1 /* 2 * (C) Copyright 2011 3 * eInfochips Ltd. <www.einfochips.com> 4 * Written-by: Ajay Bhargav <contact@8051projects.net> 5 * 6 * (C) Copyright 2010 7 * Marvell Semiconductor <www.marvell.com> 8 * Contributor: Mahavir Jain <mjain@marvell.com> 9 * 10 * SPDX-License-Identifier: GPL-2.0+ 11 */ 12 13 #include <common.h> 14 #include <net.h> 15 #include <malloc.h> 16 #include <miiphy.h> 17 #include <netdev.h> 18 #include <asm/types.h> 19 #include <asm/byteorder.h> 20 #include <linux/err.h> 21 #include <linux/mii.h> 22 #include <asm/io.h> 23 #include <asm/arch/armada100.h> 24 #include "armada100_fec.h" 25 26 #define PHY_ADR_REQ 0xFF /* Magic number to read/write PHY address */ 27 28 #ifdef DEBUG 29 static int eth_dump_regs(struct eth_device *dev) 30 { 31 struct armdfec_device *darmdfec = to_darmdfec(dev); 32 struct armdfec_reg *regs = darmdfec->regs; 33 unsigned int i = 0; 34 35 printf("\noffset: phy_adr, value: 0x%x\n", readl(®s->phyadr)); 36 printf("offset: smi, value: 0x%x\n", readl(®s->smi)); 37 for (i = 0x400; i <= 0x4e4; i += 4) 38 printf("offset: 0x%x, value: 0x%x\n", 39 i, readl(ARMD1_FEC_BASE + i)); 40 return 0; 41 } 42 #endif 43 44 static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond) 45 { 46 u32 timeout = PHY_WAIT_ITERATIONS; 47 u32 reg_val; 48 49 while (--timeout) { 50 reg_val = readl(reg); 51 if (cond && (reg_val & flag)) 52 break; 53 else if (!cond && !(reg_val & flag)) 54 break; 55 udelay(PHY_WAIT_MICRO_SECONDS); 56 } 57 return !timeout; 58 } 59 60 static int smi_reg_read(struct mii_dev *bus, int phy_addr, int devad, 61 int phy_reg) 62 { 63 u16 value = 0; 64 struct eth_device *dev = eth_get_dev_by_name(bus->name); 65 struct armdfec_device *darmdfec = to_darmdfec(dev); 66 struct armdfec_reg *regs = darmdfec->regs; 67 u32 val; 68 69 if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { 70 val = readl(®s->phyadr); 71 value = val & 0x1f; 72 return value; 73 } 74 75 /* check parameters */ 76 if (phy_addr > PHY_MASK) { 77 printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n", 78 __func__, phy_addr); 79 return -EINVAL; 80 } 81 if (phy_reg > PHY_MASK) { 82 printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n", 83 __func__, phy_reg); 84 return -EINVAL; 85 } 86 87 /* wait for the SMI register to become available */ 88 if (armdfec_phy_timeout(®s->smi, SMI_BUSY, false)) { 89 printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); 90 return -1; 91 } 92 93 writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, ®s->smi); 94 95 /* now wait for the data to be valid */ 96 if (armdfec_phy_timeout(®s->smi, SMI_R_VALID, true)) { 97 val = readl(®s->smi); 98 printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n", 99 __func__, val); 100 return -1; 101 } 102 val = readl(®s->smi); 103 value = val & 0xffff; 104 105 return value; 106 } 107 108 static int smi_reg_write(struct mii_dev *bus, int phy_addr, int devad, 109 int phy_reg, u16 value) 110 { 111 struct eth_device *dev = eth_get_dev_by_name(bus->name); 112 struct armdfec_device *darmdfec = to_darmdfec(dev); 113 struct armdfec_reg *regs = darmdfec->regs; 114 115 if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { 116 clrsetbits_le32(®s->phyadr, 0x1f, value & 0x1f); 117 return 0; 118 } 119 120 /* check parameters */ 121 if (phy_addr > PHY_MASK) { 122 printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__); 123 return -EINVAL; 124 } 125 if (phy_reg > PHY_MASK) { 126 printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__); 127 return -EINVAL; 128 } 129 130 /* wait for the SMI register to become available */ 131 if (armdfec_phy_timeout(®s->smi, SMI_BUSY, false)) { 132 printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); 133 return -1; 134 } 135 136 writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff), 137 ®s->smi); 138 return 0; 139 } 140 141 /* 142 * Abort any transmit and receive operations and put DMA 143 * in idle state. AT and AR bits are cleared upon entering 144 * in IDLE state. So poll those bits to verify operation. 