1 /* 2 * (C) Copyright 2011 3 * eInfochips Ltd. <www.einfochips.com> 4 * Written-by: Ajay Bhargav <ajay.bhargav@einfochips.com> 5 * 6 * (C) Copyright 2010 7 * Marvell Semiconductor <www.marvell.com> 8 * Contributor: Mahavir Jain <mjain@marvell.com> 9 * 10 * See file CREDITS for list of people who contributed to this 11 * project. 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License as 15 * published by the Free Software Foundation; either version 2 of 16 * the License, or (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, 26 * MA 02110-1301 USA 27 */ 28 29 #include <common.h> 30 #include <net.h> 31 #include <malloc.h> 32 #include <miiphy.h> 33 #include <netdev.h> 34 #include <asm/types.h> 35 #include <asm/byteorder.h> 36 #include <linux/err.h> 37 #include <linux/mii.h> 38 #include <asm/io.h> 39 #include <asm/arch/armada100.h> 40 #include "armada100_fec.h" 41 42 #define PHY_ADR_REQ 0xFF /* Magic number to read/write PHY address */ 43 44 #ifdef DEBUG 45 static int eth_dump_regs(struct eth_device *dev) 46 { 47 struct armdfec_device *darmdfec = to_darmdfec(dev); 48 struct armdfec_reg *regs = darmdfec->regs; 49 unsigned int i = 0; 50 51 printf("\noffset: phy_adr, value: 0x%x\n", readl(®s->phyadr)); 52 printf("offset: smi, value: 0x%x\n", readl(®s->smi)); 53 for (i = 0x400; i <= 0x4e4; i += 4) 54 printf("offset: 0x%x, value: 0x%x\n", 55 i, readl(ARMD1_FEC_BASE + i)); 56 return 0; 57 } 58 #endif 59 60 static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond) 61 { 62 u32 timeout = PHY_WAIT_ITERATIONS; 63 u32 reg_val; 64 65 while (--timeout) { 66 reg_val = readl(reg); 67 if (cond && (reg_val & flag)) 68 break; 69 else if (!cond && !(reg_val & flag)) 70 break; 71 udelay(PHY_WAIT_MICRO_SECONDS); 72 } 73 return !timeout; 74 } 75 76 static int smi_reg_read(const char *devname, u8 phy_addr, u8 phy_reg, 77 u16 *value) 78 { 79 struct eth_device *dev = eth_get_dev_by_name(devname); 80 struct armdfec_device *darmdfec = to_darmdfec(dev); 81 struct armdfec_reg *regs = darmdfec->regs; 82 u32 val; 83 84 if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { 85 val = readl(®s->phyadr); 86 *value = val & 0x1f; 87 return 0; 88 } 89 90 /* check parameters */ 91 if (phy_addr > PHY_MASK) { 92 printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n", 93 __func__, phy_addr); 94 return -EINVAL; 95 } 96 if (phy_reg > PHY_MASK) { 97 printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n", 98 __func__, phy_reg); 99 return -EINVAL; 100 } 101 102 /* wait for the SMI register to become available */ 103 if (armdfec_phy_timeout(®s->smi, SMI_BUSY, FALSE)) { 104 printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); 105 return -1; 106 } 107 108 writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, ®s->smi); 109 110 /* now wait for the data to be valid */ 111 if (armdfec_phy_timeout(®s->smi, SMI_R_VALID, TRUE)) { 112 val = readl(®s->smi); 113 printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n", 114 __func__, val); 115 return -1; 116 } 117 val = readl(®s->smi); 118 *value = val & 0xffff; 119 120 return 0; 121 } 122 123 static int smi_reg_write(const char *devname, 124 u8 phy_addr, u8 phy_reg, u16 value) 125 { 126 struct eth_device *dev = eth_get_dev_by_name(devname); 127 struct armdfec_device *darmdfec = to_darmdfec(dev); 128 struct armdfec_reg *regs = darmdfec->regs; 129 130 if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { 131 clrsetbits_le32(®s->phyadr, 0x1f, value & 0x1f); 132 return 0; 133 } 134 135 /* check parameters */ 136 if (phy_addr > PHY_MASK) { 137 printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__); 138 return -EINVAL; 139 } 140 if (phy_reg > PHY_MASK) { 141 printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__); 142 return -EINVAL; 143 } 144 145 /* wait for the SMI register to become available */ 146 if (armdfec_phy_timeout(®s->smi, SMI_BUSY, FALSE)) { 147 printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); 148 return -1; 149 } 150 151 writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff), 152 ®s->smi); 153 return 0; 154 } 155 156 /* 157 * Abort any transmit and receive operations and put DMA 158 * in idle state. AT and AR bits are cleared upon entering 159 * in IDLE state. So poll those bits to verify operation. 160 */ 161 static void abortdma(struct eth_device *dev) 162 { 163 struct armdfec_device *darmdfec = to_darmdfec(dev); 164 struct armdfec_reg *regs = darmdfec->regs; 165 int delay; 166 int maxretries = 40; 167 u32 tmp; 168 169 while (--maxretries) { 170 writel(SDMA_CMD_AR | SDMA_CMD_AT, ®s->sdma_cmd); 171 udelay(100); 172 173 delay = 10; 174 while (--delay) { 175 tmp = readl(®s->sdma_cmd); 176 if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT))) 177 break; 178 udelay(10); 179 } 180 if (delay) 181 break; 182 } 183 184 if (!maxretries) 185 printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__); 186 } 187 188 static inline u32 nibble_swapping_32_bit(u32 x) 189 { 190 return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4); 191 } 192 193 static inline u32 nibble_swapping_16_bit(u32 x) 194 { 195 return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4); 196 } 197 198 static inline u32 flip_4_bits(u32 x) 199 { 200 return ((x & 0x01) << 3) | ((x & 0x002) << 1) 201 | ((x & 0x04) >> 1) | ((x & 0x008) >> 3); 202 } 203 204 /* 205 * This function will calculate the hash function of the address. 206 * depends on the hash mode and hash size. 207 * Inputs 208 * mach - the 2 most significant bytes of the MAC address. 209 * macl - the 4 least significant bytes of the MAC address. 210 * Outputs 211 * return the calculated entry. 212 */ 213 static u32 hash_function(u32 mach, u32 macl) 214 { 215 u32 hashresult; 216 u32 addrh; 217 u32 addrl; 218 u32 addr0; 219 u32 addr1; 220 u32 addr2; 221 u32 addr3; 222 u32 addrhswapped; 223 u32 addrlswapped; 224 225 addrh = nibble_swapping_16_bit(mach); 226 addrl = nibble_swapping_32_bit(macl); 227 228 addrhswapped = flip_4_bits(addrh & 0xf) 229 + ((flip_4_bits((addrh >> 4) & 0xf)) << 4) 230 + ((flip_4_bits((addrh >> 8) & 0xf)) << 8) 231 + ((flip_4_bits((addrh >> 12) & 0xf)) << 12); 232 233 addrlswapped = flip_4_bits(addrl & 0xf) 234 + ((flip_4_bits((addrl >> 4) & 0xf)) << 4) 235 + ((flip_4_bits((addrl >> 8) & 0xf)) << 8) 236 + ((flip_4_bits((addrl >> 12) & 0xf)) << 12) 237 + ((flip_4_bits((addrl >> 16) & 0xf)) << 16) 238 + ((flip_4_bits((addrl >> 20) & 0xf)) << 20) 239 + ((flip_4_bits((addrl >> 24) & 0xf)) << 24) 240 + ((flip_4_bits((addrl >> 28) & 0xf)) << 28); 241 242 addrh = addrhswapped; 243 addrl = addrlswapped; 244 245 addr0 = (addrl >> 2) & 0x03f; 246 addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2); 247 addr2 = (addrl >> 15) & 0x1ff; 248 addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8); 249 250 hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3); 251 hashresult = hashresult & 0x07ff; 252 return hashresult; 253 } 254 255 /* 256 * This function will add an entry to the address table. 