1 /* 2 * (C) Copyright 2011 3 * eInfochips Ltd. <www.einfochips.com> 4 * Written-by: Ajay Bhargav <ajay.bhargav@einfochips.com> 5 * 6 * (C) Copyright 2010 7 * Marvell Semiconductor <www.marvell.com> 8 * Contributor: Mahavir Jain <mjain@marvell.com> 9 * 10 * SPDX-License-Identifier: GPL-2.0+ 11 */ 12 13 #include <common.h> 14 #include <net.h> 15 #include <malloc.h> 16 #include <miiphy.h> 17 #include <netdev.h> 18 #include <asm/types.h> 19 #include <asm/byteorder.h> 20 #include <linux/err.h> 21 #include <linux/mii.h> 22 #include <asm/io.h> 23 #include <asm/arch/armada100.h> 24 #include "armada100_fec.h" 25 26 #define PHY_ADR_REQ 0xFF /* Magic number to read/write PHY address */ 27 28 #ifdef DEBUG 29 static int eth_dump_regs(struct eth_device *dev) 30 { 31 struct armdfec_device *darmdfec = to_darmdfec(dev); 32 struct armdfec_reg *regs = darmdfec->regs; 33 unsigned int i = 0; 34 35 printf("\noffset: phy_adr, value: 0x%x\n", readl(®s->phyadr)); 36 printf("offset: smi, value: 0x%x\n", readl(®s->smi)); 37 for (i = 0x400; i <= 0x4e4; i += 4) 38 printf("offset: 0x%x, value: 0x%x\n", 39 i, readl(ARMD1_FEC_BASE + i)); 40 return 0; 41 } 42 #endif 43 44 static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond) 45 { 46 u32 timeout = PHY_WAIT_ITERATIONS; 47 u32 reg_val; 48 49 while (--timeout) { 50 reg_val = readl(reg); 51 if (cond && (reg_val & flag)) 52 break; 53 else if (!cond && !(reg_val & flag)) 54 break; 55 udelay(PHY_WAIT_MICRO_SECONDS); 56 } 57 return !timeout; 58 } 59 60 static int smi_reg_read(const char *devname, u8 phy_addr, u8 phy_reg, 61 u16 *value) 62 { 63 struct eth_device *dev = eth_get_dev_by_name(devname); 64 struct armdfec_device *darmdfec = to_darmdfec(dev); 65 struct armdfec_reg *regs = darmdfec->regs; 66 u32 val; 67 68 if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { 69 val = readl(®s->phyadr); 70 *value = val & 0x1f; 71 return 0; 72 } 73 74 /* check parameters */ 75 if (phy_addr > PHY_MASK) { 76 printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n", 77 __func__, phy_addr); 78 return -EINVAL; 79 } 80 if (phy_reg > PHY_MASK) { 81 printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n", 82 __func__, phy_reg); 83 return -EINVAL; 84 } 85 86 /* wait for the SMI register to become available */ 87 if (armdfec_phy_timeout(®s->smi, SMI_BUSY, false)) { 88 printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); 89 return -1; 90 } 91 92 writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, ®s->smi); 93 94 /* now wait for the data to be valid */ 95 if (armdfec_phy_timeout(®s->smi, SMI_R_VALID, true)) { 96 val = readl(®s->smi); 97 printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n", 98 __func__, val); 99 return -1; 100 } 101 val = readl(®s->smi); 102 *value = val & 0xffff; 103 104 return 0; 105 } 106 107 static int smi_reg_write(const char *devname, 108 u8 phy_addr, u8 phy_reg, u16 value) 109 { 110 struct eth_device *dev = eth_get_dev_by_name(devname); 111 struct armdfec_device *darmdfec = to_darmdfec(dev); 112 struct armdfec_reg *regs = darmdfec->regs; 113 114 if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { 115 clrsetbits_le32(®s->phyadr, 0x1f, value & 0x1f); 116 return 0; 117 } 118 119 /* check parameters */ 120 if (phy_addr > PHY_MASK) { 121 printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__); 122 return -EINVAL; 123 } 124 if (phy_reg > PHY_MASK) { 125 printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__); 