xref: /openbmc/u-boot/drivers/net/altera_tse.c (revision f458c8da)
1 /*
2  * Altera 10/100/1000 triple speed ethernet mac driver
3  *
4  * Copyright (C) 2008 Altera Corporation.
5  * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <config.h>
12 #include <common.h>
13 #include <malloc.h>
14 #include <net.h>
15 #include <command.h>
16 #include <asm/cache.h>
17 #include <asm/dma-mapping.h>
18 #include <miiphy.h>
19 #include "altera_tse.h"
20 
21 /* sgdma debug - print descriptor */
22 static void alt_sgdma_print_desc(volatile struct alt_sgdma_descriptor *desc)
23 {
24 	debug("SGDMA DEBUG :\n");
25 	debug("desc->source : 0x%x \n", (unsigned int)desc->source);
26 	debug("desc->destination : 0x%x \n", (unsigned int)desc->destination);
27 	debug("desc->next : 0x%x \n", (unsigned int)desc->next);
28 	debug("desc->source_pad : 0x%x \n", (unsigned int)desc->source_pad);
29 	debug("desc->destination_pad : 0x%x \n",
30 	      (unsigned int)desc->destination_pad);
31 	debug("desc->next_pad : 0x%x \n", (unsigned int)desc->next_pad);
32 	debug("desc->bytes_to_transfer : 0x%x \n",
33 	      (unsigned int)desc->bytes_to_transfer);
34 	debug("desc->actual_bytes_transferred : 0x%x \n",
35 	      (unsigned int)desc->actual_bytes_transferred);
36 	debug("desc->descriptor_status : 0x%x \n",
37 	      (unsigned int)desc->descriptor_status);
38 	debug("desc->descriptor_control : 0x%x \n",
39 	      (unsigned int)desc->descriptor_control);
40 }
41 
42 /* This is a generic routine that the SGDMA mode-specific routines
43  * call to populate a descriptor.
44  * arg1	    :pointer to first SGDMA descriptor.
45  * arg2	    :pointer to next  SGDMA descriptor.
46  * arg3	    :Address to where data to be written.
47  * arg4	    :Address from where data to be read.
48  * arg5	    :no of byte to transaction.
49  * arg6	    :variable indicating to generate start of packet or not
50  * arg7	    :read fixed
51  * arg8	    :write fixed
52  * arg9	    :read burst
53  * arg10    :write burst
54  * arg11    :atlantic_channel number
55  */
56 static void alt_sgdma_construct_descriptor_burst(
57 	volatile struct alt_sgdma_descriptor *desc,
58 	volatile struct alt_sgdma_descriptor *next,
59 	unsigned int *read_addr,
60 	unsigned int *write_addr,
61 	unsigned short length_or_eop,
62 	int generate_eop,
63 	int read_fixed,
64 	int write_fixed_or_sop,
65 	int read_burst,
66 	int write_burst,
67 	unsigned char atlantic_channel)
68 {
69 	/*
70 	 * Mark the "next" descriptor as "not" owned by hardware. This prevents
71 	 * The SGDMA controller from continuing to process the chain. This is
72 	 * done as a single IO write to bypass cache, without flushing
73 	 * the entire descriptor, since only the 8-bit descriptor status must
74 	 * be flushed.
75 	 */
76 	if (!next)
77 		debug("Next descriptor not defined!!\n");
78 
79 	next->descriptor_control = (next->descriptor_control &
80 		~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK);
81 
82 	desc->source = (unsigned int *)((unsigned int)read_addr & 0x1FFFFFFF);
83 	desc->destination =
84 	    (unsigned int *)((unsigned int)write_addr & 0x1FFFFFFF);
85 	desc->next = (unsigned int *)((unsigned int)next & 0x1FFFFFFF);
86 	desc->source_pad = 0x0;
87 	desc->destination_pad = 0x0;
88 	desc->next_pad = 0x0;
89 	desc->bytes_to_transfer = length_or_eop;
90 	desc->actual_bytes_transferred = 0;
91 	desc->descriptor_status = 0x0;
92 
93 	/* SGDMA burst not currently supported */
94 	desc->read_burst = 0;
95 	desc->write_burst = 0;
96 
97 	/*
98 	 * Set the descriptor control block as follows:
99 	 * - Set "owned by hardware" bit
100 	 * - Optionally set "generate EOP" bit
101 	 * - Optionally set the "read from fixed address" bit
102 	 * - Optionally set the "write to fixed address bit (which serves
103 	 *   serves as a "generate SOP" control bit in memory-to-stream mode).