145 */ 146 static void abortdma(struct eth_device *dev) 147 { 148 struct armdfec_device *darmdfec = to_darmdfec(dev); 149 struct armdfec_reg *regs = darmdfec->regs; 150 int delay; 151 int maxretries = 40; 152 u32 tmp; 153 154 while (--maxretries) { 155 writel(SDMA_CMD_AR | SDMA_CMD_AT, ®s->sdma_cmd); 156 udelay(100); 157 158 delay = 10; 159 while (--delay) { 160 tmp = readl(®s->sdma_cmd); 161 if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT))) 162 break; 163 udelay(10); 164 } 165 if (delay) 166 break; 167 } 168 169 if (!maxretries) 170 printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__); 171 } 172 173 static inline u32 nibble_swapping_32_bit(u32 x) 174 { 175 return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4); 176 } 177 178 static inline u32 nibble_swapping_16_bit(u32 x) 179 { 180 return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4); 181 } 182 183 static inline u32 flip_4_bits(u32 x) 184 { 185 return ((x & 0x01) << 3) | ((x & 0x002) << 1) 186 | ((x & 0x04) >> 1) | ((x & 0x008) >> 3); 187 } 188 189 /* 190 * This function will calculate the hash function of the address. 191 * depends on the hash mode and hash size. 192 * Inputs 193 * mach - the 2 most significant bytes of the MAC address. 194 * macl - the 4 least significant bytes of the MAC address. 195 * Outputs 196 * return the calculated entry. 197 */ 198 static u32 hash_function(u32 mach, u32 macl) 199 { 200 u32 hashresult; 201 u32 addrh; 202 u32 addrl; 203 u32 addr0; 204 u32 addr1; 205 u32 addr2; 206 u32 addr3; 207 u32 addrhswapped; 208 u32 addrlswapped; 209 210 addrh = nibble_swapping_16_bit(mach); 211 addrl = nibble_swapping_32_bit(macl); 212 213 addrhswapped = flip_4_bits(addrh & 0xf) 214 + ((flip_4_bits((addrh >> 4) & 0xf)) << 4) 215 + ((flip_4_bits((addrh >> 8) & 0xf)) << 8) 216 + ((flip_4_bits((addrh >> 12) & 0xf)) << 12); 217 218 addrlswapped = flip_4_bits(addrl & 0xf) 219 + ((flip_4_bits((addrl >> 4) & 0xf)) << 4) 220 + ((flip_4_bits((addrl >> 8) & 0xf)) << 8) 221 + ((flip_4_bits((addrl >> 12) & 0xf)) << 12) 222 + ((flip_4_bits((addrl >> 16) & 0xf)) << 16) 223 + ((flip_4_bits((addrl >> 20) & 0xf)) << 20) 224 + ((flip_4_bits((addrl >> 24) & 0xf)) << 24) 225 + ((flip_4_bits((addrl >> 28) & 0xf)) << 28); 226 227 addrh = addrhswapped; 228 addrl = addrlswapped; 229 230 addr0 = (addrl >> 2) & 0x03f; 231 addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2); 232 addr2 = (addrl >> 15) & 0x1ff; 233 addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8); 234 235 hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3); 236 hashresult = hashresult & 0x07ff; 237 return hashresult; 238 } 239 240 /* 241 * This function will add an entry to the address table. 242 * depends on the hash mode and hash size that was initialized. 243 * Inputs 244 * mach - the 2 most significant bytes of the MAC address. 245 * macl - the 4 least significant bytes of the MAC address. 246 * skip - if 1, skip this address. 247 * rd - the RD field in the address table. 