126 return -EINVAL; 127 } 128 129 /* wait for the SMI register to become available */ 130 if (armdfec_phy_timeout(®s->smi, SMI_BUSY, false)) { 131 printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); 132 return -1; 133 } 134 135 writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff), 136 ®s->smi); 137 return 0; 138 } 139 140 /* 141 * Abort any transmit and receive operations and put DMA 142 * in idle state. AT and AR bits are cleared upon entering 143 * in IDLE state. So poll those bits to verify operation. 144 */ 145 static void abortdma(struct eth_device *dev) 146 { 147 struct armdfec_device *darmdfec = to_darmdfec(dev); 148 struct armdfec_reg *regs = darmdfec->regs; 149 int delay; 150 int maxretries = 40; 151 u32 tmp; 152 153 while (--maxretries) { 154 writel(SDMA_CMD_AR | SDMA_CMD_AT, ®s->sdma_cmd); 155 udelay(100); 156 157 delay = 10; 158 while (--delay) { 159 tmp = readl(®s->sdma_cmd); 160 if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT))) 161 break; 162 udelay(10); 163 } 164 if (delay) 165 break; 166 } 167 168 if (!maxretries) 169 printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__); 170 } 171 172 static inline u32 nibble_swapping_32_bit(u32 x) 173 { 174 return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4); 175 } 176 177 static inline u32 nibble_swapping_16_bit(u32 x) 178 { 179 return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4); 180 } 181 182 static inline u32 flip_4_bits(u32 x) 183 { 184 return ((x & 0x01) << 3) | ((x & 0x002) << 1) 185 | ((x & 0x04) >> 1) | ((x & 0x008) >> 3); 186 } 187 188 /* 189 * This function will calculate the hash function of the address. 190 * depends on the hash mode and hash size. 191 * Inputs 192 * mach - the 2 most significant bytes of the MAC address. 193 * macl - the 4 least significant bytes of the MAC address. 194 * Outputs 195 * return the calculated entry. 196 */ 197 static u32 hash_function(u32 mach, u32 macl) 198 { 199 u32 hashresult; 200 u32 addrh; 201 u32 addrl; 202 u32 addr0; 203 u32 addr1; 204 u32 addr2; 205 u32 addr3; 206 u32 addrhswapped; 207 u32 addrlswapped; 208 209 addrh = nibble_swapping_16_bit(mach); 210 addrl = nibble_swapping_32_bit(macl); 211 212 addrhswapped = flip_4_bits(addrh & 0xf) 213 + ((flip_4_bits((addrh >> 4) & 0xf)) << 4) 214 + ((flip_4_bits((addrh >> 8) & 0xf)) << 8) 215 + ((flip_4_bits((addrh >> 12) & 0xf)) << 12); 216 217 addrlswapped = flip_4_bits(addrl & 0xf) 218 + ((flip_4_bits((addrl >> 4) & 0xf)) << 4) 219 + ((flip_4_bits((addrl >> 8) & 0xf)) << 8) 220 + ((flip_4_bits((addrl >> 12) & 0xf)) << 12) 221 + ((flip_4_bits((addrl >> 16) & 0xf)) << 16) 222 + ((flip_4_bits((addrl >> 20) & 0xf)) << 20) 223 + ((flip_4_bits((addrl >> 24) & 0xf)) << 24) 224 + ((flip_4_bits((addrl >> 28) & 0xf)) << 28); 225 226 addrh = addrhswapped; 227 addrl = addrlswapped; 228 229 addr0 = (addrl >> 2) & 0x03f; 230 addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2); 231 addr2 = (addrl >> 15) & 0x1ff; 232 addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8); 233 234 hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3); 235 hashresult = hashresult & 0x07ff; 236 return hashresult; 237 } 238 239 /* 240 * This function will add an entry to the address table. 241 * depends on the hash mode and hash size that was initialized. 242 * Inputs 243 * mach - the 2 most significant bytes of the MAC address. 244 * macl - the 4 least significant bytes of the MAC address. 