104 	 * - Set the 4-bit atlantic channel, if specified
105 	 *
106 	 * Note this step is performed after all other descriptor information
107 	 * has been filled out so that, if the controller already happens to be
108 	 * pointing at this descriptor, it will not run (via the "owned by
109 	 * hardware" bit) until all other descriptor has been set up.
110 	 */
111 
112 	desc->descriptor_control =
113 	    ((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) |
114 	     (generate_eop ?
115 	      ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0x0) |
116 	     (read_fixed ?
117 	      ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0x0) |
118 	     (write_fixed_or_sop ?
119 	      ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0x0) |
120 	     (atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0)
121 		    );
122 }
123 
124 static int alt_sgdma_do_sync_transfer(volatile struct alt_sgdma_registers *dev,
125 			       volatile struct alt_sgdma_descriptor *desc)
126 {
127 	unsigned int status;
128 	int counter = 0;
129 
130 	/* Wait for any pending transfers to complete */
131 	alt_sgdma_print_desc(desc);
132 	status = dev->status;
133 
134 	counter = 0;
135 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
136 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
137 			break;
138 	}
139 
140 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
141 		debug("Timeout waiting sgdma in do sync!\n");
142 
143 	/*
144 	 * Clear any (previous) status register information
145 	 * that might occlude our error checking later.
146 	 */
147 	dev->status = 0xFF;
148 
149 	/* Point the controller at the descriptor */
150 	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
151 	debug("next desc in sgdma 0x%x\n",
152 	      (unsigned int)dev->next_descriptor_pointer);
153 
154 	/*
155 	 * Set up SGDMA controller to:
156 	 * - Disable interrupt generation
157 	 * - Run once a valid descriptor is written to controller
158 	 * - Stop on an error with any particular descriptor
159 	 */
160 	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
161 			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
162 
163 	/* Wait for the descriptor (chain) to complete */
164 	status = dev->status;
165 	debug("wait for sgdma....");
166 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK)
167 		;
168 	debug("done\n");
169 
170 	/* Clear Run */
171 	dev->control = (dev->control & (~ALT_SGDMA_CONTROL_RUN_MSK));
172 
173 	/* Get & clear status register contents */
174 	status = dev->status;
175 	dev->status = 0xFF;
176 
177 	/* we really should check if the transfer completes properly */
178 	debug("tx sgdma status = 0x%x", status);
179 	return 0;
180 }
181 
182 static int alt_sgdma_do_async_transfer(volatile struct alt_sgdma_registers *dev,
183 				volatile struct alt_sgdma_descriptor *desc)
184 {
185 	int counter = 0;
186 
187 	/* Wait for any pending transfers to complete */
188 	alt_sgdma_print_desc(desc);
189 
190 	counter = 0;
191 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
192 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
193 			break;
194 	}
195 
196 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
197 		debug("Timeout waiting sgdma in do async!\n");
198 
199 	/*
200 	 * Clear the RUN bit in the control register. This is needed
201 	 * to restart the SGDMA engine later on.
202 	 */
203 	dev->control = 0;
204 
205 	/*
206 	 * Clear any (previous) status register information
207 	 * that might occlude our error checking later.
