALEN 6 129 130 struct de4x5_desc { 131 volatile s32 status; 132 u32 des1; 133 u32 buf; 134 u32 next; 135 }; 136 137 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */ 138 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */ 139 static int rx_new; /* RX descriptor ring pointer */ 140 static int tx_new; /* TX descriptor ring pointer */ 141 142 static char rxRingSize; 143 static char txRingSize; 144 145 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM) 146 static void sendto_srom(struct eth_device* dev, u_int command, u_long addr); 147 static int getfrom_srom(struct eth_device* dev, u_long addr); 148 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len); 149 static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len); 150 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */ 151 #ifdef UPDATE_SROM 152 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value); 153 static void update_srom(struct eth_device *dev, bd_t *bis); 154 #endif 155 #ifndef CONFIG_TULIP_FIX_DAVICOM 156 static int read_srom(struct eth_device *dev, u_long ioaddr, int index); 157 static void read_hw_addr(struct eth_device* dev, bd_t * bis); 158 #endif /* CONFIG_TULIP_FIX_DAVICOM */ 159 static void send_setup_frame(struct eth_device* dev, bd_t * bis); 160 161 static int dc21x4x_init(struct eth_device* dev, bd_t* bis); 162 static int dc21x4x_send(struct eth_device *dev, void *packet, int length); 163 static int dc21x4x_recv(struct eth_device* dev); 164 static void dc21x4x_halt(struct eth_device* dev); 165 #ifdef CONFIG_TULIP_SELECT_MEDIA 166 extern void dc21x4x_select_media(struct eth_device* dev); 167 #endif 168 169 #if defined(CONFIG_E500) 170 #define phys_to_bus(a) (a) 171 #else 172 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a) 173 #endif 174 175 static int INL(struct eth_device* dev, u_long addr) 176 { 177 return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase)); 178 } 179 180 static void OUTL(struct eth_device* dev, int command, u_long addr) 181 { 182 *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command); 183 } 184 185 static struct pci_device_id supported[] = { 186 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST }, 187 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 }, 188 #ifdef CONFIG_TULIP_FIX_DAVICOM 189 { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A }, 190 #endif 191 { } 192 }; 193 194 int dc21x4x_initialize(bd_t *bis) 195 { 196 int idx=0; 197 int card_number = 0; 198 unsigned int cfrv; 199 unsigned char timer; 200 pci_dev_t devbusfn; 201 unsigned int iobase; 202 unsigned short status; 203 struct eth_device* dev; 204 205 while(1) { 206 devbusfn = pci_find_devices(supported, idx++); 207 if (devbusfn == -1) { 208 break; 209 } 210 211 /* Get the chip configuration revision register. */ 212 pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv); 213 214 #ifndef CONFIG_TULIP_FIX_DAVICOM 215 if ((cfrv & CFRV_RN) < DC2114x_BRK ) { 216 printf("Error: The chip is not DC21143.\n"); 217 continue; 218 } 219 #endif 220 221 pci_read_config_word(devbusfn, PCI_COMMAND, &status); 222 status |= 223 #ifdef CONFIG_TULIP_USE_IO 224 PCI_COMMAND_IO | 225 #else 226 PCI_COMMAND_MEMORY | 227 #endif 228 PCI_COMMAND_MASTER; 229 pci_write_config_word(devbusfn, PCI_COMMAND, status); 230 231 pci_read_config_word(devbusfn, PCI_COMMAND, &status); 232 #ifdef CONFIG_TULIP_USE_IO 233 if (!(status & PCI_COMMAND_IO)) { 234 printf("Error: Can not enable I/O access.\n"); 235 continue; 236 } 237 #else 238 if (!(status & PCI_COMMAND_MEMORY)) { 239 printf("Error: Can not enable MEMORY access.\n"); 240 continue; 241 } 242 #endif 243 244 if (!(status & PCI_COMMAND_MASTER)) { 245 printf("Error: Can not enable Bus Mastering.\n"); 246 continue; 247 } 248 249 /* Check the latency timer for values >= 0x60. */ 250 pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer); 251 252 if (timer < 0x60) { 253 pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60); 254 } 255 256 #ifdef CONFIG_TULIP_USE_IO 257 /* read BAR for memory space access */ 258 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase); 259 iobase &= PCI_BASE_ADDRESS_IO_MASK; 260 #else 261 /* read BAR for memory space access */ 262 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase); 263 iobase &= PCI_BASE_ADDRESS_MEM_MASK; 264 #endif 265 debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase); 266 267 dev = (struct eth_device*) malloc(sizeof *dev); 268 269 if (!dev) { 270 printf("Can not