245 * skip - if 1, skip this address. 246 * rd - the RD field in the address table. 247 * Outputs 248 * address table entry is added. 249 * 0 if success. 250 * -ENOSPC if table full 251 */ 252 static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach, 253 u32 macl, u32 rd, u32 skip, int del) 254 { 255 struct addr_table_entry_t *entry, *start; 256 u32 newhi; 257 u32 newlo; 258 u32 i; 259 260 newlo = (((mach >> 4) & 0xf) << 15) 261 | (((mach >> 0) & 0xf) << 11) 262 | (((mach >> 12) & 0xf) << 7) 263 | (((mach >> 8) & 0xf) << 3) 264 | (((macl >> 20) & 0x1) << 31) 265 | (((macl >> 16) & 0xf) << 27) 266 | (((macl >> 28) & 0xf) << 23) 267 | (((macl >> 24) & 0xf) << 19) 268 | (skip << HTESKIP) | (rd << HTERDBIT) 269 | HTEVALID; 270 271 newhi = (((macl >> 4) & 0xf) << 15) 272 | (((macl >> 0) & 0xf) << 11) 273 | (((macl >> 12) & 0xf) << 7) 274 | (((macl >> 8) & 0xf) << 3) 275 | (((macl >> 21) & 0x7) << 0); 276 277 /* 278 * Pick the appropriate table, start scanning for free/reusable 279 * entries at the index obtained by hashing the specified MAC address 280 */ 281 start = (struct addr_table_entry_t *)(darmdfec->htpr); 282 entry = start + hash_function(mach, macl); 283 for (i = 0; i < HOP_NUMBER; i++) { 284 if (!(entry->lo & HTEVALID)) { 285 break; 286 } else { 287 /* if same address put in same position */ 288 if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8)) 289 && (entry->hi == newhi)) 290 break; 291 } 292 if (entry == start + 0x7ff) 293 entry = start; 294 else 295 entry++; 296 } 297 298 if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) && 299 (entry->hi != newhi) && del) 300 return 0; 301 302 if (i == HOP_NUMBER) { 303 if (!del) { 304 printf("ARMD100 FEC: (%s) table section is full\n", 305 __func__); 306 return -ENOSPC; 307 } else { 308 return 0; 309 } 310 } 311 312 /* 313 * Update the selected entry 314 */ 315 if (del) { 316 entry->hi = 0; 317 entry->lo = 0; 318 } else { 319 entry->hi = newhi; 320 entry->lo = newlo; 321 } 322 323 return 0; 324 } 325 326 /* 327 * Create an addressTable entry from MAC address info 328 * found in the specifed net_device struct 329 * 330 * Input : pointer to ethernet interface network device structure 331 * Output : N/A 332 */ 333 static void update_hash_table_mac_address(struct armdfec_device *darmdfec, 334 u8 *oaddr, u8 *addr) 335 { 336 u32 mach; 337 u32 macl; 338 339 /* Delete old entry */ 340 if (oaddr) { 341 mach = (oaddr[0] << 8) | oaddr[1]; 342 macl = (oaddr[2] << 24) | (oaddr[3] << 16) | 343 (oaddr[4] << 8) | oaddr[5]; 344 add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE); 345 } 346 347 /* Add new entry */ 348 mach = (addr[0] << 8) | addr[1]; 349 macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 350 add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD); 351 } 352 353 /* Address Table Initialization */ 354 static void init_hashtable(struct eth_device *dev) 355 { 356 struct armdfec_device *darmdfec = to_darmdfec(dev); 357 struct armdfec_reg *regs = darmdfec->regs; 358 memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE); 359 writel((u32)darmdfec->htpr, ®s->htpr); 360 } 361 362 /* 363 * This detects PHY chip from address 0-31 by reading PHY status 364 * registers. PHY chip can be connected at any of this address. 