208 	 */
209 	dev->status = 0xFF;
210 
211 	/* Point the controller at the descriptor */
212 	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
213 
214 	/*
215 	 * Set up SGDMA controller to:
216 	 * - Disable interrupt generation
217 	 * - Run once a valid descriptor is written to controller
218 	 * - Stop on an error with any particular descriptor
219 	 */
220 	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
221 			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
222 
223 	/* we really should check if the transfer completes properly */
224 	return 0;
225 }
226 
227 /* u-boot interface */
228 static int tse_adjust_link(struct altera_tse_priv *priv)
229 {
230 	unsigned int refvar;
231 
232 	refvar = priv->mac_dev->command_config.image;
233 
234 	if (!(priv->duplexity))
235 		refvar |= ALTERA_TSE_CMD_HD_ENA_MSK;
236 	else
237 		refvar &= ~ALTERA_TSE_CMD_HD_ENA_MSK;
238 
239 	switch (priv->speed) {
240 	case 1000:
241 		refvar |= ALTERA_TSE_CMD_ETH_SPEED_MSK;
242 		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
243 		break;
244 	case 100:
245 		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
246 		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
247 		break;
248 	case 10:
249 		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
250 		refvar |= ALTERA_TSE_CMD_ENA_10_MSK;
251 		break;
252 	}
253 	priv->mac_dev->command_config.image = refvar;
254 
255 	return 0;
256 }
257 
258 static int tse_eth_send(struct eth_device *dev, void *packet, int length)
259 {
260 	struct altera_tse_priv *priv = dev->priv;
261 	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
262 	volatile struct alt_sgdma_descriptor *tx_desc =
263 	    (volatile struct alt_sgdma_descriptor *)priv->tx_desc;
264 
265 	volatile struct alt_sgdma_descriptor *tx_desc_cur =
266 	    (volatile struct alt_sgdma_descriptor *)&tx_desc[0];
267 
268 	flush_dcache_range((unsigned long)packet,
269 			(unsigned long)packet + length);
270 	alt_sgdma_construct_descriptor_burst(
271 		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
272 		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
273 		(unsigned int *)packet,	/* read addr */
274 		(unsigned int *)0,
275 		length,	/* length or EOP ,will change for each tx */
276 		0x1,	/* gen eop */
277 		0x0,	/* read fixed */
278 		0x1,	/* write fixed or sop */
279 		0x0,	/* read burst */
280 		0x0,	/* write burst */
281 		0x0	/* channel */
282 		);
283 	debug("TX Packet @ 0x%x,0x%x bytes", (unsigned int)packet, length);
284 
285 	/* send the packet */
286 	debug("sending packet\n");
287 	alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur);
288 	debug("sent %d bytes\n", tx_desc_cur->actual_bytes_transferred);
289 	return tx_desc_cur->actual_bytes_transferred;
290 }
291 
292 static int tse_eth_rx(struct eth_device *dev)
293 {
294 	int packet_length = 0;
295 	struct altera_tse_priv *priv = dev->priv;
296 	volatile struct alt_sgdma_descriptor *rx_desc =
297 	    (volatile struct alt_sgdma_descriptor *)priv->rx_desc;
298 	volatile struct alt_sgdma_descriptor *rx_desc_cur = &rx_desc[0];
299 
300 	if (rx_desc_cur->descriptor_status &
301 	    ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
302 		debug("got packet\n");
303 		packet_length = rx_desc->actual_bytes_transferred;
304 		net_process_received_packet(net_rx_packets[0], packet_length);
305 
306 		/* start descriptor again */
307 		flush_dcache_range((unsigned long)(net_rx_packets[0]),
308 				   (unsigned long)(net_rx_packets[0] +
309 						   PKTSIZE_ALIGN));
310 		alt_sgdma_construct_descriptor_burst(
311 			(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
312 			(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
313 			(unsigned int)0x0,	/* read addr */
314 			(unsigned int *)net_rx_packets[0],
315 			0x0,	/* length or EOP */
316 			0x0,	/* gen eop */
317 			0x0,	/* read fixed */
318 			0x0,	/* write fixed or sop */
319 			0x0,	/* read burst */
320 			0x0,	/* write burst */
321 			0x0	/* channel */
322 		    );
323 
324 		/* setup the sgdma */
325 		alt_sgdma_do_async_transfer(priv->sgdma_rx, &rx_desc[0]);
326 
327 		return packet_length;
328 	}
329 
330 	return -1;
331 }
332 
333 static void tse_eth_halt(struct eth_device *dev)
334 {
335 	/* don't do anything! */
336 	/* this gets called after each uboot  */
337 	/* network command.  don't need to reset the thing all of the time */
338 }
339 
340 static void tse_eth_reset(struct eth_device *dev)
341 {
342 	/* stop sgdmas, disable tse receive */