248 * Outputs 249 * address table entry is added. 250 * 0 if success. 251 * -ENOSPC if table full 252 */ 253 static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach, 254 u32 macl, u32 rd, u32 skip, int del) 255 { 256 struct addr_table_entry_t *entry, *start; 257 u32 newhi; 258 u32 newlo; 259 u32 i; 260 261 newlo = (((mach >> 4) & 0xf) << 15) 262 | (((mach >> 0) & 0xf) << 11) 263 | (((mach >> 12) & 0xf) << 7) 264 | (((mach >> 8) & 0xf) << 3) 265 | (((macl >> 20) & 0x1) << 31) 266 | (((macl >> 16) & 0xf) << 27) 267 | (((macl >> 28) & 0xf) << 23) 268 | (((macl >> 24) & 0xf) << 19) 269 | (skip << HTESKIP) | (rd << HTERDBIT) 270 | HTEVALID; 271 272 newhi = (((macl >> 4) & 0xf) << 15) 273 | (((macl >> 0) & 0xf) << 11) 274 | (((macl >> 12) & 0xf) << 7) 275 | (((macl >> 8) & 0xf) << 3) 276 | (((macl >> 21) & 0x7) << 0); 277 278 /* 279 * Pick the appropriate table, start scanning for free/reusable 280 * entries at the index obtained by hashing the specified MAC address 281 */ 282 start = (struct addr_table_entry_t *)(darmdfec->htpr); 283 entry = start + hash_function(mach, macl); 284 for (i = 0; i < HOP_NUMBER; i++) { 285 if (!(entry->lo & HTEVALID)) { 286 break; 287 } else { 288 /* if same address put in same position */ 289 if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8)) 290 && (entry->hi == newhi)) 291 break; 292 } 293 if (entry == start + 0x7ff) 294 entry = start; 295 else 296 entry++; 297 } 298 299 if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) && 300 (entry->hi != newhi) && del) 301 return 0; 302 303 if (i == HOP_NUMBER) { 304 if (!del) { 305 printf("ARMD100 FEC: (%s) table section is full\n", 306 __func__); 307 return -ENOSPC; 308 } else { 309 return 0; 310 } 311 } 312 313 /* 314 * Update the selected entry 315 */ 316 if (del) { 317 entry->hi = 0; 318 entry->lo = 0; 319 } else { 320 entry->hi = newhi; 321 entry->lo = newlo; 322 } 323 324 return 0; 325 } 326 327 /* 328 * Create an addressTable entry from MAC address info 329 * found in the specifed net_device struct 330 * 331 * Input : pointer to ethernet interface network device structure 332 * Output : N/A 333 */ 334 static void update_hash_table_mac_address(struct armdfec_device *darmdfec, 335 u8 *oaddr, u8 *addr) 336 { 337 u32 mach; 338 u32 macl; 339 340 /* Delete old entry */ 341 if (oaddr) { 342 mach = (oaddr[0] << 8) | oaddr[1]; 343 macl = (oaddr[2] << 24) | (oaddr[3] << 16) | 344 (oaddr[4] << 8) | oaddr[5]; 345 add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE); 346 } 347 348 /* Add new entry */ 349 mach = (addr[0] << 8) | addr[1]; 350 macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 351 add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD); 352 } 353 354 /* Address Table Initialization */ 355 static void init_hashtable(struct eth_device *dev) 356 { 357 struct armdfec_device *darmdfec = to_darmdfec(dev); 358 struct armdfec_reg *regs = darmdfec->regs; 359 memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE); 360 writel((u32)darmdfec->htpr, ®s->htpr); 361 } 362 363 /* 364 * This detects PHY chip from address 0-31 by reading PHY status 365 * registers. PHY chip can be connected at any of this address. 