allocalte memory of dc21x4x\n"); 271 break; 272 } 273 memset(dev, 0, sizeof(*dev)); 274 275 #ifdef CONFIG_TULIP_FIX_DAVICOM 276 sprintf(dev->name, "Davicom#%d", card_number); 277 #else 278 sprintf(dev->name, "dc21x4x#%d", card_number); 279 #endif 280 281 #ifdef CONFIG_TULIP_USE_IO 282 dev->iobase = pci_io_to_phys(devbusfn, iobase); 283 #else 284 dev->iobase = pci_mem_to_phys(devbusfn, iobase); 285 #endif 286 dev->priv = (void*) devbusfn; 287 dev->init = dc21x4x_init; 288 dev->halt = dc21x4x_halt; 289 dev->send = dc21x4x_send; 290 dev->recv = dc21x4x_recv; 291 292 /* Ensure we're not sleeping. */ 293 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP); 294 295 udelay(10 * 1000); 296 297 #ifndef CONFIG_TULIP_FIX_DAVICOM 298 read_hw_addr(dev, bis); 299 #endif 300 eth_register(dev); 301 302 card_number++; 303 } 304 305 return card_number; 306 } 307 308 static int dc21x4x_init(struct eth_device* dev, bd_t* bis) 309 { 310 int i; 311 int devbusfn = (int) dev->priv; 312 313 /* Ensure we're not sleeping. */ 314 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP); 315 316 #ifdef CONFIG_TULIP_FIX_DAVICOM 317 RESET_DM9102(dev); 318 #else 319 RESET_DE4X5(dev); 320 #endif 321 322 if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) { 323 printf("Error: Cannot reset ethernet controller.\n"); 324 return -1; 325 } 326 327 #ifdef CONFIG_TULIP_SELECT_MEDIA 328 dc21x4x_select_media(dev); 329 #else 330 OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR); 331 #endif 332 333 for (i = 0; i < NUM_RX_DESC; i++) { 334 rx_ring[i].status = cpu_to_le32(R_OWN); 335 rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ); 336 rx_ring[i].buf = cpu_to_le32( 337 phys_to_bus((u32)net_rx_packets[i])); 338 #ifdef CONFIG_TULIP_FIX_DAVICOM 339 rx_ring[i].next = cpu_to_le32( 340 phys_to_bus((u32)&rx_ring[(i + 1) % NUM_RX_DESC])); 341 #else 342 rx_ring[i].next = 0; 343 #endif 344 } 345 346 for (i=0; i < NUM_TX_DESC; i++) { 347 tx_ring[i].status = 0; 348 tx_ring[i].des1 = 0; 349 tx_ring[i].buf = 0; 350 351 #ifdef CONFIG_TULIP_FIX_DAVICOM 352 tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC])); 353 #else 354 tx_ring[i].next = 0; 355 #endif 356 } 357 358 rxRingSize = NUM_RX_DESC; 359 txRingSize = NUM_TX_DESC; 360 361 /* Write the end of list marker to the descriptor lists. */ 362 rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER); 363 tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER); 364 365 /* Tell the adapter where the TX/RX rings are located. */ 366 OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA); 367 OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA); 368 369 START_DE4X5(dev); 370 371 tx_new = 0; 372 rx_new = 0; 373 374 send_setup_frame(dev, bis); 375 376 return 0; 377 } 378 379 static int dc21x4x_send(struct eth_device *dev, void *packet, int length) 380 { 381 int status = -1; 382 int i; 383 384 if (length <= 0) { 385 printf("%s: bad packet size: %d\n", dev->name, length); 386 goto Done; 387 } 388 389 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { 390 if (i >= TOUT_LOOP) { 391 printf("%s: tx error buffer not ready\n", dev->name); 392 goto Done; 393 } 394 } 395 396 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet)); 397 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length); 398 tx_ring[tx_new].status = cpu_to_le32(T_OWN); 399 400 OUTL(dev, POLL_DEMAND, DE4X5_TPD); 401 402 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { 403 if (i >= TOUT_LOOP) { 404 printf(".%s: tx buffer not ready\n", dev->name); 405 goto Done; 406 } 407 } 408 409 if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) { 410 #if 0 /* test-only */ 411 printf("TX error status = 0x%08X\n", 412 le32_to_cpu(tx_ring[tx_new].status)); 413 #endif 414 tx_ring[tx_new].status = 0x0; 415 goto Done; 416 } 417 418 status = length; 419 420 Done: 421 tx_new = (tx_new+1) % NUM_TX_DESC; 422 return status; 423 } 424 425 static int dc21x4x_recv(struct eth_device* dev) 426 { 427 s32 status; 428 int length = 0; 429 430 for ( ; ; ) { 431 status = (s32)le32_to_cpu(rx_ring[rx_new].status); 432 433 if (status & R_OWN) { 434 break; 435 } 436 437 if (status & RD_LS) { 438 /* Valid frame status. 439 */ 440 if (status & RD_ES) { 441 442 /* There was an error. 443 */ 444 printf("RX error status = 0x%08X\n", status); 445 } else { 446 /* A valid frame received. 447 */ 448 length = (le32_to_cpu(rx_ring[rx_new].status) >> 16); 449 450 /* Pass the packet up to the protocol 451 * layers. 