343 	struct altera_tse_priv *priv = dev->priv;
344 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
345 	volatile struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx;
346 	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
347 	int counter;
348 	volatile struct alt_sgdma_descriptor *rx_desc =
349 	    (volatile struct alt_sgdma_descriptor *)&priv->rx_desc[0];
350 
351 	/* clear rx desc & wait for sgdma to complete */
352 	rx_desc->descriptor_control = 0;
353 	rx_sgdma->control = 0;
354 	counter = 0;
355 	while (rx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
356 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
357 			break;
358 	}
359 
360 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
361 		debug("Timeout waiting for rx sgdma!\n");
362 		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
363 		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
364 	}
365 
366 	counter = 0;
367 	tx_sgdma->control = 0;
368 	while (tx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
369 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
370 			break;
371 	}
372 
373 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
374 		debug("Timeout waiting for tx sgdma!\n");
375 		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
376 		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
377 	}
378 	/* reset the mac */
379 	mac_dev->command_config.bits.transmit_enable = 1;
380 	mac_dev->command_config.bits.receive_enable = 1;
381 	mac_dev->command_config.bits.software_reset = 1;
382 
383 	counter = 0;
384 	while (mac_dev->command_config.bits.software_reset) {
385 		if (counter++ > ALT_TSE_SW_RESET_WATCHDOG_CNTR)
386 			break;
387 	}
388 
389 	if (counter >= ALT_TSE_SW_RESET_WATCHDOG_CNTR)
390 		debug("TSEMAC SW reset bit never cleared!\n");
391 }
392 
393 static int tse_mdio_read(struct altera_tse_priv *priv, unsigned int regnum)
394 {
395 	volatile struct alt_tse_mac *mac_dev;
396 	unsigned int *mdio_regs;
397 	unsigned int data;
398 	u16 value;
399 
400 	mac_dev = priv->mac_dev;
401 
402 	/* set mdio address */
403 	mac_dev->mdio_phy1_addr = priv->phyaddr;
404 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
405 
406 	/* get the data */
407 	data = mdio_regs[regnum];
408 
409 	value = data & 0xffff;
410 
411 	return value;
412 }
413 
414 static int tse_mdio_write(struct altera_tse_priv *priv, unsigned int regnum,
415 		   unsigned int value)
416 {
417 	volatile struct alt_tse_mac *mac_dev;
418 	unsigned int *mdio_regs;
419 	unsigned int data;
420 
421 	mac_dev = priv->mac_dev;
422 
423 	/* set mdio address */
424 	mac_dev->mdio_phy1_addr = priv->phyaddr;
425 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
426 
427 	/* get the data */
428 	data = (unsigned int)value;
429 
430 	mdio_regs[regnum] = data;
431 
432 	return 0;
433 }
434 
435 /* MDIO access to phy */
436 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
437 static int altera_tse_miiphy_write(const char *devname, unsigned char addr,
438 				   unsigned char reg, unsigned short value)
439 {
440 	struct eth_device *dev;
441 	struct altera_tse_priv *priv;
442 	dev = eth_get_dev_by_name(devname);
443 	priv = dev->priv;
444 
445 	tse_mdio_write(priv, (uint) reg, (uint) value);
446 
447 	return 0;
448 }
449 
450 static int altera_tse_miiphy_read(const char *devname, unsigned char addr,
451 				  unsigned char reg, unsigned short *value)
452 {
453 	struct eth_device *dev;
454 	struct altera_tse_priv *priv;
455 	volatile struct alt_tse_mac *mac_dev;
456 	unsigned int *mdio_regs;
457 
458 	dev = eth_get_dev_by_name(devname);
459 	priv = dev->priv;
460 
461 	mac_dev = priv->mac_dev;
462 	mac_dev->mdio_phy1_addr = (int)addr;
463 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
464 
465 	*value = 0xffff & mdio_regs[reg];
466 
467 	return 0;
468 
469 }
470 #endif
471 
472 /*
473  * Also copied from tsec.c
474  */
475 /* Parse the status register for link, and then do
476  * auto-negotiation
477  */
478 static uint mii_parse_sr(uint mii_reg, struct altera_tse_priv *priv)
479 {
480 	/*
481 	 * Wait if the link is up, and autonegotiation is in progress
482 	 * (ie - we're capable and it's not done)
483 	 */
484 	mii_reg = tse_mdio_read(priv, MIIM_STATUS);
485 
486 	if (!(mii_reg & MIIM_STATUS_LINK) && (mii_reg & BMSR_ANEGCAPABLE)
487 	    && !(mii_reg & BMSR_ANEGCOMPLETE)) {
488 		int i = 0;
489 
490 		puts("Waiting for PHY auto negotiation to complete");
491 		while (!(mii_reg & BMSR_ANEGCOMPLETE)) {
492 			/*
493 			 * Timeout reached ?