257 * depends on the hash mode and hash size that was initialized. 258 * Inputs 259 * mach - the 2 most significant bytes of the MAC address. 260 * macl - the 4 least significant bytes of the MAC address. 261 * skip - if 1, skip this address. 262 * rd - the RD field in the address table. 263 * Outputs 264 * address table entry is added. 265 * 0 if success. 266 * -ENOSPC if table full 267 */ 268 static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach, 269 u32 macl, u32 rd, u32 skip, int del) 270 { 271 struct addr_table_entry_t *entry, *start; 272 u32 newhi; 273 u32 newlo; 274 u32 i; 275 276 newlo = (((mach >> 4) & 0xf) << 15) 277 | (((mach >> 0) & 0xf) << 11) 278 | (((mach >> 12) & 0xf) << 7) 279 | (((mach >> 8) & 0xf) << 3) 280 | (((macl >> 20) & 0x1) << 31) 281 | (((macl >> 16) & 0xf) << 27) 282 | (((macl >> 28) & 0xf) << 23) 283 | (((macl >> 24) & 0xf) << 19) 284 | (skip << HTESKIP) | (rd << HTERDBIT) 285 | HTEVALID; 286 287 newhi = (((macl >> 4) & 0xf) << 15) 288 | (((macl >> 0) & 0xf) << 11) 289 | (((macl >> 12) & 0xf) << 7) 290 | (((macl >> 8) & 0xf) << 3) 291 | (((macl >> 21) & 0x7) << 0); 292 293 /* 294 * Pick the appropriate table, start scanning for free/reusable 295 * entries at the index obtained by hashing the specified MAC address 296 */ 297 start = (struct addr_table_entry_t *)(darmdfec->htpr); 298 entry = start + hash_function(mach, macl); 299 for (i = 0; i < HOP_NUMBER; i++) { 300 if (!(entry->lo & HTEVALID)) { 301 break; 302 } else { 303 /* if same address put in same position */ 304 if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8)) 305 && (entry->hi == newhi)) 306 break; 307 } 308 if (entry == start + 0x7ff) 309 entry = start; 310 else 311 entry++; 312 } 313 314 if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) && 315 (entry->hi != newhi) && del) 316 return 0; 317 318 if (i == HOP_NUMBER) { 319 if (!del) { 320 printf("ARMD100 FEC: (%s) table section is full\n", 321 __func__); 322 return -ENOSPC; 323 } else { 324 return 0; 325 } 326 } 327 328 /* 329 * Update the selected entry 330 */ 331 if (del) { 332 entry->hi = 0; 333 entry->lo = 0; 334 } else { 335 entry->hi = newhi; 336 entry->lo = newlo; 337 } 338 339 return 0; 340 } 341 342 /* 343 * Create an addressTable entry from MAC address info 344 * found in the specifed net_device struct 345 * 346 * Input : pointer to ethernet interface network device structure 347 * Output : N/A 348 */ 349 static void update_hash_table_mac_address(struct armdfec_device *darmdfec, 350 u8 *oaddr, u8 *addr) 351 { 352 u32 mach; 353 u32 macl; 354 355 /* Delete old entry */ 356 if (oaddr) { 357 mach = (oaddr[0] << 8) | oaddr[1]; 358 macl = (oaddr[2] << 24) | (oaddr[3] << 16) | 359 (oaddr[4] << 8) | oaddr[5]; 360 add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE); 361 } 362 363 /* Add new entry */ 364 mach = (addr[0] << 8) | addr[1]; 365 macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 366 add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD); 367 } 368 369 /* Address Table Initialization */ 370 static void init_hashtable(struct eth_device *dev) 371 { 372 struct armdfec_device *darmdfec = to_darmdfec(dev); 373 struct armdfec_reg *regs = darmdfec->regs; 374 memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE); 375 writel((u32)darmdfec->htpr, ®s->htpr); 376 } 377 378 /* 379 * This detects PHY chip from address 0-31 by reading PHY status 380 * registers. PHY chip can be connected at any of this address. 