366 */ 367 static int ethernet_phy_detect(struct eth_device *dev) 368 { 369 u32 val; 370 u16 tmp, mii_status; 371 u8 addr; 372 373 for (addr = 0; addr < 32; addr++) { 374 if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status) != 0) 375 /* try next phy */ 376 continue; 377 378 /* invalid MII status. More validation required here... */ 379 if (mii_status == 0 || mii_status == 0xffff) 380 /* try next phy */ 381 continue; 382 383 if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0) 384 /* try next phy */ 385 continue; 386 387 val = tmp << 16; 388 if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0) 389 /* try next phy */ 390 continue; 391 392 val |= tmp; 393 394 if ((val & 0xfffffff0) != 0) 395 return addr; 396 } 397 return -1; 398 } 399 400 static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec) 401 { 402 struct rx_desc *p_rx_desc; 403 int i; 404 405 /* initialize the Rx descriptors ring */ 406 p_rx_desc = darmdfec->p_rxdesc; 407 for (i = 0; i < RINGSZ; i++) { 408 p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; 409 p_rx_desc->buf_size = PKTSIZE_ALIGN; 410 p_rx_desc->byte_cnt = 0; 411 p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN; 412 if (i == (RINGSZ - 1)) { 413 p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc; 414 } else { 415 p_rx_desc->nxtdesc_p = (struct rx_desc *) 416 ((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE); 417 p_rx_desc = p_rx_desc->nxtdesc_p; 418 } 419 } 420 darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc; 421 } 422 423 static int armdfec_init(struct eth_device *dev, bd_t *bd) 424 { 425 struct armdfec_device *darmdfec = to_darmdfec(dev); 426 struct armdfec_reg *regs = darmdfec->regs; 427 int phy_adr; 428 u32 temp; 429 430 armdfec_init_rx_desc_ring(darmdfec); 431 432 /* Disable interrupts */ 433 writel(0, ®s->im); 434 writel(0, ®s->ic); 435 /* Write to ICR to clear interrupts. */ 436 writel(0, ®s->iwc); 437 438 /* 439 * Abort any transmit and receive operations and put DMA 440 * in idle state. 441 */ 442 abortdma(dev); 443 444 /* Initialize address hash table */ 445 init_hashtable(dev); 446 447 /* SDMA configuration */ 448 writel(SDCR_BSZ8 | /* Burst size = 32 bytes */ 449 SDCR_RIFB | /* Rx interrupt on frame */ 450 SDCR_BLMT | /* Little endian transmit */ 451 SDCR_BLMR | /* Little endian receive */ 452 SDCR_RC_MAX_RETRANS, /* Max retransmit count */ 453 ®s->sdma_conf); 454 /* Port Configuration */ 455 writel(PCR_HS, ®s->pconf); /* Hash size is 1/2kb */ 456 457 /* Set extended port configuration */ 458 writel(PCXR_2BSM | /* Two byte suffix aligns IP hdr */ 459 PCXR_DSCP_EN | /* Enable DSCP in IP */ 460 PCXR_MFL_1536 | /* Set MTU = 1536 */ 461 PCXR_FLP | /* do not force link pass */ 462 PCXR_TX_HIGH_PRI, /* Transmit - high priority queue */ 463 ®s->pconf_ext); 464 465 update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr); 466 467 /* Update TX and RX queue descriptor register */ 468 temp = (u32)®s->txcdp[TXQ]; 469 writel((u32)darmdfec->p_txdesc, temp); 470 temp = (u32)®s->rxfdp[RXQ]; 471 writel((u32)darmdfec->p_rxdesc, temp); 472 temp = (u32)®s->rxcdp[RXQ]; 473 writel((u32)darmdfec->p_rxdesc_curr, temp); 474 475 /* Enable Interrupts */ 476 writel(ALL_INTS, ®s->im); 477 478 /* Enable Ethernet Port */ 479 setbits_le32(®s->pconf, PCR_EN); 480 481 /* Enable RX DMA engine */ 482 setbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); 483 484 #ifdef DEBUG 485 eth_dump_regs(dev); 486 #endif 487 488 #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) 489 490 #if defined(CONFIG_PHY_BASE_ADR) 491 miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR); 492 #else 493 /* Search phy address from range 0-31 */ 494 phy_adr = ethernet_phy_detect(dev); 495 if (phy_adr < 0) { 496 printf("ARMD100 FEC: PHY not detected at address range 0-31\n"); 