494 			 */
495 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
496 				puts(" TIMEOUT !\n");
497 				priv->link = 0;
498 				return 0;
499 			}
500 
501 			if ((i++ % 1000) == 0)
502 				putc('.');
503 			udelay(1000);	/* 1 ms */
504 			mii_reg = tse_mdio_read(priv, MIIM_STATUS);
505 		}
506 		puts(" done\n");
507 		priv->link = 1;
508 		udelay(500000);	/* another 500 ms (results in faster booting) */
509 	} else {
510 		if (mii_reg & MIIM_STATUS_LINK) {
511 			debug("Link is up\n");
512 			priv->link = 1;
513 		} else {
514 			debug("Link is down\n");
515 			priv->link = 0;
516 		}
517 	}
518 
519 	return 0;
520 }
521 
522 /* Parse the 88E1011's status register for speed and duplex
523  * information
524  */
525 static uint mii_parse_88E1011_psr(uint mii_reg, struct altera_tse_priv *priv)
526 {
527 	uint speed;
528 
529 	mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
530 
531 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
532 	    !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
533 		int i = 0;
534 
535 		puts("Waiting for PHY realtime link");
536 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
537 			/* Timeout reached ? */
538 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
539 				puts(" TIMEOUT !\n");
540 				priv->link = 0;
541 				break;
542 			}
543 
544 			if ((i++ == 1000) == 0) {
545 				i = 0;
546 				puts(".");
547 			}
548 			udelay(1000);	/* 1 ms */
549 			mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
550 		}
551 		puts(" done\n");
552 		udelay(500000);	/* another 500 ms (results in faster booting) */
553 	} else {
554 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
555 			priv->link = 1;
556 		else
557 			priv->link = 0;
558 	}
559 
560 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
561 		priv->duplexity = 1;
562 	else
563 		priv->duplexity = 0;
564 
565 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
566 
567 	switch (speed) {
568 	case MIIM_88E1011_PHYSTAT_GBIT:
569 		priv->speed = 1000;
570 		debug("PHY Speed is 1000Mbit\n");
571 		break;
572 	case MIIM_88E1011_PHYSTAT_100:
573 		debug("PHY Speed is 100Mbit\n");
574 		priv->speed = 100;
575 		break;
576 	default:
577 		debug("PHY Speed is 10Mbit\n");
578 		priv->speed = 10;
579 	}
580 
581 	return 0;
582 }
583 
584 static uint mii_m88e1111s_setmode_sr(uint mii_reg, struct altera_tse_priv *priv)
585 {
586 	uint mii_data = tse_mdio_read(priv, mii_reg);
587 	mii_data &= 0xfff0;
588 	if ((priv->flags >= 1) && (priv->flags <= 4))
589 		mii_data |= 0xb;
590 	else if (priv->flags == 5)
591 		mii_data |= 0x4;
592 
593 	return mii_data;
594 }
595 
596 static uint mii_m88e1111s_setmode_cr(uint mii_reg, struct altera_tse_priv *priv)
597 {
598 	uint mii_data = tse_mdio_read(priv, mii_reg);
599 	mii_data &= ~0x82;
600 	if ((priv->flags >= 1) && (priv->flags <= 4))
601 		mii_data |= 0x82;
602 
603 	return mii_data;
604 }
605 
606 /*
607  * Returns which value to write to the control register.