365 */ 366 static int ethernet_phy_detect(struct eth_device *dev) 367 { 368 u32 val; 369 u16 tmp, mii_status; 370 u8 addr; 371 372 for (addr = 0; addr < 32; addr++) { 373 if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status) != 0) 374 /* try next phy */ 375 continue; 376 377 /* invalid MII status. More validation required here... */ 378 if (mii_status == 0 || mii_status == 0xffff) 379 /* try next phy */ 380 continue; 381 382 if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0) 383 /* try next phy */ 384 continue; 385 386 val = tmp << 16; 387 if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0) 388 /* try next phy */ 389 continue; 390 391 val |= tmp; 392 393 if ((val & 0xfffffff0) != 0) 394 return addr; 395 } 396 return -1; 397 } 398 399 static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec) 400 { 401 struct rx_desc *p_rx_desc; 402 int i; 403 404 /* initialize the Rx descriptors ring */ 405 p_rx_desc = darmdfec->p_rxdesc; 406 for (i = 0; i < RINGSZ; i++) { 407 p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; 408 p_rx_desc->buf_size = PKTSIZE_ALIGN; 409 p_rx_desc->byte_cnt = 0; 410 p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN; 411 if (i == (RINGSZ - 1)) { 412 p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc; 413 } else { 414 p_rx_desc->nxtdesc_p = (struct rx_desc *) 415 ((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE); 416 p_rx_desc = p_rx_desc->nxtdesc_p; 417 } 418 } 419 darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc; 420 } 421 422 static int armdfec_init(struct eth_device *dev, bd_t *bd) 423 { 424 struct armdfec_device *darmdfec = to_darmdfec(dev); 425 struct armdfec_reg *regs = darmdfec->regs; 426 int phy_adr; 427 u32 temp; 428 429 armdfec_init_rx_desc_ring(darmdfec); 430 431 /* Disable interrupts */ 432 writel(0, ®s->im); 433 writel(0, ®s->ic); 434 /* Write to ICR to clear interrupts. */ 435 writel(0, ®s->iwc); 436 437 /* 438 * Abort any transmit and receive operations and put DMA 439 * in idle state. 440 */ 441 abortdma(dev); 442 443 /* Initialize address hash table */ 444 init_hashtable(dev); 445 446 /* SDMA configuration */ 447 writel(SDCR_BSZ8 | /* Burst size = 32 bytes */ 448 SDCR_RIFB | /* Rx interrupt on frame */ 449 SDCR_BLMT | /* Little endian transmit */ 450 SDCR_BLMR | /* Little endian receive */ 451 SDCR_RC_MAX_RETRANS, /* Max retransmit count */ 452 ®s->sdma_conf); 453 /* Port Configuration */ 454 writel(PCR_HS, ®s->pconf); /* Hash size is 1/2kb */ 455 456 /* Set extended port configuration */ 457 writel(PCXR_2BSM | /* Two byte suffix aligns IP hdr */ 458 PCXR_DSCP_EN | /* Enable DSCP in IP */ 459 PCXR_MFL_1536 | /* Set MTU = 1536 */ 460 PCXR_FLP | /* do not force link pass */ 461 PCXR_TX_HIGH_PRI, /* Transmit - high priority queue */ 462 ®s->pconf_ext); 463 464 update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr); 465 466 /* Update TX and RX queue descriptor register */ 467 temp = (u32)®s->txcdp[TXQ]; 468 writel((u32)darmdfec->p_txdesc, temp); 469 temp = (u32)®s->rxfdp[RXQ]; 470 writel((u32)darmdfec->p_rxdesc, temp); 471 temp = (u32)®s->rxcdp[RXQ]; 472 writel((u32)darmdfec->p_rxdesc_curr, temp); 473 474 /* Enable Interrupts */ 475 writel(ALL_INTS, ®s->im); 476 477 /* Enable Ethernet Port */ 478 setbits_le32(®s->pconf, PCR_EN); 479 480 /* Enable RX DMA engine */ 481 setbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); 482 483 #ifdef DEBUG 484 eth_dump_regs(dev); 485 #endif 486 487 #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) 488 489 #if defined(CONFIG_PHY_BASE_ADR) 490 miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR); 491 #else 492 /* Search phy