497 return -1; 498 } else { 499 debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr); 500 miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr); 501 } 502 #endif 503 504 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) 505 /* Wait up to 5s for the link status */ 506 for (i = 0; i < 5; i++) { 507 u16 phy_adr; 508 509 miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr); 510 /* Return if we get link up */ 511 if (miiphy_link(dev->name, phy_adr)) 512 return 0; 513 udelay(1000000); 514 } 515 516 printf("ARMD100 FEC: No link on %s\n", dev->name); 517 return -1; 518 #endif 519 #endif 520 return 0; 521 } 522 523 static void armdfec_halt(struct eth_device *dev) 524 { 525 struct armdfec_device *darmdfec = to_darmdfec(dev); 526 struct armdfec_reg *regs = darmdfec->regs; 527 528 /* Stop RX DMA */ 529 clrbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); 530 531 /* 532 * Abort any transmit and receive operations and put DMA 533 * in idle state. 534 */ 535 abortdma(dev); 536 537 /* Disable interrupts */ 538 writel(0, ®s->im); 539 writel(0, ®s->ic); 540 writel(0, ®s->iwc); 541 542 /* Disable Port */ 543 clrbits_le32(®s->pconf, PCR_EN); 544 } 545 546 static int armdfec_send(struct eth_device *dev, void *dataptr, int datasize) 547 { 548 struct armdfec_device *darmdfec = to_darmdfec(dev); 549 struct armdfec_reg *regs = darmdfec->regs; 550 struct tx_desc *p_txdesc = darmdfec->p_txdesc; 551 void *p = (void *)dataptr; 552 int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS; 553 u32 cmd_sts, temp; 554 555 /* Copy buffer if it's misaligned */ 556 if ((u32)dataptr & 0x07) { 557 if (datasize > PKTSIZE_ALIGN) { 558 printf("ARMD100 FEC: Non-aligned data too large (%d)\n", 559 datasize); 560 return -1; 561 } 562 memcpy(darmdfec->p_aligned_txbuf, p, datasize); 563 p = darmdfec->p_aligned_txbuf; 564 } 565 566 p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC; 567 p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC; 568 p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA; 569 p_txdesc->cmd_sts |= TX_EN_INT; 570 p_txdesc->buf_ptr = p; 571 p_txdesc->byte_cnt = datasize; 572 573 /* Apply send command using high priority TX queue */ 574 temp = (u32)®s->txcdp[TXQ]; 575 writel((u32)p_txdesc, temp); 576 writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, ®s->sdma_cmd); 577 578 /* 579 * wait for packet xmit completion 580 */ 581 cmd_sts = readl(&p_txdesc->cmd_sts); 582 while (cmd_sts & BUF_OWNED_BY_DMA) { 583 /* return fail if error is detected */ 584 if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) == 585 (TX_ERROR | TX_LAST_DESC)) { 586 printf("ARMD100 FEC: (%s) in xmit packet\n", __func__); 587 return -1; 588 } 589 cmd_sts = readl(&p_txdesc->cmd_sts); 590 if (!(retry--)) { 591 printf("ARMD100 FEC: (%s) xmit packet timeout!\n", 592 __func__); 593 return -1; 594 } 595 } 596 597 return 0; 598 } 599 600 static int armdfec_recv(struct eth_device *dev) 601 { 602 struct armdfec_device *darmdfec = to_darmdfec(dev); 603 struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr; 604 u32 cmd_sts; 605 u32 timeout = 0; 606 u32 temp; 607 608 /* wait untill rx packet available or timeout */ 609 do { 610 if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) { 611 timeout++; 612 } else { 613 debug("ARMD100 FEC: %s time out...