381 */ 382 static int ethernet_phy_detect(struct eth_device *dev) 383 { 384 u32 val; 385 u16 tmp, mii_status; 386 u8 addr; 387 388 for (addr = 0; addr < 32; addr++) { 389 if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status) != 0) 390 /* try next phy */ 391 continue; 392 393 /* invalid MII status. More validation required here... */ 394 if (mii_status == 0 || mii_status == 0xffff) 395 /* try next phy */ 396 continue; 397 398 if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0) 399 /* try next phy */ 400 continue; 401 402 val = tmp << 16; 403 if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0) 404 /* try next phy */ 405 continue; 406 407 val |= tmp; 408 409 if ((val & 0xfffffff0) != 0) 410 return addr; 411 } 412 return -1; 413 } 414 415 static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec) 416 { 417 struct rx_desc *p_rx_desc; 418 int i; 419 420 /* initialize the Rx descriptors ring */ 421 p_rx_desc = darmdfec->p_rxdesc; 422 for (i = 0; i < RINGSZ; i++) { 423 p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; 424 p_rx_desc->buf_size = PKTSIZE_ALIGN; 425 p_rx_desc->byte_cnt = 0; 426 p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN; 427 if (i == (RINGSZ - 1)) { 428 p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc; 429 } else { 430 p_rx_desc->nxtdesc_p = (struct rx_desc *) 431 ((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE); 432 p_rx_desc = p_rx_desc->nxtdesc_p; 433 } 434 } 435 darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc; 436 } 437 438 static int armdfec_init(struct eth_device *dev, bd_t *bd) 439 { 440 struct armdfec_device *darmdfec = to_darmdfec(dev); 441 struct armdfec_reg *regs = darmdfec->regs; 442 int phy_adr; 443 u32 temp; 444 445 armdfec_init_rx_desc_ring(darmdfec); 446 447 /* Disable interrupts */ 448 writel(0, ®s->im); 449 writel(0, ®s->ic); 450 /* Write to ICR to clear interrupts. */ 451 writel(0, ®s->iwc); 452 453 /* 454 * Abort any transmit and receive operations and put DMA 455 * in idle state. 456 */ 457 abortdma(dev); 458 459 /* Initialize address hash table */ 460 init_hashtable(dev); 461 462 /* SDMA configuration */ 463 writel(SDCR_BSZ8 | /* Burst size = 32 bytes */ 464 SDCR_RIFB | /* Rx interrupt on frame */ 465 SDCR_BLMT | /* Little endian transmit */ 466 SDCR_BLMR | /* Little endian receive */ 467 SDCR_RC_MAX_RETRANS, /* Max retransmit count */ 468 ®s->sdma_conf); 469 /* Port Configuration */ 470 writel(PCR_HS, ®s->pconf); /* Hash size is 1/2kb */ 471 472 /* Set extended port configuration */ 473 writel(PCXR_2BSM | /* Two byte suffix aligns IP hdr */ 474 PCXR_DSCP_EN | /* Enable DSCP in IP */ 475 PCXR_MFL_1536 | /* Set MTU = 1536 */ 476 PCXR_FLP | /* do not force link pass */ 477 PCXR_TX_HIGH_PRI, /* Transmit - high priority queue */ 478 ®s->pconf_ext); 479 480 update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr); 481 482 /* Update TX and RX queue descriptor register */ 483 temp = (u32)®s->txcdp[TXQ]; 484 writel((u32)darmdfec->p_txdesc, temp); 485 temp = (u32)®s->rxfdp[RXQ]; 486 writel((u32)darmdfec->p_rxdesc, temp); 487 temp = (u32)®s->rxcdp[RXQ]; 488 writel((u32)darmdfec->p_rxdesc_curr, temp); 489 490 /* Enable Interrupts */ 491 writel(ALL_INTS, ®s->im); 492 493 /* Enable Ethernet Port */ 494 setbits_le32(®s->pconf, PCR_EN); 495 496 /* Enable RX DMA engine */ 497 setbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); 498 499 #ifdef DEBUG 500 eth_dump_regs(dev); 501 #endif 502 503 #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) 504 505 #if