address from range 0-31 */ 493 phy_adr = ethernet_phy_detect(dev); 494 if (phy_adr < 0) { 495 printf("ARMD100 FEC: PHY not detected at address range 0-31\n"); 496 return -1; 497 } else { 498 debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr); 499 miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr); 500 } 501 #endif 502 503 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) 504 /* Wait up to 5s for the link status */ 505 for (i = 0; i < 5; i++) { 506 u16 phy_adr; 507 508 miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr); 509 /* Return if we get link up */ 510 if (miiphy_link(dev->name, phy_adr)) 511 return 0; 512 udelay(1000000); 513 } 514 515 printf("ARMD100 FEC: No link on %s\n", dev->name); 516 return -1; 517 #endif 518 #endif 519 return 0; 520 } 521 522 static void armdfec_halt(struct eth_device *dev) 523 { 524 struct armdfec_device *darmdfec = to_darmdfec(dev); 525 struct armdfec_reg *regs = darmdfec->regs; 526 527 /* Stop RX DMA */ 528 clrbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); 529 530 /* 531 * Abort any transmit and receive operations and put DMA 532 * in idle state. 533 */ 534 abortdma(dev); 535 536 /* Disable interrupts */ 537 writel(0, ®s->im); 538 writel(0, ®s->ic); 539 writel(0, ®s->iwc); 540 541 /* Disable Port */ 542 clrbits_le32(®s->pconf, PCR_EN); 543 } 544 545 static int armdfec_send(struct eth_device *dev, void *dataptr, int datasize) 546 { 547 struct armdfec_device *darmdfec = to_darmdfec(dev); 548 struct armdfec_reg *regs = darmdfec->regs; 549 struct tx_desc *p_txdesc = darmdfec->p_txdesc; 550 void *p = (void *)dataptr; 551 int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS; 552 u32 cmd_sts, temp; 553 554 /* Copy buffer if it's misaligned */ 555 if ((u32)dataptr & 0x07) { 556 if (datasize > PKTSIZE_ALIGN) { 557 printf("ARMD100 FEC: Non-aligned data too large (%d)\n", 558 datasize); 559 return -1; 560 } 561 memcpy(darmdfec->p_aligned_txbuf, p, datasize); 562 p = darmdfec->p_aligned_txbuf; 563 } 564 565 p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC; 566 p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC; 567 p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA; 568 p_txdesc->cmd_sts |= TX_EN_INT; 569 p_txdesc->buf_ptr = p; 570 p_txdesc->byte_cnt = datasize; 571 572 /* Apply send command using high priority TX queue */ 573 temp = (u32)®s->txcdp[TXQ]; 574 writel((u32)p_txdesc, temp); 575 writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, ®s->sdma_cmd); 576 577 /* 578 * wait for packet xmit completion 579 */ 580 cmd_sts = readl(&p_txdesc->cmd_sts); 581 while (cmd_sts & BUF_OWNED_BY_DMA) { 582 /* return fail if error is detected */ 583 if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) == 584 (TX_ERROR | TX_LAST_DESC)) { 585 printf("ARMD100 FEC: (%s) in xmit packet\n", __func__); 586 return -1; 587 } 588 cmd_sts = readl(&p_txdesc->cmd_sts); 589 if (!(retry--)) { 590 printf("ARMD100 FEC: (%s) xmit packet timeout!\n", 591 __func__); 592 return -1; 593 } 594 } 595 596 return 0; 597 } 598 599 static int armdfec_recv(struct eth_device *dev) 600 { 601 struct armdfec_device *darmdfec = to_darmdfec(dev); 602 struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr; 603 u32 cmd_sts; 604 u32 timeout = 0; 605 u32 temp; 606 607 /* wait untill rx packet available or timeout */ 608 do { 609 if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) { 610 timeout++; 611 } else { 612 debug("ARMD100 FEC: %s time out...