608  * For 10/100, the value is slightly different
609  */
610 static uint mii_cr_init(uint mii_reg, struct altera_tse_priv *priv)
611 {
612 	return MIIM_CONTROL_INIT;
613 }
614 
615 /*
616  * PHY & MDIO code
617  * Need to add SGMII stuff
618  *
619  */
620 
621 static struct phy_info phy_info_M88E1111S = {
622 	0x01410cc,
623 	"Marvell 88E1111S",
624 	4,
625 	(struct phy_cmd[]){	/* config */
626 			   /* Reset and configure the PHY */
627 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
628 			   {MIIM_88E1111_PHY_EXT_SR, 0x848f,
629 			    &mii_m88e1111s_setmode_sr},
630 			   /* Delay RGMII TX and RX */
631 			   {MIIM_88E1111_PHY_EXT_CR, 0x0cd2,
632 			    &mii_m88e1111s_setmode_cr},
633 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
634 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
635 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
636 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
637 			   {miim_end,}
638 			   },
639 	(struct phy_cmd[]){	/* startup */
640 			   /* Status is read once to clear old link state */
641 			   {MIIM_STATUS, miim_read, NULL},
642 			   /* Auto-negotiate */
643 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
644 			   /* Read the status */
645 			   {MIIM_88E1011_PHY_STATUS, miim_read,
646 			    &mii_parse_88E1011_psr},
647 			   {miim_end,}
648 			   },
649 	(struct phy_cmd[]){	/* shutdown */
650 			   {miim_end,}
651 			   },
652 };
653 
654 /* a generic flavor.  */
655 static struct phy_info phy_info_generic = {
656 	0,
657 	"Unknown/Generic PHY",
658 	32,
659 	(struct phy_cmd[]){	/* config */
660 			   {MII_BMCR, BMCR_RESET, NULL},
661 			   {MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART, NULL},
662 			   {miim_end,}
663 			   },
664 	(struct phy_cmd[]){	/* startup */
665 			   {MII_BMSR, miim_read, NULL},
666 			   {MII_BMSR, miim_read, &mii_parse_sr},
667 			   {miim_end,}
668 			   },
669 	(struct phy_cmd[]){	/* shutdown */
670 			   {miim_end,}
671 			   }
672 };
673 
674 static struct phy_info *phy_info[] = {
675 	&phy_info_M88E1111S,
676 	NULL
677 };
678 
679  /* Grab the identifier of the device's PHY, and search through
680   * all of the known PHYs to see if one matches.	 If so, return
681   * it, if not, return NULL
682   */
683 static struct phy_info *get_phy_info(struct eth_device *dev)
684 {
685 	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
686 	uint phy_reg, phy_ID;
687 	int i;
688 	struct phy_info *theInfo = NULL;
689 
690 	/* Grab the bits from PHYIR1, and put them in the upper half */
691 	phy_reg = tse_mdio_read(priv, MIIM_PHYIR1);
692 	phy_ID = (phy_reg & 0xffff) << 16;
693 
694 	/* Grab the bits from PHYIR2, and put them in the lower half */
695 	phy_reg = tse_mdio_read(priv, MIIM_PHYIR2);
696 	phy_ID |= (phy_reg & 0xffff);
697 
698 	/* loop through all the known PHY types, and find one that */
699 	/* matches the ID we read from the PHY. */
700 	for (i = 0; phy_info[i]; i++) {
701 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
702 			theInfo = phy_info[i];
703 			break;
704 		}
705 	}
706 
707 	if (theInfo == NULL) {
708 		theInfo = &phy_info_generic;
709 		debug("%s: No support for PHY id %x; assuming generic\n",
710 		      dev->name, phy_ID);
711 	} else
712 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
713 
714 	return theInfo;
715 }
716 
717 /* Execute the given series of commands on the given device's
718  * PHY, running functions as necessary
719  */
720 static void phy_run_commands(struct altera_tse_priv *priv, struct phy_cmd *cmd)
721 {
722 	int i;
723 	uint result;
724 
725 	for (i = 0; cmd->mii_reg != miim_end; i++) {
726 		if (cmd->mii_data == miim_read) {
727 			result = tse_mdio_read(priv, cmd->mii_reg);
728 
729 			if (cmd->funct != NULL)