452 */ 453 net_process_received_packet( 454 net_rx_packets[rx_new], length - 4); 455 } 456 457 /* Change buffer ownership for this frame, back 458 * to the adapter. 459 */ 460 rx_ring[rx_new].status = cpu_to_le32(R_OWN); 461 } 462 463 /* Update entry information. 464 */ 465 rx_new = (rx_new + 1) % rxRingSize; 466 } 467 468 return length; 469 } 470 471 static void dc21x4x_halt(struct eth_device* dev) 472 { 473 int devbusfn = (int) dev->priv; 474 475 STOP_DE4X5(dev); 476 OUTL(dev, 0, DE4X5_SICR); 477 478 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP); 479 } 480 481 static void send_setup_frame(struct eth_device* dev, bd_t *bis) 482 { 483 int i; 484 char setup_frame[SETUP_FRAME_LEN]; 485 char *pa = &setup_frame[0]; 486 487 memset(pa, 0xff, SETUP_FRAME_LEN); 488 489 for (i = 0; i < ETH_ALEN; i++) { 490 *(pa + (i & 1)) = dev->enetaddr[i]; 491 if (i & 0x01) { 492 pa += 4; 493 } 494 } 495 496 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { 497 if (i >= TOUT_LOOP) { 498 printf("%s: tx error buffer not ready\n", dev->name); 499 goto Done; 500 } 501 } 502 503 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0])); 504 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN); 505 tx_ring[tx_new].status = cpu_to_le32(T_OWN); 506 507 OUTL(dev, POLL_DEMAND, DE4X5_TPD); 508 509 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { 510 if (i >= TOUT_LOOP) { 511 printf("%s: tx buffer not ready\n", dev->name); 512 goto Done; 513 } 514 } 515 516 if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) { 517 printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status)); 518 } 519 tx_new = (tx_new+1) % NUM_TX_DESC; 520 521 Done: 522 return; 523 } 524 525 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM) 526 /* SROM Read and write routines. 527 */ 528 static void 529 sendto_srom(struct eth_device* dev, u_int command, u_long addr) 530 { 531 OUTL(dev, command, addr); 532 udelay(1); 533 } 534 535 static int 536 getfrom_srom(struct eth_device* dev, u_long addr) 537 { 538 s32 tmp; 539 540 tmp = INL(dev, addr); 541 udelay(1); 542 543 return tmp; 544 } 545 546 /* Note: this routine returns extra data bits for size detection. */ 547 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len) 548 { 549 int i; 550 unsigned retval = 0; 551 int read_cmd = location | (SROM_READ_CMD << addr_len); 552 553 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr); 554 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); 555 556 #ifdef DEBUG_SROM 557 printf(" EEPROM read at %d ", location); 558 #endif 559 560 /* Shift the read command bits out. */ 561 for (i = 4 + addr_len; i >= 0; i--) { 562 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; 563 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr); 564 udelay(10); 565 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr); 566 udelay(10); 567 #ifdef DEBUG_SROM2 568 printf("%X", getfrom_srom(dev, ioaddr) & 15); 569 #endif 570 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0); 571 } 572 573 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); 574 575 #ifdef DEBUG_SROM2 576 printf(" :%X:", getfrom_srom(dev, ioaddr) & 15); 577 #endif 578 579 for (i = 16; i > 0; i--) { 580 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr); 581 udelay(10); 582 #ifdef DEBUG_SROM2 583 printf("%X", getfrom_srom(dev, ioaddr) & 15); 584 #endif 585 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0); 586 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); 587 udelay(10); 588 } 589 590 /* Terminate the EEPROM access. */ 591 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr); 592 593 #ifdef DEBUG_SROM2 594 printf(" EEPROM value at %d is %5.5x.\n", location, retval); 595 #endif 596 597 return retval; 598 } 599 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */ 600 601 /* This executes a generic EEPROM command, typically a write or write 602 * enable. It returns the data output from the EEPROM, and thus may 603 * also be used for reads. 604 */ 605 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM) 606 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len) 607 { 608 unsigned retval = 0; 609 610 #ifdef DEBUG_SROM 611 printf(" EEPROM op 0x%x: ", cmd); 612 #endif 613 614 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr); 615 616 /* Shift the command bits out. */ 617 do { 618 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0; 619 sendto_srom(dev,dataval, ioaddr); 620 udelay(10); 621 622 #ifdef DEBUG_SROM2 623 printf("%X", getfrom_srom(dev,ioaddr) & 15); 624 #endif 625 626 sendto_srom(dev,dataval | DT_CLK, ioaddr); 627 udelay(10); 628 retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0); 629 } while (--cmd_len >= 0); 630 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr); 631 632 /* Terminate the EEPROM access. */ 633 sendto_srom(dev,SROM_RD | SROM_SR, ioaddr); 634 635 #ifdef DEBUG_SROM 636 printf(" EEPROM result is 0x%5.5x.