defined(CONFIG_PHY_BASE_ADR) 506 miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR); 507 #else 508 /* Search phy address from range 0-31 */ 509 phy_adr = ethernet_phy_detect(dev); 510 if (phy_adr < 0) { 511 printf("ARMD100 FEC: PHY not detected at address range 0-31\n"); 512 return -1; 513 } else { 514 debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr); 515 miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr); 516 } 517 #endif 518 519 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) 520 /* Wait up to 5s for the link status */ 521 for (i = 0; i < 5; i++) { 522 u16 phy_adr; 523 524 miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr); 525 /* Return if we get link up */ 526 if (miiphy_link(dev->name, phy_adr)) 527 return 0; 528 udelay(1000000); 529 } 530 531 printf("ARMD100 FEC: No link on %s\n", dev->name); 532 return -1; 533 #endif 534 #endif 535 return 0; 536 } 537 538 static void armdfec_halt(struct eth_device *dev) 539 { 540 struct armdfec_device *darmdfec = to_darmdfec(dev); 541 struct armdfec_reg *regs = darmdfec->regs; 542 543 /* Stop RX DMA */ 544 clrbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); 545 546 /* 547 * Abort any transmit and receive operations and put DMA 548 * in idle state. 549 */ 550 abortdma(dev); 551 552 /* Disable interrupts */ 553 writel(0, ®s->im); 554 writel(0, ®s->ic); 555 writel(0, ®s->iwc); 556 557 /* Disable Port */ 558 clrbits_le32(®s->pconf, PCR_EN); 559 } 560 561 static int armdfec_send(struct eth_device *dev, void *dataptr, int datasize) 562 { 563 struct armdfec_device *darmdfec = to_darmdfec(dev); 564 struct armdfec_reg *regs = darmdfec->regs; 565 struct tx_desc *p_txdesc = darmdfec->p_txdesc; 566 void *p = (void *)dataptr; 567 int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS; 568 u32 cmd_sts, temp; 569 570 /* Copy buffer if it's misaligned */ 571 if ((u32)dataptr & 0x07) { 572 if (datasize > PKTSIZE_ALIGN) { 573 printf("ARMD100 FEC: Non-aligned data too large (%d)\n", 574 datasize); 575 return -1; 576 } 577 memcpy(darmdfec->p_aligned_txbuf, p, datasize); 578 p = darmdfec->p_aligned_txbuf; 579 } 580 581 p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC; 582 p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC; 583 p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA; 584 p_txdesc->cmd_sts |= TX_EN_INT; 585 p_txdesc->buf_ptr = p; 586 p_txdesc->byte_cnt = datasize; 587 588 /* Apply send command using high priority TX queue */ 589 temp = (u32)®s->txcdp[TXQ]; 590 writel((u32)p_txdesc, temp); 591 writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, ®s->sdma_cmd); 592 593 /* 594 * wait for packet xmit completion 595 */ 596 cmd_sts = readl(&p_txdesc->cmd_sts); 597 while (cmd_sts & BUF_OWNED_BY_DMA) { 598 /* return fail if error is detected */ 599 if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) == 600 (TX_ERROR | TX_LAST_DESC)) { 601 printf("ARMD100 FEC: (%s) in xmit packet\n", __func__); 602 return -1; 603 } 604 cmd_sts = readl(&p_txdesc->cmd_sts); 605 if (!(retry--)) { 606 printf("ARMD100 FEC: (%s) xmit packet timeout!\n", 607 __func__); 608 return -1; 609 } 610 } 611 612 return 0; 613 } 614 615 static int armdfec_recv(struct eth_device *dev) 616 { 617 struct armdfec_device *darmdfec = to_darmdfec(dev); 618 struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr; 619 u32 cmd_sts; 620 u32 timeout = 0; 621 u32 temp; 622 623 /* wait untill rx packet available or timeout */ 624 do { 625 if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) { 626 timeout++; 627 } else { 628 debug("ARMD100 FEC: %s time out...