730 				(*(cmd->funct)) (result, priv);
731 
732 		} else {
733 			if (cmd->funct != NULL)
734 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
735 			else
736 				result = cmd->mii_data;
737 
738 			tse_mdio_write(priv, cmd->mii_reg, result);
739 
740 		}
741 		cmd++;
742 	}
743 }
744 
745 /* Phy init code */
746 static int init_phy(struct eth_device *dev)
747 {
748 	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
749 	struct phy_info *curphy;
750 
751 	/* Get the cmd structure corresponding to the attached
752 	 * PHY */
753 	curphy = get_phy_info(dev);
754 
755 	if (curphy == NULL) {
756 		priv->phyinfo = NULL;
757 		debug("%s: No PHY found\n", dev->name);
758 
759 		return 0;
760 	} else
761 		debug("%s found\n", curphy->name);
762 	priv->phyinfo = curphy;
763 
764 	phy_run_commands(priv, priv->phyinfo->config);
765 
766 	return 1;
767 }
768 
769 static int tse_set_mac_address(struct eth_device *dev)
770 {
771 	struct altera_tse_priv *priv = dev->priv;
772 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
773 
774 	debug("Setting MAC address to 0x%02x%02x%02x%02x%02x%02x\n",
775 	      dev->enetaddr[5], dev->enetaddr[4],
776 	      dev->enetaddr[3], dev->enetaddr[2],
777 	      dev->enetaddr[1], dev->enetaddr[0]);
778 	mac_dev->mac_addr_0 = ((dev->enetaddr[3]) << 24 |
779 			       (dev->enetaddr[2]) << 16 |
780 			       (dev->enetaddr[1]) << 8 | (dev->enetaddr[0]));
781 
782 	mac_dev->mac_addr_1 = ((dev->enetaddr[5] << 8 |
783 				(dev->enetaddr[4])) & 0xFFFF);
784 
785 	/* Set the MAC address */
786 	mac_dev->supp_mac_addr_0_0 = mac_dev->mac_addr_0;
787 	mac_dev->supp_mac_addr_0_1 = mac_dev->mac_addr_1;
788 
789 	/* Set the MAC address */
790 	mac_dev->supp_mac_addr_1_0 = mac_dev->mac_addr_0;
791 	mac_dev->supp_mac_addr_1_1 = mac_dev->mac_addr_1;
792 
793 	/* Set the MAC address */
794 	mac_dev->supp_mac_addr_2_0 = mac_dev->mac_addr_0;
795 	mac_dev->supp_mac_addr_2_1 = mac_dev->mac_addr_1;
796 
797 	/* Set the MAC address */
798 	mac_dev->supp_mac_addr_3_0 = mac_dev->mac_addr_0;
799 	mac_dev->supp_mac_addr_3_1 = mac_dev->mac_addr_1;
800 	return 0;
801 }
802 
803 static int tse_eth_init(struct eth_device *dev, bd_t * bd)
804 {
805 	int dat;
806 	struct altera_tse_priv *priv = dev->priv;
807 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
808 	volatile struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
809 	volatile struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
810 	volatile struct alt_sgdma_descriptor *rx_desc_cur =
811 	    (volatile struct alt_sgdma_descriptor *)&rx_desc[0];
812 
813 	/* stop controller */
814 	debug("Reseting TSE & SGDMAs\n");
815 	tse_eth_reset(dev);
816 
817 	/* start the phy */
818 	debug("Configuring PHY\n");
819 	phy_run_commands(priv, priv->phyinfo->startup);
820 
821 	/* need to create sgdma */
822 	debug("Configuring tx desc\n");
823 	alt_sgdma_construct_descriptor_burst(
824 		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
825 		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
826 		(unsigned int *)NULL,	/* read addr */
827 		(unsigned int *)0,
828 		0,	/* length or EOP ,will change for each tx */
829 		0x1,	/* gen eop */
830 		0x0,	/* read fixed */
831 		0x1,	/* write fixed or sop */
832 		0x0,	/* read burst */
833 		0x0,	/* write burst */
834 		0x0	/* channel */
835 		);
836 	debug("Configuring rx desc\n");
837 	flush_dcache_range((unsigned long)(net_rx_packets[0]),
838 			   (unsigned long)(net_rx_packets[0]) + PKTSIZE_ALIGN);
839 	alt_sgdma_construct_descriptor_burst(
840 		(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
841 		(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
842 		(unsigned int)0x0,	/* read addr */
843 		(unsigned int *)net_rx_packets[0],
844 		0x0,	/* length or EOP */
845 		0x0,	/* gen eop */