\n", retval); 637 #endif 638 639 return retval; 640 } 641 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */ 642 643 #ifndef CONFIG_TULIP_FIX_DAVICOM 644 static int read_srom(struct eth_device *dev, u_long ioaddr, int index) 645 { 646 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6; 647 648 return do_eeprom_cmd(dev, ioaddr, 649 (((SROM_READ_CMD << ee_addr_size) | index) << 16) 650 | 0xffff, 3 + ee_addr_size + 16); 651 } 652 #endif /* CONFIG_TULIP_FIX_DAVICOM */ 653 654 #ifdef UPDATE_SROM 655 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value) 656 { 657 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6; 658 int i; 659 unsigned short newval; 660 661 udelay(10*1000); /* test-only */ 662 663 #ifdef DEBUG_SROM 664 printf("ee_addr_size=%d.\n", ee_addr_size); 665 printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index); 666 #endif 667 668 /* Enable programming modes. */ 669 do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size); 670 671 /* Do the actual write. */ 672 do_eeprom_cmd(dev, ioaddr, 673 (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value, 674 3 + ee_addr_size + 16); 675 676 /* Poll for write finished. */ 677 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); 678 for (i = 0; i < 10000; i++) /* Typical 2000 ticks */ 679 if (getfrom_srom(dev, ioaddr) & EE_DATA_READ) 680 break; 681 682 #ifdef DEBUG_SROM 683 printf(" Write finished after %d ticks.\n", i); 684 #endif 685 686 /* Disable programming. */ 687 do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size); 688 689 /* And read the result. */ 690 newval = do_eeprom_cmd(dev, ioaddr, 691 (((SROM_READ_CMD<<ee_addr_size)|index) << 16) 692 | 0xffff, 3 + ee_addr_size + 16); 693 #ifdef DEBUG_SROM 694 printf(" New value at offset %d is %4.4x.\n", index, newval); 695 #endif 696 return 1; 697 } 698 #endif 699 700 #ifndef CONFIG_TULIP_FIX_DAVICOM 701 static void read_hw_addr(struct eth_device *dev, bd_t *bis) 702 { 703 u_short tmp, *p = (u_short *)(&dev->enetaddr[0]); 704 int i, j = 0; 705 706 for (i = 0; i < (ETH_ALEN >> 1); i++) { 707 tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i)); 708 *p = le16_to_cpu(tmp); 709 j += *p++; 710 } 711 712 if ((j == 0) || (j == 0x2fffd)) { 713 memset (dev->enetaddr, 0, ETH_ALEN); 714 debug ("Warning: can't read HW address from SROM.\n"); 715 goto Done; 716 } 717 718 return; 719 720 Done: 721 #ifdef UPDATE_SROM 722 update_srom(dev, bis); 723 #endif 724 return; 725 } 726 #endif /* CONFIG_TULIP_FIX_DAVICOM */ 727 728 #ifdef UPDATE_SROM 729 static void update_srom(struct eth_device *dev, bd_t *bis) 730 { 731 int i; 732 static unsigned short eeprom[0x40] = { 733 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */ 734 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */ 735 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */ 736 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */ 737 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */ 738 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */ 739 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */ 740 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */ 741 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */ 742 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */ 743 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */ 744 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */ 745 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */ 746 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */ 747 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */ 748 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */ 749 }; 750 uchar enetaddr[6]; 751 752 /* Ethernet Addr... */ 753 if (!eth_env_get_enetaddr("ethaddr", enetaddr)) 754 return; 755 eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0]; 756 eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2]; 757 eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4]; 758 759 for (i=0; i<0x40; i++) { 760 write_srom(dev, DE4X5_APROM, i, eeprom[i]); 761 } 762 } 763 #endif /* UPDATE_SROM */ 764