\n", __func__); 614 return -1; 615 } 616 } while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA); 617 618 if (p_rxdesc_curr->byte_cnt != 0) { 619 debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x" 620 "(cmd_sts= %08x)\n", __func__, 621 (u32)p_rxdesc_curr->byte_cnt, 622 (u32)p_rxdesc_curr->buf_ptr, 623 (u32)p_rxdesc_curr->cmd_sts); 624 } 625 626 /* 627 * In case received a packet without first/last bits on 628 * OR the error summary bit is on, 629 * the packets needs to be dropeed. 630 */ 631 cmd_sts = readl(&p_rxdesc_curr->cmd_sts); 632 633 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != 634 (RX_FIRST_DESC | RX_LAST_DESC)) { 635 printf("ARMD100 FEC: (%s) Dropping packet spread on" 636 " multiple descriptors\n", __func__); 637 } else if (cmd_sts & RX_ERROR) { 638 printf("ARMD100 FEC: (%s) Dropping packet with errors\n", 639 __func__); 640 } else { 641 /* !!! call higher layer processing */ 642 debug("ARMD100 FEC: (%s) Sending Received packet to" 643 " upper layer (net_process_received_packet)\n", __func__); 644 645 /* 646 * let the upper layer handle the packet, subtract offset 647 * as two dummy bytes are added in received buffer see 648 * PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit. 649 */ 650 net_process_received_packet( 651 p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET, 652 (int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET)); 653 } 654 /* 655 * free these descriptors and point next in the ring 656 */ 657 p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; 658 p_rxdesc_curr->buf_size = PKTSIZE_ALIGN; 659 p_rxdesc_curr->byte_cnt = 0; 660 661 temp = (u32)&darmdfec->p_rxdesc_curr; 662 writel((u32)p_rxdesc_curr->nxtdesc_p, temp); 663 664 return 0; 665 } 666 667 int armada100_fec_register(unsigned long base_addr) 668 { 669 struct armdfec_device *darmdfec; 670 struct eth_device *dev; 671 672 darmdfec = malloc(sizeof(struct armdfec_device)); 673 if (!darmdfec) 674 goto error; 675 676 memset(darmdfec, 0, sizeof(struct armdfec_device)); 677 678 darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE); 679 if (!darmdfec->htpr) 680 goto error1; 681 682 darmdfec->p_rxdesc = memalign(PKTALIGN, 683 ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1); 684 685 if (!darmdfec->p_rxdesc) 686 goto error1; 687 688 darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1); 689 if (!darmdfec->p_rxbuf) 690 goto error1; 691 692 darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN); 693 if (!darmdfec->p_aligned_txbuf) 694 goto error1; 695 696 darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1); 697 if (!darmdfec->p_txdesc) 698 goto error1; 699 700 dev = &darmdfec->dev; 701 /* Assign ARMADA100 Fast Ethernet Controller Base Address */ 702 darmdfec->regs = (void *)base_addr; 703 704 /* must be less than sizeof(dev->name) */ 705 strcpy(dev->name, "armd-fec0"); 706 707 dev->init = armdfec_init; 708 dev->halt = armdfec_halt; 709 dev->send = armdfec_send; 710 dev->recv = armdfec_recv; 711 712 eth_register(dev); 713 714 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 715 int retval; 716 struct mii_dev *mdiodev = mdio_alloc(); 717 if (!mdiodev) 718 return -ENOMEM; 719 strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN); 720 mdiodev->read = smi_reg_read; 721 mdiodev->write = smi_reg_write; 722 723 retval = mdio_register(mdiodev); 724 if (retval < 0) 725 return retval; 726 #endif 727 return 0; 728 729 error1: 730 free(darmdfec->p_aligned_txbuf); 731 free(darmdfec->p_rxbuf); 732 free(darmdfec->p_rxdesc); 733 free(darmdfec->htpr); 734 error: 735 free(darmdfec); 736 printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__); 737 return -1; 738 } 739