846 		0x0,	/* read fixed */
847 		0x0,	/* write fixed or sop */
848 		0x0,	/* read burst */
849 		0x0,	/* write burst */
850 		0x0	/* channel */
851 		);
852 	/* start rx async transfer */
853 	debug("Starting rx sgdma\n");
854 	alt_sgdma_do_async_transfer(priv->sgdma_rx, rx_desc_cur);
855 
856 	/* start TSE */
857 	debug("Configuring TSE Mac\n");
858 	/* Initialize MAC registers */
859 	mac_dev->max_frame_length = PKTSIZE_ALIGN;
860 	mac_dev->rx_almost_empty_threshold = 8;
861 	mac_dev->rx_almost_full_threshold = 8;
862 	mac_dev->tx_almost_empty_threshold = 8;
863 	mac_dev->tx_almost_full_threshold = 3;
864 	mac_dev->tx_sel_empty_threshold =
865 	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
866 	mac_dev->tx_sel_full_threshold = 0;
867 	mac_dev->rx_sel_empty_threshold =
868 	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
869 	mac_dev->rx_sel_full_threshold = 0;
870 
871 	/* NO Shift */
872 	mac_dev->rx_cmd_stat.bits.rx_shift16 = 0;
873 	mac_dev->tx_cmd_stat.bits.tx_shift16 = 0;
874 
875 	/* enable MAC */
876 	dat = 0;
877 	dat = ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK;
878 
879 	mac_dev->command_config.image = dat;
880 
881 	/* configure the TSE core  */
882 	/*  -- output clocks,  */
883 	/*  -- and later config stuff for SGMII */
884 	if (priv->link) {
885 		debug("Adjusting TSE to link speed\n");
886 		tse_adjust_link(priv);
887 	}
888 
889 	return priv->link ? 0 : -1;
890 }
891 
892 /* TSE init code */
893 int altera_tse_initialize(u8 dev_num, int mac_base,
894 			  int sgdma_rx_base, int sgdma_tx_base,
895 			  u32 sgdma_desc_base, u32 sgdma_desc_size)
896 {
897 	struct altera_tse_priv *priv;
898 	struct eth_device *dev;
899 	struct alt_sgdma_descriptor *rx_desc;
900 	struct alt_sgdma_descriptor *tx_desc;
901 	unsigned long dma_handle;
902 
903 	dev = (struct eth_device *)malloc(sizeof *dev);
904 
905 	if (NULL == dev)
906 		return 0;
907 
908 	memset(dev, 0, sizeof *dev);
909 
910 	priv = malloc(sizeof(*priv));
911 
912 	if (!priv) {
913 		free(dev);
914 		return 0;
915 	}
916 	if (sgdma_desc_size) {
917 		if (sgdma_desc_size < (sizeof(*tx_desc) * (3 + PKTBUFSRX))) {
918 			printf("ALTERA_TSE-%hu: "
919 			       "descriptor memory is too small\n", dev_num);
920 			free(priv);
921 			free(dev);
922 			return 0;
923 		}
924 		tx_desc = (struct alt_sgdma_descriptor *)sgdma_desc_base;
925 	} else {
926 		tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX),
927 					     &dma_handle);
928 	}
929 
930 	rx_desc = tx_desc + 2;
931 	debug("tx desc: address = 0x%x\n", (unsigned int)tx_desc);
932 	debug("rx desc: address = 0x%x\n", (unsigned int)rx_desc);
933 
934 	if (!tx_desc) {
935 		free(priv);
936 		free(dev);
937 		return 0;
938 	}
939 	memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1));
940 	memset(tx_desc, 0, (sizeof *tx_desc) * 2);
941 
942 	/* initialize tse priv */
943 	priv->mac_dev = (volatile struct alt_tse_mac *)mac_base;
944 	priv->sgdma_rx = (volatile struct alt_sgdma_registers *)sgdma_rx_base;
945 	priv->sgdma_tx = (volatile struct alt_sgdma_registers *)sgdma_tx_base;
946 	priv->phyaddr = CONFIG_SYS_ALTERA_TSE_PHY_ADDR;
947 	priv->flags = CONFIG_SYS_ALTERA_TSE_FLAGS;
948 	priv->rx_desc = rx_desc;
949 	priv->tx_desc = tx_desc;
950 
951 	/* init eth structure */
952 	dev->priv = priv;
953 	dev->init = tse_eth_init;
954 	dev->halt = tse_eth_halt;
955 	dev->send = tse_eth_send;
956 	dev->recv = tse_eth_rx;
957 	dev->write_hwaddr = tse_set_mac_address;
958 	sprintf(dev->name, "%s-%hu", "ALTERA_TSE", dev_num);
959 
960 	eth_register(dev);
961 
962 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
963 	miiphy_register(dev->name, altera_tse_miiphy_read,
964 			altera_tse_miiphy_write);
965 #endif
966 
967 	init_phy(dev);
968 
969 	return 1;
970 }
971