\n", __func__); 629 return -1; 630 } 631 } while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA); 632 633 if (p_rxdesc_curr->byte_cnt != 0) { 634 debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x" 635 "(cmd_sts= %08x)\n", __func__, 636 (u32)p_rxdesc_curr->byte_cnt, 637 (u32)p_rxdesc_curr->buf_ptr, 638 (u32)p_rxdesc_curr->cmd_sts); 639 } 640 641 /* 642 * In case received a packet without first/last bits on 643 * OR the error summary bit is on, 644 * the packets needs to be dropeed. 645 */ 646 cmd_sts = readl(&p_rxdesc_curr->cmd_sts); 647 648 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != 649 (RX_FIRST_DESC | RX_LAST_DESC)) { 650 printf("ARMD100 FEC: (%s) Dropping packet spread on" 651 " multiple descriptors\n", __func__); 652 } else if (cmd_sts & RX_ERROR) { 653 printf("ARMD100 FEC: (%s) Dropping packet with errors\n", 654 __func__); 655 } else { 656 /* !!! call higher layer processing */ 657 debug("ARMD100 FEC: (%s) Sending Received packet to" 658 " upper layer (NetReceive)\n", __func__); 659 660 /* 661 * let the upper layer handle the packet, subtract offset 662 * as two dummy bytes are added in received buffer see 663 * PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit. 664 */ 665 NetReceive((p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET), 666 (int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET)); 667 } 668 /* 669 * free these descriptors and point next in the ring 670 */ 671 p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; 672 p_rxdesc_curr->buf_size = PKTSIZE_ALIGN; 673 p_rxdesc_curr->byte_cnt = 0; 674 675 temp = (u32)&darmdfec->p_rxdesc_curr; 676 writel((u32)p_rxdesc_curr->nxtdesc_p, temp); 677 678 return 0; 679 } 680 681 int armada100_fec_register(unsigned long base_addr) 682 { 683 struct armdfec_device *darmdfec; 684 struct eth_device *dev; 685 686 darmdfec = malloc(sizeof(struct armdfec_device)); 687 if (!darmdfec) 688 goto error; 689 690 memset(darmdfec, 0, sizeof(struct armdfec_device)); 691 692 darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE); 693 if (!darmdfec->htpr) 694 goto error1; 695 696 darmdfec->p_rxdesc = memalign(PKTALIGN, 697 ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1); 698 699 if (!darmdfec->p_rxdesc) 700 goto error1; 701 702 darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1); 703 if (!darmdfec->p_rxbuf) 704 goto error1; 705 706 darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN); 707 if (!darmdfec->p_aligned_txbuf) 708 goto error1; 709 710 darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1); 711 if (!darmdfec->p_txdesc) 712 goto error1; 713 714 dev = &darmdfec->dev; 715 /* Assign ARMADA100 Fast Ethernet Controller Base Address */ 716 darmdfec->regs = (void *)base_addr; 717 718 /* must be less than sizeof(dev->name) */ 719 strcpy(dev->name, "armd-fec0"); 720 721 dev->init = armdfec_init; 722 dev->halt = armdfec_halt; 723 dev->send = armdfec_send; 724 dev->recv = armdfec_recv; 725 726 eth_register(dev); 727 728 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 729 miiphy_register(dev->name, smi_reg_read, smi_reg_write); 730 #endif 731 return 0; 732 733 error1: 734 free(darmdfec->p_aligned_txbuf); 735 free(darmdfec->p_rxbuf); 736 free(darmdfec->p_rxdesc); 737 free(darmdfec->htpr); 738 error: 739 free(darmdfec); 740 printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__); 741 return -1; 742 } 743