\n", __func__); 613 return -1; 614 } 615 } while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA); 616 617 if (p_rxdesc_curr->byte_cnt != 0) { 618 debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x" 619 "(cmd_sts= %08x)\n", __func__, 620 (u32)p_rxdesc_curr->byte_cnt, 621 (u32)p_rxdesc_curr->buf_ptr, 622 (u32)p_rxdesc_curr->cmd_sts); 623 } 624 625 /* 626 * In case received a packet without first/last bits on 627 * OR the error summary bit is on, 628 * the packets needs to be dropeed. 629 */ 630 cmd_sts = readl(&p_rxdesc_curr->cmd_sts); 631 632 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != 633 (RX_FIRST_DESC | RX_LAST_DESC)) { 634 printf("ARMD100 FEC: (%s) Dropping packet spread on" 635 " multiple descriptors\n", __func__); 636 } else if (cmd_sts & RX_ERROR) { 637 printf("ARMD100 FEC: (%s) Dropping packet with errors\n", 638 __func__); 639 } else { 640 /* !!! call higher layer processing */ 641 debug("ARMD100 FEC: (%s) Sending Received packet to" 642 " upper layer (net_process_received_packet)\n", __func__); 643 644 /* 645 * let the upper layer handle the packet, subtract offset 646 * as two dummy bytes are added in received buffer see 647 * PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit. 648 */ 649 net_process_received_packet( 650 p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET, 651 (int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET)); 652 } 653 /* 654 * free these descriptors and point next in the ring 655 */ 656 p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; 657 p_rxdesc_curr->buf_size = PKTSIZE_ALIGN; 658 p_rxdesc_curr->byte_cnt = 0; 659 660 temp = (u32)&darmdfec->p_rxdesc_curr; 661 writel((u32)p_rxdesc_curr->nxtdesc_p, temp); 662 663 return 0; 664 } 665 666 int armada100_fec_register(unsigned long base_addr) 667 { 668 struct armdfec_device *darmdfec; 669 struct eth_device *dev; 670 671 darmdfec = malloc(sizeof(struct armdfec_device)); 672 if (!darmdfec) 673 goto error; 674 675 memset(darmdfec, 0, sizeof(struct armdfec_device)); 676 677 darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE); 678 if (!darmdfec->htpr) 679 goto error1; 680 681 darmdfec->p_rxdesc = memalign(PKTALIGN, 682 ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1); 683 684 if (!darmdfec->p_rxdesc) 685 goto error1; 686 687 darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1); 688 if (!darmdfec->p_rxbuf) 689 goto error1; 690 691 darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN); 692 if (!darmdfec->p_aligned_txbuf) 693 goto error1; 694 695 darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1); 696 if (!darmdfec->p_txdesc) 697 goto error1; 698 699 dev = &darmdfec->dev; 700 /* Assign ARMADA100 Fast Ethernet Controller Base Address */ 701 darmdfec->regs = (void *)base_addr; 702 703 /* must be less than sizeof(dev->name) */ 704 strcpy(dev->name, "armd-fec0"); 705 706 dev->init = armdfec_init; 707 dev->halt = armdfec_halt; 708 dev->send = armdfec_send; 709 dev->recv = armdfec_recv; 710 711 eth_register(dev); 712 713 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 714 miiphy_register(dev->name, smi_reg_read, smi_reg_write); 715 #endif 716 return 0; 717 718 error1: 719 free(darmdfec->p_aligned_txbuf); 720 free(darmdfec->p_rxbuf); 721 free(darmdfec->p_rxdesc); 722 free(darmdfec->htpr); 723 error: 724 free(darmdfec); 725 printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__); 726 return -1; 727 } 728